PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/34864
GOG6F 9/46 A2

(43) International Publication Date: 15 June 2000 (15.06.00)

(21) International Application Number: PCT/US99/27659 | (81) Designated States: CA, JP, European patent (AT, BE, CH, CY,

(22) International Filing Date: 22 November 1999 (22.11.99)

(30) Priority Data:

09/205,769 Us

4 December 1998 (04.12.98)

(71) Applicant: HONEYWELL INC. [US/US]; Honeywell Plaza,
Minneapolis, MN 55408 (US).

(72) Inventors: CLARKE, Thomas, A.; 18212 North 43rd Place,
Phoenix, AZ 85032 (US). HAWKINSON, Ellen, B.; 3539
East Kachina Drive, Phoenix, AZ 85044 (US). KAAKANI,
Ziad, M.; 5454 East Justin Road, Scottsdale, AZ 85254
(US). THOMAS, Christian, R.; 9246 East Hualapai Drive,
Scottsdale, AZ 85255 (US).

(74) Agent: MIOLOGOS, Anthony; Honeywell Inc., Honeywell
Plaza — MN12-8251, P.O. Box 524, Minneapolis, MN
55440-0524 (US).

DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE).

Published
Without international search report and to be republished
upon receipt of that report,

(54) Title: TIMEOUT OBJECT FOR OBJECT-ORIENTED, REAL-TIME PROCESS CONTROL SYSTEM AND METHOD OF

OPERATION THEREOF
S31 0
CLIENT
320 330
{
TIMEOUT o
OBJECT RESOURCE

(57) Abstract

For use in time-limiting a request for information from a client to a resource, a timeout object, a method of operating the same and a
real-time process control system employing the timeout object or the method. In one embodiment, the timeout object includes: (1) a client
interface that receives, from the client, the request and a time-based parameter and (2) a resource interface that forwards the request to the
resource and waits for the information an amount of time that is a function of the time-based parameter, the client interface: (2a) returning
the information to the client if the timeout object receives the information within the amount of time and (2b) returning a timeout indicator
to the client if the timeout object fails to receive the information within the amount of time.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
CzZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzertand
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™D
TG
T
™
TR
TT
UA
UG
us
uz
VN
YU
YAV

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 00/34864 PCT/US99/27659

-1-

TIMEOUT OBJECT FOR OBJECT-ORIENTED, REAL-TIME
PROCESS CONTROL SYSTEM AND METHOD OF OPERATION THEREOF
TECHNICAL FIELD OF THE INVENTION

The present invention is directed, in general, to process control systems
employing object-oriented software and, more specifically, to a timeout object for an

object-oriented real-time process control system and a method of operating the same.

BACKGROUND OF THE INVENTION

Real-time process control systems were first implemented within a single
computer system. As the need to monitor and control more physical devices increased,
the complexity and size of the process control systems also increased. Shortly
thereafter, single computer real-time process control systems were unable to process all
the information within a timely manner as required by the real-time process control
environments.

To correct this processing problem, real-time process control systems evolved
into multiple computer systems that were connected to each other with proprietary
communication interfaces. The multiple computer systems processed data locally and
communicated the information to the other computer systems over the proprietary
communication interfaces. Since, the computer systems did not use a standard
communication interface nor a standard protocol between each of the computer systems,
modifications and additions to the systems were difficult, if not impossible.

This inter-computer incompatibility problem was resolved when the computer
industry developed standardized networks and network protocols. Two of the industry
standards were Ethernet and Transmission Control Protocol/Internet Protocol
(“TCP/IP”) used on 10 base 2 coaxial cable. Ethernet and TCP/IP allowed various
computer systems the ability to communicate to each other without using proprietary
communication interfaces.

The next evolution in real-time process control systems was object oriented
distributed processing. In object oriented distributed processing, requesting programs
(“clients”) call resource programs (“objects™) to process a request. In this design, the
clients and objects are located on different computers on the network. To facilitate a
sténdardized way for clients to locate and communicate with objects, Microsoft
Corporation developed the Compo‘nent Object Model (“COM”) protocol. The COM

protocol, incorporated into software libraries called “COM libraries,” defines a

10

15

20

25

30

WO 00/34864 PCT/US99/27659

2-

standardized interface for locating and communicating to objects over the network
without requiring the clients to know the location of the desired objects.

