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A system, method, and computer-readable medium, is 
described that finds similarities among programming appli 
cations based on Semantic anchors found within the source 
code of Such applications. The semantic anchors may be API 
calls, such as Java's package and class calls of the JDK. 
Latent Semantic Indexing may be used to process the appli 
cation and semantic anchor data and automatically develop a 
similarity matrix that contains numbers representing the simi 
larity of one program to another. 
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SYSTEMS AND METHODS FOR FINDING 
PROJECT RELATED INFORMATION BY 
CLUSTERING APPLICATIONS INTO 
RELATED CONCEPT CATEGORIES 

TECHNICAL FIELD 

0001. This disclosure relates generally to the classification 
and searching of Software applications. 

BACKGROUND 

0002 Retrieving similar or related web pages is a feature 
of popular search engines (e.g., Google, Ask.com, HotBot). 
For example, after a user Submits a search query, Google 
displays links to relevant web pages along with a link labeled 
“Similar next to each result. These “Similar links point to 
web pages that Google's algorithm judges to be similar by 
aggregating various factors that may include target link asso 
ciation (as when one webpage contains links to each of the 
“Similar web pages), topical similarities, and popularity 
scores of the retrieved pages. One benefit of the “Similar link 
is that it lets users find pages similar to a known web page 
without the need to determine the proper keyword search to 
achieve this result. 

0003. One technical area where a similarity search func 
tion would be desirable is in the realm of application devel 
opment. A Software application is a collection of all source 
code modules, libraries, and programs that, when compiled, 
result in the final deliverable that customers install and use to 
accomplish certain business functions. Detecting similarity 
between applications, however, is a notoriously difficult 
problem, in part because it means automatically detecting that 
the high-level requirements of these applications match 
semantically. Such detection is difficult for a variety of rea 
sons. For example, many application repositories are polluted 
with poorly functioning projects, which could lead to non 
functioning projects being misidentified as “similar to func 
tioning projects. Further, keyword searching may also lead to 
erroneous results because, for example, a keyword match 
between words in a requirements document with words in the 
descriptions or source code of an application does not guar 
antee relevance between the two corresponding applications. 
Also, applications may be highly similar to one another at a 
low-level even if they do not perform the same high-level 
functionality, which could result in the misidentification of 
“similar applications that perform dissimilar functions. 
Moreover, it may be difficult to recognize similarity between 
Software artifacts belonging to different applications because 
programmers rarely record traceability links between differ 
ent applications. 
0004 Knowing similarity between applications plays an 
important role in assessing reusability of applications, 
improving understanding of Source code, prototyping for 
rapid development, and discovering code theft and plagia 
rism. Allowing programmers to compare how different appli 
cations implement the same requirements may contribute to 
their knowledge about application requirements and to the 
efficient reuse of code. Retrieving a list of similar applications 
may allow programmers to concentrate on the new aspects of 
the requirements, thus saving time and resources for pro 
grammers. Programmers could spend this time instead under 
standing the functionality of similar applications, and seeing 
the complete context in which the functionality is used. 

Apr. 4, 2013 

0005 Consider a typical project in a large-scale software 
development enterprise in which company programmers 
engage in several hundred software projects at the same time. 
The enterprise may have previously delivered thousands of 
applications, many of which may have had similar require 
ments and implementations to the project at hand. 
0006. A typical project starts with writing a proposal in 
response to a bid request from a company that needs an 
application. A winning bid proposal has many components: 
well-written requirements, preliminary models and design 
documents, and proof of experience in building and deliver 
ing similar applications in the past. A company that Submits a 
bid proposal that contains these components with the closest 
correlation to a desired application will likely win the bid. 
Reusing the components from Successfully delivered appli 
cations in the past will save time and resources and further 
increase chances of winning the bid. Thus, recognizing simi 
larities between past and present applications is important for 
preserving knowledge, leveraging experience, winning bids 
on future projects, and Successfully building new applica 
tions. 
0007. The process offinding similar applications may start 
with code search engines that return code fragments and 
documents in response to queries that contain key words from 
elicited requirements. However, returned code fragments are 
of little help when many other non-code artifacts (e.g., dif 
ferent functional and non-functional requirements docu 
ments, UML models, or design documents) are required. 
Matching words in queries against words in documents and 
Source code may be a good starting point, but keyword search 
results do not establish how applications are similar at a 
high-level scale. 
0008. A problem in detecting closely related applications 

is in the mismatch between the high-level intent reflected in 
the descriptions of these applications and low-level details of 
the implementation. This problem is known as the concept 
assignment problem. For any two applications it is too impre 
cise to establish their similarity by simply matching words in 
the descriptions of the applications, comments in their source 
code, and the names of program variables and types (e.g., 
names of classes and functions as well as identifiers). Thus, 
existing code search engines do not effectively detect similar 
applications and programmers must typically invest a signifi 
cant intellectual effort to analyze and understand the func 
tional similarity of retrieved applications. 
0009 Similarities between documents can be found using 
Syntagmatic associations by considering documents similar 
when terms in these documents occur together in each docu 
ment. This technique is used by the MUDABlue similarity 
engine. Alternatively, similarities between documents can be 
found using semantic anchors and by developing paradig 
matic associations where documents contain terms with high 
semantic similarities. Semantic anchors are elements of 
documents that precisely define the documents’ semantic 
characteristics. Semantic anchors may take many forms. For 
example, they can be expressed as links to web sites that have 
high integrity and well-known semantics (e.g., cnn.com or 
whitehouse.gov) or they can refer to elements of semantic 
ontologies that are precisely defined and agreed upon by 
different stakeholders. Without semantic anchors, documents 
(or applications) are considered as collections of words with 
no semantics, and the relevance of these documents to user 
queries (and to one another) is determined by matches 
between words. Using semantics represents the essence of 
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paradigmatic associations between documents, whereas 
using word matching represents the essence of syntagmatic 
associations. 
0010 Programmers routinely use Application Program 
ming Interface (API) calls from third-party packages (e.g., 
the Java Development Kit (JDK)) to implement various 
requirements. Unlike names of program variables, types, and 
words used in comments, API calls from well-known and 
widely used libraries have precisely defined semantics. Since 
programs contain API calls with precisely defined semantics, 
the API calls may serve as semantic anchors to compute the 
degree of similarity between applications by matching the 
semantics of applications as expressed by the API calls. Using 
the API calls to compute similarities among applications may 
result in better precision than syntagmatic associations 
among applications. 
0011. Therefore, a method of finding similarities in appli 
cations based on underlying semantics of the applications 
would be useful to allow programmers needing to find similar 
applications to do so with less intellectual and manual efforts 
than currently used search methods. A method of finding a 
similar application based on underlying semantics would also 
be useful to help preserve knowledge base and correlate Sup 
porting Software documentation in similar applications. 

