
US 20190196681A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0196681 A1

Wigdor et al . (43) Pub . Date : Jun . 27 , 2019

(54) HYBRID SYSTEMS AND METHODS FOR
LOW - LATENCY USER INPUT PROCESSING
AND FEEDBACK (51)

(71) Applicant : Tactual Labs Co . , New York , NY (US)

(72) Inventors : Daniel Wigdor , Toronto (CA) ; Steven
Leonard Sanders , New York , NY
(US) ; Ricardo Jorge Jota Costa ,
Toronto (CA) ; Clifton Forlines , Cape
Elizabeth , ME (US)

(73) Assignee : Tactual Labs Co . , New York , NY (US)

Publication Classification
Int . CI .
G06F 3 / 0484 (2006 . 01)
G06F 9 / 451 (2006 . 01)
G06F 3 / 0488 (2006 . 01)
G06F 3 / 14 (2006 . 01)
G06T 1 / 20 (2006 . 01)

(52) U . S . CI .
CPC GO6F 3 / 0484 (2013 . 01) ; G06F 9 / 451

(2018 . 02) ; G06F 3 / 03545 (2013 . 01) ; G06F
3 / 14 (2013 . 01) ; G06T 1 / 20 (2013 . 01) ; G06F

3 / 0488 (2013 . 01)
(57) ABSTRACT
A system for processing user input includes an input device ,
an input processing unit , a high - latency subsystem , a low
latency subsystem , input processing unit software for gen
erating signals in response to user inputs , and an output
device . The low - latency subsystem processes signals corre
sponding to at least some events and generates correspond
ing programmable low - latency output , the programmable
output being based , at least in part , on state information
being maintained by the high - latency subsystem . The high
latency subsystem processes signals corresponding to at
least some events , and generates corresponding output , the
output of the high - latency subsystem being higher latency
than the output of the low - latency subsystem with respect to
a given event .

(21) Appl . No . : 16 / 290 , 119

(22) Filed : Mar . 1 , 2019

Related U . S . Application Data
(60) Continuation of application No . 15 / 360 , 039 , filed on

Nov . 23 , 2016 , now Pat . No . 10 , 222 , 952 , which is a
division of application No . 14 / 046 , 819 , filed on Oct .
4 , 2013 , now Pat . No . 9 , 507 , 500 .

(60) Provisional application No . 61 / 710 , 256 , filed on Oct .
5 , 2012

1020 - 77
H - 1010

MIXER

Patent Application Publication Jun . 27 , 2019 Sheet 1 of 14 US 2019 / 0196681 A1

ENIR 140
R

INTERT

FIG . 1

INI

IRRINTER

Patent Application Publication Jun . 27 , 2019 Sheet 2 of 14 US 2019 / 0196681 A1

-

FIG . 2 .

INBOX

Patent Application Publication Jun . 27 , 2019 Sheet 3 of 14 US 2019 / 0196681 A1

310 310

REJECT 310 320
300 /

ACCEPT + U

300 / - 300

FIG . 3

400

TO CONTROL PC

Patent Application Publication

420

440

460

HIGH SPEED INPUT DEVICE

FPGA

DIGITAL LIGHT PROJECTOR

Jun . 27 , 2019 Sheet 4 of 14

1 kHz SAMPLE RATE : * 1 MS

FPGA PROCESSING : " 0 . 1 MS

32000 FPS VIDEO :
- 0 . 03 MS

FIG . 4

US 2019 / 0196681 A1

Patent Application Publication Jun . 27 , 2019 Sheet 5 of 14 US 2019 / 0196681 A1

a . 10

9

VIA 8

AVA 7

6 PARTICIPANT
5

FIG . 5

4

3

2

1

MEAN CONVERGENCE VALUE (MS)

Patent Application Publication Jun . 27 , 2019 Sheet 6 of 14 US 2019 / 0196681 A1

TOUCH UP

INBOX
019 620

FIG . 6

TOUCH DOWN
INBOX

k _ 019

OFF

INBOX

Patent Application Publication Jun . 27 , 2019 Sheet 7 of 14 US 2019 / 0196681 A1

DRAG
Kway

LV
.

TOUCH DOWN RESIZE
FIG . 7

WY

OFF

hund

OPTION 1

LOREM IPSUM DOLOR SIT AMET
OPTION 2

LOREM IPSUM DOLOR SIT AMET
OPTION 3

LOREM IPSUM DOLOR SIT AMET
OPTION 4

LOREM IPSUM DOLOR SIT AMET
OPTION 5

LOREM IPSUM DOLOR SIT AMET
OPTION 6

LOREM IPSUM DOLOR SIT AMET

TOUCH DOWN
| OPTION 1

LOREM IPSUM DOLOR SIT AMET

OPTION 2

LOREM IPSUM DOLOR SIT AMET
OPTION 3

LOREM IPSUM DOLOR SIT AMET
OPTION 4
L LOREM IPSUM VOR SIT AMET

OPTION 5 LOREM IPSU

T AMET

OPTION 6
LOREM IPSUM DOL

TOUCH UP

OPTION 1

LOREM IPSUM DOLOR SIT AMET
OPTION 2

LOREM IPSUM DOLOR SIT AMET
OPTION 3

LOREM IPSUM DOLOR SIT AMET

810 TOPTION

820 - LLOREM IPSÙA , QLOR SIT AMET

Patent Application Publication

810

OPTIONS LOREM IP OPTION 6

SIT AMET

WET /

LOREM IPPO

AMET

HIGH - LATENCY CATCH - UP LOREM IPSUMQOLOR SIT AMET

840 VE OPTION 3

SCROLL UP

OPTION 1
I . LOREM NUM DOLOR SIT AMET

OPTION 2

LOREM 1995 R SIT AMET

F : OPTIONS

LOREM IPSA (SIT AMETI LOREM IPSON VOLOR SIT AMET

OPTION 5

LOREM IPSUM SIT AMET

OPTION6 LOREM IPSUM

Jun . 27 , 2019 Sheet 8 of 14

.

LOPTION 4

LOREM IPSUM YAMET
OPTION 4 LOREM IPSU OPTION 5 LOREM IPSUM DCS

OPTION 6

LOREM IPSUM DOLOR SIT AMET
OPTION 7

LOREM IPSUM DOLOR SIT AMET
OPTION 8

US 2019 / 0196681 A1

FIG . 8

Patent Application Publication

930

940

910

LOW LATENCY SUBSYSTEM

IPU SOFTWARE TOOLKIT

EVENTS
PROPERTIES

FRAMES | INPUT PROCESSING
UNIT (IPU)

PIXELS

INPUT DEVICE

DISPLAY

STATE INFO
HIGH LATENCY SUBSYSTEM | (CONVENTIAL SOFTWARE STACK) |

920

EVENTS

PIXELS

Jun . 27 , 2019 Sheet 9 of 14

950

FIG . 9

US 2019 / 0196681 A1

Patent Application Publication Jun . 27 , 2019 Sheet 10 of 14 US 2019 / 0196681 A1

77 10204
11

MIXER

FIG . 10

Patent Application Publication Jun . 27 , 2019 Sheet 11 of 14 US 2019 / 0196681 A1

PEN INPUT IN PRIOR ART TOUCH USER INTERFACE

ra
-

PEN INPUT USING HYBRID SYSTEMS AND METHODS

1150

FIG . 11

Patent Application Publication Jun . 27 , 2019 Sheet 12 of 14 US 2019 / 0196681 A1

1260 1270
1240

INTERNAL STORAGE
I / O

NETWORK
10

SYSTEM BUS

DDR GPU IPU 1220 1280 - 1

DISPLAY 1290 - 1 INPUT DEVICE - 1210

USER

FIG . 12

Patent Application Publication Jun . 27 , 2019 Sheet 13 of 14 US 2019 / 0196681 A1

1320

MODEL

UPDATES MANIPULATES
1330 1310

VIEW CONTROLER

SEES USES

USER

1300

FIG . 13

1460

NETWORK I / O

1450

DDR

DISK I / O

1470

7

Patent Application Publication

1440

MODEL

UPDATES

MANIPULATES

UPDATES

1480

UPDATES

- 1430

HIGH - LATENCY

?? ???? ???? ???