The process control industry incorporated the COM standard and Object
Linking and Embedding (“OLE”) in its real-time process control standard, calling the
resulting standard OLE for Process Control (“OPC”). The OPC standard defined the
interface and architecture for distributed real-time process control object processing.

One of the original requirements of all real-time process control systems was the
processing of requests within a specific period of time. If the real-time process control
system failed to process the request within a specific period of time, the real-time
process control system could have caused damage when the real-time process control
system failed to control a physical device. Therefore, the real-time process control
software was required to execute requests within specific time limitations.

However, even though the new OPC and COM standards used the standard
network protocol processing features, the standard network protocols did not allow
programs to control requests based upon time. If the computer which contained the
object died or was not available, the standard network protocols suspended execution
indefinitely or for a very long time. Thus, the new OPC and COM standards did not
meet the basic time processing requirements of real-time process control systems.

Real-time process control systems cannot afford to be suspended indefinitely if
they use OPC or COM compliant programs. What is needed in the art is a way to
prevent clients and objects from suspending indefinitely or suspending for a long period

of time.

SUMMARY OF THE INVENTION

To address the above-discussed deficiencies of the prior art, the present
invention provides, for use in time-limiting a request for information from a client to a
resource, a timeout object, a method of operating the same and a real-time process
control system employing the timeout object or the method. In one embodiment, the
timeout object includes: (1) a client interface that receives, from the client, the request
and a time-based parameter and (2) a resource interface that forwards the request to the
resource and waits for the information an amount of time that is a function of the time-
based parameter, the client interface: (2a) returning the information to the client if the
timeout object receives the information within the amount of time and (2b) returning a

timeout indicator to the client if the timeout object fails to receive the information

10

15

20

25

30

WO 00/34864 PCT/US99/27659

within the amount of time.

The present invention therefore introduces the broad concept of interposing an
intermediary object between a client and a resource to channel requests and information
flowing between the client and the resource to allow time-limits to be placed on the
requests. This avoids the unacceptably long wait that can occur in prior art systems by
virtue of their lack of timeout control.

In one embodiment of the present invention, the timeout indicator indicates
whether the resource was available to provide the information. In a related
embodiment, the timeout indicator indicates whether the resource successfully
processed the request. The timeout indicator may therefore assume different values
representing codes for such conditions.

In one embodiment of the present invention, the amount of time terminates when
the timeout object receives the information from the resource. In an embodiment to be
illustrated and described, the time-based parameter may be set to a null value. This
charters the timeout object to wait an indefinite amount of time (subject to other kinds
of timeout) until the resource returns the information.

In one embodiment of the present invention, the client interface is capable of
receiving a subsequent request from the client to extend the amount of time. In an
embodiment to be illustrated and described, the client may generate the subsequent
request to extend the amount of time in response to receipt of a timeout indicator
indicating that the resource is processing the earlier request, but did not return
information within the originally-allotted amount of time.

In one embodiment of the present invention, the timeout object is a Component
Object Module (COM)-compliant object. In a related embodiment, the resource is an
Object Linking and Embedding (OLE) for Process Control (OPC)-compliant object.
Those skilled in the pertinent art are familiar with OPC and COM in general and are
aware of their shortcomings with respect to time-limited requests. The present
mvention, while serving as a useful extension to OPC and COM to permit time-limited
requests, is also quite useful for providing the capability of time-limited requests in
other object-oriented environments.

