
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0086553 A1

US 2013 OO86553A1

GRECHANK (43) Pub. Date: Apr. 4, 2013

(54) SYSTEMS AND METHODS FOR FINDING (52) U.S. Cl.
PROJECT RELATED INFORMATION BY USPC ... 717/123; 717/120
CLUSTERING APPLICATIONS INTO
RELATED CONCEPT CATEGORIES (57) ABSTRACT

(76) Invento r: Mark GRECHANIK, Chicago, IL (US)

(21) Appl. No.: 13/248,877

(22) Filed: Sep. 29, 2011

Publication Classification

(51) Int. Cl.
G06F 9/44

o
Archive

(2006.01)

Meta Data
Extractor

similarity
Matrix
IS

n u

170

U Search
se k- Engine

A system, method, and computer-readable medium, is
described that finds similarities among programming appli
cations based on Semantic anchors found within the source
code of Such applications. The semantic anchors may be API
calls, such as Java's package and class calls of the JDK.
Latent Semantic Indexing may be used to process the appli
cation and semantic anchor data and automatically develop a
similarity matrix that contains numbers representing the simi
larity of one program to another.

100

115 120 125

| Application
- > Metadata - > TDM Builder

135
160

155
3. |CI --------------------- ------------------W-------

--

145
Pl 140

S.
--- ...---

LS Algorithm

US 2013/0086553 A1 Apr. 4, 2013 Sheet 1 of 7 Patent Application Publication

US 2013/0086553 A1 Apr. 4, 2013 Sheet 2 of 7 Patent Application Publication

?ãessêINXeSÄSlse J::punos: :e?pòULI::Uns::UuoO -
JeOuenbÐSJex?JN::punos:

Patent Application Publication Apr. 4, 2013 Sheet 3 of 7 US 2013/0086553 A1

301

Package API call i=1
Application j=1

305

Determine the number of OCCurrences
of APIP, in Application A

Determine the total of all package AP
calls in Application A

315

Determine the total number of all
applications

32O

Determine the total number of all l
applications containing AP P.

325

Calculate the weight of the API call P, in
the Application A

as every P, in A
been Considered No

Has every A
End been Considered

Fig. 3

Patent Application Publication

Class AP Call i=1
Application j=1

Determine the number of occurrences
of APIC in Application A

Determine the total of all class AP calls
in Application A

Determine the total number of all
applications

Determine the total number of all S
applications containing APC,

as every C in A
been considered

440

Has every A
been Considered

Fig. 4

Apr. 4, 2013 Sheet 4 of 7

405

415

Class AP call i=1
Application jij+1

US 2013/0086553 A1

445

Patent Application Publication Apr. 4, 2013 Sheet 5 of 7 US 2013/0086553 A1

O 5.
\\
2 X
S. t
g E

s
CC w

-
o UEO

X \\
X -

a. t

E E
X

uO

g
E
s e

sldw----Wuwanuman g
CO

\ s
O
h

it -
9. c C
C. t. X

3 E
Her

S as C. S.
O - O

- - - - -

SW

Patent Application Publication Apr. 4, 2013 Sheet 6 of 7 US 2013/0086553 A1

6 O O
--all

130 or 135

605
Choose reduced number of dimensions

value, r

Perform Singular Value Decomposition
(SVD)

Select Application Vectors

Fig. 6

Patent Application Publication Apr. 4, 2013 Sheet 7 of 7

Calculate Similarity Matrix of ICI
C = Sc

Calculate Similarity Matrix of IP
P = Sp

Scale each element in So by No
Scale each element in SIP by Mp

Add element-by-element, the scaled
Slc to the scaled SIP
S = NP-SP + Nc Sc

705

710

715

720

US 2013/0086553 A1

End

Fig. 7

US 2013/0O86553 A1

SYSTEMS AND METHODS FOR FINDING
PROJECT RELATED INFORMATION BY
CLUSTERING APPLICATIONS INTO
RELATED CONCEPT CATEGORIES

TECHNICAL FIELD

0001. This disclosure relates generally to the classification
and searching of Software applications.

BACKGROUND

0002 Retrieving similar or related web pages is a feature
of popular search engines (e.g., Google, Ask.com, HotBot).
For example, after a user Submits a search query, Google
displays links to relevant web pages along with a link labeled
“Similar next to each result. These “Similar links point to
web pages that Google's algorithm judges to be similar by
aggregating various factors that may include target link asso
ciation (as when one webpage contains links to each of the
“Similar web pages), topical similarities, and popularity
scores of the retrieved pages. One benefit of the “Similar link
is that it lets users find pages similar to a known web page
without the need to determine the proper keyword search to
achieve this result.

0003. One technical area where a similarity search func
tion would be desirable is in the realm of application devel
opment. A Software application is a collection of all source
code modules, libraries, and programs that, when compiled,
result in the final deliverable that customers install and use to
accomplish certain business functions. Detecting similarity
between applications, however, is a notoriously difficult
problem, in part because it means automatically detecting that
the high-level requirements of these applications match
semantically. Such detection is difficult for a variety of rea
sons. For example, many application repositories are polluted
with poorly functioning projects, which could lead to non
functioning projects being misidentified as “similar to func
tioning projects. Further, keyword searching may also lead to
erroneous results because, for example, a keyword match
between words in a requirements document with words in the
descriptions or source code of an application does not guar
antee relevance between the two corresponding applications.
Also, applications may be highly similar to one another at a
low-level even if they do not perform the same high-level
functionality, which could result in the misidentification of
“similar applications that perform dissimilar functions.
Moreover, it may be difficult to recognize similarity between
Software artifacts belonging to different applications because
programmers rarely record traceability links between differ
ent applications.
0004 Knowing similarity between applications plays an
important role in assessing reusability of applications,
improving understanding of Source code, prototyping for
rapid development, and discovering code theft and plagia
rism. Allowing programmers to compare how different appli
cations implement the same requirements may contribute to
their knowledge about application requirements and to the
efficient reuse of code. Retrieving a list of similar applications
may allow programmers to concentrate on the new aspects of
the requirements, thus saving time and resources for pro
grammers. Programmers could spend this time instead under
standing the functionality of similar applications, and seeing
the complete context in which the functionality is used.

