
US007610579B2

(12) Ulllted States Patent (10) Patent N0.: US 7,610,579 B2
Trowbridge et a]. (45) Date of Patent: Oct. 27, 2009

(54) CRITICAL FINALIZERS (58) Field of Classi?cation Search 707/205,

' 707/206; 714/35; 717/140,141,166
(75) Inventors? Sean E- TrOWbridge, Sammamlsh, WA See application ?le for complete search history.

(US); Brian M. Grunkemeyer, _
Redmond, WA (U S); Christopher W. (56) References Clted

Brumme, Mercer Island, Mahesh Prakriya, Redmond, WA (US);
Patrick H, Dussud, Bgllevue, WA (Us); 5,392,432 A * 2/1995 Engelstad et a1. 707/103 R
Ian H- Carmichael Sammamish WA 5,907,709 A * 5/1999 Cantey et a1. 717/141
(Us) ’ ’ 6,338,073 B1 * 1/2002 Houldsworth et a1. 707/206

6,381,738 B1* 4/2002 Choiet a1. 717/140

. . . 7,069,279 B1* 6/2006 Ra t l. 707/206
(73) Asslgnee: Mlemsoft corporatlon’ Redmond’ WA 2001/0013117 A1 * 8/2001 Uni; 717/5

2005/0204341 A1* 9/2005 Broussard 717/124 (Us)
_ _ _ _ _ 2006/0070041 A1 * 3/2006 Brumme et a1. .. 717/131

(*) Not1ce: Subject to any d1scla1mer, the term of this
patent is extended or adjusted under 35 * Cited by examiner
U.S.C. 154(b) by 549 days.

Primary ExamineriWei Y Zhen
(21) Appl. N0.: 11/008,831 Assistant ExamineriMattheW J Brophy

(22) Filed: Dec. 10, 2004 (57) ABSTRACT

(65) Prior Publication Data A ?naliZer may include a noti?cation that no tolerance for

Us 2006/0156152 A1 JUL 13, 2006 failure or corruption is expected. Any potential failure point,
Which may be induced by a runtime execution environment

(51) In‘; C]_ routine or subroutine that is associated With the ?naliZer may
G06F 9/44 (200601) then be prepared apart from the ?naliZer.

(52) US. Cl. 717/141; 717/140; 717/166;
714/35; 707/205; 707/206

m

330

19 Claims, 6 Drawing Sheets

200 205

Coos
CRITICAL FINALIZER

f

,

\

FAILURE
\ Pom-r

IDENTIFIER

Y
——\

FAILURE
\'\ POINT

HOISTER

\ l
k 1

335
EXECUTABLE CODE

US. Patent 0a. 27, 2009 Sheet 1 of6 US 7,610,579 B2

110

CRITICAL
FINALIzATIoN

IMPLEMENTATION
CRITICAL

FINALIzATIoN
IMPLEMENTATION

120

NETWORK

125

CRITICAL
FINALIzATIoN

IMPLEMENTATION

130

CRITICAL
FINALIzATIoN
GENERATION

FIG. 1

US. Patent 0a. 27, 2009 Sheet 2 of6 US 7,610,579 B2

FIG. 2A

200\
temp=a;

a=b

b=temp;

FIG. 2B

205\
a=b;

US. Patent 0a. 27, 2009 Sheet 3 of6 US 7,610,579 B2

§_0 [200 205 \ F I G 3

CODE 1 / (CRITIcAL FINALIZER

315 f ‘ \

\
320 r

325

\ FAILURE
POINT

IDENTIFIER

V

330

FAILURE
\& PoINT

HOISTER

\ J

k J

‘

335
EXECUTABLE CODE

US. Patent

FIG. 4

Oct. 27, 2009 Sheet 4 0f 6 US 7,610,579 B2

405
,LQAQ Q£A§§ ______ _ _

1 ‘.
g _____________ __,'

410 415

YES
CRITICAL?

No

NO YES

420

PREPARE

y 430

425

SORT

US. Patent 0a. 27, 2009 Sheet 5 of6 US 7,610,579 B2

00

505

ALLOCATE

510

FINALIZABLE?

530
f

PREPARE SORT

535 f

\ >[lNlTlALlZE
FIG. 5

US. Patent 0a. 27, 2009 Sheet 6 of6 US 7,610,579 B2

'0) O O

N

605

CHECK QUEUE

J

(J k “ F “
635

NO CRITICAL
OBJECTS?

NON-CRITICAL
OBJECTS?

FINALIZE
QBJECT

FINALIZE
OBJECT

FIG. 6

US 7,610,579 B2
1

CRITICAL FINALIZERS

DRAWINGS

The detailed description refers to the following drawings.
FIG. 1 shows a network environment in which examples of

critical ?nalizers may be implemented.
FIG. 2A shows an example of at least a portion of ?naliza

tion code according to at least one implementation of critical
?nalizers.

FIG. 2B shows an example of at least a portion of ?naliza
tion code, further to the example of FIG. 2A, according to at
least one implementation of critical ?nalizers.

FIG. 3 shows an example processing ?ow for preparing a
critical ?nalizer.

FIG. 4 shows an example processing ?ow associated with
critical ?nalizer implementation.

FIG. 5 shows another example processing ?ow associated
with critical ?nalizer implementation.