MANIPULATES

LOW - LATENCY

1490

MANIPULATES

VML

1420

Jun . 27 , 2019 Sheet 14 of 14

1491

SEES

INPUT DEVICE

- 1410

SEES SEES

USER

USES

1400

USER

US 2019 / 0196681 A1

FIG . 14

US 2019 / 0196681 A1 Jun . 27 , 2019

HYBRID SYSTEMS AND METHODS FOR
LOW - LATENCY USER INPUT PROCESSING

AND FEEDBACK

[0001] This application is a continuation of U . S . patent
application Ser . No . 15 / 360 , 039 filed Nov . 23 , 2016 , which
in turn is a divisional of U . S . Pat . No . 9 , 507 , 500 filed Oct .
4 , 2013 , which claims priority to U . S . Provisional Patent
Application No . 61 / 710 , 256 filed Oct . 5 , 2012 entitled
“ Hybrid Systems And Methods For Low - Latency User Input
Processing And Feedback , ” the entire disclosures of each of
which , including the source code appendix thereto , is incor
porated herein by reference in its entirety .
[0002] This application includes material which is subject
to copyright protection . The copyright owner has no objec
tion to the facsimile reproduction by anyone of the patent
disclosure , as it appears in the Patent and Trademark Office
files or records , but otherwise reserves all copyright rights
whatsoever .

latency , low fidelity response to a touch user interaction , as
well as a high - latency , high - fidelity response a touch user
interaction .
[0012] FIG . 8 shows an example of a user interface
element for a scrollable list , where the element has a low
latency , low fidelity response to a touch user interaction , as
well as a high - latency , high - fidelity response to a touch user
interaction .
[0013] FIG . 9 shows an illustrative embodiment of a basic
architecture and information flow for a low - latency input
device .
[0014] FIG . 10 shows the UI for a volume control . When
dragging the slider , a tooltip appears showing a numeric
representation of the current setting . This element is enabled
using both the low - latency and high - latency system to
provide a touch interaction where moving elements are
accelerated , thus providing a low - latency experience .
[0015] FIG . 11 shows the system ' s response for pen input
in prior art systems compared to an embodiment of the UI
for pen input in the present hybrid feedback user interface
system . In the hybrid system , the ink stroke has a low
latency response to pen input , as well as a high - latency
response to a pen user input .
[0016] FIG . 12 shows an embodiment of the system where
data flows through two overlapping paths through the com
ponents of the system to support both high - and low - latency
feedback .
[0017] FIG . 13 shows a programming paradigm well
known in the art called Model View Controller .
[0018] FIG . 14 shows an embodiment of the system ' s
architecture that supports developing and running applica
tions with blended high and low - latency responses to user
input .

FIELD

[0003] The present invention relates in general to the field
of user input , and in particular to user input systems which
deliver a low - latency user experience .

BRIEF DESCRIPTION OF THE DRAWINGS
10004) . The foregoing and other objects , features , and
advantages of the disclosure will be apparent from the
following more particular description of embodiments as
illustrated in the accompanying drawings , in which refer
ence characters refer to the same parts throughout the
various views . The drawings are not necessarily to scale ,
emphasis instead being placed upon illustrating principles of
the disclosed embodiments .
[0005] FIG . 1 illustrates a demonstration of the effect of
drag latency at 100 ms , 50 ms , 10 ms , and 1 ms in a touch
user interface .
[0006] FIG . 2 shows an example of a user interface
element for an inbox , where the element has a low latency ,
low fidelity response to a touch user interaction , as well as
a high - latency , high - fidelity response a touch user interac

DETAILED DESCRIPTION

tion .
[0007] FIG . 3 shows an example of a user interface of a
sliding toggle element . A cursor 310 (represented by the box
containing a " cross ” character) can be dragged to the target
320 (second empty box , on the right) to activate the UI
Element . This element is enabled using both the low latency
and high - latency system to provide a touch interaction
where moving elements are accelerated 310 , thus providing
a low - latency experience .
[0008] FIG . 4 shows an illustrative embodiment of a basic
architecture of a prototype high - performance touch system
used in latency perception studies .
[0009] FIG . 5 shows results of latency perception studies
using the prototype device of FIG . 4 .
[0010] FIG . 6 shows an example of a user interface
element for a button , where the element has a low latency ,
low fidelity response to a touch user interaction , as well as
a high - latency , high - fidelity response a touch user interac
tion .
[0011] FIG . 7 shows an example of a user interface
element for resizable box , where the element has a low

[0019] The following description and drawings are illus
trative and are not to be construed as limiting . Numerous
specific details are described to provide a thorough under
standing . However , in certain instances , well - known or
conventional details are not described in order to avoid
obscuring the description . References to one or an embodi
ment in the present disclosure are not necessarily references
to the same embodiment ; and , such references mean at least
one .
[0020] Reference in this specification to “ one embodi
ment ” or “ an embodiment ” means that a particular feature ,
structure , or characteristic described in connection with the
embodiment is included in at least one embodiment of the
disclosure . The appearances of the phrase " in one embodi
ment ” in various places in the specification are not neces
sarily all referring to the same embodiment , nor are separate
or alternative embodiments mutually exclusive of other
embodiments . Moreover , various features are described
which may be exhibited by some embodiments and not by
others . Similarly , various requirements are described which
may be requirements for some embodiments but not other
embodiments .

Overview
[0021] This application relates to user interfaces such as
the fast multi - touch sensors and other interfaces disclosed in
U . S . patent application Ser . No . 13 / 841 , 436 filed Mar . 15 ,
2013 entitled “ Low - Latency Touch Sensitive Device , ” U . S .

US 2019 / 0196681 A1 Jun . 27 , 2019

Patent Application No . 61 / 798 , 948 filed Mar . 15 , 2013
entitled “ Fast Multi - Touch Stylus , ” U . S . Patent Application
No . 61 / 799 , 035 filed Mar . 15 , 2013 entitled “ Fast Multi
Touch Sensor With User - Identification Techniques , ” U . S .
Patent Application No . 61 / 798 , 828 filed Mar . 15 , 2013
entitled “ Fast Multi - Touch Noise Reduction , ” U . S . Patent
Application No . 61 / 798 , 708 filed Mar . 15 , 2013 entitled
“ Active Optical Stylus , ” U . S . Patent Application No .
61 / 710 , 256 filed Oct . 5 , 2012 entitled “ Hybrid Systems And
Methods For Low - Latency User Input Processing And Feed
back , ” U . S . Patent Application No . 61 / 845 , 892 filed Jul . 12 ,
2013 entitled “ Fast Multi - Touch Post Processing , " U . S .
Patent Application No . 61 / 845 , 879 filed Jul . 12 , 2013
entitled “ Reducing Control Response Latency With Defined
Cross - Control Behavior , " and U . S . Patent Application No .
61 / 879 , 245 filed Sep . 18 , 2013 entitled “ Systems And Meth
ods For Providing Response To User Input Using Informa
tion About State Changes And Predicting Future User
Input . ” The entire disclosures of those applications are
incorporated herein by reference .
[0022] In various embodiments , the present disclosure is
directed to systems and methods that provide direct manipu
lation user interfaces with low latency . Direct physical
manipulation of pseudo “ real world ” objects is a common
user interface metaphor employed for many types of input
devices , such as those enabling direct - touch input , stylus
input , in - air gesture input , as well as indirect devices ,
including mice , trackpads , pen tablets , etc . For the purposes
of the present disclosure , latency in a user interface refers to
the time it takes for the user to be presented with a response
to a physical input action . Tests have shown that users prefer
low latencies and that users can reliably perceive latency as
low as 5 - 10 ms , as will be discussed in greater detail below .
[0023] FIG . 1 illustrates a demonstration of the effect of
latency in an exemplary touch user interface at 100 ms (ref .
no . 110) , 50 ms (ref . no . 120) , 10 ms (ref . no . 130) , and 1 ms
(ref . no . 140) respectively . When dragging an object ,
increasing latency is reflected as an increasing distance
between the user ' s finger and the object being dragged (in
this case a square user interface element) . As can be seen , the
effects of latency are pronounced at 100 ms (ref . no . 110)
and 50 ms (ref . no . 120) , but become progressively less
significant at 10 ms (ref . no . 130) , and virtually vanish at 1
ms (ref . no . 140) . FIG . 11 illustrates the effects of latency in
an exemplary stylus or pen user interface (1110 , 1120) . In
this example , lag 1120 is visible as an increasing distance
between the stylus 1100 tip and the computed stroke 1110 .
With the introduction of low - latency systems , the distance
between the stylus 1100 tip and the computed stroke 1130
would be significantly reduced .
[0024] In an embodiment , the presently disclosed systems
and methods provide a hybrid touch user interface that
provides immediate visual feedback with a latency of less
than 10 ms , inter - woven or overlayed with additional visual
responses at higher levels of latency . In some embodiments ,
the designs of these two sets of responses may be designed
to be visually unified , so that the user is unable to distinguish
them . In some embodiments , the “ low latency ” response
may exceed 10 ms in latency .