Apr. 4, 2013

0005 Consider a typical project in a large-scale software
development enterprise in which company programmers
engage in several hundred software projects at the same time.
The enterprise may have previously delivered thousands of
applications, many of which may have had similar require
ments and implementations to the project at hand.
0006. A typical project starts with writing a proposal in
response to a bid request from a company that needs an
application. A winning bid proposal has many components:
well-written requirements, preliminary models and design
documents, and proof of experience in building and deliver
ing similar applications in the past. A company that Submits a
bid proposal that contains these components with the closest
correlation to a desired application will likely win the bid.
Reusing the components from Successfully delivered appli
cations in the past will save time and resources and further
increase chances of winning the bid. Thus, recognizing simi
larities between past and present applications is important for
preserving knowledge, leveraging experience, winning bids
on future projects, and Successfully building new applica
tions.
0007. The process offinding similar applications may start
with code search engines that return code fragments and
documents in response to queries that contain key words from
elicited requirements. However, returned code fragments are
of little help when many other non-code artifacts (e.g., dif
ferent functional and non-functional requirements docu
ments, UML models, or design documents) are required.
Matching words in queries against words in documents and
Source code may be a good starting point, but keyword search
results do not establish how applications are similar at a
high-level scale.
0008. A problem in detecting closely related applications

is in the mismatch between the high-level intent reflected in
the descriptions of these applications and low-level details of
the implementation. This problem is known as the concept
assignment problem. For any two applications it is too impre
cise to establish their similarity by simply matching words in
the descriptions of the applications, comments in their source
code, and the names of program variables and types (e.g.,
names of classes and functions as well as identifiers). Thus,
existing code search engines do not effectively detect similar
applications and programmers must typically invest a signifi
cant intellectual effort to analyze and understand the func
tional similarity of retrieved applications.
0009 Similarities between documents can be found using
Syntagmatic associations by considering documents similar
when terms in these documents occur together in each docu
ment. This technique is used by the MUDABlue similarity
engine. Alternatively, similarities between documents can be
found using semantic anchors and by developing paradig
matic associations where documents contain terms with high
semantic similarities. Semantic anchors are elements of
documents that precisely define the documents’ semantic
characteristics. Semantic anchors may take many forms. For
example, they can be expressed as links to web sites that have
high integrity and well-known semantics (e.g., cnn.com or
whitehouse.gov) or they can refer to elements of semantic
ontologies that are precisely defined and agreed upon by
different stakeholders. Without semantic anchors, documents
(or applications) are considered as collections of words with
no semantics, and the relevance of these documents to user
queries (and to one another) is determined by matches
between words. Using semantics represents the essence of

US 2013/0O86553 A1

paradigmatic associations between documents, whereas
using word matching represents the essence of syntagmatic
associations.
0010 Programmers routinely use Application Program
ming Interface (API) calls from third-party packages (e.g.,
the Java Development Kit (JDK)) to implement various
requirements. Unlike names of program variables, types, and
words used in comments, API calls from well-known and
widely used libraries have precisely defined semantics. Since
programs contain API calls with precisely defined semantics,
the API calls may serve as semantic anchors to compute the
degree of similarity between applications by matching the
semantics of applications as expressed by the API calls. Using
the API calls to compute similarities among applications may
result in better precision than syntagmatic associations
among applications.
0011. Therefore, a method of finding similarities in appli
cations based on underlying semantics of the applications
would be useful to allow programmers needing to find similar
applications to do so with less intellectual and manual efforts
than currently used search methods. A method of finding a
similar application based on underlying semantics would also
be useful to help preserve knowledge base and correlate Sup
porting Software documentation in similar applications.

SUMMARY

0012. A method, system, and computer readable medium
are described where the method receives, by a computer,
source code for a plurality of applications and associates each
application to semantic anchors found with each application.
The method, system, and computer-readable medium also
compare the applications based on the semantic anchors and
assign, based on the comparison, a similarity index, repre
senting the similarity between two applications.
0013. It is to be understood that both the foregoing general
description and the following detailed description are exem
plary and explanatory only and are not restrictive of the appli
cation, as claimed.
0014. The accompanying drawings, which are incorpo
rated in and constitute a part of this specification, illustrate
several embodiments of the application and together with the
description, serve to explain the principles of the application.

BRIEF DESCRIPTION OF THE DRAWINGS

0015 FIG. 1 is an illustration of an exemplary embodi
ment of the disclosed system;
0016 FIG. 2 is a more detailed illustration of an exem
plary process of building a Term-Document Matrix (TDM)
for package API libraries;
0017 FIG. 3 is a more detailed illustration of an exem
plary process of building a Term-Document Matrix (TDM)
for class API libraries;
0018 FIG. 4 is an illustration of an exemplary method for
breaking down a Term-Document Matrix (TDM) into three
matrices;
0.019 FIG. 5 is a more detailed illustration of an exem
plary method for finding a reduced dimension of application
Vectors;
0020 FIG. 6 is a more detailed illustration of an exem
plary process to find an similarity matrix; and
0021 FIG. 7 is an exemplary illustration of a user interface
for showing similarity between applications.