FIG. 6 shows yet another example processing ?ow associ
ated with critical ?nalizer implementation.

DETAILED DESCRIPTION

Critical ?nalization for deterministic execution of code is
described herein.

FIG. 1 shows an example network environment in which
critical ?nalizers may be implemented. More particularly,
any one of client device 105, server device 110, and “other”
device 115 may be capable of providing deterministic execu
tion of code by critical ?nalization implementation 120, as
described herein. Client device 105, server device 110, and
“other” device 115 may be communicatively coupled to one
another through network 125.

Client device 105 may be at least one of a variety of con
ventional computing devices, including a desktop personal
computer (PC), workstation, mainframe computer; Internet
appliance, set-top box, and gaming console. Further, client
device 105 may be at least one of any device that is capable of
being associated with network 125 by a wired and/or wireless
link, including a personal digital assistant (PDA), laptop com
puter, cellular telephone, etc. Further still, client device 105
may represent the client devices described above in various
quantities and/or combinations thereof. “Other” device 115
may also be embodied by any of the above examples of client
device 105.

Server device 110 may provide any of a variety of data
and/or functionality to client device 105 or “other” device
115. The data may be publicly available or alternatively
restricted, e.g., restricted to only certain users or only if an
appropriate subscription or licensing fee is paid. Server
device 110 is at least one of a network server, an application
server, a web blade server, or any combination thereof. Typi
cally, server device 110 is any device that is the source of
content, and client device 105 is any device that receives such
content either via network 125 or in an off-line manner. How
ever, according to the example implementations described
herein, server device 105 and client device 110 may inter
changeably be a sending host or a receiving host. “Other”
device 115 may also be embodied by any of the above
examples of server device 110.

“Other” device 115 may further be any device that is
capable of critical ?nalization implementation 120 according
to one or more of the example implementations described
herein. That is, “other” device 115 may be any software
enabled computing or processing device that is capable of
implementing at least one critical ?nalizer to provide deter

m

20

25

30

35

40

45

50

55

60

65

2
ministic execution of code corresponding to an application,
program, function, or other assemblage of programmable and
executable code, in either of a runtime execution environment
or a testing environment. Thus, “other” device 115 may be a
computing or processing device having at least one of an
operating system, an interpreter, converter, compiler, or runt
ime execution environment implemented thereon. These
examples are not intended to be limiting in any way, and
therefore should not be construed in that manner.

Network 125 represents any of a variety of conventional
network topologies, which may include any wired and/or
wireless network. Network 125 may further utilize any of a
variety of conventional network protocols, including public
and/or proprietary protocols. For example, network 125 may
include the Internet, an intranet, or at least portions of one or
more local area networks (LANs).

Data source 130 represents any one of a variety of conven
tional computing devices, including a desktop personal-com
puter (PC), that is capable of generating 135 a critical ?nalizer
in connection with object-oriented code for an application,
program, function, or other assemblage of programmable and
executable code. Alternatively, data source 130 may also be
any one of a workstation, mainframe computer, Internet
appliance, set-top box, gaming console, personal digital
assistant (PDA), laptop computer, cellular telephone, etc.,
that is capable of transmitting at least a portion of an appli
cation, program, or function to another work station. Further,
although data source 130 may be a source of code for the
application, program, or function, for at least the purpose of
explaining one or more examples of critical ?nalizer imple
mentation 120, data source 130 may be regarded as at least the
source of a critical ?nalizer identi?er. Regardless of the
implementation, the critical ?nalizer identi?er, or expression
thereof, may be transmitted from data source 130 to any of
devices 105, 110, and 115 as part of an on-line noti?cation via
network 125 or as part of an off-line noti?cation.

Critical ?nalizer implementation 120 may be regarded as
being deterministic, i.e., code that is state-consistent in the
face of exceptions. Exceptions, referenced throughout this
description, may refer to asynchronous executions such as
thread abort conditions, out-of-memory conditions, stack
over?ow conditions, control deadlock resolution conditions,
execution termination conditions, and execution interruption
conditions. These conditions are asynchronous in the sense
that they are not typically expected in the normal execution of
the authored code.

Further, critical ?nalizer implementation 120 may be
appropriate for most application programming interface envi
ronments. However, the exceptional conditions described
above are typically injected by a runtime execution environ
ment in which code is executed. Therefore critical ?nalizer
implementation 120 is described in the context of a runtime
execution environment, although such setting is provided
only as an example and is not intended to be limiting in any
manner. Examples of runtime execution environments may
include: Visual Basic runtime execution environment; Java®
Virtual Machine runtime execution environment that is used
to run, e.g., Java® routines; or Common Language Runtime
(CLR) to compile, e.g., Microsoft .NETTM applications into
machine language before executing a calling routine.

Runtime execution environments may provide routines for
application programs to perform properly in an operating
system because application programs require another soft
ware system in order to execute. Thus, an application pro
gram may call one or more runtime execution environment

routines, which may reside between the application program

US 7,610,579 B2
3

and the operating system, and the runtime execution environ
ment routines may call the appropriate operating system rou
tines.

Runtime execution environments have been developed to
enhance the reliability of software execution on a growing
range of processing devices including servers, desktop com
puters, laptop computers, and a host of mobile processing
devices. Runtime execution environments may provide a
layer of abstraction and services to an application running on
a processing device, and further provide such an application
with capabilities including error handling and automatic
memory management.