[0026] (1) the physical sensor that captures touch
events ;

[0027] (2) the software that processes touch events and
generates output for the display ;

[0028] (3) the display itself ;
[00291 (4) Data transmission between components ,

including bus ;
[0030] (5) Data internal storage in either memory stores

or short buffers ;
[0031] (6) Interrupts and competition for system

resources ;
[0032] (7) Other sources of circuitry can introduce

latency ;
[0033] (8) Physical restrictions , such as the speed of

light , and its repercussions in circuitry architecture .
[0034] (9) Mechanical restrictions , such as the time

required for a resistive touch sensor to bend back to its
‘ neutral ' state .

[0035] In various embodiments , reducing system latency
can be addressed through improving latency in one or more
of these components . In an embodiment , the presently
disclosed systems and methods provide an input device that
may achieve 1 ms of latency or less by combining a
low - latency input sensor and display with a dedicated pro
cessing system . In an embodiment , the presently disclosed
systems and methods provide an input device that may
achieve 5 ms of latency or less by combining such low
latency input sensor and display with a dedicated processing
system . In a further embodiment , the presently disclosed
systems and methods provide an input device that may
achieve 0 . 1 ms of latency or less by combining such
low - latency input sensor and display with a dedicated pro
cessing system . In a further embodiment , the presently
disclosed systems and methods provide an input device that
may achieve 10 ms of latency or less by combining such
low - latency input sensor and display with a dedicated pro
cessing system . In an embodiment , in order to achieve such
extremely low latencies , the presently disclosed systems and
methods may replace conventional operating system (OS)
software and computing hardware with a dedicated , custom
programmed field programmable gate array (FPGA) or
application - specific integrated circuit (ASIC) . In an embodi
ment , the FPGA or ASIC replaces the conventional OS and
computing hardware to provide a low latency response ,
while leaving a traditional OS and computing hardware in
place to provide a higher latency response (which is used in
addition in addition to the low latency response) . In another
embodiment , some or all of the function of the FPGA or
ASIC described may be replaced by integrating additional
logic into existing components such as but not limited to the
graphics processing unit (GPU) , input device controller ,
central processing unit (CPU) , or system on a chip (SOC) .
The low - latency logic can be encoded in hardware , or in
software stored - in and / or executed by those or other com
ponents . In embodiments where multiple components are
required , communication and / or synchronization may be
facilitated by the use of shared memory . In any of these
embodiments , responses provided at high or low latency
may be blended together , or only one or the other might be
provided in response to any given input event .
10036] In various embodiments , the disclosed systems and
methods provide what is referred to herein as “ hybrid
feedback . ” In a hybrid feedback system , some of the basic
system responses to input are logically separated from the

Causes of Latency
[0025] In various embodiments , latency in a user input
device and the system processing its input can have many
sources , including :

US 2019 / 0196681 A1 Jun . 27 , 2019

broader application logic . The result provides a system with
a nimble input processor , capable of providing nearly imme
diate system feedback to user input events , with more
feedback based on application logic provided at traditional
levels of latency . In some embodiments , these system
responses are provided visually . In various embodiments ,
the low - latency component of a hybrid feedback system may
be provided through audio or vibro - tactile feedback . In some
embodiments , the nearly immediate feedback might be
provided in the same modality as the application - logic
feedback . In some embodiments , low - latency feedback may
be provided in different modalities , or multiple modalities .
An example of an all - visual embodiment is shown in FIG .
2 , in this case showing the use of a touch input device . In
particular , FIG . 2 shows the result after a user has touched
and then dragged an icon 210 representing an inbox . When
the user touches the icon 210 , a border 220 or other suitable
primitive may be displayed . In an embodiment , in an all
visual low - latency feedback , a suitable low - fidelity repre
sentation may be selected due to its ease of rendering . In an
embodiment , a low - latency feedback may be provided using
one or more primitives that can provide a suitable low
fidelity representation . In an embodiment , if the user drags
the icon to another place on the touch display 200 , a low
fidelity border 230 is displayed and may be manipulated
(e . g . , moved) with a low latency of , for example , 1 ms .
Simultaneously , the movement of the icon 210 may be
shown with higher latency . In an embodiment , the difference
in response between the nearly immediate low - latency
response and the likely slower application - logic feedback
can be perceived by a user . In another embodiment , this
difference in response between the low - latency response and
a traditional response is blended and less noticeable or not
noticeable to a user . In an embodiment , the nearly immediate
feedback may be provided at a lower fidelity than the
traditional - path application - logic feedback . In an embodi
ment , in at least some cases , the low latency response may
be provided at similar or even higher fidelity than the
application - logic feedback . In an embodiment , the form of
low - latency nearly immediate feedback is dictated by appli
cation logic , or logic present in the system software (such as
the user interface toolkit) . For example , in an embodiment ,
application logic may pre - render a variety of graphical
primitives that can then be used by a low - latency subsystem .
Similarly , in an embodiment , a software toolkit may provide
the means to develop graphical primitives that can be
rendered in advance of being needed by the low latency
system . In an embodiment , low - latency responses may be
predetermined , or otherwise determined without regard to
application and / or system software logic . In an embodiment ,
individual pre - rendered or partially rendered low - latency
responses , or packages of pre - rendered or partially rendered
low - latency responses can be pre - loaded into a memory so
as to be accessible to the low - latency subsystem in advance
of being needed for use in response to a user input event .
[0037] In an embodiment , the modality of low - latency
output might be auditory . In an embodiment , the low - latency
system may be used , for example , to send microphone input
quickly to the audio output system , which may provide users
with an " echo ” of their own voice being spoken into the
system . Such a low - latency output may provide the impres
sion of having the same type of echo characteristics as
traditional analog telephones , which allow a user to hear
their own voice . In an embodiment , low - latency auditory

feedback might be provided in response to user input events
(e . g . , touch , gesture , pen input , oe oral inputs) , with a higher
latency response provided visually .
10038] Another illustrative embodiment of a system that
employs the present method and system is shown in FIG . 3 .
In the illustrative system , a cursor 310 (represented by the
box containing a “ cross ” character) can be dragged any
where on a device ' s screen 300 . When cursor 310 is dragged
to target box 320 , the UI action is accepted . If the cursor 310
is dragged elsewhere on the screen 300 , the action is
rejected . In an embodiment , when dragged , the cursor 310 is
drawn with low latency , and thus tracks the user ' s finger
without perceptible latency . In an embodiment , the target
320 can be drawn with higher latency without impacting
user perception . Similarly , in an embodiment , the response
330 of “ REJECT ” or “ ACCEPT ” may occur perceptibly
later , and thus it can be drawn at a higher latency , e . g . , not
using the low latency subsystem , without impacting user
perception .
10039) It should be understood that the illustrated embodi
ment is exemplary . The principles illustrated in FIG . 3 may
be applied to any kind of UI element , including all UI
elements that are now known , or later developed in the art .
Similarly , the principals illustrated in FIG . 3 can be used
with substantially any kind of input event on various types
of input devices and / or output devices . For example , in an
embodiment , in addition to a “ touch ” event as illustrated
above , input events can include , without limitation , in - air or
on - surface gestures , speech , voluntary (or involuntary eye
movement , and pen . In an embodiment , once a gesture takes
place , the response of any UI element may be bifurcated ,
where a low - latency response (e . g . , a low - fidelity represen
tation of a UI element is presented and responds quickly , for
example , in 0 . 01 ms .) , and a non - low - latency response (e . g . ,
a further refined representation of the UI element) is pro
vided with latency commonly exhibited by a system that
does not provide accelerated input . In an embodiment ,
responses may not be split in a hybrid system , and may
instead be entirely low latency , with application logic not
responsible for the low - latency response otherwise execut
ing with higher latency .
[0040] In an embodiment , touch and / or gesture input
events can be achieved using a variety of technologies ,
including , without limitation , resistive , direct illumination ,
frustrated total - internal reflection , diffuse illumination , pro
jected capacitive , capacitive coupling , acoustic wave , and
sensor - in - pixel . In an embodiment , pen input can be enabled
using resistive , visual , capacitive , magnetic , infrared , optical
imaging , dispersive signal , acoustic pulse , or other tech
niques . In an embodiment , gestural input may also be
enabled using visual sensors or handheld objects (including
those containing sensors , and those used simply for track
ing) , or without handheld objects , such as with 2D and 3D
sensors . Combinations of the sensors or techniques for
identifying input events are also contemplated , as are com
binations of event types (i . e . , touch , pen , gesture , retna
movement , etc .) One property technologies to identify or
capture input events share is that they contribute to the
latency between user action and the system ' s response to
that action . The scale of this contribution varies across
technologies and implementations .
[0041] In a typical multitouch system , there is a path of
information flow between the input device and the display
that may involve communications , the operating system , UI