Apr. 4, 2013

DETAILED DESCRIPTION

0022 Reference will now be made in detail to the exem
plary embodiments. Wherever possible, the same reference
numbers will be used throughout the drawings to refer to the
same or like parts.
0023 Embodiments consistent with the present disclosure
may use semantic anchors and dependencies among Such
semantic anchors to compute similarities between documents
with a higher degree of accuracy when compared with results
obtained with documents that have no commonly defined
semantic anchors. This approach is based on three observa
tions. First, if two applications share some semantic anchors
(e.g., API calls), then their similarity index should be higher
than for applications that do not share any semantic anchors.
Sharing semantic anchors means more than the exact syntac
tic match between two API calls; it also means that two
different API calls will match semantically if they come from
the same class or a package. This idea is rooted in the fact that
classes and packages in the JDK contain semantically related
API calls; for example, the java.security package contains
classes and API calls that enable programmers to implement
security-related requirements, and the java. util.Zip package
exports classes that contain API calls for reading and writing
the standard ZIP and GZIP file formats. The exemplary pro
cess may thus exploit relationships between inheritance hier
archies in JDK to improve the precision of computing simi
larity.
0024 Second, different API calls have different weights.
Many applications have many API calls that deal with collec
tions and string manipulations. The exemplary process auto
matically assigns higher weights to API calls that are encoun
tered in fewer applications and, conversely to assign lower
weights to API calls that are encountered in a majority of
applications. There is no need to know what API calls are used
in the applications—this task may be done automatically,
improving the precision of the process by preventing API
calls to common packages like java.lang from skewing the
similarity index.
0025. Third, an application requirement is often imple
mented using combinations of different API calls rather than
a single API call, meaning that co-occurrences of API calls in
different applications may form a pattern indicating that these
applications implement similar requirements. For example, a
requirement for efficiently and securely exchanging XML
data is often implemented using API calls that readXML data
from a file, compress and encrypt it, and then send this data
over a network. Even though different ways of implementing
this requirement are possible, the patterns of co-occurrences
of these API calls may be reflected in the similarity index, thus
improving the precision of the results when compared with
alternative approaches.
0026 FIG. 1 illustrates an exemplary system 100 for
implementing an embodiment of the present disclosure. In the
illustrated embodiment, system 100 receives as inputs an
Applications Archive 105 and an archive of API calls 110.
The Applicationarchive 105 and API archive 110 are used by
a MetalData Extractor 115 to find API calls in various pack
ages and classes used in a particular application. Package API
calls may be recognized by their existence in the API archive
110. The MetaData Extractor may match API calls in the API
archive 110 to an application’s source code. The MetalData
extractor 115 produces the Application Metadata 120, which,
in an embodiment, is a set of tuples (e.g., <package, class>,
API calls: Application>) thereby linking API calls and their

US 2013/0O86553 A1

packages and classes to applications (e.g., Java applications)
that use these API calls. The Term-Document Matrix (TDM)
Builder 125 uses the Application Metadata 120 to produce
two TDMs: a Package-Application Matrix (TDM) 130 and
Class-Application Matrix (TDM) 135 that contain a
weighted correlation coefficient for Java packages and
classes whose API calls are invoked in respective applica
tions.

0027. Although some exemplary embodiments have been
described in terms of finding similarities between Java appli
cations, it should be understood that the system may also be
used, in some embodiments, to find similarities between
applications written in other programming languages. For
example, similarities between C++ applications may be
found by equating Java's packages to C++’s namespaces and
Java's classes to C++’s classes. Other embodiments may use
only one TDM to correlate API calls or similar function calls
derived from any source. In other embodiments, the system
100 may use other TDMs built using the same concepts as
presented herein, but keyed on other metadata found in the
programming applications and documentation, Such as a
TDM based on syntagmatic associations (word matching) or
a TDM based on focused syntagmatic associations (keyword
matching). In some embodiments, the MetalData Extractor
115 and Applications Metadata 120 may contain processes to
cull alternative metadata out of the Application archive 105
for further processing by the TDM Builder 125 to support
additional or different TDMs.

0028. In an embodiment, the exemplary system 100 may
use Latent Semantic Indexing (LSI) (a well-established con
ceptual framework of relevance) (step 140), but extend it by
including semantic layers that correspond to packages and
class hierarchies that contain functional abstractions. This
approach is based on the concept that applications that con
tain functional abstractions in the form of API calls whose
semantics are defined precisely and implement the same
requirement (e.g., different API calls from a data compression
library) have a higher degree of similarity than those that do
not have API calls that are related to a requirement.LSI may
be applied separately to TDM and TDM, to compute class
and package matrices P 145 and IC 150, respectively,
where each row contains coordinates that indicate the pack
ages (IP) or classes (CII) of API calls that are invoked in the
application. Matrices P 145 and IC 150 may be combined
155 into a Similarity Matrix 160 using a process described in
more detail below. The Similarity Matrix 160, IS, is a matrix
whose rows and columns designate applications. For any two
applications A, and A. each element of ISI. S., represents a
similarity score between these applications that may be
defined as follows:

S Oss is 1, if i + j
- if i = i

0029. Once found, one use of the similarity between appli
cations is in finding existing applications that meet a defined
set of requirements. After obtaining the initial set of require
ments, the user 170 may enter keywords representing aspects
of these requirements into search engine 165, which will
return applications relevant to these keywords. The results

Apr. 4, 2013

may also include non-code artifacts, which may be important
for the bidding process or to expedite application documen
tation.
0030. After reviewing the returned applications, the user
may determine which code and non-code artifacts are rel
evant to the requirements, and which artifacts are missing.
The user may focus the search to find applications that contain
the missing artifacts and which are also similar to relevant
applications that the user has already found. Exemplary
embodiments may reduce query or document mismatch by
expanding the query with concepts that are similar to the set
of relevant documents. In this case, the exemplary system 100
may expand the initial query using the previously found
application to include artifacts from this application that
matched some of the requirements determined by the user,
and thus find applications containing artifacts similar to the
ones in the found application.
0031 When a user 170 enters a query, it is passed to the
Search Engine 165 that retrieves applications with relevancy
ranking based on the Similarity Matrix 160. Search Engine
165 uses the Application Metadata 120 to extract and deliver
a map of API calls for each pair of similar applications. This
map shows API calls along with their classes and packages
that are shared by similar applications. The user 170 is
allowed to select and view the returned applications API
calls to help determine which project requirements are met.
The user may also select to find similar applications to any
particular returned application. Upon selection of this option,
a new list of applications is returned to the user 170, based on
the similarity matrix index.
0032 For example, Suppose that a programmer was tasked
with creating an application that records musical data from an
electronic instrument into a MIDI file. The user may submit a
search query that contains key words. Such as “record.”
“MIDI. and “file.” The exemplary search engine may
retrieve a list of applications that are relevant to these key
words. The applications retrieved may include the application
“MidiQuickFix” that may be of interest to the user. After
clicking on the link corresponding to this application, the
exemplary system may present the user with a list of similar
applications ranked in descending order. The user may select
a relevant similar application, and in response, the system
may present the user with a visual interface, as shown in part
in FIG. 2.