According to at least one example of a runtime execution
environment, memory management may include “garbage
collection,” among other memory management techniques,
that implements ?nalization and in particular, critical ?nal
iZation. Garbage collection may be regarded as a robust fea
ture of managed code execution environments by which an
object is automatically freed (i.e., de-allocated) if an object is
no longer used by any application, as detected upon a sweep
or scan of a memory heap of which at least a portion was
previously allocated to the object. That is, garbage collection
may be regarded as reclamation of memory space that has
been previously allocated to an object, but is no longer acces
sible. Such reclamation may be controlled by a user or, more
typically, automatically implemented by the execution envi
ronment. An instantiation of a class (i.e., an object) may be
considered to be unreachable if all references to it become
invalid, for example, by setting references to a null reference.

Finalization code (alternatively referred to herein as “?nal
iZer”) for an object may provide a runtime execution environ
ment with an opportunity to free up resources (e. g., ?le
descriptors or operating system graphics contexts) that may
not be assuredly reclaimed during garbage collection. Each
class of object using resources may provide a ?naliZer imple
mentation for the purpose of freeing the set of resources used
within that class (or more generally, cleaning up any state
modi?ed by an instance of this class), with the loose expec
tation that the ?naliZer will be run eventually. Thus, in con
nection with implementation of garbage collection to reclaim
memory allocated for an unreachable object, ?naliZation
code corresponding to the object may be called.

Critical ?naliZation implementation 120 may provide code
high-level assurances (e. g., guarantees) that ?naliZation code
for an instantiation of a class in their applications is run. A
description of the purposes for such assurances is not neces
sary for implementing the examples described herein.

FIG. 2A shows an example of at least a portion of applica
tion code 200 corresponding to an application, program,
function, or other assemblage of programmable and execut
able code having a critical ?naliZer therein. Application code
200 may be transmitted from device 130 to at least one of
devices 105, 110, and 115 (see FIG. 1) for execution. In
particular, application code 200 may be submitted for execu
tion by a runtime execution environment (i.e., system or infra
structure) that is intended to execute programs at one of
devices 105, 110, and 115.

The runtime execution environment routines and sub-rou
tines called by application code 200 may, in turn, call appro
priate operating system routines in order for application code
200 to be executed. Therefore, unless an author of application
code 200 is intimately knowledgeable of the implications of
the runtime execution environment routines and subroutines
that may be injected into portions of application code 200 in
order for application code 200 to be executed on the operating
system, deterministic execution of application code 200 may
be uncertain in the runtime execution environment.

20

25

30

35

40

45

50

55

60

65

4
In the event that the author of application code 200 does not

possess comprehensive knowledge, or is otherwise ignorant,
of runtime execution environment routines and subroutines as
well as any effects that such routines and subroutines may
have on the execution of application code 200, substantive
measures may be required to provide deterministic execution
of application code 200, i.e., execution that is not interrupted
or corrupted by exceptions including, but not limited to, a
runtime execution environment induced resource failure.
Non-limiting examples of such unanticipated or undesired
conditions resulting from runtime execution environment
routines or subroutines that are injected into application code
200 may include, but are not limited to, resource failures such
as a thread abort conditions, out-of-memory conditions, stack
over?ow conditions, control deadlock resolution conditions,
execution termination conditions, and execution interruption
conditions.
A thread abort condition is a call to abort a thread in which

application code 200 is being executed. The motivations for a
thread abort condition are numerous, and do not need to be
articulated for understanding of the example embodiments
described herein. Su?ice to say that the injection of a runtime
execution environment routine or subroutine into application
code 200 may produce a thread abortion condition.
An out-of-memory condition may result if the execution of

a runtime execution environment routine or subroutine within
a designated portion of application code 200 requires
amounts of hardware memory or virtual memory that are not
compatible with other processes, and therefore such memory
allocations may not be accommodated. A stack over?ow con
dition may result if the execution of the runtime execution
environment routine or subroutine within the designated por
tion of application code 200 requires more hardware memory
or virtual memory than is available on a stack. Alternatively,
a stack over?ow condition may occur as a result of a runtime
execution environment routine or subroutine that has an in?
nite recursion or a level of method calls that extends beyond
a predetermined threshold level.

FIG. 2B shows an example of critical ?naliZer 205, which
may be regarded as a data structure containing an expression
of the identi?cation of a critical ?naliZer in application code
200. Critical ?naliZer 205 may be attached to application code
200 or embedded in application code 200. Alternatively,
application code 200 and critical ?naliZer 205 may be sepa
rate data entities that are transmitted alone or separately on
line or via a computer-readable medium. Furthermore, in
alternative embodiments, either one of application code 200
and critical ?naliZer 205 may include an annotation of poten
tial process interrupting or corrupting conditions that may be
anticipated as a result of runtime execution environment
injected routines or subroutines.

In FIG. 2B, critical ?naliZer 205 may be regarded as a data
structure including the following lines of code:

aIb;

bjtemp;

which may be deemed to be the critical ?naliZer of application
code 200. However, alternative embodiments of critical ?nal
iZer 205 may include different expressions of critical ?naliZer
identi?cation. For instance, critical ?naliZer 205 may other
wise identify a critical ?naliZer of application code 200 by
indicating line numbers that bound a critical ?naliZer within
application code 200, or critical ?naliZer 205 may identify a
critical ?naliZer by indicating a function corresponding to a
critical ?naliZer.