SUMMARY 

0012. A method, system, and computer readable medium 
are described where the method receives, by a computer, 
source code for a plurality of applications and associates each 
application to semantic anchors found with each application. 
The method, system, and computer-readable medium also 
compare the applications based on the semantic anchors and 
assign, based on the comparison, a similarity index, repre 
senting the similarity between two applications. 
0013. It is to be understood that both the foregoing general 
description and the following detailed description are exem 
plary and explanatory only and are not restrictive of the appli 
cation, as claimed. 
0014. The accompanying drawings, which are incorpo 
rated in and constitute a part of this specification, illustrate 
several embodiments of the application and together with the 
description, serve to explain the principles of the application. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0015 FIG. 1 is an illustration of an exemplary embodi 
ment of the disclosed system; 
0016 FIG. 2 is a more detailed illustration of an exem 
plary process of building a Term-Document Matrix (TDM) 
for package API libraries; 
0017 FIG. 3 is a more detailed illustration of an exem 
plary process of building a Term-Document Matrix (TDM) 
for class API libraries; 
0018 FIG. 4 is an illustration of an exemplary method for 
breaking down a Term-Document Matrix (TDM) into three 
matrices; 
0.019 FIG. 5 is a more detailed illustration of an exem 
plary method for finding a reduced dimension of application 
Vectors; 
0020 FIG. 6 is a more detailed illustration of an exem 
plary process to find an similarity matrix; and 
0021 FIG. 7 is an exemplary illustration of a user interface 
for showing similarity between applications. 
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DETAILED DESCRIPTION 

0022 Reference will now be made in detail to the exem 
plary embodiments. Wherever possible, the same reference 
numbers will be used throughout the drawings to refer to the 
same or like parts. 
0023 Embodiments consistent with the present disclosure 
may use semantic anchors and dependencies among Such 
semantic anchors to compute similarities between documents 
with a higher degree of accuracy when compared with results 
obtained with documents that have no commonly defined 
semantic anchors. This approach is based on three observa 
tions. First, if two applications share some semantic anchors 
(e.g., API calls), then their similarity index should be higher 
than for applications that do not share any semantic anchors. 
Sharing semantic anchors means more than the exact syntac 
tic match between two API calls; it also means that two 
different API calls will match semantically if they come from 
the same class or a package. This idea is rooted in the fact that 
classes and packages in the JDK contain semantically related 
API calls; for example, the java.security package contains 
classes and API calls that enable programmers to implement 
security-related requirements, and the java. util.Zip package 
exports classes that contain API calls for reading and writing 
the standard ZIP and GZIP file formats. The exemplary pro 
cess may thus exploit relationships between inheritance hier 
archies in JDK to improve the precision of computing simi 
larity. 
0024 Second, different API calls have different weights. 
Many applications have many API calls that deal with collec 
tions and string manipulations. The exemplary process auto 
matically assigns higher weights to API calls that are encoun 
tered in fewer applications and, conversely to assign lower 
weights to API calls that are encountered in a majority of 
applications. There is no need to know what API calls are used 
in the applications—this task may be done automatically, 
improving the precision of the process by preventing API 
calls to common packages like java.lang from skewing the 
similarity index. 
0025. Third, an application requirement is often imple 
mented using combinations of different API calls rather than 
a single API call, meaning that co-occurrences of API calls in 
different applications may form a pattern indicating that these 
applications implement similar requirements. For example, a 
requirement for efficiently and securely exchanging XML 
data is often implemented using API calls that readXML data 
from a file, compress and encrypt it, and then send this data 
over a network. Even though different ways of implementing 
this requirement are possible, the patterns of co-occurrences 
of these API calls may be reflected in the similarity index, thus 
improving the precision of the results when compared with 
alternative approaches. 
0026 FIG. 1 illustrates an exemplary system 100 for 
implementing an embodiment of the present disclosure. In the 
illustrated embodiment, system 100 receives as inputs an 
Applications Archive 105 and an archive of API calls 110. 
The Applicationarchive 105 and API archive 110 are used by 
a MetalData Extractor 115 to find API calls in various pack 
ages and classes used in a particular application. Package API 
calls may be recognized by their existence in the API archive 
110. The MetaData Extractor may match API calls in the API 
archive 110 to an application’s source code. The MetalData 
extractor 115 produces the Application Metadata 120, which, 
in an embodiment, is a set of tuples (e.g., <package, class>, 
API calls: Application>) thereby linking API calls and their 
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packages and classes to applications (e.g., Java applications) 
that use these API calls. The Term-Document Matrix (TDM) 
Builder 125 uses the Application Metadata 120 to produce 
two TDMs: a Package-Application Matrix (TDM) 130 and 
Class-Application Matrix (TDM) 135 that contain a 
weighted correlation coefficient for Java packages and 
classes whose API calls are invoked in respective applica 
tions. 