0033. The exemplary interface of FIG.2 shows three tabs.
The leftmost tab (the active tab in FIG. 2) presents packages,
classes, and API calls common to both applications. The two
other tabs present packages, classes, and API calls for each
application separately. Comparing applications directly
based on functionally related API calls may help program
mers to concentrate on highly related details rather than
examine the entire source code. In this example, the most
similar application retrieved is mbox, a command-line utility
to convert MIDI files to mappings of music box drums. Pack
ages com. Sun.media. Sound and javax. Sound.midi are shown
in FIG.2 as common for both applications MidiQuickFix and
mbox. When expanded, common classes and API calls are
shown to the user. For example, FIG. 2 indicates that the class
AbstractMidi Device includes an API call, doClose, that is
invoked in both applications.
0034. Note that this example display of FIG. 2 is not
intended to be restrictive. Additional tabs or other delimiters
may be included to assist the programmer in comparing two
or more applications. For example, the display may include a

US 2013/0O86553 A1

tab for each application that represents class and package
information for each API call not found in each other appli
cation. This would help the programmer to understand the
differences as well as the similarities between the two appli
cations. In addition, the user interface may contain other
elements (such as “breadcrumbs) to make navigation of the
search results more convenient for the user. Also, the user
interface may allow the user to select and compare similari
ties and differences among three or more applications.
0035 Returning to FIG. 1, one or more of the components
depicted in FIG.1 may be implemented in software on one or
more computing systems. For example, the components may
comprise one or more applications, which may in turn com
prise one or more units of computer-readable instructions
which, when executed by a processor, cause a computer to
perform steps of a method. Computer-readable instructions
may be stored on a computer-readable medium, Such as a
memory or disk. Such media typically provide non-transitory
storage. One or more of the components depicted in FIG. 1
may be hardware components or combinations of hardware
and software Such as, for example, special purpose computers
or general purpose computers. A computer or computer sys
tem may also comprise an internal or external database. The
components of a computer or computer system may connect
through a local bus interface.
0036. In some embodiments, one or more of the compo
nents shown in FIG. 1 may be a computer server with web
services enabled. For example, the search engine 165 could
contain a processor web service for processing code search
requests initiated by users connected via a network using a
web browser. The components depicted in FIG. 1 may be
operatively connected to one another via a network, not
shown, such as the Internet, an intranet, or any type of wired
or wireless communication system. Connections may be
implemented through a direct communication link, a local
area network (LAN), a wide area network (WAN) and/or
other suitable connections. Apps Archive 105 and API
Archive 110 may be implemented in databases, files, or other
Suitable repositories and may be accessed by other compo
nents directly via an external connection or via a network (not
shown).
0037 FIG. 3 illustrates an exemplary process 300 used to
build the TDM for packages (TDM). The exemplary process
examines each API calli in each eligible Application found
in the Application archive, where is an index into the Appli
cation Archive and i is an index into the package API calls of
the j-th Application. To begin, the process 300 assigns one (1)
to each of the i and j index. The number of occurrences of
package API call i in the application j is determined at Step
305 by counting the number of occurrences package API call
i appears in Application. The number of occurrences of all
package API calls in Application j is determined at step 310
by counting the number of occurrences all package API calls
appear in Application j. The total number of applications is
determined at step 315 by counting all of the eligible appli
cations appearing in the Applicationarchive 105. The number
of applications that call package API call i is determined at
step 320 by counting each eligible application appearing in
the Application archive 105 that contains package API call i.
The weight for the i-th package API call in the j-th Applica
tion (TDM) is calculated in step 325 by multiplying the
Package Term Frequency (TF) by the Inverse Document
Frequency (IDF).

Apr. 4, 2013

0038 TF represents a normalized measure of the package
API call count. The Term frequency for a particular package
may be calculated as follows:

iii; TF = f XEnki
k

where n, represents the number of occurrences of the consid
ered package API call P, in application A, (determined at Step
305), and X, n, represents the total of all package API calls in
application A, (determined at Step 310).
0039. The Inverse Document Frequency (IDF) is a mea
sure of the general importance of the API call, obtained by
dividing the total number of applications by the number of
applications containing the API call, and then taking the
logarithm of that quotient,

A IDF = log--- i logia. P. A.

where |A| is the total number of applications (determined at
step 315) and |{C.: PeA}| is the number of applications where
the package API call P, appears (determined at step 320).
10040. The resulting weight is computed for TDM as
follows: :

TDM-TFIDF-TFxIDF (determined at Step 325).