The foregoing has outlined, rather broadly, preferred and alternative features of
the present invention so that those skilled in the art may better understand the detailed
description of the invention that follows. Additional features of the invention will be

described hereinafter that form the subject of the claims of the invention. Those skilled

10

15

20

25

30

WO 00/34864 PCT/US99/27659

4

in the art should appreciate that they can readily use the disclosed conception and
specific embodiment as a basis for designing or modifying other structures for carrying
out the same purposes of the present invention. Those skilled in the art should also
realize that such equivalent constructions do not depart from the spirit and scope of the

invention in its broadest form.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, reference is now
made to the following descriptions taken in conjunction with the accompanying
drawings, in which:

FIGURE 1 illustrates a block diagram of a real-time process control system that
forms one environment within which the present invention can operate;

FIGURE 2 illustrates a block diagram of a real-time process control software
architecture;

FIGURE 3 illustrates a block diagram of a client, a resource and a timeout object
constructed according to the principles of the present invention; and

FIGURES 4A and 4B illustrate a flow diagram of a method of time-limiting a
request from the client of FIGURE 3 to the resource of FIGURE 3.

DETAILED DESCRIPTION

Referring initially to FIGURE 1, illustrated is a block diagram of a real-time
process control system, generally designated 100, that forms one environment within
which the present invention can operate. The real-time process control system 100
comprises a network 110 that interconnects a server 102, an operator interface 104 and a
field unit 106. In the illustrated embodiment of the present invention, the real-time
process control system 100 may comprise any number of servers 102, operator
interfaces 104 and field units 106.

The network 110 comprises an industry standard network and industry standard
network protocols. In the illustrated embodiment, the industry standard network is “10
base T,” employing twisted pair cables. Other embodiments of the present invention
use other networks comprising “10 base 2" employing coaxial cables, fiber optic cables
or a combination of the two. Wireless communications may also be used for all or part
of the network communications. The industry standard network protocols, in one

embodiment of the present invention, are ETHERNET® and Transmission Control

10

15

20

25

30

WO 00/34864 PCT/US99/27659

Protocol/Internet Protocol (“TCP/IP”).

The server 102 comprises software programs that monitor, process information,
and control the physical devices within the real-time process control system 100. The
software programs comprise a requesting program “client,” and a resource program
“object” and other miscellaneous programs. The client program sends requests to object
programs to perform specific functions. The object programs receive requests and
perform the appropriate functions based upon the type of requests sent. The client
programs and object programs communicate over the network 110 or internally within
the server 102.

The operator interface 104 comprises a computer and a display. The operator
interface 104 displays information concerning the current state of the system 100. The
operator interface 104 also accepts operator input to perform functions such as
controlling a physical device or requesting other information to be displayed on a
display associated with the operator interface 104. The operator interface 104 may
comprise both client programs and object programs. The operator interface 104
communicates to other programs over the network 110.

The field unit 106 comprises object programs that perform tasks related to the
physical devices that make up the real-time process control system 100. In one
embodiment of the present invention, the field unit’s object programs collect status
information, process data and control the physical devices. In other embodiments, the
field unit 106 may perform more or less functions than described above. The field unit
106 responds to client’s requests over the network 110.

Turning now to FIGURE 2, illustrated is a block diagram of a real-time process
control software architecture, generally designated 200. The real-time process control
software architecture 200 comprises an operator display software 202, a data processor
software 204, an alarm processor software 206, a trend processor software 208, a scan
processor software 220, a historical processor software 222, a report processor software
224, a field unit software 230, a database software 240 and the network 110 of FIGURE
1. In the illustrated embodiment of the present invention, the real-time process control
software architecture 200 may comprise a plurality of the above software types.

The operator display software 202 displays the real-time process control system
100 information on a display or a plurality of displays. The operator display software
202 also processes the operator requests and communicates to other real-time process

control software over the network 110.

10

15

20

25

30

WO 00/34864 PCT/US99/27659

-6-

The data processor software 204 processes the data collected and the data
generated from the real-time process control system 100. The data processor software
204 stores and retrieves data to the database software 240 and communicates to other
real-time process control software over the network 110.

The alarm processor software 206 performs alarm processing on the data
collected. The alarm processor software 206 notifies the operator display software 202
and the report processor software 224 of any alarm conditions or non-alarm conditions
that exist in the real-time process control system 100. The alarm processor software 206
also stores and retrieves information from the database software 240 over the network
110.

