
US 20190196681A1 
( 19 ) United States 
( 12 ) Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0196681 A1 

Wigdor et al . ( 43 ) Pub . Date : Jun . 27 , 2019 

( 54 ) HYBRID SYSTEMS AND METHODS FOR 
LOW - LATENCY USER INPUT PROCESSING 
AND FEEDBACK ( 51 ) 

( 71 ) Applicant : Tactual Labs Co . , New York , NY ( US ) 

( 72 ) Inventors : Daniel Wigdor , Toronto ( CA ) ; Steven 
Leonard Sanders , New York , NY 
( US ) ; Ricardo Jorge Jota Costa , 
Toronto ( CA ) ; Clifton Forlines , Cape 
Elizabeth , ME ( US ) 

( 73 ) Assignee : Tactual Labs Co . , New York , NY ( US ) 

Publication Classification 
Int . CI . 
G06F 3 / 0484 ( 2006 . 01 ) 
G06F 9 / 451 ( 2006 . 01 ) 
G06F 3 / 0488 ( 2006 . 01 ) 
G06F 3 / 14 ( 2006 . 01 ) 
G06T 1 / 20 ( 2006 . 01 ) 

( 52 ) U . S . CI . 
CPC . . . . . . . . . . . . GO6F 3 / 0484 ( 2013 . 01 ) ; G06F 9 / 451 

( 2018 . 02 ) ; G06F 3 / 03545 ( 2013 . 01 ) ; G06F 
3 / 14 ( 2013 . 01 ) ; G06T 1 / 20 ( 2013 . 01 ) ; G06F 

3 / 0488 ( 2013 . 01 ) 
( 57 ) ABSTRACT 
A system for processing user input includes an input device , 
an input processing unit , a high - latency subsystem , a low 
latency subsystem , input processing unit software for gen 
erating signals in response to user inputs , and an output 
device . The low - latency subsystem processes signals corre 
sponding to at least some events and generates correspond 
ing programmable low - latency output , the programmable 
output being based , at least in part , on state information 
being maintained by the high - latency subsystem . The high 
latency subsystem processes signals corresponding to at 
least some events , and generates corresponding output , the 
output of the high - latency subsystem being higher latency 
than the output of the low - latency subsystem with respect to 
a given event . 

( 21 ) Appl . No . : 16 / 290 , 119 

( 22 ) Filed : Mar . 1 , 2019 

Related U . S . Application Data 
( 60 ) Continuation of application No . 15 / 360 , 039 , filed on 

Nov . 23 , 2016 , now Pat . No . 10 , 222 , 952 , which is a 
division of application No . 14 / 046 , 819 , filed on Oct . 
4 , 2013 , now Pat . No . 9 , 507 , 500 . 

( 60 ) Provisional application No . 61 / 710 , 256 , filed on Oct . 
5 , 2012 

1020 - 77 
H - 1010 

MIXER 



Patent Application Publication Jun . 27 , 2019 Sheet 1 of 14 US 2019 / 0196681 A1 

ENIR 140 
R 

INTERT 

FIG . 1 

INI 

IRRINTER 



Patent Application Publication Jun . 27 , 2019 Sheet 2 of 14 US 2019 / 0196681 A1 

- 

FIG . 2 . 

INBOX 



Patent Application Publication Jun . 27 , 2019 Sheet 3 of 14 US 2019 / 0196681 A1 

310 310 

REJECT 310 320 
300 / 

ACCEPT + U 

300 / - 300 

FIG . 3 



400 

TO CONTROL PC 

Patent Application Publication 

420 

440 

460 

HIGH SPEED INPUT DEVICE 

FPGA 

DIGITAL LIGHT PROJECTOR 

Jun . 27 , 2019 Sheet 4 of 14 

1 kHz SAMPLE RATE : * 1 MS 

FPGA PROCESSING : " 0 . 1 MS 

32000 FPS VIDEO : 
- 0 . 03 MS 

FIG . 4 

US 2019 / 0196681 A1 



Patent Application Publication Jun . 27 , 2019 Sheet 5 of 14 US 2019 / 0196681 A1 

a . 10 

9 

VIA 8 

AVA 7 

6 PARTICIPANT 
5 

FIG . 5 

4 

3 

2 

1 

MEAN CONVERGENCE VALUE ( MS ) 



Patent Application Publication Jun . 27 , 2019 Sheet 6 of 14 US 2019 / 0196681 A1 

TOUCH UP 

INBOX 
019 620 

FIG . 6 

TOUCH DOWN 
INBOX 

k _ 019 

OFF 

INBOX 



Patent Application Publication Jun . 27 , 2019 Sheet 7 of 14 US 2019 / 0196681 A1 

DRAG 
Kway 

LV 
. 