0027. Although some exemplary embodiments have been 
described in terms of finding similarities between Java appli 
cations, it should be understood that the system may also be 
used, in some embodiments, to find similarities between 
applications written in other programming languages. For 
example, similarities between C++ applications may be 
found by equating Java's packages to C++’s namespaces and 
Java's classes to C++’s classes. Other embodiments may use 
only one TDM to correlate API calls or similar function calls 
derived from any source. In other embodiments, the system 
100 may use other TDMs built using the same concepts as 
presented herein, but keyed on other metadata found in the 
programming applications and documentation, Such as a 
TDM based on syntagmatic associations (word matching) or 
a TDM based on focused syntagmatic associations (keyword 
matching). In some embodiments, the MetalData Extractor 
115 and Applications Metadata 120 may contain processes to 
cull alternative metadata out of the Application archive 105 
for further processing by the TDM Builder 125 to support 
additional or different TDMs. 

0028. In an embodiment, the exemplary system 100 may 
use Latent Semantic Indexing (LSI) (a well-established con 
ceptual framework of relevance) (step 140), but extend it by 
including semantic layers that correspond to packages and 
class hierarchies that contain functional abstractions. This 
approach is based on the concept that applications that con 
tain functional abstractions in the form of API calls whose 
semantics are defined precisely and implement the same 
requirement (e.g., different API calls from a data compression 
library) have a higher degree of similarity than those that do 
not have API calls that are related to a requirement.LSI may 
be applied separately to TDM and TDM, to compute class 
and package matrices P 145 and IC 150, respectively, 
where each row contains coordinates that indicate the pack 
ages (IP) or classes (CII) of API calls that are invoked in the 
application. Matrices P 145 and IC 150 may be combined 
155 into a Similarity Matrix 160 using a process described in 
more detail below. The Similarity Matrix 160, IS, is a matrix 
whose rows and columns designate applications. For any two 
applications A, and A. each element of ISI. S., represents a 
similarity score between these applications that may be 
defined as follows: 

S Oss is 1, if i + j 
- if i = i 

0029. Once found, one use of the similarity between appli 
cations is in finding existing applications that meet a defined 
set of requirements. After obtaining the initial set of require 
ments, the user 170 may enter keywords representing aspects 
of these requirements into search engine 165, which will 
return applications relevant to these keywords. The results 
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may also include non-code artifacts, which may be important 
for the bidding process or to expedite application documen 
tation. 
0030. After reviewing the returned applications, the user 
may determine which code and non-code artifacts are rel 
evant to the requirements, and which artifacts are missing. 
The user may focus the search to find applications that contain 
the missing artifacts and which are also similar to relevant 
applications that the user has already found. Exemplary 
embodiments may reduce query or document mismatch by 
expanding the query with concepts that are similar to the set 
of relevant documents. In this case, the exemplary system 100 
may expand the initial query using the previously found 
application to include artifacts from this application that 
matched some of the requirements determined by the user, 
and thus find applications containing artifacts similar to the 
ones in the found application. 
0031 When a user 170 enters a query, it is passed to the 
Search Engine 165 that retrieves applications with relevancy 
ranking based on the Similarity Matrix 160. Search Engine 
165 uses the Application Metadata 120 to extract and deliver 
a map of API calls for each pair of similar applications. This 
map shows API calls along with their classes and packages 
that are shared by similar applications. The user 170 is 
allowed to select and view the returned applications API 
calls to help determine which project requirements are met. 
The user may also select to find similar applications to any 
particular returned application. Upon selection of this option, 
a new list of applications is returned to the user 170, based on 
the similarity matrix index. 
0032 For example, Suppose that a programmer was tasked 
with creating an application that records musical data from an 
electronic instrument into a MIDI file. The user may submit a 
search query that contains key words. Such as “record.” 
“MIDI. and “file.” The exemplary search engine may 
retrieve a list of applications that are relevant to these key 
words. The applications retrieved may include the application 
“MidiQuickFix” that may be of interest to the user. After 
clicking on the link corresponding to this application, the 
exemplary system may present the user with a list of similar 
applications ranked in descending order. The user may select 
a relevant similar application, and in response, the system 
may present the user with a visual interface, as shown in part 
in FIG. 2. 