The trend processor software 208 performs trending functions for the real-time
process control system 100. The trend processor software will collect operator selected
data, generate the desired trend information and distribute the trend data to the operator
display software 202 and the database software 240 over the network 110.

The scan processor software 220 collects data from a plurality of field units 230
and converts the data into the appropriate form usable by the real-time process control
system 100. The scan processor software 220 distributes, over the network 110, the
collected data to the other software processors so the software processors can perform
their associated functions. The scan processor software 220 also stores and retrieves
information from the database software 240.

The field unit 230 collects the specific data from the physical devices attached to
the field unit 230. The physical devices are not shown since there are multitude of
physical devices that can be monitored by a real-time process control system. The field
unit 230 sends the physical device data to the scan processor software 220. The field
unit 230 also processes control requests.

The historical processor software 222 collects and processes historical
information about the real-time process control system 100. The historical processor
software 222 also performs archival functions and stores information to the database
software 240.

The report processor software 224 generates the reports for the real-time process
control system 100. The report processor software 224 sends the generated reports to
the operator display software 202, the historical processor software 222, the database
software 240 and to printing devices if attached to the system 100.

The database software 240 processes all request for retrieval and storage of

10

15

20

25

30

WO 00/34864 PCT/US99/27659

-7

information for the real-time process control system 100. In other embodiments of the
present invention, the system 100 comprises a plurality of database software units
contained on a plurality of computers.

Those skilled in the art should know that other embodiments of the present
invention may include a plurality of processing software described above. Also, other
embodiments of the present invention may include more or less processing software
types and contain more or less functional capabilities then described above.

Turning now to FIGURE 3, illustrated is a block diagram of a client 310, a
resource 330 and a timeout object 320 constructed according to the principles of the
present invention. The client 310 is a software program that sends a request to the
resource 330 to perform some function. The resource 330 receives requests, performs a

specific function and returns the results of the function performed to the client 310.

Prior to the present invention, the client 310 would send a request directly to the
resource 330. Then the client 310 suspends execution until the resource completes the
required function. If the resource 330 never completes the required function or the
resource 330 terminates for some reason, then the client 310 will be suspended

indefinitely or until the network protocol software times out after a long period of time.
In the illustrated embodiment of the present invention, the client 310 uses a

timeout object 320 to prevent the client 310 from suspending forever or for a long
period of time. First, the client 310 sends a request to the timeout object 320. The
timeout object 320 creates a thread. A thread is a Microsoft Windows® NT operating
system feature that allows a separate flow of execution within the same program.
Background information concerning threads is discussed in Multithreaded Programming
Guide, by Sun Microsystems, Inc., Sun Microsystems 1994 and in Threaded Models,
by Microsoft Corp., Microsoft Developer Network CD-ROM, Jan. 1998. The
foregoing publications are incorporated herein by reference.

Once the thread is created, the thread sends the client’s 310 request to the
resource 330 and waits for a response. At the same time, the timeout object 320 waits
for a period of time specified by the client 310. Upon completion of the request or
expiration of the timeout period, the timeout object 320 returns execution control to the
client 310. The timeout object 320 also returns a status indicating if the request
completed or the timeout period expired before completion. The returned status also

indicates if the resource was not found, if the resource ceased operation while

WO 00/34864 PCT/US99/27659
-8-

completing the request, or if the timeout object was unable to gain access to the
network. In other embodiments of the present invention, the timeout object 320 may

return more or less information to the client 310.

If the client 310 received a status indicating that a timeout occurred, then the
client 310 can initiate another request to the timeout object 320 to check on the status of
the previous request. In other embodiments of the present invention, the timeout object
320 may perform more functions than those described above.

Table 3-1 shows an example of the pseudo code for a timeout object.

Table 3-1 Timeout Pseudo Code

For each untimed method, the timeout object or code will have a corresponding
timeout method and a timeout thread to perform the call on behalf of the client.
There will also be an associated structure with each method to pass parameters
between the timed method and timeout thread. This pseudo code represents a
snapshot of the required timeout code to support an untimed method. There is also

a host of supporting code such as:

idl (Interface definition language) — which represents the interface for COM
remoting.