TOUCH DOWN RESIZE 
FIG . 7 

WY 

OFF 

hund 



OPTION 1 

LOREM IPSUM DOLOR SIT AMET 
OPTION 2 

LOREM IPSUM DOLOR SIT AMET 
OPTION 3 

LOREM IPSUM DOLOR SIT AMET 
OPTION 4 

LOREM IPSUM DOLOR SIT AMET 
OPTION 5 

LOREM IPSUM DOLOR SIT AMET 
OPTION 6 

LOREM IPSUM DOLOR SIT AMET 

TOUCH DOWN 
| OPTION 1 

LOREM IPSUM DOLOR SIT AMET 

OPTION 2 

LOREM IPSUM DOLOR SIT AMET 
OPTION 3 

LOREM IPSUM DOLOR SIT AMET 
OPTION 4 
L LOREM IPSUM VOR SIT AMET 

OPTION 5 LOREM IPSU 

T AMET 

OPTION 6 
LOREM IPSUM DOL 

TOUCH UP 

OPTION 1 

LOREM IPSUM DOLOR SIT AMET 
OPTION 2 

LOREM IPSUM DOLOR SIT AMET 
OPTION 3 

LOREM IPSUM DOLOR SIT AMET 

810 TOPTION 

820 - LLOREM IPSÙA , QLOR SIT AMET 

Patent Application Publication 

810 

OPTIONS LOREM IP OPTION 6 

SIT AMET 

WET / 

LOREM IPPO 

AMET 

HIGH - LATENCY CATCH - UP LOREM IPSUMQOLOR SIT AMET 

840 VE OPTION 3 

SCROLL UP 

OPTION 1 
I . LOREM NUM DOLOR SIT AMET 

OPTION 2 

LOREM 1995 R SIT AMET 

F : OPTIONS 

LOREM IPSA ( SIT AMETI LOREM IPSON VOLOR SIT AMET 

OPTION 5 

LOREM IPSUM SIT AMET 

OPTION6 LOREM IPSUM 

Jun . 27 , 2019 Sheet 8 of 14 

. 

LOPTION 4 

LOREM IPSUM YAMET 
OPTION 4 LOREM IPSU OPTION 5 LOREM IPSUM DCS 

OPTION 6 

LOREM IPSUM DOLOR SIT AMET 
OPTION 7 

LOREM IPSUM DOLOR SIT AMET 
OPTION 8 

US 2019 / 0196681 A1 

FIG . 8 



Patent Application Publication 

930 

940 

910 

LOW LATENCY SUBSYSTEM 

IPU SOFTWARE TOOLKIT 

EVENTS 
PROPERTIES 

FRAMES | INPUT PROCESSING 
UNIT ( IPU ) 

PIXELS 

INPUT DEVICE 

DISPLAY 

STATE INFO 
HIGH LATENCY SUBSYSTEM | ( CONVENTIAL SOFTWARE STACK ) | 

920 

EVENTS 

PIXELS 

Jun . 27 , 2019 Sheet 9 of 14 

950 

FIG . 9 

US 2019 / 0196681 A1 



Patent Application Publication Jun . 27 , 2019 Sheet 10 of 14 US 2019 / 0196681 A1 

77 10204 
11 

MIXER 

FIG . 10 



Patent Application Publication Jun . 27 , 2019 Sheet 11 of 14 US 2019 / 0196681 A1 

PEN INPUT IN PRIOR ART TOUCH USER INTERFACE 

ra 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

PEN INPUT USING HYBRID SYSTEMS AND METHODS 

1150 

FIG . 11 



Patent Application Publication Jun . 27 , 2019 Sheet 12 of 14 US 2019 / 0196681 A1 

1260 1270 
1240 

INTERNAL STORAGE 
I / O 

NETWORK 
10 

SYSTEM BUS 

DDR GPU IPU 1220 1280 - 1 

DISPLAY 1290 - 1 INPUT DEVICE - 1210 

USER 

FIG . 12 



Patent Application Publication Jun . 27 , 2019 Sheet 13 of 14 US 2019 / 0196681 A1 

1320 

MODEL 

UPDATES MANIPULATES 
1330 1310 

VIEW CONTROLER 

SEES USES 

USER 

1300 

FIG . 13 



1460 

NETWORK I / O 

1450 

DDR 

DISK I / O 

1470 

7 

Patent Application Publication 

1440 

MODEL 

UPDATES 

MANIPULATES 

UPDATES 

1480 

UPDATES 

- 1430 

HIGH - LATENCY 

?? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ???? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ??? ???? ??? 

MANIPULATES 

LOW - LATENCY 

1490 

MANIPULATES 

VML 

1420 

Jun . 27 , 2019 Sheet 14 of 14 

1491 

SEES 

INPUT DEVICE 

- 1410 

SEES SEES 

USER 

USES 

1400 

USER 

US 2019 / 0196681 A1 

FIG . 14 



US 2019 / 0196681 A1 Jun . 27 , 2019 

HYBRID SYSTEMS AND METHODS FOR 
LOW - LATENCY USER INPUT PROCESSING 

AND FEEDBACK 

[ 0001 ] This application is a continuation of U . S . patent 
application Ser . No . 15 / 360 , 039 filed Nov . 23 , 2016 , which 
in turn is a divisional of U . S . Pat . No . 9 , 507 , 500 filed Oct . 
4 , 2013 , which claims priority to U . S . Provisional Patent 
Application No . 61 / 710 , 256 filed Oct . 5 , 2012 entitled 
“ Hybrid Systems And Methods For Low - Latency User Input 
Processing And Feedback , ” the entire disclosures of each of 
which , including the source code appendix thereto , is incor 
porated herein by reference in its entirety . 
[ 0002 ] This application includes material which is subject 
to copyright protection . The copyright owner has no objec 
tion to the facsimile reproduction by anyone of the patent 
disclosure , as it appears in the Patent and Trademark Office 
files or records , but otherwise reserves all copyright rights 
whatsoever . 