US 2019 / 0196681 A1 Jun . 27 , 2019

toolkits , the application layer , and / or ultimately , the audio or
graphics controller . Each of these can add latency . More
over , latency introduced by an operating system , especially
a non - real time operating system , is variable . Windows , iOS ,
OSX , Android , etc . are not real time operating systems , and
thus , using these operating systems , there is no guarantee
that a response will happen within a certain time period . If
the processor is heavily loaded , for example , latency may
increase dramatically . Further , some operations are handled
at a very low level in the software stack and have high
priority . For example , the mouse pointer is typically highly
optimized so that even when the processor is under heavy
load , the perceived latency is relatively low . In contrast , an
operation such as resizing a photo with two fingers on a
touch or gestural system is generally much more computa
tionally intensive as it may require constant rescaling of the
image at the application and / or UI toolkit levels . As a result ,
such operations are rarely able to have a low perceived
latency when the processor is under heavy load .
[0042] In a typical multitouch system , the display system
(including the graphics system as well as the display itself)
may also contribute to latency . Systems with high frame
rates may obscure the actual latency through the system . For
example , a 60 Hz monitor may include one or more frames
of buffer in order to allow for sophisticated image processing
effects . Similarly some display devices , such as projectors ,
include double - buffering in the electronics , effectively dou
bling the display latency . The desire for 3D televisions and
reduced motion artifacts is driving the development of faster
LCDs , however , the physics of the liquid crystals themselves
make performance of traditional LCD ' s beyond 480 Hz
unlikely . In an embodiment , the low latency system
described herein may use an LCD display . In contrast to the
performance of an LCD display , OLED or AMOLED dis
plays are capable of response times well below 1 ms .
Accordingly , in an embodiment , the high performance touch
(or gesture) system described herein may be implemented on
displays having fast response times , including , without
limitation displays based on one or more of the following
technologies : OLED , AMOLED , plasma , electrowetting ,
color - field - sequential LCD , optically compensated bend
mode (OCB or Pi - Cell) LCD , electronic ink , etc .

to change the percentage time on vs . off to create the
appearance of continuous colored images . In an embodi
ment , where only simple binary images are used , these can
be produced at an even higher rate . In the illustrative testing
system , the projector development system displays 32 , 000
binary frames / second at 1024x768 resolution with latency
under 40 us . In the illustrative testing system to achieve this
speed , the video data is streamed to the DMD at 25 . 6 Gbps .
[0045] In the illustrative testing system , to achieve mini
mal latency , all touch processing is performed on a dedicated
FPGA 440 — no PC or operating system is employed
between the touch input and the display of low latency
output . The DLP kit ' s onboard XC5VLX50 application
FPGA may be used for processing the touch data and
rendering the video output . A USB serial connection to the
FPGA allows parameters to be changed dynamically . In the
illustrative testing system , latency can be adjusted from 1 ms
to several hundred ms with 1 ms resolution . Different testing
modes can be activated , and a port allows touch data to be
collected for analysis .
[0046] In the illustrative testing system , to receive touch
data from the sensor 420 , the system communicates through
a custom high - speed UART . To minimize latency , a baud
rate of 2 Mbps can be used , which represents a high baud
rate that can be used without losing signal integrity due to
high frequency noise across the communication channel . In
the illustrative testing system , the individual bytes of com
pressed touch data are then processed by a touch detection
finite state machine implemented on the FPGA 440 . The
finite - state machine (FSM) simultaneously decodes the data
and performs a center - of - mass blob - detection algorithm to
identify the coordinates of the touches . In the illustrative
testing system , the system is pipelined such that each
iteration of the FSM operates on the last received byte such
that no buffering of the touch data occurs .
0047] In the illustrative testing system , the touch coordi

nates are then sent to a 10 - stage variable delay block . Each
delay stage is a simple FSM with a counter and takes a
control signal that indicates the number of clock cycles to
delay the touch coordinate , allowing various levels of
latency . The delay block latches the touch sample at the start
of the iteration and waits for the appropriate number of
cycles before sending the sample and latching the next . The
delay block therefore lowers the sample rate by a factor of
the delay count . In an embodiment , to keep the sample rate
at a reasonable level , 10 delay stages can be used , so that , for
example , to achieve 100 ms of latency , the block waits 10 ms
between samples for a sample rate of 100 Hz . In the
illustrative testing system , to run basic applications , a
MicroBlaze soft processor is used to render the display .
[0048] In an embodiment , the testing system may use a
hard coded control FSM in place of the MicroBlaze for
improved performance . In an embodiment another soft pro
cessor may be used . In the illustrative testing system , the
MicroBlaze is a 32 - bit Harvard architecture RISC processor
optimized to be synthesized in Xilinx FPGAs . The Micro
Blaze soft processor instantiation allows the selection of
only the cores , peripherals , and memory structures required .
In the illustrative testing system , in addition to the base
MicroBlaze configuration , an interrupt controller can be
used , for example , GPIOs for the touch data , a GPIO to set
the variable latency , a BRAM memory controller for the
image buffer , and a UART unit to communicate with a PC .
in the illustrative testing system , the MicroBlaze is clocked

Latency Perception Studies
[0043] Studies were undertaken to determine what laten
cies in a direct touch interface users perceive as essentially
instantaneous . A prototype device represented in a block
diagram in FIG . 4 shows an illustrative embodiment of a
basic architecture of a prototype high - performance touch
system 400 . In an embodiment , the high - speed input device
420 is a multi - touch resistive touch sensor having an active
area of 24 cmx16 cm , and electronics that allow for very
high - speed operation . The delay through this sensor is
slightly less than 1 ms . In an embodiment , touch data may
be transmitted serially over an optical link .
[0044] In the illustrative testing system , the display 460 is
a DLP Discovery 4100 kit based on Texas Instruments '
Digital Light Processing technology . The illustrative testing
system utilizes front - projection onto the touch sensor thus
eliminating parallax error that might disturb a user ' s per
ception of finger and image alignment . The DLP projector
employed uses a Digital Micromirror Device (DMD) , a
matrix of mirrors which effectively turns pixels on or off at
very high speed . The high speed of the mirrors may be used

US 2019 / 0196681 A1 Jun . 27 , 2019

at 100 MHz . The MicroBlaze uses an interrupt system to
detect valid touch coordinates . A touch ready interrupt event
is generated when valid touch data arrives on the GPIOs
from the delay block , and the corresponding image is written
to the image buffer . Because of the non - uniform nature of an
interrupt - based system , the exact latency cannot be com
puted , but , by design , it is insignificant in comparison to the
1 ms latency due to the input device .
[0049] In the illustrative testing system , the image buffer
is synthesized in on - chip BRAM blocks . These blocks can
provide a dual - port high - speed configurable memory buffer
with enough bandwidth to support high frame - rate display .
In the illustrative testing system , the image buffer is clocked
at 200 MHz with a bus width of 128 bits for a total
bandwidth of 25 . 6 Gbps , as needed by the DLP . Finally , the
DMD controller continuously reads out frames from the
image buffer and generates the signals with appropriate
timing to control the DMD .
[0050] In the illustrative testing system , user input is sent
simultaneously to a traditional PC , and is processed to
produce a traditional , higher latency , response . This higher
latency response is output by a traditional data projector ,
aligned to overlap with the projected lower latency response .
[0051] Studies were conducted to determine the precise
level of performance that users are able to perceive when
performing common tasks on a touch screen interface . To
that end , studies were conducted to determine the just
noticeable difference (IND) of various performance levels .
JND is the measure of the difference between two levels of
a stimulus which can be detected by an observer . In this case ,
the JND is defined as the threshold level at which a partici
pant is able to discriminate between two unequal stimuli
one consistently presented at the same level , termed the
reference , and one whose value is changed dynamically
throughout the experiment , termed the probe . A commonly
accepted value for the JND at some arbitrary reference value
is a probe at which a participant can correctly identify the
reference 75 % of the time . A probe value that cannot be
distinguished from the reference with this level of accuracy
is considered to be “ not noticeably different " from the
reference .
[0052] Studies were conducted to determine the JND level
of the probe latency when compared to a maximum perfor
mance of 1 ms of latency , which served as the reference .
While such a determination does not provide an absolute
value for the maximum perceptible performance , it can serve
as our “ best case ” floor condition against which other levels
of latency can be measured , given that it was the fastest
speed our prototype could achieve . It was found participants
are able to discern latency values that are significantly lower
(< 20 ms) which typical current generation hardware (e . g . ,
current tablet and touch computer) provides (~ 50 - 200 ms) .
[0053] Ten right - handed participants (3 female) were
recruited from the local community . Ages ranged between
24 and 40 (mean 27 . 80 , standard deviation 4 . 73) . All par
ticipants had prior experience with touch screen devices , and
all participants owned one or more touch devices (such as an
iOS - or Android - based phone or tablet) . Participants were
repeatedly presented with pairs of latency conditions : the
reference value (1 ms) and the probe (between 1 and 65 ms
of latency) . Participants dragged their finger from left to
right , then right to left on the touch screen display . While any
dragging task would have been suitable , left / right move -
ments reduce occlusion in high - latency cases . Participants