0041. Once the weight is found for TDM, the process 300
considers at step 330 whether all package API calls in Appli
cation j have been considered. If not, then the i index is
incremented in step 335 and the process returns to step 305. If
so, then the process 300 considers at step 340 whether all
eligible applications have been considered. If not, then the
index is incremented and i index set to one (1) in step 345 and
the process returns to step 305 for further processing. If so,
then the process ends.
0042. The set of TDM values found in exemplary pro
cess 300 define the TDM, where each row corresponds to a
unique package API call and each column corresponds to a
unique application found in the Application Archive 105.
0043. The exemplary process 300 may use the Application
MetaData 120 to help determine the data determined in steps
305,310, 315, and 320, because the Application MetaData
already contains associations of package or class API calls to
Applications.
0044. Each element of the resulting TDM may represent
a normalized metric, determined from the process 300, that
represents how frequently this package API call (row) is used
in this application (column), but tempered by the relative
importance of the package API call in the application. A
simple metric like the API call count, alone—showing the
number of times a given API call appears in applications
regardless of any context—may be subject to bias, thereby
skewing the distribution of these calls toward large applica
tions, which may have a higher API call count regardless of
the actual importance of that API call. Therefore, a normal
ized metric, such as the one presented by the exemplary
process 300, may reduce bias by accounting for the total
number of API calls in the particular application and corre
lating it to the general importance of aparticular API call in all
applications. API calls that are used less frequently across all

US 2013/0O86553 A1

applications will, in general, be more important to determine
similarity than API calls used in nearly every application.
0045 FIG. 4 illustrates an exemplary process 400 used to
build the TDM for classes (TDM). The exemplary process
400 mirrors the process 300 for calculating the TDM. As
Such, the discussion above, with respect to determining the
TDM, may be altered by a person of ordinary skill to achieve
the TDM. Specifically each of steps 401, 405, 410,415,420,
425,430,435,440, and 445 mirrors steps 301,305,310,315,
325, 330,335,340, and 345, respectively, but with respect to
class API calls, not package API calls. Therefore, one of
ordinary skill may look to the discussion above with respect
to process 300 to understand process 400.
0046 TDMs for other semantic anchors, syntagmatic
associations, or for other programming languages may be
developed in a similar way.
0047 FIG. 5 illustrates how Latent Symantec Indexing
(LSI) uses singular value decomposition (SVD) to break the
TDM, and TDM, 505 into a set of three matrices. LSI
reduces the dimensionality of the similarity space while
simultaneously revealing latent concepts that are imple
mented in the underlying corpus of applications. In LSI.
terms are elevated to an abstract space, and terms that are used
in similar contexts are considered similar even if they are
spelled differently. Thus, LSI makes embedded concepts
explicit. SVD is a form of factor analysis used to reduce
dimensionality of the space to capture most essential Seman
tic information. SVD can be viewed as a method for rotating
the coordinate axes of the r-dimensional space to align these
axes along the directions of largest variations among the
documents. As a result, LSI offers away of assessing seman
tic similarity between any two samples of some text.
0048 SVD decomposes TDM and TDM,505 into three
matrices using a reduced number of dimensions, r, whose
value may be chosen experimentally. The number of dimen
sions is commonly chosen to be r-300, but may be greater or
less than 300. Three exemplary decomposed matrices are
shown on the right-hand side of the schematic equation 500 in
FIG. 4. The first matrix 510 contains term vectors describing
the relative weights that terms (e.g., classes or packages that
contain API calls found in applications) have for different
dimensions. The second matrix 515 contains Scaling factors,
and the third matrix 520 contains application vectors describ
ing the relative weights that applications have for different
dimensions. Each column in the third matrix 520 is a vector
whose elements specify coordinates for a given application in
the r-dimensional space. Similarities between applications
may be determined by computing the cosines between vector
rows of the third matrix 520. One of ordinary skill will under
stand that other methods of calculating and expressing the
angular similarity between the vector rows may also be used
to determine the similarities between applications.
0049 FIG. 6 contains an exemplary illustration of how IP
145 and IC 150 are calculated using LSI. The exemplary
process 600 chooses a reduced number of dimensions, r (step
605). Using SVD, the TDM, and TDM, are decomposed into
the matrices as described above in regard to FIG. 5 (step 610).
The right most matrix of FIG. 5, the set of application vectors,
is selected as IP and P. respectively (step 615).
0050. As mentioned above, r may be experimentally cho
sen, but an effective number for r is 300. Increasing r will
result in finding more similar applications (requiring less
semantic similarities to determine that an application is simi
lar), while reducing r will result in fewer similar applications

Apr. 4, 2013

(requiring more semantic similarities to determine that an
application is similar). Therefore, while r may theoretically
be any number, the user will likely find better results in
choosing an r in the 100 to 500 range. One factor that may
influence the r chosen is the number of applications in the
pool. Note that if ther value changes, then the decomposition
matrices may have to be recalculated.
0051. Note that the concepts presented herein are not
dependent on the use of LSI to correlate the API calls with
applications. This correlation may occur by other data
abstraction means. For example, another means of finding a
correlation is through a Vector Space Model (VSM). In a
VSM, documents are represented as vectors of words and a
similarity measure is computed as the cosine between these
vectors. Typically, a VSM is used to find syntagmatic asso
ciations, such as word similarities between documents.
0052. In an embodiment, VSM techniques may be applied
to determine similarity between two programs. First, VSM
may consider the source code and documentation content of
the two programs. Second, for each program, VSM may filter
everything but the package and class API calls, providing a
semantic representation of the program. (In a traditional
VSM, all identifiers, language keywords, comments, API
calls are words without any semantics.) Third, VSM may
represent these programs as vectors of the API calls. Fourth,
VSM may determine similarity by computing the cosine
between these vectors. Filtering out words other than the API
calls solves the problem where different programmers can use
the same words to describe different requirements (the syn
onymy problem) and where different programmers can use
different words to describe the same requirements (the poly
semy problem). Keeping only the API calls also solves the
more general Vocabulary problem, which holds that no single
word can be chosen to describe a programming concept in the
best way. Because API calls from the JDK have precise mean
ings, this modified VSM approach addresses the polysemy,
synonymy, and Vocabulary problems.
0053. In some embodiments, traditional VSM techniques
may be further altered to reduce some of the bias as discussed
above with regard to LSI. Because a majority of applications
use API calls from collections and string manipulation
classes; finding two applications similar only because they
share many of such API calls may be imprecise. In addition,
the sheer number of possible API calls suggests that many of
these calls are likely to be shared by different programs that
implement completely different requirements. Therefore, in
some embodiments, the VSM may be modified to filter out the
more common API calls. Common API calls may be found by
a process similar to the Inverse Document Frequency calcu
lation discussed above with respect to step 325 of process
3OO.