latency , low fidelity response to a touch user interaction , as 
well as a high - latency , high - fidelity response a touch user 
interaction . 
[ 0012 ] FIG . 8 shows an example of a user interface 
element for a scrollable list , where the element has a low 
latency , low fidelity response to a touch user interaction , as 
well as a high - latency , high - fidelity response to a touch user 
interaction . 
[ 0013 ] FIG . 9 shows an illustrative embodiment of a basic 
architecture and information flow for a low - latency input 
device . 
[ 0014 ] FIG . 10 shows the UI for a volume control . When 
dragging the slider , a tooltip appears showing a numeric 
representation of the current setting . This element is enabled 
using both the low - latency and high - latency system to 
provide a touch interaction where moving elements are 
accelerated , thus providing a low - latency experience . 
[ 0015 ] FIG . 11 shows the system ' s response for pen input 
in prior art systems compared to an embodiment of the UI 
for pen input in the present hybrid feedback user interface 
system . In the hybrid system , the ink stroke has a low 
latency response to pen input , as well as a high - latency 
response to a pen user input . 
[ 0016 ] FIG . 12 shows an embodiment of the system where 
data flows through two overlapping paths through the com 
ponents of the system to support both high - and low - latency 
feedback . 
[ 0017 ] FIG . 13 shows a programming paradigm well 
known in the art called Model View Controller . 
[ 0018 ] FIG . 14 shows an embodiment of the system ' s 
architecture that supports developing and running applica 
tions with blended high and low - latency responses to user 
input . 

FIELD 

[ 0003 ] The present invention relates in general to the field 
of user input , and in particular to user input systems which 
deliver a low - latency user experience . 

BRIEF DESCRIPTION OF THE DRAWINGS 
10004 ) . The foregoing and other objects , features , and 
advantages of the disclosure will be apparent from the 
following more particular description of embodiments as 
illustrated in the accompanying drawings , in which refer 
ence characters refer to the same parts throughout the 
various views . The drawings are not necessarily to scale , 
emphasis instead being placed upon illustrating principles of 
the disclosed embodiments . 
[ 0005 ] FIG . 1 illustrates a demonstration of the effect of 
drag latency at 100 ms , 50 ms , 10 ms , and 1 ms in a touch 
user interface . 
[ 0006 ] FIG . 2 shows an example of a user interface 
element for an inbox , where the element has a low latency , 
low fidelity response to a touch user interaction , as well as 
a high - latency , high - fidelity response a touch user interac 

DETAILED DESCRIPTION 

tion . 
[ 0007 ] FIG . 3 shows an example of a user interface of a 
sliding toggle element . A cursor 310 ( represented by the box 
containing a " cross ” character ) can be dragged to the target 
320 ( second empty box , on the right ) to activate the UI 
Element . This element is enabled using both the low latency 
and high - latency system to provide a touch interaction 
where moving elements are accelerated 310 , thus providing 
a low - latency experience . 
[ 0008 ] FIG . 4 shows an illustrative embodiment of a basic 
architecture of a prototype high - performance touch system 
used in latency perception studies . 
[ 0009 ] FIG . 5 shows results of latency perception studies 
using the prototype device of FIG . 4 . 
[ 0010 ] FIG . 6 shows an example of a user interface 
element for a button , where the element has a low latency , 
low fidelity response to a touch user interaction , as well as 
a high - latency , high - fidelity response a touch user interac 
tion . 
[ 0011 ] FIG . 7 shows an example of a user interface 
element for resizable box , where the element has a low 

[ 0019 ] The following description and drawings are illus 
trative and are not to be construed as limiting . Numerous 
specific details are described to provide a thorough under 
standing . However , in certain instances , well - known or 
conventional details are not described in order to avoid 
obscuring the description . References to one or an embodi 
ment in the present disclosure are not necessarily references 
to the same embodiment ; and , such references mean at least 
one . 
[ 0020 ] Reference in this specification to “ one embodi 
ment ” or “ an embodiment ” means that a particular feature , 
structure , or characteristic described in connection with the 
embodiment is included in at least one embodiment of the 
disclosure . The appearances of the phrase " in one embodi 
ment ” in various places in the specification are not neces 
sarily all referring to the same embodiment , nor are separate 
or alternative embodiments mutually exclusive of other 
embodiments . Moreover , various features are described 
which may be exhibited by some embodiments and not by 
others . Similarly , various requirements are described which 
may be requirements for some embodiments but not other 
embodiments . 

Overview 
[ 0021 ] This application relates to user interfaces such as 
the fast multi - touch sensors and other interfaces disclosed in 
U . S . patent application Ser . No . 13 / 841 , 436 filed Mar . 15 , 
2013 entitled “ Low - Latency Touch Sensitive Device , ” U . S . 