were asked to move in both directions to ensure they did not
“ race through ” the study . Beneath the user ' s contact point ,
the system rendered a solid white 2 cmx2 cm square as seen
in FIG . 1 . The speed of movement was left to be decided by
the participants . The order of the conditions was randomized
for each pair . The study was designed as a two - alternative
forced - choice experiment ; participants were instructed to
choose , within each trial , which case was the reference (1
ms) value and were not permitted to make a “ don ' t know "
or " unsure ” selection . After each pair , participants informed
the experimenter which of the two was " faster ” .
[0054] In order for each trial to converge at a desired JND
level of 75 % , the amount of added latency was controlled
according to an adaptive staircase algorithm . Each correct
identification of the reference value caused a decrease in the
amount of latency in the probe , while each incorrect
response caused the probe ' s latency to increase . In order to
reach the 75 % confidence level , increases and decreases
followed the simple weighted up - down method described by
Kaernbach (Kaernbach , C . 1991 . Perception & Psychophys
ics 49 , 227 - 229) , wherein increases had a three - fold multi
plier applied to the base step size , and decreases were the
base step size (initially 8 ms) .
[0055] When a participant responded incorrectly after a
correct response , or correctly after an incorrect response ,
this was termed a reversal as it caused the direction of the
staircase (increasing or decreasing) to reverse . The step size ,
initially 8 ms , was halved at each reversal , to a minimum
step size of 1 ms . This continued until a total of 10 reversals
occurred , resulting in a convergence at 75 % correctness .
Each participant completed eight staircase “ runs . ” Four of
these started at the minimum probe latency (1 ms) and four
at the maximum (65 ms) . The higher starting value of the
staircase was chosen because it roughly coincides with
commercial offerings , and because pilot testing made it clear
that this value would be differentiated from the 1 ms
reference with near 100 % accuracy , avoiding ceiling effects .
Staircases were run two at a time in interleaved pairs to
prevent response biases that would otherwise be caused by
the participants ' ability to track their progress between
successive stimuli . Staircase conditions for each of these
pairs were selected at random without replacement from
possibilities (2 starting levelsx4 repetitions) . The entire
experiment , including breaks between staircases , was com
pleted by each participant within a single 1 - hour session .
[0056] The study was designed to find the just - noticeable
difference (IND) level for latency values greater than 1 ms .
This JND level is commonly agreed to be the level where the
participant is able to correctly identify the reference 75 % of
the time . Participant JND levels ranged from 2 . 38 ms to
11 . 36 ms , with a mean JND across all participants of 6 . 04 ms
(standard deviation 4 . 33 ms) . JND levels did not vary
significantly across the 8 runs of the staircase for each
participant . Results for each participant appear in FIG . 5 .
[0057] The results show participants were able to discern
differences in latency far below the typical threshold of
consumer devices (50 - 200 ms) . It is noted that participants
were likely often determining latency by estimating the
distance between the onscreen object and their finger as it
was moved around the touch screen ; this is an artifact of
input primitives used in Uls (specifically , dragging) . Testing
a different input primitive (tapping , for example) would
exhibit different perceptions of latency . Results confirm that

US 2019 / 0196681 A1 Jun . 27 , 2019

an order - of magnitude improvement in latency would be
noticed and appreciated by users of touch devices .

An Architecture for a Low - Latency Direct Touch Input
Device
[0058] In an embodiment , a software interface may be
designed that enables application developers to continue to
use toolkit - based application design processes , but enable
those toolkits to provide feedback at extremely low laten
cies , given the presence of a low - latency system . In an
embodiment , the systems and methods outlined in the pres
ent disclosure may be implemented on the model - view
controller (“ MVC ”) model of UI development , upon which
many UI toolkits are based . An MVC permits application
logic to be separated from the visual representation of the
application . In an embodiment , an MVC may include , a
second , overlaid de facto view for the application . In par
ticular , in an embodiment , touch input receives an immedi
ate response from the UI controls , which is based in part on
the state of the application at the time the touch is made . The
goal is to provide nearly immediate responses that are
contextually linked to the underlying application .
[0059] Previous work on application independent visual
responses to touch are completely separate from even the
visual elements of the UI , adding visual complexity . In an
embodiment , according to the systems and methods outlined
herein , a set of visual responses are more fully integrated
into the UI elements themselves so as to reduce visual
complexity . Thus , in an embodiment , where the particular
visuals shown provide a de facto “ mouse pointer ” for touch ,
the goal is to integrate high performance responses into the
controls themselves , providing a more unified visualization .
None the less , in an embodiment , the systems and methods
allow the rendering of context - free responses by the low
latency subsystem , which are later merged with responses
from the high - latency subsystem . In an embodiment , visuals
need not be presented in the same rendering pipeline as the
rest of the system ' s response . Instead , a system or method
which utilizes hybrid feedback as discussed herein may
present lower latency responses to user input in addition to
the higher latency responses generated by the traditional
system .
[0060] Thus , in an embodiment , accelerated input inter
actions are designed such that the traditional direct - touch
software runs as it would normally , with a high - latency
responses , while an additional set of feedback , customized
for the UI element , is provided at a lower latency ; with a
target of user - imperceptible latency . In an embodiment ,
these two layers are combined by superimposing two or
more images . In an embodiment , two combined images may
include one projected image from the low - latency touch
device , and a second from a traditional projector connected
to a desktop computer running custom touch software ,
receiving input from the low - latency subsystem .
[0061] The two projector solution described above is
meant only to serve as one particular embodiment of the
more general idea of combining a low latency response and
a traditional response . In an embodiment , the visual output
from the low and high - latency sub - systems are logically
combined in the display buffer or elsewhere in the system
before being sent to the display , and thus , displayed . In an
embodiment , transparent , overlapping displays present the
low and high - latency output to the user . In an embodiment ,
the pixels of a display are interlaced so that some are

controlled by the low latency subsystem , and some are
controlled by the high - latency sub - system ; through interlac
ing , these displays may appear to a user to overlap . In an
embodiment , frames presented on a display are interlaced
such that some frames are controlled by the low latency
subsystem and some frames are controlled by the high
latency sub - system ; through frame interlacing , the display
may appear to a user to contain a combined image .
[0062] In an embodiment , the low - latency response may
be generated predominantly or entirely in hardware . In an
embodiment , the low - latency response may be generated
from input sensor data received directly from the input
sensor . In an embodiment , the low - latency response is
displayed by having a high bandwidth link to the display
hardware .
[0063] In designing a user interface for a low - latency
subsystem , one or more of the following constraints may be
considered :

[0064] Information : any information or processing
needed from the high - latency subsystem in order to
form the system ' s response to input will , necessarily ,
have high latency , unless such information or process
ing is e . g . , pre - rendered or pre - served .

[0065] Performance : the time allowed for formation of
responses in low latency is necessarily limited . Even
with hardware acceleration , the design of responses
must be carefully performance - driven to guarantee
responses meet the desired low latency .

[0066] Fidelity : the fidelity of the rendered low - latency
image may be indistinguishable from the higher - la
tency rendering (indeed , it may be pre - rendered by the
high latency system) ; additional constraints may be
placed on fidelity to improve performance , such as ,
e . g . , that visuals are only monochromatic , and / or lim
ited to visual primitives , and / or that the duration or
characteristics of audio or haptic responses are limited .
Constraints of this type may be introduced by various
elements of the system , including acceleration hard
ware or by the output hardware (such as the display ,
haptic output device , or speakers) .

10067) Non - Interference : in embodiments where
responses are hybridized combinations , some of the
application ' s response may be generated in the low
latency layer , and some in the high - latency layer , a
consideration may be how the two are blended , e . g . , to
provide a seamless response to the user ' s input . In an
embodiment , low - latency responses do not interfere
with any possible application response , which will
necessarily occur later . In an embodiment , interference
may occur between a low - latency response and the
traditional response , but the interference may be
handled through design , or through blending of the
responses .