0033. The exemplary interface of FIG.2 shows three tabs. 
The leftmost tab (the active tab in FIG. 2) presents packages, 
classes, and API calls common to both applications. The two 
other tabs present packages, classes, and API calls for each 
application separately. Comparing applications directly 
based on functionally related API calls may help program 
mers to concentrate on highly related details rather than 
examine the entire source code. In this example, the most 
similar application retrieved is mbox, a command-line utility 
to convert MIDI files to mappings of music box drums. Pack 
ages com. Sun.media. Sound and javax. Sound.midi are shown 
in FIG.2 as common for both applications MidiQuickFix and 
mbox. When expanded, common classes and API calls are 
shown to the user. For example, FIG. 2 indicates that the class 
AbstractMidi Device includes an API call, doClose, that is 
invoked in both applications. 
0034. Note that this example display of FIG. 2 is not 
intended to be restrictive. Additional tabs or other delimiters 
may be included to assist the programmer in comparing two 
or more applications. For example, the display may include a 
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tab for each application that represents class and package 
information for each API call not found in each other appli 
cation. This would help the programmer to understand the 
differences as well as the similarities between the two appli 
cations. In addition, the user interface may contain other 
elements (such as “breadcrumbs) to make navigation of the 
search results more convenient for the user. Also, the user 
interface may allow the user to select and compare similari 
ties and differences among three or more applications. 
0035 Returning to FIG. 1, one or more of the components 
depicted in FIG.1 may be implemented in software on one or 
more computing systems. For example, the components may 
comprise one or more applications, which may in turn com 
prise one or more units of computer-readable instructions 
which, when executed by a processor, cause a computer to 
perform steps of a method. Computer-readable instructions 
may be stored on a computer-readable medium, Such as a 
memory or disk. Such media typically provide non-transitory 
storage. One or more of the components depicted in FIG. 1 
may be hardware components or combinations of hardware 
and software Such as, for example, special purpose computers 
or general purpose computers. A computer or computer sys 
tem may also comprise an internal or external database. The 
components of a computer or computer system may connect 
through a local bus interface. 
0036. In some embodiments, one or more of the compo 
nents shown in FIG. 1 may be a computer server with web 
services enabled. For example, the search engine 165 could 
contain a processor web service for processing code search 
requests initiated by users connected via a network using a 
web browser. The components depicted in FIG. 1 may be 
operatively connected to one another via a network, not 
shown, such as the Internet, an intranet, or any type of wired 
or wireless communication system. Connections may be 
implemented through a direct communication link, a local 
area network (LAN), a wide area network (WAN) and/or 
other suitable connections. Apps Archive 105 and API 
Archive 110 may be implemented in databases, files, or other 
Suitable repositories and may be accessed by other compo 
nents directly via an external connection or via a network (not 
shown). 
0037 FIG. 3 illustrates an exemplary process 300 used to 
build the TDM for packages (TDM). The exemplary process 
examines each API calli in each eligible Application found 
in the Application archive, where is an index into the Appli 
cation Archive and i is an index into the package API calls of 
the j-th Application. To begin, the process 300 assigns one (1) 
to each of the i and j index. The number of occurrences of 
package API call i in the application j is determined at Step 
305 by counting the number of occurrences package API call 
i appears in Application. The number of occurrences of all 
package API calls in Application j is determined at step 310 
by counting the number of occurrences all package API calls 
appear in Application j. The total number of applications is 
determined at step 315 by counting all of the eligible appli 
cations appearing in the Applicationarchive 105. The number 
of applications that call package API call i is determined at 
step 320 by counting each eligible application appearing in 
the Application archive 105 that contains package API call i. 
The weight for the i-th package API call in the j-th Applica 
tion (TDM) is calculated in step 325 by multiplying the 
Package Term Frequency (TF) by the Inverse Document 
Frequency (IDF). 
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0038 TF represents a normalized measure of the package 
API call count. The Term frequency for a particular package 
may be calculated as follows: 

iii; TF = f XEnki 
k 

where n, represents the number of occurrences of the consid 
ered package API call P, in application A, (determined at Step 
305), and X, n, represents the total of all package API calls in 
application A, (determined at Step 310). 
0039. The Inverse Document Frequency (IDF) is a mea 
sure of the general importance of the API call, obtained by 
dividing the total number of applications by the number of 
applications containing the API call, and then taking the 
logarithm of that quotient, 

A IDF = log--- i logia. P. A. 

where |A| is the total number of applications (determined at 
step 315) and |{C.: PeA}| is the number of applications where 
the package API call P, appears (determined at step 320). 
10040. The resulting weight is computed for TDM as 
follows: : 

TDM-TFIDF-TFxIDF (determined at Step 325). 