US 2019 / 0196681 A1 Jun . 27 , 2019 

Patent Application No . 61 / 798 , 948 filed Mar . 15 , 2013 
entitled “ Fast Multi - Touch Stylus , ” U . S . Patent Application 
No . 61 / 799 , 035 filed Mar . 15 , 2013 entitled “ Fast Multi 
Touch Sensor With User - Identification Techniques , ” U . S . 
Patent Application No . 61 / 798 , 828 filed Mar . 15 , 2013 
entitled “ Fast Multi - Touch Noise Reduction , ” U . S . Patent 
Application No . 61 / 798 , 708 filed Mar . 15 , 2013 entitled 
“ Active Optical Stylus , ” U . S . Patent Application No . 
61 / 710 , 256 filed Oct . 5 , 2012 entitled “ Hybrid Systems And 
Methods For Low - Latency User Input Processing And Feed 
back , ” U . S . Patent Application No . 61 / 845 , 892 filed Jul . 12 , 
2013 entitled “ Fast Multi - Touch Post Processing , " U . S . 
Patent Application No . 61 / 845 , 879 filed Jul . 12 , 2013 
entitled “ Reducing Control Response Latency With Defined 
Cross - Control Behavior , " and U . S . Patent Application No . 
61 / 879 , 245 filed Sep . 18 , 2013 entitled “ Systems And Meth 
ods For Providing Response To User Input Using Informa 
tion About State Changes And Predicting Future User 
Input . ” The entire disclosures of those applications are 
incorporated herein by reference . 
[ 0022 ] In various embodiments , the present disclosure is 
directed to systems and methods that provide direct manipu 
lation user interfaces with low latency . Direct physical 
manipulation of pseudo “ real world ” objects is a common 
user interface metaphor employed for many types of input 
devices , such as those enabling direct - touch input , stylus 
input , in - air gesture input , as well as indirect devices , 
including mice , trackpads , pen tablets , etc . For the purposes 
of the present disclosure , latency in a user interface refers to 
the time it takes for the user to be presented with a response 
to a physical input action . Tests have shown that users prefer 
low latencies and that users can reliably perceive latency as 
low as 5 - 10 ms , as will be discussed in greater detail below . 
[ 0023 ] FIG . 1 illustrates a demonstration of the effect of 
latency in an exemplary touch user interface at 100 ms ( ref . 
no . 110 ) , 50 ms ( ref . no . 120 ) , 10 ms ( ref . no . 130 ) , and 1 ms 
( ref . no . 140 ) respectively . When dragging an object , 
increasing latency is reflected as an increasing distance 
between the user ' s finger and the object being dragged ( in 
this case a square user interface element ) . As can be seen , the 
effects of latency are pronounced at 100 ms ( ref . no . 110 ) 
and 50 ms ( ref . no . 120 ) , but become progressively less 
significant at 10 ms ( ref . no . 130 ) , and virtually vanish at 1 
ms ( ref . no . 140 ) . FIG . 11 illustrates the effects of latency in 
an exemplary stylus or pen user interface ( 1110 , 1120 ) . In 
this example , lag 1120 is visible as an increasing distance 
between the stylus 1100 tip and the computed stroke 1110 . 
With the introduction of low - latency systems , the distance 
between the stylus 1100 tip and the computed stroke 1130 
would be significantly reduced . 
[ 0024 ] In an embodiment , the presently disclosed systems 
and methods provide a hybrid touch user interface that 
provides immediate visual feedback with a latency of less 
than 10 ms , inter - woven or overlayed with additional visual 
responses at higher levels of latency . In some embodiments , 
the designs of these two sets of responses may be designed 
to be visually unified , so that the user is unable to distinguish 
them . In some embodiments , the “ low latency ” response 
may exceed 10 ms in latency . 

[ 0026 ] ( 1 ) the physical sensor that captures touch 
events ; 

[ 0027 ] ( 2 ) the software that processes touch events and 
generates output for the display ; 

[ 0028 ] ( 3 ) the display itself ; 
[ 00291 ( 4 ) Data transmission between components , 

including bus ; 
[ 0030 ] ( 5 ) Data internal storage in either memory stores 

or short buffers ; 
[ 0031 ] ( 6 ) Interrupts and competition for system 

resources ; 
[ 0032 ] ( 7 ) Other sources of circuitry can introduce 

latency ; 
[ 0033 ] ( 8 ) Physical restrictions , such as the speed of 

light , and its repercussions in circuitry architecture . 
[ 0034 ] ( 9 ) Mechanical restrictions , such as the time 

required for a resistive touch sensor to bend back to its 
‘ neutral ' state . 

[ 0035 ] In various embodiments , reducing system latency 
can be addressed through improving latency in one or more 
of these components . In an embodiment , the presently 
disclosed systems and methods provide an input device that 
may achieve 1 ms of latency or less by combining a 
low - latency input sensor and display with a dedicated pro 
cessing system . In an embodiment , the presently disclosed 
systems and methods provide an input device that may 
achieve 5 ms of latency or less by combining such low 
latency input sensor and display with a dedicated processing 
system . In a further embodiment , the presently disclosed 
systems and methods provide an input device that may 
achieve 0 . 1 ms of latency or less by combining such 
low - latency input sensor and display with a dedicated pro 
cessing system . In a further embodiment , the presently 
disclosed systems and methods provide an input device that 
may achieve 10 ms of latency or less by combining such 
low - latency input sensor and display with a dedicated pro 
cessing system . In an embodiment , in order to achieve such 
extremely low latencies , the presently disclosed systems and 
methods may replace conventional operating system ( OS ) 
software and computing hardware with a dedicated , custom 
programmed field programmable gate array ( FPGA ) or 
application - specific integrated circuit ( ASIC ) . In an embodi 
ment , the FPGA or ASIC replaces the conventional OS and 
computing hardware to provide a low latency response , 
while leaving a traditional OS and computing hardware in 
place to provide a higher latency response ( which is used in 
addition in addition to the low latency response ) . In another 
embodiment , some or all of the function of the FPGA or 
ASIC described may be replaced by integrating additional 
logic into existing components such as but not limited to the 
graphics processing unit ( GPU ) , input device controller , 
central processing unit ( CPU ) , or system on a chip ( SOC ) . 
The low - latency logic can be encoded in hardware , or in 
software stored - in and / or executed by those or other com 
ponents . In embodiments where multiple components are 
required , communication and / or synchronization may be 
facilitated by the use of shared memory . In any of these 
embodiments , responses provided at high or low latency 
may be blended together , or only one or the other might be 
provided in response to any given input event . 
10036 ] In various embodiments , the disclosed systems and 
methods provide what is referred to herein as “ hybrid 
feedback . ” In a hybrid feedback system , some of the basic 
system responses to input are logically separated from the 