US 7,610,579 B2
5

Further alternative embodiments of critical ?naliZer 205
may include, or otherwise refer to, certi?cate 215. That is, as
described further below, examples of critical ?nalization
implementation 120 may be prohibited unless one or more
layers of permissions are provided by an author of application
code 200.

In addition, a critical ?naliZer 205 may comprise non
contiguous portions of application code 200, and therefore
critical ?naliZer 205 may include any combination of expres
sions of identi?cation of a non-contiguous critical ?naliZer as
described above. Further still, application code 200 may
include more than one critical ?naliZer, which may be iden
ti?ed as described above in one or more renditions of critical
?naliZer 205.

FIG. 3 shows an example processing ?ow for critical ?nal
iZation implementation 120 (see FIG. 1), and a description
thereof is provided with reference to application code 200 and
critical ?naliZer 205 (see FIG. 2).

In FIG. 3, application code 200 may be transmitted to
processing device 315 from an external source including, but
not limited to, the authoring source of application code 200.
The transmission of application code 200 may be made via an
on-line transmission or via a computer-readable medium
such as, but not limited to, a compact disc.

Similarly, critical ?naliZer 205 may also be transmitted to
processing device 315 from an external source (e.g., data
source 130; see FIG. 1). An authoring source of application
code 200 may likely be the entity most knowledgeable of the
capabilities and limitations of application code 200, and
therefore may be a source of critical ?naliZer 205 containing
a noti?cation that an identi?ed sub-set of application code
200 is not expected to tolerate runtime execution environment
induced failure, interruption, or corruption during the execu
tion of the identi?ed sub-set of, or appendage to, application
code 200 (i.e., critical ?naliZer 205). In other words, the
authoring source of application code 200 may provide, or
otherwise identify, critical ?naliZer 205 in application code
200 to processing device 315. In alternative embodiments, a
source other than the authoring source of application code
200 may provide critical ?naliZer 205, or identi?cation
thereof, to processing device 315. Further, the transmission of
critical ?naliZer 205, or identi?cation thereof, may be made
via an on-line transmission or via a computer-readable
medium such as, but not limited to, a compact disc.

Processing device 315 may be any one of client device 105,
server device 100, or “other” device 115 described above with
reference to FIG. 1. Further, runtime execution environment
320 may reside on processing device 315, and failure point
identi?er 325 may itself be a runtime execution environment
routine. According to one example embodiment, the runtime
execution environment may be part of a compiling program.

Failure point identi?er 325 may serve to identify runtime
execution environment routines or subroutines that, if failure
thereof was to occur, may induce a resource failure leading to,
at least, interruption or corruption of the critical ?naliZer 205.
According to one example, upon receiving or identifying
critical ?naliZer 205, failure point identi?er 325 may identify
any routines or subroutines corresponding to runtime execu
tion environment 320 that may be injected into critical ?nal
iZer 205 in application code 200 on an operating system (OS)
for processing device 325. The identi?ed runtime execution
environment routines or subroutines may also be referred to
as “failure points.”

Failure point hoister 330 may serve as a parser to effec
tively remove the runtime execution environment routines or
subroutines that, if failure thereof was to occur, may induce a
resource failure leading to, at least, interruption or corruption

20

25

30

35

40

45

50

55

60

65

6
of critical ?naliZer 205. That is, failure point hoister 330 may
displace the processing associated with the identi?ed runtime
execution environment routine or subroutine to a point (i.e.,
scheduled sequence in time) that, in at least one embodiment,
precedes critical ?naliZer 205. Thus, the execution of the
hoisted failure point is effectively rescheduled. Alternative
examples contemplate a user specifying a line in application
code 200 preceding critical ?naliZer 205 to which the failure
point is hoisted. Non-limiting examples of failure points that
may be hoisted include running class initialiZers, loading and
compiling code relevant to the ?naliZer, and other runtime
execution environment routines or subroutines directed
towards making available a transitive call graph of the critical
?naliZer.
The above described hoisting may be part of the “eager

preparation” of critical ?naliZer 205, which may increase the
likelihood that execution of a runtime execution environment
routine or subroutine associated with critical ?naliZer 205
will not suffer a failure leading to interruption or corruption of
critical ?naliZer 205 since any potential failure points associ
ated with critical ?naliZer 205 are typically pre-executed prior
to executing the code within critical ?naliZer 205 (i.e., execu
tion of a potential failure point is rescheduled). Critical ?nal
iZation may be implemented to hoist any potential failure
points to a point (i.e., scheduled sequence in time) before a
?rst instance of a class de?ning a critical ?naliZer (e.g., at
class load time or class initialization time) is created, thus
rendering any resources or state changes made in a class
instance constructor releasable by the critical ?naliZer of that
particular class. More particularly, by eagerly preparing criti
cal ?naliZer 205, potentially corrupting runtime execution
environment routines and subroutines are likely to be exposed
before imposing any expense on the execution of identi?ed
critical ?naliZer 205 or, perhaps, other portions of application
code 200.