0041. Once the weight is found for TDM, the process 300 
considers at step 330 whether all package API calls in Appli 
cation j have been considered. If not, then the i index is 
incremented in step 335 and the process returns to step 305. If 
so, then the process 300 considers at step 340 whether all 
eligible applications have been considered. If not, then the 
index is incremented and i index set to one (1) in step 345 and 
the process returns to step 305 for further processing. If so, 
then the process ends. 
0042. The set of TDM values found in exemplary pro 
cess 300 define the TDM, where each row corresponds to a 
unique package API call and each column corresponds to a 
unique application found in the Application Archive 105. 
0043. The exemplary process 300 may use the Application 
MetaData 120 to help determine the data determined in steps 
305,310, 315, and 320, because the Application MetaData 
already contains associations of package or class API calls to 
Applications. 
0044. Each element of the resulting TDM may represent 
a normalized metric, determined from the process 300, that 
represents how frequently this package API call (row) is used 
in this application (column), but tempered by the relative 
importance of the package API call in the application. A 
simple metric like the API call count, alone—showing the 
number of times a given API call appears in applications 
regardless of any context—may be subject to bias, thereby 
skewing the distribution of these calls toward large applica 
tions, which may have a higher API call count regardless of 
the actual importance of that API call. Therefore, a normal 
ized metric, such as the one presented by the exemplary 
process 300, may reduce bias by accounting for the total 
number of API calls in the particular application and corre 
lating it to the general importance of aparticular API call in all 
applications. API calls that are used less frequently across all 
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applications will, in general, be more important to determine 
similarity than API calls used in nearly every application. 
0045 FIG. 4 illustrates an exemplary process 400 used to 
build the TDM for classes (TDM). The exemplary process 
400 mirrors the process 300 for calculating the TDM. As 
Such, the discussion above, with respect to determining the 
TDM, may be altered by a person of ordinary skill to achieve 
the TDM. Specifically each of steps 401, 405, 410,415,420, 
425,430,435,440, and 445 mirrors steps 301,305,310,315, 
325, 330,335,340, and 345, respectively, but with respect to 
class API calls, not package API calls. Therefore, one of 
ordinary skill may look to the discussion above with respect 
to process 300 to understand process 400. 
0046 TDMs for other semantic anchors, syntagmatic 
associations, or for other programming languages may be 
developed in a similar way. 
0047 FIG. 5 illustrates how Latent Symantec Indexing 
(LSI) uses singular value decomposition (SVD) to break the 
TDM, and TDM, 505 into a set of three matrices. LSI 
reduces the dimensionality of the similarity space while 
simultaneously revealing latent concepts that are imple 
mented in the underlying corpus of applications. In LSI. 
terms are elevated to an abstract space, and terms that are used 
in similar contexts are considered similar even if they are 
spelled differently. Thus, LSI makes embedded concepts 
explicit. SVD is a form of factor analysis used to reduce 
dimensionality of the space to capture most essential Seman 
tic information. SVD can be viewed as a method for rotating 
the coordinate axes of the r-dimensional space to align these 
axes along the directions of largest variations among the 
documents. As a result, LSI offers away of assessing seman 
tic similarity between any two samples of some text. 
0048 SVD decomposes TDM and TDM,505 into three 
matrices using a reduced number of dimensions, r, whose 
value may be chosen experimentally. The number of dimen 
sions is commonly chosen to be r-300, but may be greater or 
less than 300. Three exemplary decomposed matrices are 
shown on the right-hand side of the schematic equation 500 in 
FIG. 4. The first matrix 510 contains term vectors describing 
the relative weights that terms (e.g., classes or packages that 
contain API calls found in applications) have for different 
dimensions. The second matrix 515 contains Scaling factors, 
and the third matrix 520 contains application vectors describ 
ing the relative weights that applications have for different 
dimensions. Each column in the third matrix 520 is a vector 
whose elements specify coordinates for a given application in 
the r-dimensional space. Similarities between applications 
may be determined by computing the cosines between vector 
rows of the third matrix 520. One of ordinary skill will under 
stand that other methods of calculating and expressing the 
angular similarity between the vector rows may also be used 
to determine the similarities between applications. 
0049 FIG. 6 contains an exemplary illustration of how IP 
145 and IC 150 are calculated using LSI. The exemplary 
process 600 chooses a reduced number of dimensions, r (step 
605). Using SVD, the TDM, and TDM, are decomposed into 
the matrices as described above in regard to FIG. 5 (step 610). 
The right most matrix of FIG. 5, the set of application vectors, 
is selected as IP and P. respectively (step 615). 
0050. As mentioned above, r may be experimentally cho 
sen, but an effective number for r is 300. Increasing r will 
result in finding more similar applications (requiring less 
semantic similarities to determine that an application is simi 
lar), while reducing r will result in fewer similar applications 
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(requiring more semantic similarities to determine that an 
application is similar). Therefore, while r may theoretically 
be any number, the user will likely find better results in 
choosing an r in the 100 to 500 range. One factor that may 
influence the r chosen is the number of applications in the 
pool. Note that if ther value changes, then the decomposition 
matrices may have to be recalculated. 
0051. Note that the concepts presented herein are not 
dependent on the use of LSI to correlate the API calls with 
applications. This correlation may occur by other data 
abstraction means. For example, another means of finding a 
correlation is through a Vector Space Model (VSM). In a 
VSM, documents are represented as vectors of words and a 
similarity measure is computed as the cosine between these 
vectors. Typically, a VSM is used to find syntagmatic asso 
ciations, such as word similarities between documents. 
0052. In an embodiment, VSM techniques may be applied 
to determine similarity between two programs. First, VSM 
may consider the source code and documentation content of 
the two programs. Second, for each program, VSM may filter 
everything but the package and class API calls, providing a 
semantic representation of the program. (In a traditional 
VSM, all identifiers, language keywords, comments, API 
calls are words without any semantics.) Third, VSM may 
represent these programs as vectors of the API calls. Fourth, 
VSM may determine similarity by computing the cosine 
between these vectors. Filtering out words other than the API 
calls solves the problem where different programmers can use 
the same words to describe different requirements (the syn 
onymy problem) and where different programmers can use 
different words to describe the same requirements (the poly 
semy problem). Keeping only the API calls also solves the 
more general Vocabulary problem, which holds that no single 
word can be chosen to describe a programming concept in the 
best way. Because API calls from the JDK have precise mean 
ings, this modified VSM approach addresses the polysemy, 
synonymy, and Vocabulary problems. 
0053. In some embodiments, traditional VSM techniques 
may be further altered to reduce some of the bias as discussed 
above with regard to LSI. Because a majority of applications 
use API calls from collections and string manipulation 
classes; finding two applications similar only because they 
share many of such API calls may be imprecise. In addition, 
the sheer number of possible API calls suggests that many of 
these calls are likely to be shared by different programs that 
implement completely different requirements. Therefore, in 
some embodiments, the VSM may be modified to filter out the 
more common API calls. Common API calls may be found by 
a process similar to the Inverse Document Frequency calcu 
lation discussed above with respect to step 325 of process 
3OO. 

0054. In addition, the JDK contains close to 115,000 API 
calls that are exported by a little more than 13,000 classes and 
interfaces that are contained in 721 packages. LSI reduces the 
dimensionality of this space while simultaneously revealing 
similarities between latent high-level requirements. Because 
VSM does not itself reduce the dimensionality of the vector 
space (though it was reduced through the filtering as dis 
cussed above), it may be computationally infeasible to calcu 
late similarities using VSM for some application archives. 
0055 FIG. 7 illustrates an exemplary process 700 to cal 
culate the similarity matrix 160. The process 700 calculates 
the similarity matrix of ICI, IIS 705, the similarity matrix of 
P,S. 710, scales each element in each similarity matrix by 
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a interpolation weight in step 715, and then combines them in 
step 720 on an element-by-element basis to calculate the final 
similarity matrix, S. 
0056. In an embodiment, Matrices ||P 145 and IC 150 
may be combined by matrix operator 155 into the Similarity 
Matrix 160 using the following formula Sv. IISI+ 