VB support — In other words, for every timed method and associated thread
function, there is another chunk Qf code, which also has a timed method with an
associated thread function to support the VB flavor of all calls.

Threading model identification — There is code in place through out the code to
identify if the client is either free threaded (multi threaded) or apartment threaded
(single threaded). Depending on the model, various interface pointers need to be
marshaled between methods and threads.

Status — Helper code to determine if the actual call has completed with the results

available for consumption by the client.

struct MethodInfo

{
DWORD dwMethodID; // constant to identify method

WO 00/34864 PCT/US99/27659
9.
ChciTimeout *pThis; // pointer to timeout object
CCriticalSection ~ *csTimeOut; // critical section to protect data
HANDLE hEvent; //'Event to coordinate timeout
DWORD dwTransID; // transaction id to indicate completion
Status
BOOL bCleanupResults; // indicator as to whether the timeout
/1 object is responsible for cleanup
Istream *pstinterfacePtr; // must marshal the interface pointer if
/I Apartment threaded
HRESULT hResult; // result of actual call
InterfaceX *plf; // pointer to the actual interface within
The server
WhateverType MethodParamX; // method specific parameter for actual

call

Table 3-1 Cont.

MethodThread (Method Info)

Check threading model and take approriate actions

Make call to actual method within the server

The following is constructed from the MethodInfo structure
hResult = plf>Method (MethodParam X);

if receive an RPC (remote procedure call) error then
indicate that the server is not responding by setting the status to E_ABORT

Protect data

Check status of timeout within the main method using Transaction ID

Copy returned data and status to appropriate location depending on status

If not timeout, then
signal the method that the information is available.

Set Status to completed using Transaction ID

End Protect data

Cleanup}

WO 00/34864 PCT/US99/27659
-10-

Table 3-1 Cont.

Method (Interface X *plf, /fin parameter, pointer to actual interface
in server.
DWORD dwTimeout, //in parameter, duration of timeout in
milliseconds
DWORD *dwTransID, // in/out parameter, transaction id, used to
1dentify request.

whatever Type MethodParamX) // method specific parameters 1..n

Test transaction ID
If a request to see if the call has completed after at least 1 timeout, then
If completed then
retrieve the returned data (from thread) as well as the results

set transaction ID to zero

Else if new timed request, then
Get a new unique transaction ID
Create a new Event, to be used to signal when the timeout as expired.
Package info into the MethodInfo structure
If the timeout value is zero, then
call the Method Thread as a function, not a new thread
This indicates that the call will be blocking and act as a normal
untimed call.
Else.
Spawn the MethodThread as a new thread
End if
Wait for timeout or signal from thread that is has completed
If timeout or timer expired then
Set the status to E PENDING
Else

Thread completed before timeout

10

15

20

WO 00/34864 PCT/US99/27659

-11-

retrieve the returned data (from thread) as well as results

set transaction ID to zero

End if

Else
Bad transaction ID
End if

Cleanup

Turning now to FIGURE 4A and FIGURE 4B, illustrated is a flow diagram of a method
of time-limiting a request from the client 310 of FIGURE 3 to the resource 330 of
FIGURE 3. In FIGURE 4, the timeout object 320 first performs initialization in a step
402.

After initialization, the timeout object 320 receives the client’s 310 request to be
processed in a step 404. In one embodiment of the present invention, the timeout object
320 processes new requests and pending requests. The timeout object 320 determines if
the request is a new request in a decisional step 406.

If the request is a new request, the timeout object 320 builds a timeout structure
used to keep track of information associated with the particular request in a step 408.
The timeout object 320 then determines if the request is to be a timed request in a
decisional step 410.

If the request is a timed request, then the timeout object 320 creates a thread and
the thread performs the request in a step 420. The timeout object 320 then waits until
the specified timeout period expires or until the thread completes the client’s request in
a step 422.

Next, the timeout object 320 determines if the timeout period expired before
completing the request in a decisional step 424. If the timeout period expired, then the
timeout object 320 returns to the client 310 a status indicating the request is still

pending in a step 426. If the timeout period has not expired, then the request has

10

15

20

25

WO 00/34864 PCT/US99/27659

-12-

completed. Then the timeout object 320 obtains the results from the thread and returns
the results to the client 310 in a step 428.