Causes of Latency 
[ 0025 ] In various embodiments , latency in a user input 
device and the system processing its input can have many 
sources , including : 
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broader application logic . The result provides a system with 
a nimble input processor , capable of providing nearly imme 
diate system feedback to user input events , with more 
feedback based on application logic provided at traditional 
levels of latency . In some embodiments , these system 
responses are provided visually . In various embodiments , 
the low - latency component of a hybrid feedback system may 
be provided through audio or vibro - tactile feedback . In some 
embodiments , the nearly immediate feedback might be 
provided in the same modality as the application - logic 
feedback . In some embodiments , low - latency feedback may 
be provided in different modalities , or multiple modalities . 
An example of an all - visual embodiment is shown in FIG . 
2 , in this case showing the use of a touch input device . In 
particular , FIG . 2 shows the result after a user has touched 
and then dragged an icon 210 representing an inbox . When 
the user touches the icon 210 , a border 220 or other suitable 
primitive may be displayed . In an embodiment , in an all 
visual low - latency feedback , a suitable low - fidelity repre 
sentation may be selected due to its ease of rendering . In an 
embodiment , a low - latency feedback may be provided using 
one or more primitives that can provide a suitable low 
fidelity representation . In an embodiment , if the user drags 
the icon to another place on the touch display 200 , a low 
fidelity border 230 is displayed and may be manipulated 
( e . g . , moved ) with a low latency of , for example , 1 ms . 
Simultaneously , the movement of the icon 210 may be 
shown with higher latency . In an embodiment , the difference 
in response between the nearly immediate low - latency 
response and the likely slower application - logic feedback 
can be perceived by a user . In another embodiment , this 
difference in response between the low - latency response and 
a traditional response is blended and less noticeable or not 
noticeable to a user . In an embodiment , the nearly immediate 
feedback may be provided at a lower fidelity than the 
traditional - path application - logic feedback . In an embodi 
ment , in at least some cases , the low latency response may 
be provided at similar or even higher fidelity than the 
application - logic feedback . In an embodiment , the form of 
low - latency nearly immediate feedback is dictated by appli 
cation logic , or logic present in the system software ( such as 
the user interface toolkit ) . For example , in an embodiment , 
application logic may pre - render a variety of graphical 
primitives that can then be used by a low - latency subsystem . 
Similarly , in an embodiment , a software toolkit may provide 
the means to develop graphical primitives that can be 
rendered in advance of being needed by the low latency 
system . In an embodiment , low - latency responses may be 
predetermined , or otherwise determined without regard to 
application and / or system software logic . In an embodiment , 
individual pre - rendered or partially rendered low - latency 
responses , or packages of pre - rendered or partially rendered 
low - latency responses can be pre - loaded into a memory so 
as to be accessible to the low - latency subsystem in advance 
of being needed for use in response to a user input event . 
[ 0037 ] In an embodiment , the modality of low - latency 
output might be auditory . In an embodiment , the low - latency 
system may be used , for example , to send microphone input 
quickly to the audio output system , which may provide users 
with an " echo ” of their own voice being spoken into the 
system . Such a low - latency output may provide the impres 
sion of having the same type of echo characteristics as 
traditional analog telephones , which allow a user to hear 
their own voice . In an embodiment , low - latency auditory 