|Sle, where w is the interpolation weight for each similar 
ity matrix, and matrices ISI, and ISI are similarity matrices 
for IC and P. respectively. As described above, these simi 
larity matrices may be obtained by computing the cosine 
between the vector for each application (a corresponding 
column in the matrix 520) and vectors for all other applica 
tions. Thus, ISI, and ISI are each matrices of nXn dimen 
sions where n is the number of eligible Applications found in 
the Application Archive 105. Weights we and W may be 
determined independently of applications. Adjusting these 
weights allows for experimentation with how underlying 
structural and textual information in an application affects 
resulting similarity scores. In an embodiment, W. W. 0.5, so 
that both class and package-level similarity scores contribute 
equally to the Similarity Matrix. However, class-level and 
package-level similarities may be different because applica 
tions are often more similar on the package level than on the 
class level, reflecting the fact that there are fewer packages 
than classes in the JDK. Therefore, there is a higher probabil 
ity that two applications may have API calls that are located in 
the same package but not in the same class. Using this knowl 
edge, one of ordinary skill may experimentally adjust the 
weighting coefficients, w and was needed to achieve the 
best result for a given data set. 
0057 Turning back to FIG. 1 and FIG. 2, using the simi 

larity matrix, in an embodiment, the system 100 allows a user 
170 to search for an application based on an input and to use 
those results through an interface to find similar applications 
and display details on the interface as in FIG. 2. 
0058 Other embodiments of the disclosure will be appar 
ent to those skilled in the art from consideration of the speci 
fication and practice of the embodiments disclosed herein. It 
is intended that the specification and examples be considered 
as exemplary only, with a true scope and spirit of the embodi 
ments being indicated by the following claims. 
What is claimed is: 
1. A computer-implemented method of determining simi 

lar applications comprising: 
receiving, by a computer, source code for a plurality of 

applications; 
associating, for each application, semantic anchors found 

in an application with the application; 
comparing, based on the semantic anchors, a first applica 

tion to a second application; and 
assigning, based on the comparison, a number representing 

the similarity of the first and second applications. 
2. The method of claim 1, wherein the semantic anchors 

comprise Application Programming Interface (API) calls. 
3. The method of claim 1, wherein associating semantic 

anchors comprises: 
building at least one term document matrix based on the 

semantic anchors and source code. 
4. The method of claim 3, wherein associating semantic 

anchors comprises: 
using Latent Semantic Indexing (LSI), reducing the dimen 

sionality of the at least one term document matrix to 
produce at least one matrix of application vectors. 
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5. The method of claim 4, wherein comparing comprises: 
calculating an angle between a first application vector and 

a second application vector, wherein the first application 
vector corresponds to the first application, and wherein 
the second application vector corresponds to the second 
application; and 

wherein assigning comprises: 
assigning a number based on the calculated angle to the 

position in at least one similarity index corresponding 
to the first and second application. 

6. The method of claim 5, wherein building at least one 
term document matrix comprises: 

building two term document matrices, based on two differ 
ent classifications of semantic anchors; and 

wherein using LSI comprises: 
using LSI on each term document matrix to produce two 

matrices of application vectors; and 
wherein calculating the angle comprises: 

calculating the angle between a first application vector 
and a second application vector, wherein each of the 
first and second application vectors is found within 
one of the two matrices of application vectors; and 

calculating the angle between a third application vector 
and a fourth application vector, wherein each of the 
third and fourth application vectors is found within 
the other of the two matrices of application vectors, 
wherein the third application vector corresponds to 
the first application, and wherein the fourth applica 
tion corresponds to the second application; and 

combining the two calculated angle values into one new 
value. 

7. The method of claim 5, comprising: 
building an additional term document matrix based on 

words found in each Source code and in documentation 
corresponding to each Source code; 

using LSI, reducing the dimensionality of the additional 
term document matrix to produce an additional matrix of 
application vectors; 

calculating an additional angle between an additional first 
application vector and an additional second application 
vector, wherein the additional first and second applica 
tion vectors are found within the additional matrix of 
application vectors, and wherein the additional first 
application vector corresponds to the first application, 
and wherein the additional second application vector 
corresponds to the second application; and 

combining the additional angle with the calculated angle to 
produce a new similarity value corresponding to the 
similarity between the first and second applications. 

8. The method of claim 6, wherein the semantic anchors 
comprise Application Programming Interface (API) calls. 

9. The method of claim 8, wherein the API calls comprise 
class and package calls from the Java Development Kit 
(JDK), wherein class calls comprise a first semantic anchor 
classification and package calls comprise a second semantic 
anchor classification. 

10. The method of claim 5, wherein the calculating is 
repeated Such that every application Source code is compared 
to every other application source code in the plurality of 
Source code received; and 

wherein the assigning results in a similarity matrix, 
wherein the similarity matrix is characterized by rows of 
applications and columns of applications, wherein the 
value found at the intersection of a row application and 
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a column application represents the similarity index of 
the row and column applications. 

11. The method of claim 1, where in the associating com 
prises: 

building at least one term document matrix based on the 
semantic anchors and Source code, wherein each seman 
tic anchor corresponds to rows of the matrix, and each 
application corresponds to columns of the matrix; and 

calculating a normalized metric of each term in each appli 
cation’s source code, by, for each application, dividing a 
number of times a particular semantic anchor appears in 
the application by a number of semantic anchors that 
appear in the application, and multiplying that quotient 
by a logarithm of a quotient resulting from dividing a 
total number of applications by a number of applications 
where the particular semantic anchor appears. 

12. A system of calculating similarities between program 
applications comprising: 

a non-transitory memory storing instructions; and 
a processor executing the instructions to cause the system 

to perform a method comprising: 
receiving, by a computer, source code for a plurality of 

applications; 
associating, for each application, semantic anchors 

found in an application with the application; 
comparing, based on the semantic anchors, a first appli 

cation to a second application; and 
assigning, based on the comparison, a number represent 

ing the similarity of the first and second applications. 
13. The system of claim 12, wherein the semantic anchors 

comprise Application Programming Interface (API) calls. 
14. The system of claim 12, wherein associating semantic 

anchors comprises: 
building at least one term document matrix based on the 

semantic anchors and source code. 
15. The system of claim 14, wherein associating semantic 

anchors comprises: 
using Latent Semantic Indexing (LSI), reducing the dimen 

sionality of the at least one term document matrix to 
produce at least one matrix of application vectors. 