Alternative embodiments may contemplate displacing the
processing associated with the identi?ed runtime execution
environment routine or subroutine to a point that follows
critical ?naliZer 205. According to one such example, failure
point hoister 330 may disable a runtime execution environ
ment routine or subroutine (e.g., thread abort), allow critical
?naliZer 205 to execute, and then inject the now-enabled
runtime execution environment routine or subroutine at a
point immediately following completion of critical ?naliZer
205. Other examples may contemplate failure point hoister
330 displacing (i.e., rescheduling) the identi?ed runtime
execution environment routine or subroutine to a point of
execution (i.e., scheduled sequence in time) that follows criti
cal ?naliZer 205, either immediately or further along, if pro
cessing subsequent to that of critical ?naliZer 205 is deemed
acceptable by either the authoring source of application code
200 or the source of critical ?naliZer 205. Thus, application
code 200, critical ?naliZer 205, or an identi?er of critical
?naliZer 205 may include an annotation that displacement of
the runtime execution environment routine or subroutine to a
point after critical ?naliZer 205 is acceptable.

Still further alternative embodiments may contemplate dis
placing the processing associated with the identi?ed runtime
execution environment routine or subroutine to a different
thread than that in which critical ?naliZer 205 may be
executed. In other words, the “eager preparation” of critical
?naliZer 205 may occur before, after, or even in parallel with
the execution of critical ?naliZer 205. Regardless, the
example embodiments described herein are capable of pro
viding reliable execution of a designated sub-set of execut
able code (i.e., critical ?naliZer 205) to provide a determinis
tic execution environment.

US 7,610,579 B2
7

FIGS. 4-6 show example processing ?oWs pertaining to
various examples of critical ?nalization implementation 120
(see FIG. 1) by, e.g., a runtime execution environment. The
descriptions of FIGS. 4-6 are provided With reference to
application code 200 and critical ?nalizer 205 (see FIGS. 2
and 3). However, any reference to the modules of FIG. 2 is for
descriptive purposes only, and it is to be understood that
FIGS. 2 and 3 represent non-limiting examples of a process
ing environment. Further, processing ?oWs 400 (FIG. 4), 500
(FIG. 5), and 600 (FIG. 6) are provided as descriptive
examples only, and therefore are not intended to be limiting in
terms of the order, sequence, and combinations of the pro
cessing blocks described beloW. That is, alternative examples
of processing ?oWs 400, 500, and 600 may include the blocks
described beloW in different orders, sequences, or even com
binations.

FIG. 4 shoWs processing How 400, in Which at least por
tions of critical ?nalization implementation 120 are executed
as one or more classes are loaded to memory.

Block 405 refers to loading a class from storage to memory.
According to an example implementation, the loading at
block 405 includes loading a class that may include, or oth
erWise refer to, at least one of application code 200 and
critical ?nalizer 205.

Decision 410 refers to a determination of the presence of a
critical ?nalizable attribute for the class loaded at block 405.
More particularly, since not all objects of a class require
?nalization, decision 410 may be implemented to determine
Whether the loaded class has a ?nalization attribute or appli
cation code 200 and critical ?nalizer 205.

Decision 415 refers to a determination, made subsequent to
positive decision 410, of Whether critical ?nalizer 205 is
trusted. That is, according to various examples of critical
?nalization implementation 120, critical ?nalizer 205 may
include, or otherWise refer to, certi?cate 215 as means for the
author of application code 200 and critical ?nalizer 205 to
indicate that permission has been granted for processing How
400 by the runtime execution environment in connection With
critical ?nalizer 205. HoWever, alternative examples of criti
cal ?nalization implementation 120 may not require such
permissions for execution by the runtime execution environ
ment.

Block 420 refers to eagerly preparing critical ?nalizer 205
subsequent to positive decision 415, i.e., critical ?nalizer 205
is determined to have suf?cient permissions or When such
permissions are not required. More particularly, at block 420
the processing associated With an identi?ed runtime execu
tion environment routine or subroutine that may induce a
resource failure in critical ?nalizer 205 may be removed from
critical ?nalizer 205 and processed beforehand. Alternatively,
the processing for the identi?ed runtime execution environ
ment routine or subroutine may be removed for processing
after that of critical ?nalizer 205. Thus, such “eager prepara
tion” increases the likelihood that execution of critical ?nal
izer 205 Will not suffer a failure leading to interruption or
corruption of critical ?nalizer 205 since any potential failure
points associated thereWith are typically pre-executed prior to
executing the code Within critical ?nalizer 205. That is, as set
forth above With regard to FIG. 3, by eagerly preparing criti
cal ?nalizer 205, potentially corrupting runtime execution
environment routines and subroutines are likely to be exposed
before imposing any expense on the execution of identi?ed
critical ?nalizer 205 or, perhaps, other portions of application
code 200.

Block 425 refers to sorting critical ?nalizer 205 from non
critical ?nalizers in connection With classes loaded at block
405. More particularly, subsequent to negative decision 410

5

20

25

30

35

40

50

55

65

8
or the preparing at block 420, one or more critical ?nalizers
205 may be sorted from non-critical ?nalizers Within a single
queue or in separate queues of memory. According to at least
one alternative example, the separate queues may be tWo or
more separate queues in Which ?nalizers are apportioned
according to varying criteria including, e.g., levels of permis
sion.