feedback might be provided in response to user input events 
( e . g . , touch , gesture , pen input , oe oral inputs ) , with a higher 
latency response provided visually . 
10038 ] Another illustrative embodiment of a system that 
employs the present method and system is shown in FIG . 3 . 
In the illustrative system , a cursor 310 ( represented by the 
box containing a “ cross ” character ) can be dragged any 
where on a device ' s screen 300 . When cursor 310 is dragged 
to target box 320 , the UI action is accepted . If the cursor 310 
is dragged elsewhere on the screen 300 , the action is 
rejected . In an embodiment , when dragged , the cursor 310 is 
drawn with low latency , and thus tracks the user ' s finger 
without perceptible latency . In an embodiment , the target 
320 can be drawn with higher latency without impacting 
user perception . Similarly , in an embodiment , the response 
330 of “ REJECT ” or “ ACCEPT ” may occur perceptibly 
later , and thus it can be drawn at a higher latency , e . g . , not 
using the low latency subsystem , without impacting user 
perception . 
10039 ) It should be understood that the illustrated embodi 
ment is exemplary . The principles illustrated in FIG . 3 may 
be applied to any kind of UI element , including all UI 
elements that are now known , or later developed in the art . 
Similarly , the principals illustrated in FIG . 3 can be used 
with substantially any kind of input event on various types 
of input devices and / or output devices . For example , in an 
embodiment , in addition to a “ touch ” event as illustrated 
above , input events can include , without limitation , in - air or 
on - surface gestures , speech , voluntary ( or involuntary eye 
movement , and pen . In an embodiment , once a gesture takes 
place , the response of any UI element may be bifurcated , 
where a low - latency response ( e . g . , a low - fidelity represen 
tation of a UI element is presented and responds quickly , for 
example , in 0 . 01 ms . ) , and a non - low - latency response ( e . g . , 
a further refined representation of the UI element ) is pro 
vided with latency commonly exhibited by a system that 
does not provide accelerated input . In an embodiment , 
responses may not be split in a hybrid system , and may 
instead be entirely low latency , with application logic not 
responsible for the low - latency response otherwise execut 
ing with higher latency . 
[ 0040 ] In an embodiment , touch and / or gesture input 
events can be achieved using a variety of technologies , 
including , without limitation , resistive , direct illumination , 
frustrated total - internal reflection , diffuse illumination , pro 
jected capacitive , capacitive coupling , acoustic wave , and 
sensor - in - pixel . In an embodiment , pen input can be enabled 
using resistive , visual , capacitive , magnetic , infrared , optical 
imaging , dispersive signal , acoustic pulse , or other tech 
niques . In an embodiment , gestural input may also be 
enabled using visual sensors or handheld objects ( including 
those containing sensors , and those used simply for track 
ing ) , or without handheld objects , such as with 2D and 3D 
sensors . Combinations of the sensors or techniques for 
identifying input events are also contemplated , as are com 
binations of event types ( i . e . , touch , pen , gesture , retna 
movement , etc . ) One property technologies to identify or 
capture input events share is that they contribute to the 
latency between user action and the system ' s response to 
that action . The scale of this contribution varies across 
technologies and implementations . 
[ 0041 ] In a typical multitouch system , there is a path of 
information flow between the input device and the display 
that may involve communications , the operating system , UI 
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toolkits , the application layer , and / or ultimately , the audio or 
graphics controller . Each of these can add latency . More 
over , latency introduced by an operating system , especially 
a non - real time operating system , is variable . Windows , iOS , 
OSX , Android , etc . are not real time operating systems , and 
thus , using these operating systems , there is no guarantee 
that a response will happen within a certain time period . If 
the processor is heavily loaded , for example , latency may 
increase dramatically . Further , some operations are handled 
at a very low level in the software stack and have high 
priority . For example , the mouse pointer is typically highly 
optimized so that even when the processor is under heavy 
load , the perceived latency is relatively low . In contrast , an 
operation such as resizing a photo with two fingers on a 
touch or gestural system is generally much more computa 
tionally intensive as it may require constant rescaling of the 
image at the application and / or UI toolkit levels . As a result , 
such operations are rarely able to have a low perceived 
latency when the processor is under heavy load . 
[ 0042 ] In a typical multitouch system , the display system 
( including the graphics system as well as the display itself ) 
may also contribute to latency . Systems with high frame 
rates may obscure the actual latency through the system . For 
example , a 60 Hz monitor may include one or more frames 
of buffer in order to allow for sophisticated image processing 
effects . Similarly some display devices , such as projectors , 
include double - buffering in the electronics , effectively dou 
bling the display latency . The desire for 3D televisions and 
reduced motion artifacts is driving the development of faster 
LCDs , however , the physics of the liquid crystals themselves 
make performance of traditional LCD ' s beyond 480 Hz 
unlikely . In an embodiment , the low latency system 
described herein may use an LCD display . In contrast to the 
performance of an LCD display , OLED or AMOLED dis 
plays are capable of response times well below 1 ms . 
Accordingly , in an embodiment , the high performance touch 
( or gesture ) system described herein may be implemented on 
displays having fast response times , including , without 
limitation displays based on one or more of the following 
technologies : OLED , AMOLED , plasma , electrowetting , 
color - field - sequential LCD , optically compensated bend 
mode ( OCB or Pi - Cell ) LCD , electronic ink , etc . 

to change the percentage time on vs . off to create the 
appearance of continuous colored images . In an embodi 
ment , where only simple binary images are used , these can 
be produced at an even higher rate . In the illustrative testing 
system , the projector development system displays 32 , 000 
binary frames / second at 1024x768 resolution with latency 
under 40 us . In the illustrative testing system to achieve this 
speed , the video data is streamed to the DMD at 25 . 6 Gbps . 
[ 0045 ] In the illustrative testing system , to achieve mini 
mal latency , all touch processing is performed on a dedicated 
FPGA 440 — no PC or operating system is employed 
between the touch input and the display of low latency 
output . The DLP kit ' s onboard XC5VLX50 application 
FPGA may be used for processing the touch data and 
rendering the video output . A USB serial connection to the 
FPGA allows parameters to be changed dynamically . In the 
illustrative testing system , latency can be adjusted from 1 ms 
to several hundred ms with 1 ms resolution . Different testing 
modes can be activated , and a port allows touch data to be 
collected for analysis . 
[ 0046 ] In the illustrative testing system , to receive touch 
data from the sensor 420 , the system communicates through 
a custom high - speed UART . To minimize latency , a baud 
rate of 2 Mbps can be used , which represents a high baud 
rate that can be used without losing signal integrity due to 
high frequency noise across the communication channel . In 
the illustrative testing system , the individual bytes of com 
pressed touch data are then processed by a touch detection 
finite state machine implemented on the FPGA 440 . The 
finite - state machine ( FSM ) simultaneously decodes the data 
and performs a center - of - mass blob - detection algorithm to 
identify the coordinates of the touches . In the illustrative 
testing system , the system is pipelined such that each 
iteration of the FSM operates on the last received byte such 
that no buffering of the touch data occurs . 
0047 ] In the illustrative testing system , the touch coordi 