16. The system of claim 15, wherein comparing comprises: 
calculating the angle between a first application vector and 

a second application vector, wherein the first application 
vector corresponds to the first application, and wherein 
the second application vector corresponds to the second 
application; and 

wherein assigning comprises: 
assigning a number based on the calculated angle to the 

position in at least one similarity index corresponding 
to the first and second application. 

17. The system of claim 16, wherein building at least one 
term document matrix comprises: 

building two term document matrices, based on two differ 
ent classifications of semantic anchors; and 

wherein using LSI comprises: 
using LSI on each term document matrix to produce two 

matrices of application vectors; and 
wherein calculating the angle comprises: 

calculating the angle between a first application vector 
and a second application vector, wherein each of the 
first and second application vectors is found within 
one of the two matrices of application vectors; and 

calculating the angle between a third application vector 
and a fourth application vector, wherein each of the 
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third and fourth application vectors is found within 
the other of the two matrices of application vectors, 
wherein the third application vector corresponds to 
the first application, and wherein the fourth applica 
tion corresponds to the second application; and 

combining the two calculated angle values into one new 
value. 

18. The system of claim 16, comprising: 
building an additional term document matrix based on 

words found in each Source code and in documentation 
corresponding to each Source code; 

using LSI, reducing the dimensionality of the additional 
term document matrix to produce an additional matrix of 
application vectors; 

calculating an additional angle between an additional first 
application vector and an additional second application 
vector, wherein the additional first and second applica 
tion vectors are found within the additional matrix of 
application vectors, and wherein the additional first 
application vector corresponds to the first application, 
and wherein the additional second application vector 
corresponds to the second application; and 

combining the additional angle with the calculated angle to 
produce a new similarity value corresponding to the 
similarity between the first and second applications. 

19. The system of claim 17, wherein the semantic anchors 
comprise Application Programming Interface (API) calls. 

20. The system of claim 19, wherein the API calls comprise 
class and package calls from the Java Development Kit 
(JDK), wherein class calls comprise a first semantic anchor 
classification and package calls comprise a second semantic 
anchor classification. 

21. The system of claim 16, wherein the calculating is 
repeated Such that every application Source code is compared 
to every other application source code in the plurality of 
Source code received; and 

wherein the assigning results in a similarity matrix, 
wherein the similarity matrix is characterized by rows of 
applications and columns of applications, wherein the 
value found at the intersection of a row application and 
a column application represents the similarity index of 
the row and column applications. 

22. The system of claim 12, where in the associating com 
prises: 

building at least one term document matrix based on the 
semantic anchors and Source code, wherein each seman 
tic anchor corresponds to rows of the matrix, and each 
application corresponds to columns of the matrix; and 

calculating a normalized metric of each term in each appli 
cation’s source code, by, for each application, dividing a 
number of times a particular semantic anchor appears in 
the application by a number of semantic anchors that 
appear in the application, and multiplying that quotient 
by a logarithm of a quotient resulting from dividing a 
total number of applications by a number of applications 
where the particular semantic anchor appears. 

23. A non-transitory computer-readable storage medium 
containing instructions which, when executed on a processor, 
perform a method comprising: 

receiving, by a computer, source code for a plurality of 
applications; 

associating, for each application, semantic anchors found 
in an application with the application; 
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comparing, based on the semantic anchors, a first applica 
tion to a second application; and 

assigning, based on the comparison, a number representing 
the similarity of the first and second applications. 

24. The computer-readable storage medium of claim 23, 
wherein the semantic anchors comprise Application Pro 
gramming Interface (API) calls. 

25. The computer-readable storage medium of claim 23, 
wherein associating semantic anchors comprises: 

building at least one term document matrix based on the 
semantic anchors and source code. 

26. The computer-readable storage medium of claim 25, 
wherein associating semantic anchors comprises: 

using Latent Semantic Indexing (LSI), reducing the dimen 
sionality of the at least one term document matrix to 
produce at least one matrix of application vectors. 

27. The computer-readable storage medium of claim 26, 
wherein comparing comprises: 

calculating the angle between a first application vector and 
a second application vector, wherein the first application 
vector corresponds to the first application, and wherein 
the second application vector corresponds to the second 
application; and 

wherein assigning comprises: 
assigning a number based on the calculated angle to the 

position in at least one similarity index corresponding 
to the first and second application. 

28. The computer-readable storage medium of claim 27, 
wherein building at least one term document matrix com 
prises: 

building two term document matrices, based on two differ 
ent classifications of semantic anchors; and 

wherein using LSI comprises: 
using LSI on each term document matrix to produce two 

matrices of application vectors; and 
wherein calculating the angle comprises: 

calculating the angle between a first application vector 
and a second application vector, wherein each of the 
first and second application vectors is found within 
one of the two matrices of application vectors; and 

calculating the angle between a third application vector 
and a fourth application vector, wherein each of the 
third and fourth application vectors is found within 
the other of the two matrices of application vectors, 
wherein the third application vector corresponds to 
the first application, and wherein the fourth applica 
tion corresponds to the second application; and 

combining the two calculated angle values into one new 
value. 

29. The computer-readable storage medium of claim 27, 
comprising: 

building an additional term document matrix based on 
words found in each Source code and in documentation 
corresponding to each Source code; 

using LSI, reducing the dimensionality of the additional 
term document matrix to produce an additional matrix of 
application vectors; 

calculating an additional angle between an additional first 
application vector and an additional second application 
vector, wherein the additional first and second applica 
tion vectors are found within the additional matrix of 
application vectors, and wherein the additional first 
application vector corresponds to the first application, 
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and wherein the additional second application vector 
corresponds to the second application; and 

combining the additional angle with the calculated angle to 
produce a new similarity value corresponding to the 
similarity between the first and second applications. 