10068] . In an embodiment , a design process was conducted
to create a set of visual UI controls with differentiated low
and high latency visual responses to touch . A metaphor was
sought which would enable a seamless transition between
the two layers of response . These visualizations included
such information as object position and state . The designs
were culled based on feasibility using the above - described
constraints . The final design of such embodiment was based
on a heads - up display (HUD) metaphor , similar to the
visualizations used in military aircraft . The HUD was suit
able , since traditional HUDs are geometrically simple , and

US 2019 / 0196681 A1 Jun . 27 , 2019

it is relatively easy to implement a geometrically simple
display at an authentic fidelity . The HUD represents just one
example of two visual layers being combined , though in
many HUDs , a computerized display is superimposed on
video or the “ real world ” itself . Accordingly , a HUD is
generally designed to be non - interfering .
[0069] Based on the HUD metaphor , an exemplary set of
touch event and UI element - specific low - latency layer visu
alizations were developed for a set of UI elements found in
many direct - touch systems . These exemplary elements are
both common and representative ; their interactions (taps ,
drags , two - finger pinching) cover the majority of the inter
action space used in current direct - touch devices . The low
latency responses developed in such an embodiment are
described in Table 1 , and they are shown in FIG . 6 - 8 .

stack . In an embodiment , the low - latency , low fidelity sub
system 940 may be implemented in hardware , such as the
FPGA 440 of FIG . 4 .
0072] The bifurcation described in this embodiment cre
ates a fundamental communication problem where any
parameterization of the initial responses provided by the
low - latency subsystem 940 required by application logic
must be defined before the user begins to give input . Any
response which requires processing at the time of presenta
tion by the application will introduce a dependency of the
low - latency system 940 upon the high - latency system 950 ,
and may therefore introduce lag back into the system . In an
embodiment , later stages of the low - latency system ' s 940
response to input may depend on the high latency subsystem
950 . In an embodiment , dependency of the later stages of a

TABLE 1
Accelerated visuals for each element and touch event , which compliment

standard high latency responses to touch input .

Element Touch Down Touch Move Touch Up
Button
(FIG . 6)

Bounds
outlined 610

(none) If within bounds , 2nd
outline 620 , else
none
Outline 710 fades
when high - latency
layer catches up

Draggable / Resizable Bounds Outline changes and moves
(FIG . 7) outlined 710 with input position 720

and / or scales with input
gesture 730

Scrollable List List item If scroll gesture , list edges
(FIG . 8) outlined 810 highlight 830 to scroll

distance .
If during scroll gesture , edge
highlights 840) fade as high
latency layer catches up

If list item selection ,
outline 820 scales
down and fades

[0070] These three elements represent broad coverage of
standard UI toolkits for touch input . Most higher - order UI
elements are composed of these simpler elements (e . g . radio
buttons and checkboxes are both “ buttons , " a scrollbar is a
" draggable / resizable " with constrained translation and rota
tion) . The accelerated input system and method described
herein depends on the marriage of visuals operating at two
notably different latency levels ; this latency difference has
been incorporated into the design of low - latency visualiza
tions . In an embodiment , users may be informed of the state
of both systems , with a coherent synchronization as the
visual layers come into alignment . In an embodiment , a user
may be able to distinguish between the high and low latency
portions of system feedback . In an embodiment , the visual
elements are blended in a manner that provides no apparent
distinction between the low - latency response and the tradi
tional response .
[0071] In an embodiment , an application developer uti
lizes a toolkit to build their application through the normal
process of assembling GUI controls . Upon execution , the UI
elements bifurcate their visualizations , with high - and low
latency visualizations rendered and overlaid on a single
display . An embodiment of information flow through such a
system is as shown in FIG . 9 . Information flows into the
system from an input device 910 and is initially processed by
an input processing unit (IPU) 920 , programmed via an IPU
software toolkit 930 . UI events are then processed in parallel
by two subsystems , a low - latency , low fidelity subsystem
940 , and a high - latency subsystem 950 such as , for example ,
conventional software running in a conventional software

low - latency subsystem ' s 940 response to input on the high
latency subsystem 950 is managed such that the dependency
does not introduce additional latency . In an embodiment the
dependency would be avoided entirely .
[0073] In an embodiment , UI element logic may be built
into the low - latency subsystem . Between user inputs , the
application executing in the high - latency subsystem 950 , has
the opportunity to provide parameters for the low - latency
subsystem ' s 940 model of the UI elements . Thus , in an
embodiment , the MVC model of UI software design may be
extended by providing a separate controller responsible for
low - latency feedback . In an embodiment , in the software
design , one or more of the following can be specified for
each control :

[0074] Element type (e . g . , button , draggable object ,
scrollable list , etc .) .

[0075] Bounding dimensions (e . g . , x position , y posi
tion , width , height , etc .) .

[0076] Conditional : additional primitive information
(e . g . , size of list items in the case of a scrollable list ,
etc .) .

[0077] In an embodiment , logic for a given element - type ' s
response to touch input is stored in the low - latency subsys
tem 940 . Further parameterization of the low - latency sub
system ' s responses to user input could be communicated in
the same manner , allowing a greater degree of customiza
tion . In an embodiment , sensor data is processed to generate
events (or other processed forms of the input stream) , which
are then separately distributed to the low - latency subsystem
940 and to the high - latency subsystem 950 . Events may be

US 2019 / 0196681 A1 Jun . 27 , 2019

generated at different rates for the low - latency subsystem
940 and high - latency subsystem 950 , because the low
latency subsystem is capable of processing events faster than
the high - latency subsystem , and sending events to the high
latency sub - system at a high rate may overwhelm that
subsystem . The low - and high - latency subsystems ' response
to user input is therefore independent but coordinated . In an
embodiment , one subsystem acts as the “ master , " setting
state of the other subsystem between user inputs . In an
embodiment , the relationship between the low - and high
latency subsystems includes synchronization between the
two subsystems . In an embodiment , the relationship between
the low - and high - latency subsystems includes the ability of
the high - latency subsystem to offload processing to the
low - latency subsystem 940 . In an embodiment , the relation
ship between the low - and high - latency subsystems includes
the ability of the low - latency subsystem 940 to reduce its
processing Load and / or utilize the high - latency subsystem
950 for pre - processing or pre - rendering . In an embodiment ,
a second graphical processing and output system ' s response
is dependent upon a first graphical processing and output
system , and state information is passed from the first graphi
cal processing and output system to the second graphical
processing and output system . In such embodiments , infor
mation passed from the first graphical processing and output
system to the second graphical processing and output system
is comprised of one or more pieces of data describing one or
more of the graphical elements in the user interface . This
data may be , e . g . , the size , the location , the appearance ,
alternative appearances , response to user input , and the type
of graphical elements in the user interface . The data passed
from the first graphical processing and output system to the
second graphical processing and output system may be
stored in high - speed memory available to the second graphi
cal processing and output system . The passed data may
describe the appearance and / or behavior of a button , a slider ,
a draggable and / or resizable GUI element , a scrollable list ,
a spinner , a drop - down list , a menu , a toolbar , a combo box ,
a movable icon , a fixed icon , a tree view , a grid view , a scroll
bar , a scrollable window , or a user interface element .
[0078] In an embodiment , an input processing system
performs decimation on the user input signals before they
are received by one or both of the first or second graphical
processing and output systems . The decimated input signals
or non - decimated signals are chosen from the set of all input
signals based on information about the user interface sent
from the first graphical processing and output system . The
decimation of input signals may be performed by logically
combining the set of input signals into a smaller set of input
signals . Logical combination of input signals may be per
formed through windowed averaging . The decimation con
siders the time of the user input signals when reducing the
size of the set of input signals . The logical combination of
input signals can be performed through weighted averaging .
In an embodiment , the user input signals received by the first
and second graphical processing and output systems have
been differentially processed .
[0079] In an embodiment , communication between the
high - latency and low - latency layers may be important .
Some points which are considered in determining how the
high - and low - latency subsystems remain synchronized are
described below :

10080] Latency differences : Low - latency responses may
use information about the latency difference between

the high - and low - latency layers in order to synchronize
responses . In an embodiment , these latency values are
static , and thus preprogrammed into the FPGA . In an
embodiment where latency levels may vary in either
subsystem , it may be advantageous to fix the latency
level at an always - achievable constant rather than hav
ing a dynamic value that may become unsynchronized ,
or provide an explicit synchronization mechanism . In
an embodiment where latency levels may vary in either
subsystem , a dynamic value may be used , however ,
care should be taken to avoid becoming unsynchro
nized . In an embodiment where latency levels may vary
in either subsystem , an explicit synchronization mecha
nism may be provided between the subsystems 940 ,
950 .

[0081] Hit testing : Hit testing decisions are often con
ditional on data regarding the visual hierarchy and
properties of visible UI elements . In an embodiment ,
this consideration can be resolved by disallowing over
lapping bounding rectangles , requiring a flat , ‘ hit test
friendly ' map of the UI . In an embodiment separate hit
testing may provide the necessary information (object
state , z - order , and listeners) to the low - latency subsys
tem . In an embodiment both the low - and high - latency
subsystems may conduct hit testing in parallel . In an
embodiment the low - latency subsystem conducts hit
testing , and provides the results to the high - latency
subsystem .

[0082] Conditional responses : Many interface visual
izations are conditional not only on immediate user
input , but on further decision - making logic defined in
the application logic .