0054. In addition, the JDK contains close to 115,000 API
calls that are exported by a little more than 13,000 classes and
interfaces that are contained in 721 packages. LSI reduces the
dimensionality of this space while simultaneously revealing
similarities between latent high-level requirements. Because
VSM does not itself reduce the dimensionality of the vector
space (though it was reduced through the filtering as dis
cussed above), it may be computationally infeasible to calcu
late similarities using VSM for some application archives.
0055 FIG. 7 illustrates an exemplary process 700 to cal
culate the similarity matrix 160. The process 700 calculates
the similarity matrix of ICI, IIS 705, the similarity matrix of
P,S. 710, scales each element in each similarity matrix by

US 2013/0O86553 A1

a interpolation weight in step 715, and then combines them in
step 720 on an element-by-element basis to calculate the final
similarity matrix, S.
0056. In an embodiment, Matrices ||P 145 and IC 150
may be combined by matrix operator 155 into the Similarity
Matrix 160 using the following formula Sv. IISI+

|Sle, where w is the interpolation weight for each similar
ity matrix, and matrices ISI, and ISI are similarity matrices
for IC and P. respectively. As described above, these simi
larity matrices may be obtained by computing the cosine
between the vector for each application (a corresponding
column in the matrix 520) and vectors for all other applica
tions. Thus, ISI, and ISI are each matrices of nXn dimen
sions where n is the number of eligible Applications found in
the Application Archive 105. Weights we and W may be
determined independently of applications. Adjusting these
weights allows for experimentation with how underlying
structural and textual information in an application affects
resulting similarity scores. In an embodiment, W. W. 0.5, so
that both class and package-level similarity scores contribute
equally to the Similarity Matrix. However, class-level and
package-level similarities may be different because applica
tions are often more similar on the package level than on the
class level, reflecting the fact that there are fewer packages
than classes in the JDK. Therefore, there is a higher probabil
ity that two applications may have API calls that are located in
the same package but not in the same class. Using this knowl
edge, one of ordinary skill may experimentally adjust the
weighting coefficients, w and was needed to achieve the
best result for a given data set.
0057 Turning back to FIG. 1 and FIG. 2, using the simi

larity matrix, in an embodiment, the system 100 allows a user
170 to search for an application based on an input and to use
those results through an interface to find similar applications
and display details on the interface as in FIG. 2.
0058 Other embodiments of the disclosure will be appar
ent to those skilled in the art from consideration of the speci
fication and practice of the embodiments disclosed herein. It
is intended that the specification and examples be considered
as exemplary only, with a true scope and spirit of the embodi
ments being indicated by the following claims.
What is claimed is:
1. A computer-implemented method of determining simi

lar applications comprising:
receiving, by a computer, source code for a plurality of

applications;
associating, for each application, semantic anchors found

in an application with the application;
comparing, based on the semantic anchors, a first applica

tion to a second application; and
assigning, based on the comparison, a number representing

the similarity of the first and second applications.
2. The method of claim 1, wherein the semantic anchors

comprise Application Programming Interface (API) calls.
3. The method of claim 1, wherein associating semantic

anchors comprises:
building at least one term document matrix based on the

semantic anchors and source code.
4. The method of claim 3, wherein associating semantic

anchors comprises:
using Latent Semantic Indexing (LSI), reducing the dimen

sionality of the at least one term document matrix to
produce at least one matrix of application vectors.

Apr. 4, 2013

5. The method of claim 4, wherein comparing comprises:
calculating an angle between a first application vector and

a second application vector, wherein the first application
vector corresponds to the first application, and wherein
the second application vector corresponds to the second
application; and

wherein assigning comprises:
assigning a number based on the calculated angle to the

position in at least one similarity index corresponding
to the first and second application.

6. The method of claim 5, wherein building at least one
term document matrix comprises:

building two term document matrices, based on two differ
ent classifications of semantic anchors; and

wherein using LSI comprises:
using LSI on each term document matrix to produce two

matrices of application vectors; and
wherein calculating the angle comprises:

calculating the angle between a first application vector
and a second application vector, wherein each of the
first and second application vectors is found within
one of the two matrices of application vectors; and

calculating the angle between a third application vector
and a fourth application vector, wherein each of the
third and fourth application vectors is found within
the other of the two matrices of application vectors,
wherein the third application vector corresponds to
the first application, and wherein the fourth applica
tion corresponds to the second application; and

combining the two calculated angle values into one new
value.

7. The method of claim 5, comprising:
building an additional term document matrix based on

words found in each Source code and in documentation
corresponding to each Source code;

using LSI, reducing the dimensionality of the additional
term document matrix to produce an additional matrix of
application vectors;

calculating an additional angle between an additional first
application vector and an additional second application
vector, wherein the additional first and second applica
tion vectors are found within the additional matrix of
application vectors, and wherein the additional first
application vector corresponds to the first application,
and wherein the additional second application vector
corresponds to the second application; and

combining the additional angle with the calculated angle to
produce a new similarity value corresponding to the
similarity between the first and second applications.

8. The method of claim 6, wherein the semantic anchors
comprise Application Programming Interface (API) calls.

9. The method of claim 8, wherein the API calls comprise
class and package calls from the Java Development Kit
(JDK), wherein class calls comprise a first semantic anchor
classification and package calls comprise a second semantic
anchor classification.

10. The method of claim 5, wherein the calculating is
repeated Such that every application Source code is compared
to every other application source code in the plurality of
Source code received; and

wherein the assigning results in a similarity matrix,
wherein the similarity matrix is characterized by rows of
applications and columns of applications, wherein the
value found at the intersection of a row application and

US 2013/0O86553 A1

a column application represents the similarity index of
the row and column applications.