If the request is not a timed request, then the timeout object 320 performs the
request and waits for the request to complete in a step 430. During this wait period, the
client 310 suspends until the timeout object 320 completes the request. Once the
timeout object 320 completes the request, the timeout object 320 sends the results of the
request to the client 310 in a step 432.

The timeout object 320 also processes requests that are pending. The timeout
object 320 determines if the request is a pending request in the decisional step 406. If
the request to be processed is a pending request, the timeout object 320 checks if the
pending request has completed in a decisional step 440. (See FIGURE 4B).

If the pending request has completed, then the timeout object 320 obtains the
results from the thread and returns the results to the client 310 in a step 450. If the
pending request has not completed, then the timeout object 320 determines whether the
request is a valid request in a decisional step 460.

If the request is valid, then the timeout object 320 returns a status to the client
310 indicating that the request is still pending in a step 464. If the request is invalid,
then the timeout object 320 returns a status to the client 310 indicating an error has
occurred.

From the above, it is apparent that the present invention provides, for use in
time-limiting a request for information from a client to a resource, a timeout object, a
method of operating the same and a real-time process control system employing the
timeout object or the method. In one embodiment, the timeout object includes: (1) a
client interface that receives, from the client, the request and a time-based parameter and
(2) a resource interface that forwards the request to the resource and waits for the
information an amount of time that is a function of the time-based parameter, the client
interface: (2a) returning the information to the client if the timeout object receives the
information within the amount of time and (2b) returning a timeout indicator to the

client if the timeout object fails to receive the information within the amount of time.

WO 00/34864 PCT/US99/27659
-13-
Although the present invention has been described in detail, those skilled in the
art should understand that they can make various changes, substitutions and alterations

herein without departing from the spirit and scope of the invention in its broadest form.

WO 00/34864 PCT/US99/27659
-14-

WHAT IS CLAIMED IS:

1. For use in time-limiting a request for information from a client to a
resource, a timeout object, comprising:
5 a client interface that receives, from said client, said request and a time-based
parameter; and
a resource interface that forwards said request to said resource and waits for said
information an amount of time that is a function of said time-based parameter, said
client interface:
10 returning said information to said client if said timeout object receives
said information within said amount of time, and
returning a timeout indicator to said client if said timeout object fails to

receive said information within said amount of time.

15 2. The timeout object as recited in Claim 1 wherein said timeout indicator

indicates whether said resource was available to provide said information.

3. The timeout object as recited in Claim 1 wherein said timeout indicator

indicates whether said resource successfully processed said request.

20
4, The timeout object as recited in Claim 1 wherein said amount of time
terminates when said timeout object receives said information from said resource.
5. The timeout object as recited in Claim 1 wherein said client interface is
25 capable of receiving a subsequent request from said client to extend said amount of
time.
6. The timeout object as recited in Claim 1 wherein said timeout object is a

Component Object Module (COM)-compliant object.

WO 00/34864 PCT/US99/27659
-15-

7. The timeout object as recited in Claim 1 wherein said resource is an

Object Linking and Embedding (OLE) for Process Control (OPC)-compliant object.

5 8. A method of time-limiting a request for information from a client to a
resource, comprising:

receiving, from said client, said request and a time-based parameter;
forwarding said request to said resource;
waiting for said information an amount of time that is a function of said time-
10 based parameter;
returning said information to said client if said timeout object receives said
information within said amount of time; and
returning a timeout indicator to said client if said timeout object fails to receive

said information within said amount of time.

15
9. The method as recited in Claim 8 wherein said timeout indicator
indicates whether said resource was available to provide said information.
10. The method as recited in Claim 8 wherein said timeout indicator
20 indicates whether said resource successfully processed said request.
11. The method as recited in Claim 8 wherein said amount of time terminates
when said timeout object receives said information from said resource.
25 12. The method as recited in Claim 8 further comprising receiving a

subsequent request from said client to extend said amount of time.