Block 430 refers to a failure state that occurs subsequent to
negative decision 415. More particularly, upon determining
that a class loaded at block 405 has a critical attribute or
critical ?nalizer 205 but does not have permission (e. g., cer
ti?cate 215) required for critical ?nalizer implementation
120, the runtime execution environment may throW an excep
tion so that no object corresponding to the loaded class may
be initialized.

FIG. 5 shoWs processing How 500, in Which at least por
tions of critical ?nalization implementation 120 are executed
as memory is allocated for programs to Which one or more
constructed objects correspond.

Block 505 refers to allocating memory for one or more
constructed objects. According to an example implementa
tion, the allocating at block 505 may include allocating
memory for objects that may include, or otherWise refer to, at
least one of application code 200 and critical ?nalizer 205
(see FIGS. 2 and 3).

Decision 510 refers to a determination of the presence of a
?nalizable attribute for the objects for Which memory is allo
cated. More particularly, since not all objects of a class
require ?nalization, decision 510 may be implemented to
determine Whether a constructed object has a ?nalization
attribute or at least application code 200.

Decision 520 refers to a determination of Whether the con
structed object has critical ?nalizer 205 (i.e., a critical ?nal
ization attribute) in addition to application code 200. Alter
natively, decision 520 may refer to a determination of Whether
a present critical ?nalizer 205 is trusted (i.e., Whether critical
?nalizer 205 includes certi?cate 215).

Block 525 refers to eagerly preparing critical ?nalizer 205
subsequent to positive decision 520. More particularly, at
block 525 the processing associated With an identi?ed runt
ime execution environment routine or subroutine that may
induce a resource failure in critical ?nalizer 205 may be
removed from critical ?nalizer 205 and processed before
hand. Alternatively, the processing for the identi?ed runtime
execution environment routine or subroutine may be removed
for processing after that of critical ?nalizer 205 or into a
separate thread. That is, critical ?nalizer 205 may be eagerly
prepared and, therefore, potentially corrupting runtime
execution environment routines and subroutines are likely to
be exposed before imposing any expense on the execution of
identi?ed critical ?nalizer 205 or, perhaps, other portions of
application code 200.

Block 530 refers to sorting critical ?nalizer 205 from non
critical ?nalizers in connection With classes loaded at block
405. More particularly, subsequent to negative decision 520
or after preparation at block 525, one or more critical ?nal
izers 205 may be sorted from non-critical ?nalizers Within a
single queue or in separate queues of memory. In the example
of a single queue, each constructed object may have a ?ag
indicating Whether a corresponding ?nalizer is critical or not.
According to at least one alternative example, the separate
queues may be tWo or more separate queues in Which ?nal
izers are apportioned according to varying criteria including,
e.g., levels of permission. The ?nalizer or critical ?nalizer
may then be added to the appropriate queue.

Block 535 refers to initializing the objects sorted at block
530.

US 7,610,579 B2
9

FIG. 6 shows processing How 600 in Which initialized
objects are ?nalized in accordance With at least one example
of critical ?nalization implementation 120 (see FIG. 1).

Block 605 refers to the runtime execution environment
checking the one or more queues of ?nalizable objects to
determine Which objects are ready for ?nalization. That is, at
block 605, those objects that are unreachable are detected.

Decision 610 refers to a determination of Whether any of
the objects determined to be unreachable at block 605 are
non-critical. A positive determination may be made based on
the absence of a critical attribute or critical ?nalizer 205 from
an object. Alternatively, a positive determination may be
made based on the presence of a non-critical attribute corre
sponding to an object.

Block 615 refers to the ?nalization of non-critical objects
detected at decision 610.

Decision 620 refers to a determination of Whether the ?nal
ization occurring at block 615 occurs cleanly (i.e., there are
no exceptional conditions When executing critical ?nalizer
205).
A positive determination at decision 620 may result in a

return to decision 610 to determine the presence of further
non-critical objects that are ready for ?nalization. Thus, the
example processing sequence from decision 610, block 615,
and decision 620 may be repeated until either there are no
further non-critical objects eligible for ?nalization or a deter
mination is made at decision 620 that an exception has
occurred during ?nalization of an object at block 615.

Decision 625 refers to a determination of Whether any of
the objects determined to be unreachable at block 605 are
critical. That is, subsequent to negative decision 610 or nega
tive decision 620, a positive decision 625 may be made based
on the presence of a critical attribute or critical ?nalizer 205
associated With a detected object. In alternative examples,
decision 625 may be implemented subsequent to block 605 in
the event that an execution error is indicated as the runtime
execution environment checks the one or more queues of
?nalizable objects.

Block 630 refers to the ?nalization of critical objects
detected at decision 625.

Because the ?nalizer for the critical objects detected at
decision 625 has been eagerly prepared (see block 420 in FIG.
4; block 525 in FIG. 5), a high-level of assurance has been
provided that critical ?nalizer 205 Would be executed Without
an occurrence of an exception. Such high-level of assurance
may or may not constitute a guarantee, but may, at the very
least, be considered to be beyond the level of best efforts
typically afforded ?nalization code by a runtime execution
environment. Additionally, the critical ?nalizer may be sub
ject to constraints that may be implemented so that the critical
?nalizer is not enabled to call an operation that may fail. The
processing at block 630 may be repeated so long as a critical
object is detectable at decision 625.