11. The method of claim 1, where in the associating com
prises:

building at least one term document matrix based on the
semantic anchors and Source code, wherein each seman
tic anchor corresponds to rows of the matrix, and each
application corresponds to columns of the matrix; and

calculating a normalized metric of each term in each appli
cation’s source code, by, for each application, dividing a
number of times a particular semantic anchor appears in
the application by a number of semantic anchors that
appear in the application, and multiplying that quotient
by a logarithm of a quotient resulting from dividing a
total number of applications by a number of applications
where the particular semantic anchor appears.

12. A system of calculating similarities between program
applications comprising:

a non-transitory memory storing instructions; and
a processor executing the instructions to cause the system

to perform a method comprising:
receiving, by a computer, source code for a plurality of

applications;
associating, for each application, semantic anchors

found in an application with the application;
comparing, based on the semantic anchors, a first appli

cation to a second application; and
assigning, based on the comparison, a number represent

ing the similarity of the first and second applications.
13. The system of claim 12, wherein the semantic anchors

comprise Application Programming Interface (API) calls.
14. The system of claim 12, wherein associating semantic

anchors comprises:
building at least one term document matrix based on the

semantic anchors and source code.
15. The system of claim 14, wherein associating semantic

anchors comprises:
using Latent Semantic Indexing (LSI), reducing the dimen

sionality of the at least one term document matrix to
produce at least one matrix of application vectors.

16. The system of claim 15, wherein comparing comprises:
calculating the angle between a first application vector and

a second application vector, wherein the first application
vector corresponds to the first application, and wherein
the second application vector corresponds to the second
application; and

wherein assigning comprises:
assigning a number based on the calculated angle to the

position in at least one similarity index corresponding
to the first and second application.

17. The system of claim 16, wherein building at least one
term document matrix comprises:

building two term document matrices, based on two differ
ent classifications of semantic anchors; and

wherein using LSI comprises:
using LSI on each term document matrix to produce two

matrices of application vectors; and
wherein calculating the angle comprises:

calculating the angle between a first application vector
and a second application vector, wherein each of the
first and second application vectors is found within
one of the two matrices of application vectors; and

calculating the angle between a third application vector
and a fourth application vector, wherein each of the

Apr. 4, 2013

third and fourth application vectors is found within
the other of the two matrices of application vectors,
wherein the third application vector corresponds to
the first application, and wherein the fourth applica
tion corresponds to the second application; and

combining the two calculated angle values into one new
value.

18. The system of claim 16, comprising:
building an additional term document matrix based on

words found in each Source code and in documentation
corresponding to each Source code;

using LSI, reducing the dimensionality of the additional
term document matrix to produce an additional matrix of
application vectors;

calculating an additional angle between an additional first
application vector and an additional second application
vector, wherein the additional first and second applica
tion vectors are found within the additional matrix of
application vectors, and wherein the additional first
application vector corresponds to the first application,
and wherein the additional second application vector
corresponds to the second application; and

combining the additional angle with the calculated angle to
produce a new similarity value corresponding to the
similarity between the first and second applications.

19. The system of claim 17, wherein the semantic anchors
comprise Application Programming Interface (API) calls.

20. The system of claim 19, wherein the API calls comprise
class and package calls from the Java Development Kit
(JDK), wherein class calls comprise a first semantic anchor
classification and package calls comprise a second semantic
anchor classification.

21. The system of claim 16, wherein the calculating is
repeated Such that every application Source code is compared
to every other application source code in the plurality of
Source code received; and

wherein the assigning results in a similarity matrix,
wherein the similarity matrix is characterized by rows of
applications and columns of applications, wherein the
value found at the intersection of a row application and
a column application represents the similarity index of
the row and column applications.

22. The system of claim 12, where in the associating com
prises:

building at least one term document matrix based on the
semantic anchors and Source code, wherein each seman
tic anchor corresponds to rows of the matrix, and each
application corresponds to columns of the matrix; and

calculating a normalized metric of each term in each appli
cation’s source code, by, for each application, dividing a
number of times a particular semantic anchor appears in
the application by a number of semantic anchors that
appear in the application, and multiplying that quotient
by a logarithm of a quotient resulting from dividing a
total number of applications by a number of applications
where the particular semantic anchor appears.

23. A non-transitory computer-readable storage medium
containing instructions which, when executed on a processor,
perform a method comprising:

receiving, by a computer, source code for a plurality of
applications;

associating, for each application, semantic anchors found
in an application with the application;

US 2013/0O86553 A1

comparing, based on the semantic anchors, a first applica
tion to a second application; and

assigning, based on the comparison, a number representing
the similarity of the first and second applications.

24. The computer-readable storage medium of claim 23,
wherein the semantic anchors comprise Application Pro
gramming Interface (API) calls.

25. The computer-readable storage medium of claim 23,
wherein associating semantic anchors comprises:

building at least one term document matrix based on the
semantic anchors and source code.

26. The computer-readable storage medium of claim 25,
wherein associating semantic anchors comprises:

using Latent Semantic Indexing (LSI), reducing the dimen
sionality of the at least one term document matrix to
produce at least one matrix of application vectors.

27. The computer-readable storage medium of claim 26,
wherein comparing comprises:

calculating the angle between a first application vector and
a second application vector, wherein the first application
vector corresponds to the first application, and wherein
the second application vector corresponds to the second
application; and

wherein assigning comprises:
assigning a number based on the calculated angle to the

position in at least one similarity index corresponding
to the first and second application.

28. The computer-readable storage medium of claim 27,
wherein building at least one term document matrix com
prises:

building two term document matrices, based on two differ
ent classifications of semantic anchors; and

wherein using LSI comprises:
using LSI on each term document matrix to produce two

matrices of application vectors; and
wherein calculating the angle comprises:

calculating the angle between a first application vector
and a second application vector, wherein each of the
first and second application vectors is found within
one of the two matrices of application vectors; and

calculating the angle between a third application vector
and a fourth application vector, wherein each of the
third and fourth application vectors is found within
the other of the two matrices of application vectors,
wherein the third application vector corresponds to
the first application, and wherein the fourth applica
tion corresponds to the second application; and

combining the two calculated angle values into one new
value.