nates are then sent to a 10 - stage variable delay block . Each 
delay stage is a simple FSM with a counter and takes a 
control signal that indicates the number of clock cycles to 
delay the touch coordinate , allowing various levels of 
latency . The delay block latches the touch sample at the start 
of the iteration and waits for the appropriate number of 
cycles before sending the sample and latching the next . The 
delay block therefore lowers the sample rate by a factor of 
the delay count . In an embodiment , to keep the sample rate 
at a reasonable level , 10 delay stages can be used , so that , for 
example , to achieve 100 ms of latency , the block waits 10 ms 
between samples for a sample rate of 100 Hz . In the 
illustrative testing system , to run basic applications , a 
MicroBlaze soft processor is used to render the display . 
[ 0048 ] In an embodiment , the testing system may use a 
hard coded control FSM in place of the MicroBlaze for 
improved performance . In an embodiment another soft pro 
cessor may be used . In the illustrative testing system , the 
MicroBlaze is a 32 - bit Harvard architecture RISC processor 
optimized to be synthesized in Xilinx FPGAs . The Micro 
Blaze soft processor instantiation allows the selection of 
only the cores , peripherals , and memory structures required . 
In the illustrative testing system , in addition to the base 
MicroBlaze configuration , an interrupt controller can be 
used , for example , GPIOs for the touch data , a GPIO to set 
the variable latency , a BRAM memory controller for the 
image buffer , and a UART unit to communicate with a PC . 
in the illustrative testing system , the MicroBlaze is clocked 

Latency Perception Studies 
[ 0043 ] Studies were undertaken to determine what laten 
cies in a direct touch interface users perceive as essentially 
instantaneous . A prototype device represented in a block 
diagram in FIG . 4 shows an illustrative embodiment of a 
basic architecture of a prototype high - performance touch 
system 400 . In an embodiment , the high - speed input device 
420 is a multi - touch resistive touch sensor having an active 
area of 24 cmx16 cm , and electronics that allow for very 
high - speed operation . The delay through this sensor is 
slightly less than 1 ms . In an embodiment , touch data may 
be transmitted serially over an optical link . 
[ 0044 ] In the illustrative testing system , the display 460 is 
a DLP Discovery 4100 kit based on Texas Instruments ' 
Digital Light Processing technology . The illustrative testing 
system utilizes front - projection onto the touch sensor thus 
eliminating parallax error that might disturb a user ' s per 
ception of finger and image alignment . The DLP projector 
employed uses a Digital Micromirror Device ( DMD ) , a 
matrix of mirrors which effectively turns pixels on or off at 
very high speed . The high speed of the mirrors may be used 



US 2019 / 0196681 A1 Jun . 27 , 2019 

at 100 MHz . The MicroBlaze uses an interrupt system to 
detect valid touch coordinates . A touch ready interrupt event 
is generated when valid touch data arrives on the GPIOs 
from the delay block , and the corresponding image is written 
to the image buffer . Because of the non - uniform nature of an 
interrupt - based system , the exact latency cannot be com 
puted , but , by design , it is insignificant in comparison to the 
1 ms latency due to the input device . 
[ 0049 ] In the illustrative testing system , the image buffer 
is synthesized in on - chip BRAM blocks . These blocks can 
provide a dual - port high - speed configurable memory buffer 
with enough bandwidth to support high frame - rate display . 
In the illustrative testing system , the image buffer is clocked 
at 200 MHz with a bus width of 128 bits for a total 
bandwidth of 25 . 6 Gbps , as needed by the DLP . Finally , the 
DMD controller continuously reads out frames from the 
image buffer and generates the signals with appropriate 
timing to control the DMD . 
[ 0050 ] In the illustrative testing system , user input is sent 
simultaneously to a traditional PC , and is processed to 
produce a traditional , higher latency , response . This higher 
latency response is output by a traditional data projector , 
aligned to overlap with the projected lower latency response . 
[ 0051 ] Studies were conducted to determine the precise 
level of performance that users are able to perceive when 
performing common tasks on a touch screen interface . To 
that end , studies were conducted to determine the just 
noticeable difference ( IND ) of various performance levels . 
JND is the measure of the difference between two levels of 
a stimulus which can be detected by an observer . In this case , 
the JND is defined as the threshold level at which a partici 
pant is able to discriminate between two unequal stimuli 
one consistently presented at the same level , termed the 
reference , and one whose value is changed dynamically 
throughout the experiment , termed the probe . A commonly 
accepted value for the JND at some arbitrary reference value 
is a probe at which a participant can correctly identify the 
reference 75 % of the time . A probe value that cannot be 
distinguished from the reference with this level of accuracy 
is considered to be “ not noticeably different " from the 
reference . 
[ 0052 ] Studies were conducted to determine the JND level 
of the probe latency when compared to a maximum perfor 
mance of 1 ms of latency , which served as the reference . 
While such a determination does not provide an absolute 
value for the maximum perceptible performance , it can serve 
as our “ best case ” floor condition against which other levels 
of latency can be measured , given that it was the fastest 
speed our prototype could achieve . It was found participants 
are able to discern latency values that are significantly lower 
( < 20 ms ) which typical current generation hardware ( e . g . , 
current tablet and touch computer ) provides ( ~ 50 - 200 ms ) . 
[ 0053 ] Ten right - handed participants ( 3 female ) were 
recruited from the local community . Ages ranged between 
24 and 40 ( mean 27 . 80 , standard deviation 4 . 73 ) . All par 
ticipants had prior experience with touch screen devices , and 
all participants owned one or more touch devices ( such as an 
iOS - or Android - based phone or tablet ) . Participants were 
repeatedly presented with pairs of latency conditions : the 
reference value ( 1 ms ) and the probe ( between 1 and 65 ms 
of latency ) . Participants dragged their finger from left to 
right , then right to left on the touch screen display . While any 
dragging task would have been suitable , left / right move - 
ments reduce occlusion in high - latency cases . Participants 