30. The computer-readable storage medium of claim 28, 
wherein the semantic anchors comprise Application Pro 
gramming Interface (API) calls. 

31. The computer-readable storage medium of claim 30, 
wherein the API calls comprise class and package calls from 
the Java Development Kit (JDK), wherein class calls com 
prise a first semantic anchor classification and package calls 
comprise a second semantic anchor classification. 

32. The computer-readable storage medium of claim 27, 
wherein the calculating is repeated Such that every applica 
tion source code is compared to every other application 
Source code in the plurality of Source code received; and 

wherein the assigning results in a similarity matrix, 
wherein the similarity matrix is characterized by rows of 
applications and columns of applications, wherein the 
value found at the intersection of a row application and 
a column application represents the similarity index of 
the row and column applications. 

33. The computer-readable storage medium of claim 23, 
where in the associating comprises: 

building at least one term document matrix based on the 
semantic anchors and Source code, wherein each seman 
tic anchor corresponds to rows of the matrix, and each 
application corresponds to columns of the matrix; and 

calculating a normalized metric of each term in each appli 
cation’s source code, by, for each application, dividing a 
number of times a particular semantic anchor appears in 
the application by a number of semantic anchors that 
appear in the application, and multiplying that quotient 
by a logarithm of a quotient resulting from dividing a 
total number of applications by a number of applications 
where the particular semantic anchor appears. 

34. A method for providing similar applications to a user 
comprising: 

receiving from the user a search request; 
sending to the user, a list of applications based on the 

search request; 
receiving from the user a selection of one of the applica 

tions on the list; 
finding related applications, based on a similarity matrix 

and the selection; and 
sending to the user, a new list of related applications, 

wherein the similarity matrix is determined by a method 
comprising: 
receiving, by a computer, Source code for a plurality of 

applications; 
associating, for each application, semantic anchors 

found in an application with the application; 
comparing, based on the semantic anchors, a first appli 

cation to a second application; and 
assigning, based on the comparison, a number represent 

ing the similarity of the first and second applications. 
35. The method of claim 34, wherein the semantic anchors 

comprise Application Programming Interface (API) calls. 
36. The method of claim 34, wherein associating semantic 

anchors comprises: 
building at least one term document matrix based on the 

semantic anchors and source code. 
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37. The method of claim 36, wherein associating semantic 
anchors comprises: 

using Latent Semantic Indexing (LSI), reducing the dimen 
sionality of the at least one term document matrix to 
produce at least one matrix of application vectors. 

38. The method of claim 37, wherein comparing com 
prises: 

calculating the angle between a first application vector and 
a second application vector, wherein the first application 
vector corresponds to the first application, and wherein 
the second application vector corresponds to the second 
application; and 

wherein assigning comprises: 
assigning a number based on the calculated angle to the 

position in at least one similarity index corresponding 
to the first and second application. 

39. The method of claim 38, wherein building at least one 
term document matrix comprises: 

building two term document matrices, based on two differ 
ent classifications of semantic anchors; and 

wherein using LSI comprises: 
using LSI on each term document matrix to produce two 

matrices of application vectors; and 
wherein calculating the angle comprises: 

calculating the angle between a first application vector 
and a second application vector, wherein each of the 
first and second application vectors is found within 
one of the two matrices of application vectors; and 

calculating the angle between a third application vector 
and a fourth application vector, wherein each of the 
third and fourth application vectors is found within 
the other of the two matrices of application vectors, 
wherein the third application vector corresponds to 
the first application, and wherein the fourth applica 
tion corresponds to the second application; and 

combining the two calculated angle values into one new 
value. 

40. The method of claim 38, comprising: 
building an additional term document matrix based on 

words found in each Source code and in documentation 
corresponding to each Source code; 

using LSI, reducing the dimensionality of the additional 
term document matrix to produce an additional matrix of 
application vectors; 
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calculating an additional angle between an additional first 
application vector and an additional second application 
vector, wherein the additional first and second applica 
tion vectors are found within the additional matrix of 
application vectors, and wherein the additional first 
application vector corresponds to the first application, 
and wherein the additional second application vector 
corresponds to the second application; and 

combining the additional angle with the calculated angle to 
produce a new similarity value corresponding to the 
similarity between the first and second applications. 

41. The method of claim 39, wherein the semantic anchors 
comprise Application Programming Interface (API) calls. 

42. The method of claim 41, wherein the API calls com 
prise class and package calls from the Java Development Kit 
(JDK), wherein class calls comprise a first semantic anchor 
classification and package calls comprise a second semantic 
anchor classification. 

43. The method of claim 38, wherein the calculating is 
repeated Such that every application Source code is compared 
to every other application source code in the plurality of 
Source code received; and 

wherein the assigning results in a similarity matrix, 
wherein the similarity matrix is characterized by rows of 
applications and columns of applications, wherein the 
value found at the intersection of a row application and 
a column application represents the similarity index of 
the row and column applications. 

44. The method of claim 34, where in the associating 
comprises: 

building at least one term document matrix based on the 
semantic anchors and Source code, wherein each seman 
tic anchor corresponds to rows of the matrix, and each 
application corresponds to columns of the matrix; and 

calculating a normalized metric of each term in each appli 
cation’s source code, by, for each application, dividing a 
number of times a particular semantic anchor appears in 
the application by a number of semantic anchors that 
appear in the application, and multiplying that quotient 
by a logarithm of a quotient resulting from dividing a 
total number of applications by a number of applications 
where the particular semantic anchor appears. 
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