13. The method as recited in Claim 8 wherein said timeout object is a
Component Object Module (COM)-compliant object.

30

WO 00/34864 PCT/US99/27659
-16-

14. The method as recited in Claim 8 wherein said resource is an Object
Linking and Embedding (OLE) for Process Control (OPC)-compliant object.

15. Areal-time process control system, comprising:

a computer system;

5 a plurality of sensors and controllable devices;

a data bus coupling said computer system to said plurality of sensors and
controllable devices, said plurality of sensors and controllable devices representing
resources for said computer system,;

a client, associated with said computer system and capable of generating a

10 request for information from one of said resources; and
a timeout object for time-limiting said request that includes:
a client interface that receives, from said client, said request and a time-
based parameter, and
a resource interface that forwards said request to said one of said
15 resources and waits for said information an amount of time that is a function of
said time-based parameter, said client interface:
returning said information to said client if said timeout object
receives said information within said amount of time, and
returning a timeout indicator to said client if said timeout object
20 fails to receive said information within said amount of time.
16. The process control system as recited in Claim 15 wherein said timeout

indicator indicates whether said one of said resources was available to provide said

information.
17. The process control system as recited in Claim 15 wherein said timeout
25 indicator indicates whether said one of said resources successfully processed said
request.
18. The process control system as recited in Claim 15 wherein said amount

of time terminates when said timeout object receives said information from said one of

WO 00/34864 PCT/US99/27659
-17-

said resources.

19. The process control system as recited in Claim 15 wherein said client
interface is capable of receiving a subsequent request from said client to extend said

amount of time.

20. The process control system as recited in Claim 15 wherein said timeout

object is a Component Object Module (COM)-compliant object.

21. The process control system as recited in Claim 15 wherein said one of
said resources is an Object Linking and Embedding (OLE) for Process Control (OPC)-

compliant object.

WO 00/34864 PCT/US99/27659

1/5

104 /V
102
102 FIELD S
47 UNIT

—J

110
106
H 104
FIELD
UNIT | " \
104 \ —
1 06 102 i
) 43_7
FIELD =
& UNIT =

Fag. 1

PCT/US99/27659

WO 00/34864

2/5

G .Q@n\ LINN LINN
. RIE a4
02’ “ 0ge’ “"
ASvVd VIV TN 1IN
a1d1d a1d1d
> ; I G A
ov3 ommm I 0eg |
AVIdSIA JOSSHAD0Ud J0SSHAD0dd JOSSAD0Ud MOSSAD0¥d
JOLVIAdO LI0ddy TVOIMOLSIH NVOS NVOS
S S 5 5
yoe oo ozz’ | 0zz’ |
| Y y Y |
, I I
| Y |
AVIdSId J0SSAD0Ud d0SSHD0Ud dOSSHAD0dd AV1dSIa
d0.LVYHddO AONHYL NIV'IV VIVd d0LVdHddO
S S
202 A 802 902 S% 202

002

WO 00/34864 PCT/US99/27659

3/5
//2/300
§310
CLIENT
\
320 330
I f
TIMEOUT -
OBIECT) RESOURCE

Fig.3

WO 00/34864

PCT/US99/27659

4/5

INITIALIZATION

' /0400

RECEIVE REQUEST/

406

NEW
REQUEST
?

408
/—J
BUILD TIMEOUT
STRUCTURE
410
YES PERFOR NO 430
f TIMEOUT y J
)
CREATE THREAD TO ' PERFORM REQUEST
PERFORM REQUEST [\420 AND WAIT FOR
COMPLETION
Y Y
WAIT FOR 432 RETURN
TIMEOUT PERIOD] RESULTS
OR 422
COMPLETION
NO
Y
RETURN 428
RESULTS [~

RETURN
PENDING STATUS

ARG Fa1g.44

WO 00/34864

5/5

PREVIOUS
REQUEST
COMPLETED

440

PCT/US99/27659

NO

450
1 460
RETURN NO VALID
RESULTS REQUEST
2
462 S464

RETURN
ERROR STATUS

RETURN
PENDING STATUS

Fig.4B

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