[0083] Two illustrative examples of conditional response
logic are as follows : Consider a credit - card purchase sub
mission button , which is programmed to be disabled (to
prevent double billing) when pressed , but only upon vali
dation of the data entered into the form . In such a case , the
behavior of the button is dependent not only on an imme
diate user interaction , but is further conditional on additional
information and processing . Consider also linked visualiza
tions , such as the one shown in FIG . 10 . In this case ,
feedback is provided to the user not only by the UI element
they are manipulating 1010 , but also by a second UI element
1020 . These examples could be programmed directly into a
low - latency subsystem .
[0084] In an embodiment , the division between the high
and low - latency subsystems may be independent of any user
interface elements . Indeed , the division of responsibility
between the subsystems can be customized based on any
number of factors , and would still be possible in systems that
lack a user interface toolkit , or indeed in a system which
included mechanisms to develop applications both within
and without the use of a UI toolkit which might be available .
In an embodiment , the division of responsibility between the
two subsystems can be dynamically altered while the sub
systems are running . In an embodiment , the UI toolkit itself
may be included within the low - latency subsystem . The
ability to customize responses can be provided to application
developers in a number of ways without departing from the
systems and methods herein described . In an embodiment ,
responses may be customized as parameters to be adjusted
in UI controls . In an embodiment , responses may be cus
tomized by allowing for the ability to provide instructions
directly to the low - latency subsystem , in code which itself

US 2019 / 0196681 A1 Jun . 27 , 2019

executes in the low - latency subsystem , or in another high - or
low - latency component . In an embodiment , the state of the
low - latency subsystem could be set using data generated by
application code , e . g . , at runtime .
[0085] While many of the examples described above are
provided in the context of a touch input , other embodiments
are contemplated , including , without limitation , pen input ,
mouse input , indirect touch input (e . g . , a trackpad) , in - air
gesture input , oral input and / or other input modalities . The
architecture described would be equally applicable to any
sort of user input event , including , without limitation , mixed
input events (i . e . , supporting input from more than one
modality) . In an embodiment , mixed input devices may
result in the same number of events being generated for
processing by each of the low - and high - latency subsystems .
In an embodiment , mixed input devices would be differen
tiated in the number of events generated , thus , for example ,
touch input might have fewer events than pen input . In an
embodiment , each input modality comprises its own low
latency subsystem . In an embodiment , in systems compris
ing multiple low - latency subsystems for multiple input
modalities , the subsystems might communicate to coordi
nate their responses . In an embodiment , in systems com
prising multiple low - latency subsystems for multiple input
modalities , the multiple subsystems may share a common
memory area to enable coordination .

Input Processing
[0086] In an embodiment of the invention , low - latency
input data from the input hardware is minimally processed
into a rapid stream of input events . This stream of events is
sent directly to the low - latency sub - system for further pro
cessing . Events from this same stream may then be deleted ,
or the stream may be otherwise reduced or filtered , before
being sent to the high - latency subsystem . Events may be
generated at different rates for the low - latency subsystem
940 and high - latency subsystem 950 because the low
latency subsystem is capable of processing events faster than
the high - latency subsystem , and sending events to the high
latency sub - system at a high rate may overwhelm that
subsystem . The low - and high - latency subsystems ' response
to user input may therefore be independent but coordinated .
[0087] The reduction of events can be optimized . In an
embodiment , representative events may be selected among
candidate events based on criteria associated with one or
more of the application , the UI element , the input device ,
etc . An example of this for pen input when the user is
drawing digital ink strokes might include selecting events
which fit best to the user ' s drawn stroke . Another example
for speech input is to favor events where subsequent events
in the output stream would have similar volume , thereby
" evening out ” the sound coming from the microphone .
Another example for touch input is to favor events which
would result in the output event stream having a consistent
speed , providing more “ smooth ” output . This form of intel
ligent reduction acts as an intelligent filter , without reducing
performance of the high - latency subsystem . In an embodi
ment , new events (e . g . , consolidated events or pseudo
events) could be generated which represent an aggregate of
other events in the input stream . In an embodiment , new
events (e . g . , corrected events , consolidated events or
pseudo - events) may be generated that represent a more
desirable input stream , e . g . , a correction or smoothing . For
example , for in - air gesture input , for every 10 events from

the high - speed input device , the high - latency subsystem
may be sent the same number or fewer events which provide
an “ average ” of actual input events , thus smoothing the input
and removing jitter . New events could also be generated
which are an amalgam of multiple " desired ” levels of
various parameters of an input device . For example , if the
intelligent reductions of the tilt and pressure properties of a
stylus would result in the selection of different events , a
single , new , event object could be created (or one or more
existing event objects modified) to include the desired
values for each of these properties .
[0088] In an embodiment , an IPU or low - latency subsys
tem system might be used to provide the high - latency
system with processed input information . One or more of
methods could be used to coordinate the activities of the two
subsystems . These include :

10089] a . In an embodiment , the low - latency subsystem
can respond to all user input immediately , but wait for
the user to stop the input (e . g . lifting a finger or pen ,
terminating a gesture) before providing the input to the
high - latency system . This has an advantage of avoiding
clogging the system during user interaction while still
processing the totality of the data .

[0090] b . In an embodiment , the low - latency system can
provide a reduced estimate of input in near real - time ;
and may optionally store a complete input queue that
can be available to the high - latency system upon
request .

10091] c . In an embodiment , user feedback may be
divided into two steps . The first , a low - latency feed
back , would provide a rough , immediate representation
of user input 1130 in FIG . 11 . The second , a high
latency system response 1140 , could replace the first
1130 , whenever the high - latency system is able to
compute a refined response , for example after lift - off of
the pen 1150 tip . Alternatively , the high latency feed
back could be continuously " catching up ” to (and
possibly subsuming) the low latency feedback .

10092] d . In an embodiment , the low - latency system can
infer simple gesture actions from the input stream , and
thus generate gesture events which are included in the
input queue in addition to , or replacing , the raw events .

(0093] e . In an embodiment , an IPU or low - latency
subsystem can use multiple input positions to predict
future input positions . This prediction can be passed
along to the high - latency subsystem to reduce its effec
tive latency .

[0094] f . In an embodiment , algorithms which may
benefit from additional samples , or earlier detection ,
are executed in the IPU or low - latency subsystem . In an
embodiment , the execution of these events can be
limited in time . For example , the initial 50 events can
be used to classify an input as a particular finger , or to
differentiate between finger and pen inputs . In an
embodiment , these algorithms can run continuously .

100951 g . In an embodiment , the process of the low
latency subsystem passing a stream of events to the
high - latency subsystem might be delayed in order to
receive and process additional sequential or simultane
ous related inputs which might otherwise be incorrectly
regarded as unrelated inputs . For example , the letter “ ”
is often drawn as two separate , but related , strokes . In
the normal course , the portion of the input stream
passed from the low - latency to the high - latency system

US 2019 / 0196681 A1 Jun . 27 , 2019

would include a “ pen up ” signal at the end of drawing
the first line . In an embodiment , the reduction process
waits for the very last frame of input within the sample
window to pass along an “ up ” event , in case the pen is
again detected on the display within the window , thus
obviating the need for the event .

Hardware Architecture
[0096] In an embodiment , data flows through two over
lapping paths through the components of the system to
support both high - and low - latency feedback . FIG . 12 shows
one such system , which includes an Input Device 1210 , an
IPU 1220 , a System Bus 1230 , a CPU 1240 and a GPU 1280
connected to a Display 1290 . A User 1200 performs input
using the Input Device 1210 . This input is sensed by the IPU
1220 which in various embodiments can be either an FPGA ,
ASIC , or additional software and hardware logic integrated
into a GPU 1280 , MPU or SoC . At this point , the control
flow bifurcates and follows two separate paths through the
system . For low - latency responses to input , the IPU 1220
sends input events through the System Bus 1230 to the GPU
1280 , bypassing the CPU 1240 . The GPU 1280 then rapidly
displays feedback to the User 1200 . For high - latency
response to input , the IPU 1220 sends input events through
the System Bus 1230 to the CPU 1240 , which is running the
graphical application and which may interact with other
system components . The CPU 1240 then sends commands
via the System Bus 1230 to the GPU 1280 in order to
provide graphical feedback to the User 1200 . The low
latency path from Input Device 1210 to IPU 1220 to System
Bus 1230 to GPU 1280 is primarily hardware , and operates
with low - latency . The high - latency path from Input Device
1210 to IPU 1220 to System Bus 1230 to CPU 1240 back to
System Bus 1230 to GPU 1280 is high - latency due to the
factors described earlier in this description . In a related
embodiment , the Input Device 1210 communicates directly
with the GPU 1280 and bypasses the System Bus 1230 .
[0097] FIG . 13 shows a familiar programming paradigm
called Model View Controller . In this paradigm , the User
1300 performs input on the Controller 1310 , which in turn
manipulates the Model 1320 based on this input . Changes in
the Model 1320 result in changes to the View 1330 , which
is observed by the User 1300 . Some of the latency addressed
by the present invention is due to latency in the input ,
communication among these components , and display of the
graphics generated by the View 1330 component .
[0098] FIG . 14 shows an embodiment of an architecture
that supports developing and running applications on a
system with blended high - and low - latency responses to user
input . The User 1400 performs input with the input device
1410 . This input is received by the IPU 1420 . The IPU 1420
sends input events simultaneously to the Controller 1430
running in the high - latency subsystem via traditional mecha
nisms and to the View Model (L) 1490 running in the low
latency subsystem . Input is handled by the Controller 1430 ,
which manipulates the Model 1440 running in the high
latency subsystem , which may interact with data in volatile
memory 1450 , fixed storage 1470 , network resources 1460 ,
etc . (all interactions that introduce lag) . Input events
received by the View Model (L) 1490 result in changes to the
View Model (L) which are reflected in changes to the View
(L) 1491 , which is seen by the User 1400 . Changes to the
Model 1440 result in changes to the high - latency subsys -
tem ' s View (H) 1480 , which is also seen by the User 1400 .