Block 635 refers to the termination of ?nalization process
ing subsequent to negative decision 625. Accordingly, critical
?nalization implementation may include the ?nalization of
non-critical objects prior to the ?nalization of critical objects,
as a matter of ordering.

The examples described above, With regard to FIGS. 1-6,
may be implemented in a computing environment having
components that include, but are not limited to, one or more
processors, system memory, and a system bus that couples
various system components. Further, the computing environ
ment may include a variety of computer readable media that
are accessible by any of the various components, and includes
both volatile and non-volatile media, removable and non
removable media.

20

25

30

35

40

45

50

55

60

65

10
Various modules and techniques may be described herein

in the general context of computer-executable instructions,
such as program modules, executed by one or more comput
ers or other devices. Generally, program modules include
routines, programs, objects, components, data structures, etc.
for performing particular tasks or implement particular
abstract data types. Typically, the functionality of the pro
gram modules may be combined or distributed as desired in
various embodiments.

An implementation of these modules and techniques may
be stored on or transmitted across some form of computer

readable media. Computer readable media can be any avail
able media that can be accessed by a computer. By Way of
example, and not limitation, computer readable media may
comprise “computer storage media” and “communications
media.”

“Computer storage media” includes volatile and non-vola
tile, removable and non-removable media implemented in
any method or technology for storage of information such as
computer readable instructions, data structures, program
modules, or other data. Computer storage media includes, but
is not limited to, RAM, ROM, EEPROM, ?ash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices,
or any other medium Which can be used to store the desired
information and Which can be accessed by a computer.

“Communication media” typically embodies computer
readable instructions, data structures, program modules, or
other data in a modulated data signal, such as carrier Wave or
other transport mechanism. Communication media also
includes any information delivery media. The term “modu
lated data signal” means a signal that has one or more of its
characteristics set or changed in such a manner as to encode

information in the signal. As a non-limiting example only,
communication media includes Wired media such as a Wired
netWork or direct-Wired connection, and Wireless media such
as acoustic, RF, infrared, and other Wireless media. Combi
nations of any of the above are also included Within the scope
of computer readable media.

Reference has been made throughout this speci?cation to
“one embodiment,” “an embodiment,” or “an example
embodiment” meaning that a particular described feature,
structure, or characteristic is included in at least one embodi
ment of the present invention. Thus, usage of such phrases
may refer to more than just one embodiment. Furthermore,
the described features, structures, or characteristics may be
combined in any suitable manner in one or more embodi
ments.

One skilled in the relevant art may recognize, hoWever, that
the invention may be practiced Without one or more of the

speci?c details, or With other methods, resources, materials,
etc. In other instances, Well knoWn structures, resources, or
operations have not been shoWn or described in detail merely
to avoid obscuring aspects of the invention.

While example embodiments and applications of the
present invention have been illustrated and described, it is to
be understood that the invention is not limited to the precise
con?guration and resources described above. Various modi
?cations, changes, and variations apparent to those skilled in
the art may be made in the arrangement, operation, and details
of the methods and systems of the present invention disclosed
herein Without departing from the scope of the claimed inven
tion.

US 7,610,579 B2
11

We claim:
1. A method, comprising:
identifying a class having prioritized ?nalization code,

Wherein the identifying includes receiving an indication
that at least a sub-set of the ?nalization code expects to
have no tolerance for failure;

preparing the ?nalization code for an instance of the iden
ti?ed class, Wherein the preparing includes:
identifying a potential failure point associated With at

least a portion of the ?nalization code; and
hoisting the identi?ed failure point to a designated

execution location either preceding or folloWing at
least the portion of the ?nalization code; and

executing the ?nalization code for the instance of the iden
ti?ed class.

2. A method according to claim 1, Wherein the identifying
further includes receiving an indication that at least a sub-set
of the ?nalization code expects to have no tolerance for a
runtime execution environment induced resource failure.

3. A method according to claim 2, Wherein the runtime
execution environment induced resource failure includes at
least one of a thread abort condition, an out-of-memory con
dition, a stack over?oW condition, a control deadlock resolu
tion condition, an execution termination condition, and an
execution interruption condition.

4. A method according to claim 1, Wherein the preparing
further includes:

identifying at least a portion of a runtime execution envi
ronment routine that has a potential to induce a failure
during processing in correspondence With at least a por
tion of the ?nalization code; and

rescheduling at least the identi?ed portion of the runtime
execution environment routine for execution separate
from at least the portion of the ?nalization code.

5. A method according to claim 4, Wherein the reschedul
ing includes hoisting at least the identi?ed portion of the
runtime execution environment routine to a designated execu
tion location preceding at least the portion of the ?nalization
code.

6. A method according to claim 4, Wherein the reschedul
ing includes hoisting at least the identi?ed portion of the
runtime execution environment routine to a designated execu
tion location folloWing at least the portion of the ?nalization
code.