29. The computer-readable storage medium of claim 27,
comprising:

building an additional term document matrix based on
words found in each Source code and in documentation
corresponding to each Source code;

using LSI, reducing the dimensionality of the additional
term document matrix to produce an additional matrix of
application vectors;

calculating an additional angle between an additional first
application vector and an additional second application
vector, wherein the additional first and second applica
tion vectors are found within the additional matrix of
application vectors, and wherein the additional first
application vector corresponds to the first application,

Apr. 4, 2013

and wherein the additional second application vector
corresponds to the second application; and

combining the additional angle with the calculated angle to
produce a new similarity value corresponding to the
similarity between the first and second applications.

30. The computer-readable storage medium of claim 28,
wherein the semantic anchors comprise Application Pro
gramming Interface (API) calls.

31. The computer-readable storage medium of claim 30,
wherein the API calls comprise class and package calls from
the Java Development Kit (JDK), wherein class calls com
prise a first semantic anchor classification and package calls
comprise a second semantic anchor classification.

32. The computer-readable storage medium of claim 27,
wherein the calculating is repeated Such that every applica
tion source code is compared to every other application
Source code in the plurality of Source code received; and

wherein the assigning results in a similarity matrix,
wherein the similarity matrix is characterized by rows of
applications and columns of applications, wherein the
value found at the intersection of a row application and
a column application represents the similarity index of
the row and column applications.

33. The computer-readable storage medium of claim 23,
where in the associating comprises:

building at least one term document matrix based on the
semantic anchors and Source code, wherein each seman
tic anchor corresponds to rows of the matrix, and each
application corresponds to columns of the matrix; and

calculating a normalized metric of each term in each appli
cation’s source code, by, for each application, dividing a
number of times a particular semantic anchor appears in
the application by a number of semantic anchors that
appear in the application, and multiplying that quotient
by a logarithm of a quotient resulting from dividing a
total number of applications by a number of applications
where the particular semantic anchor appears.

34. A method for providing similar applications to a user
comprising:

receiving from the user a search request;
sending to the user, a list of applications based on the

search request;
receiving from the user a selection of one of the applica

tions on the list;
finding related applications, based on a similarity matrix

and the selection; and
sending to the user, a new list of related applications,

wherein the similarity matrix is determined by a method
comprising:
receiving, by a computer, Source code for a plurality of

applications;
associating, for each application, semantic anchors

found in an application with the application;
comparing, based on the semantic anchors, a first appli

cation to a second application; and
assigning, based on the comparison, a number represent

ing the similarity of the first and second applications.
35. The method of claim 34, wherein the semantic anchors

comprise Application Programming Interface (API) calls.
36. The method of claim 34, wherein associating semantic

anchors comprises:
building at least one term document matrix based on the

semantic anchors and source code.

US 2013/0O86553 A1

37. The method of claim 36, wherein associating semantic
anchors comprises:

using Latent Semantic Indexing (LSI), reducing the dimen
sionality of the at least one term document matrix to
produce at least one matrix of application vectors.

38. The method of claim 37, wherein comparing com
prises:

calculating the angle between a first application vector and
a second application vector, wherein the first application
vector corresponds to the first application, and wherein
the second application vector corresponds to the second
application; and

wherein assigning comprises:
assigning a number based on the calculated angle to the

position in at least one similarity index corresponding
to the first and second application.

39. The method of claim 38, wherein building at least one
term document matrix comprises:

building two term document matrices, based on two differ
ent classifications of semantic anchors; and

wherein using LSI comprises:
using LSI on each term document matrix to produce two

matrices of application vectors; and
wherein calculating the angle comprises:

calculating the angle between a first application vector
and a second application vector, wherein each of the
first and second application vectors is found within
one of the two matrices of application vectors; and

calculating the angle between a third application vector
and a fourth application vector, wherein each of the
third and fourth application vectors is found within
the other of the two matrices of application vectors,
wherein the third application vector corresponds to
the first application, and wherein the fourth applica
tion corresponds to the second application; and

combining the two calculated angle values into one new
value.

40. The method of claim 38, comprising:
building an additional term document matrix based on

words found in each Source code and in documentation
corresponding to each Source code;

using LSI, reducing the dimensionality of the additional
term document matrix to produce an additional matrix of
application vectors;

Apr. 4, 2013

calculating an additional angle between an additional first
application vector and an additional second application
vector, wherein the additional first and second applica
tion vectors are found within the additional matrix of
application vectors, and wherein the additional first
application vector corresponds to the first application,
and wherein the additional second application vector
corresponds to the second application; and

combining the additional angle with the calculated angle to
produce a new similarity value corresponding to the
similarity between the first and second applications.

41. The method of claim 39, wherein the semantic anchors
comprise Application Programming Interface (API) calls.

42. The method of claim 41, wherein the API calls com
prise class and package calls from the Java Development Kit
(JDK), wherein class calls comprise a first semantic anchor
classification and package calls comprise a second semantic
anchor classification.

43. The method of claim 38, wherein the calculating is
repeated Such that every application Source code is compared
to every other application source code in the plurality of
Source code received; and

wherein the assigning results in a similarity matrix,
wherein the similarity matrix is characterized by rows of
applications and columns of applications, wherein the
value found at the intersection of a row application and
a column application represents the similarity index of
the row and column applications.

44. The method of claim 34, where in the associating
comprises:

building at least one term document matrix based on the
semantic anchors and Source code, wherein each seman
tic anchor corresponds to rows of the matrix, and each
application corresponds to columns of the matrix; and

calculating a normalized metric of each term in each appli
cation’s source code, by, for each application, dividing a
number of times a particular semantic anchor appears in
the application by a number of semantic anchors that
appear in the application, and multiplying that quotient
by a logarithm of a quotient resulting from dividing a
total number of applications by a number of applications
where the particular semantic anchor appears.

k k k k k