In an embodiment , these two types of changes seen by the
user are shown on the same display . In an embodiment , these
two types of changes are reflected to the user via other
output modalities (such as , e . g . , sound or vibration) . In an
embodiment , between inputs , the Model 1440 updates the
state of the ViewModel (L) 1490 and View (L) 1491 so that
the View Model (L) 1490 contains the needed data to present
the GUI ' s components in the correct location on the sys
tem ' s display and so that the ViewModel (L) 1490 can
correctly interpret input from the IPU 1420 in the context of
the current state of the Model 1440 ; and so that the View (L)
1491 can correctly generate graphics for display in the
context of the current state of the Model 1440 .
[0099] By way of example , consider a touch - sensitive
application with a button that among its functions responds
to a user ' s touch by changing its appearance indicating that
it has been activated . When the application is run , the
application reads the location , size , and details of the appear
ance of the button from memory and compiled application
code . The View (H) 1480 code generates the necessary
graphics which are presented to the user to display this
button . The Model 1440 updates the state of the View Model
(L) 1490 to record that this graphical element is a button , and
that it should change appearances from a " normal " appear
ance to a “ pressed ” appearance when touched . The Model
1440 also updates the state of the View (L) 1491 to record the
correct appearance for the “ normal ” and “ pressed ” states in
the View Model (L) 1490 . This appearance may be a descrip
tion of low - fidelity graphical elements , or a complete raster
to display . In this example , the “ pressed ” state is represented
by a displaying a white box around the button ' s position .
[0100] A User touches the touch - screen display , and input
data describing that touch is received less than 1 ms later by
the IPU 1420 . The IPU 1420 creates an input event repre
senting a touch - down event from the input data and sends
this input event to the application Controller 1430 . The
Controller 1430 manipulates the Model 1440 . In this case ,
the Controller 1430 is indicating to the Model 1440 that the
button has been touched and that the application should
perform whatever commands are associated with this button .
At the same time that the IPU 1420 sends an event to the
Controller 1430 , it sends an event to the ViewModel (L)
1490 indicating that the button has been touched . The
View Model (L) 1490 was previously instructed by the Model
1440 as to what to do in the case of a touch , and in this case
it responds to the touch event by changing its state to
“ pressed ” . The View (L) 1491 responds to this change by
displaying a white box around the button , feedback that
corresponds to its " pressed ” appearance . The change to the
Model 1440 that the button is touched causes an update of
View (H) 1480 , so that it too reflects that button is now
touched . The User , who see the output of both View (H) 1480
and View (L) 1491 , sees the immediate feedback of their
touch by View (L) 1491 followed a fraction of a second later
by the feedback from View (H) 1480 .
[0101] Throughout the text of this application , the word
" event " is used to describe information describing attributes
of user input . This term is used generally , and thus includes
embodiments in which event driven architectures are
employed (with actual event objects being passed between
software elements) , as well as more basic input streams in
which the " event " being described is simply present in the
stream of information . Such events may be , e . g . , non - object
orient types of events or object - oriented types events .

US 2019 / 0196681 A1 Jun . 27 , 2019

[0102] The present system and methods are described
above with reference to block diagrams and operational
illustrations of methods and devices comprising a computer
system capable of receiving and responding to user input . It
is understood that each block of the block diagrams or
operational illustrations , and combinations of blocks in the
block diagrams or operational illustrations , may be imple
mented by means of analog or digital hardware and com
puter program instructions . These computer program
instructions may be provided to a processor of a general
purpose computer , special purpose computer , ASIC , or other
programmable data processing apparatus , such that the
instructions , which execute via the processor of the com
puter or other programmable data processing apparatus ,
implements the functions / acts specified in the block dia
grams or operational block or blocks . In some alternate
implementations , the functions / acts noted in the blocks may
occur out of the order noted in the operational illustrations .
For example , two blocks shown in succession may in fact be
executed substantially concurrently or the blocks may some
times be executed in the reverse order , depending upon the
functionality / acts involved .
[0103] While the invention has been particularly shown
and described with reference to a preferred embodiment
thereof , it will be understood by those skilled in the art that
various changes in form and details may be made therein
without departing from the spirit and scope of the invention .

1 . A method for processing user input , comprising :
maintaining state information relating to an existing state ,

wherein the state information is maintained with a
high - latency subsystem ;

receiving signals via a user input ;
obtaining the state information relating to the existing

state , wherein the state information is obtained using a
low - latency subsystem ;

generating at least one programmable low - latency output
based at least in part on the state information and at
least some of the signals , the low - latency output being
output with low latency relative to the high - latency
subsystem ;

generating at least one high - latency output using at least
some of the signals , wherein the high - latency output is
generated by the high - latency subsystem ; and

wherein the low - latency subsystem processes at least
some of the signals independently of the high - latency
subsystem .

2 . The method of claim 1 , further comprising decimating
signals received via the user input .

3 . The method of claim 2 , wherein the decimation of
signals received comprises windowed averaging of the sig
nals received .

4 . The method of claim 2 , wherein the decimation of
signals received involves weighted averaging of the signals
received .

5 . The method of claim 1 , wherein the low - latency
subsystem comprises UI element logic .

6 . The method of claim 1 , further comprising pre - render
ing using the high - latency subsystem .

7 . The method of claim 1 , further comprising reducing
processing load of the high - latency subsystem by off - load
ing processing tasks to the low - latency subsystem .

8 . A method for processing user input , comprising :
receiving signals via a user input ;
exchanging state information between a low - latency sub

system and a high - latency subsystem , wherein the
low - latency subsystem responds to received signals
faster than the high - latency subsystem ;

generating at least one low - latency output based at least in
part on at least some of the received signals , the
low - latency output being output with low latency rela
tive to the high - latency subsystem ;

generating at least one high - latency output using at least
some of the received signals , wherein the high - latency
output is generated by the high - latency subsystem ; and

wherein the low - latency subsystem processes at least
some of the signals independently of the high - latency
subsystem .

9 . The method of claim 8 , further comprising decimating
signals received via the user input .

10 . The method of claim 9 , wherein the decimation of
signals received comprises windowed averaging of the sig
nals received

11 . The method of claim 9 , wherein the decimation of
signals received involves weighted averaging of the signals
received .

12 . The method of claim 8 , wherein the low - latency
subsystem comprises UI element logic .

13 . The method of claim 8 , further comprising pre
rendering using the high - latency subsystem .

14 . The method of claim 8 , further comprising reducing
processing load of the high - latency subsystem by off - load
ing processing tasks to the low - latency subsystem .

15 . A method for processing user input , comprising :
detecting user inputs ;
outputting a stream of input events corresponding to

detected user input ;
receiving at least one event from the stream of user input

events corresponding to the detected user input at a
high - latency subsystem , wherein the high - latency sub
system maintains state information ;

generating an output with the high - latency subsystem ; and
receiving at least a portion of the stream of user input

events corresponding to the detected user input ; and
generating an output with a low - latency subsystem ,
wherein the generated output of the lower - latency
subsystem is lower latency than the output of the
high - latency subsystem , wherein the output of the
lower - latency subsystem is based , at least in part , on the
state information .

16 . The method of claim 15 , further comprising decimat
ing the stream of input events .

17 . The method of claim 16 , wherein the decimation of
the stream of input events comprises windowed averaging of
the stream of input events .

18 . The method of claim 16 , wherein the decimation of
the stream of input event involves weighted averaging of the
stream of input events .

19 . The method of claim 15 , wherein the low - latency
subsystem comprises UI element logic .

20 . The method of claim 15 , further comprising pre
rendering using the high - latency subsystem .

* * * * *