7. A method, comprising:
loading one or more classes, Wherein the one or more

classes include ?nalization attributes, Wherein a ?nal
ization attribute of at least one of the one or more classes
comprises a prioritized ?nalization attribute comprising
a critical ?nalizer;

preparing the critical ?nalizer, Wherein the preparing
includes:
identifying a potential failure point associated With at

least a portion of the critical ?nalizer; and
hoisting the identi?ed failure point to a designated

execution location either preceding or folloWing at
least the portion of the critical ?nalizer;

sorting the loaded classes based on respective ?nalization
attributes, Wherein the sorting includes sorting loaded
classes having a prioritized ?nalization attribute from
loaded classes having a non-prioritized ?nalization
attribute; and

?nalizing objects of the loaded classes in an order based on
the sorting, Wherein the ?nalizing includes performing a
garbage collection sWeep on objects of the loaded
classes, running a ?nalizer for objects With the non

20

25

30

35

40

45

50

60

65

12
prioritized ?nalization attribute before objects having a
prioritized ?nalization attribute.

8. A method according to claim 7, Wherein a ?nalizer is
prepared before initialization of the sorted classes having a
prioritized ?nalization attribute, and Wherein further the
?nalizing includes performing a garbage collection sWeep on
objects of the loaded classes having non-prioritized ?naliza
tion attributes before objects of the loaded classes having
prioritized ?nalization attributes.

9. A method, comprising:
sorting classes having a non-prioritized ?nalization

attribute and classes having a prioritized ?nalization
attribute;

preparing a ?nalizer for a sorted class having a prioritized
?nalization attribute, Wherein preparing the ?nalizer
includes:
identifying a potential failure point associated With at

least a portion of the ?nalizer; and
hoisting the identi?ed failure point to a designated

execution location either preceding or folloWing at
least the portion of the ?nalizer;

?nalizing a ?rst constructed object for a sorted class having
the non-prioritized ?nalization attribute; and

?nalizing a second constructed object for a sorted class
having the prioritized ?nalization attribute, Wherein the
?nalizing of the ?rst constructed object occurs before
the ?nalizing of the second constructed object.

10. A method according to claim 9, Wherein the sorting
includes sorting classes into separate queues in accordance
With prioritization ?nalization attributes for the respective
classes.

11. A method according to claim 9, Wherein the sorting
includes sorting the classes Within a single queue in accor
dance With prioritization ?nalization attributes for the respec
tive classes.

12. A computer-readable storage medium having one or
more executable instructions that, When read, cause one or
more processors to:

prepare a ?rst ?nalizer for a class having a ?rst attribute,
Wherein the ?rst attribute is a critical ?nalizable
attribute, Wherein preparing the ?rst ?nalizer includes:
identifying a potential failure point associated With at

least a portion of the ?rst ?nalizer; and
hoisting the identi?ed failure point to a designated

execution location either preceding or folloWing at
least the portion of the ?rst ?nalizer;

execute a second ?nalizer for an object of a class having a
second attribute, Wherein the second attribute is a non
critical ?nalizable attribute; and

execute the ?rst ?nalizer for an object of the class having
the ?rst attribute, Wherein the ?rst attribute indicates that
the ?rst ?nalizer for the class having the ?rst attribute is
to be executed after execution of the second ?nalizer for
an object of a class having the second attribute.

13. A computer-readable storage medium according to
claim 12, Wherein the one or more instructions to prepare the
?nalizer for the class having the ?rst attribute further cause
the one or more processors to:

identify a potential failure point associated With at least a
portion of the ?nalizer; and

reschedule at least the identi?ed potential failure point for
execution separate from at least the portion of the ?nal
izer for the class having the ?rst attribute.

14. A computer-readable storage medium according to
claim 12, Wherein the one or more instructions to prepare the
?nalizer for the class having the ?rst attribute further cause
the one or more processors to:

US 7,610,579 B2
13

identify at least a portion of a runtime execution environ
ment routine that has a potential to induce an exceptional
condition during execution of at least a portion of the
?naliZer; and

hoist at least the portion of the identi?ed runtime execution
environment routine to be executed apart from at least
the portion of the ?naliZer having the ?rst attribute.

15. A computer-readable storage medium according to
claim 12, Wherein the ?rst attribute indicates that the ?naliZer
for the class having the ?rst attribute is to be executed in
exceptional conditions.

16. A computer-readable storage medium according to
claim 12, further comprising one or more executable instruc
tions that, after execution of the one or more instructions to
prepare the ?naliZer for the class having the ?rst attribute,
cause the one or more processors to construct an object for the
class having the ?rst attribute.

17. A system, comprising:
means for identifying a class having prioritized ?naliZation

code and a prioritized ?naliZation attribute;
means for preparing the prioritiZed ?naliZation code for an

object constructed from the identi?ed class, Wherein the
means for preparing includes:

5

10

15

20

14
means for identifying a potential failure point associated

With at least a portion of the prioritiZed ?naliZation
code; and

means for hoisting the identi?ed failure point to a des
i gnated execution location either preceding or folloW
ing at least the portion of the prioritiZed ?naliZation
code; and

means for executing the prioritiZed ?naliZation code for the
constructed object,

Wherein the means for identifying determines that at least a
portion of the prioritiZed ?naliZation code expects to be
executed after execution of ?naliZation code for an
object of a class having a non-prioritiZed ?naliZation
attribute.

18. A system according to claim 17, Wherein the means for
identifying determines that at least a portion of the ?naliZa
tion code expects to be executed in the event of an exception.

19. A system according to claim 17, Wherein the object is
constructed after the means for preparing the ?naliZation
code prepares the ?naliZation code.