were asked to move in both directions to ensure they did not 
“ race through ” the study . Beneath the user ' s contact point , 
the system rendered a solid white 2 cmx2 cm square as seen 
in FIG . 1 . The speed of movement was left to be decided by 
the participants . The order of the conditions was randomized 
for each pair . The study was designed as a two - alternative 
forced - choice experiment ; participants were instructed to 
choose , within each trial , which case was the reference ( 1 
ms ) value and were not permitted to make a “ don ' t know " 
or " unsure ” selection . After each pair , participants informed 
the experimenter which of the two was " faster ” . 
[ 0054 ] In order for each trial to converge at a desired JND 
level of 75 % , the amount of added latency was controlled 
according to an adaptive staircase algorithm . Each correct 
identification of the reference value caused a decrease in the 
amount of latency in the probe , while each incorrect 
response caused the probe ' s latency to increase . In order to 
reach the 75 % confidence level , increases and decreases 
followed the simple weighted up - down method described by 
Kaernbach ( Kaernbach , C . 1991 . Perception & Psychophys 
ics 49 , 227 - 229 ) , wherein increases had a three - fold multi 
plier applied to the base step size , and decreases were the 
base step size ( initially 8 ms ) . 
[ 0055 ] When a participant responded incorrectly after a 
correct response , or correctly after an incorrect response , 
this was termed a reversal as it caused the direction of the 
staircase ( increasing or decreasing ) to reverse . The step size , 
initially 8 ms , was halved at each reversal , to a minimum 
step size of 1 ms . This continued until a total of 10 reversals 
occurred , resulting in a convergence at 75 % correctness . 
Each participant completed eight staircase “ runs . ” Four of 
these started at the minimum probe latency ( 1 ms ) and four 
at the maximum ( 65 ms ) . The higher starting value of the 
staircase was chosen because it roughly coincides with 
commercial offerings , and because pilot testing made it clear 
that this value would be differentiated from the 1 ms 
reference with near 100 % accuracy , avoiding ceiling effects . 
Staircases were run two at a time in interleaved pairs to 
prevent response biases that would otherwise be caused by 
the participants ' ability to track their progress between 
successive stimuli . Staircase conditions for each of these 
pairs were selected at random without replacement from 
possibilities ( 2 starting levelsx4 repetitions ) . The entire 
experiment , including breaks between staircases , was com 
pleted by each participant within a single 1 - hour session . 
[ 0056 ] The study was designed to find the just - noticeable 
difference ( IND ) level for latency values greater than 1 ms . 
This JND level is commonly agreed to be the level where the 
participant is able to correctly identify the reference 75 % of 
the time . Participant JND levels ranged from 2 . 38 ms to 
11 . 36 ms , with a mean JND across all participants of 6 . 04 ms 
( standard deviation 4 . 33 ms ) . JND levels did not vary 
significantly across the 8 runs of the staircase for each 
participant . Results for each participant appear in FIG . 5 . 
[ 0057 ] The results show participants were able to discern 
differences in latency far below the typical threshold of 
consumer devices ( 50 - 200 ms ) . It is noted that participants 
were likely often determining latency by estimating the 
distance between the onscreen object and their finger as it 
was moved around the touch screen ; this is an artifact of 
input primitives used in Uls ( specifically , dragging ) . Testing 
a different input primitive ( tapping , for example ) would 
exhibit different perceptions of latency . Results confirm that 
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an order - of magnitude improvement in latency would be 
noticed and appreciated by users of touch devices . 

An Architecture for a Low - Latency Direct Touch Input 
Device 
[ 0058 ] In an embodiment , a software interface may be 
designed that enables application developers to continue to 
use toolkit - based application design processes , but enable 
those toolkits to provide feedback at extremely low laten 
cies , given the presence of a low - latency system . In an 
embodiment , the systems and methods outlined in the pres 
ent disclosure may be implemented on the model - view 
controller ( “ MVC ” ) model of UI development , upon which 
many UI toolkits are based . An MVC permits application 
logic to be separated from the visual representation of the 
application . In an embodiment , an MVC may include , a 
second , overlaid de facto view for the application . In par 
ticular , in an embodiment , touch input receives an immedi 
ate response from the UI controls , which is based in part on 
the state of the application at the time the touch is made . The 
goal is to provide nearly immediate responses that are 
contextually linked to the underlying application . 
[ 0059 ] Previous work on application independent visual 
responses to touch are completely separate from even the 
visual elements of the UI , adding visual complexity . In an 
embodiment , according to the systems and methods outlined 
herein , a set of visual responses are more fully integrated 
into the UI elements themselves so as to reduce visual 
complexity . Thus , in an embodiment , where the particular 
visuals shown provide a de facto “ mouse pointer ” for touch , 
the goal is to integrate high performance responses into the 
controls themselves , providing a more unified visualization . 
None the less , in an embodiment , the systems and methods 
allow the rendering of context - free responses by the low 
latency subsystem , which are later merged with responses 
from the high - latency subsystem . In an embodiment , visuals 
need not be presented in the same rendering pipeline as the 
rest of the system ' s response . Instead , a system or method 
which utilizes hybrid feedback as discussed herein may 
present lower latency responses to user input in addition to 
the higher latency responses generated by the traditional 
system . 
[ 0060 ] Thus , in an embodiment , accelerated input inter 
actions are designed such that the traditional direct - touch 
software runs as it would normally , with a high - latency 
responses , while an additional set of feedback , customized 
for the UI element , is provided at a lower latency ; with a 
target of user - imperceptible latency . In an embodiment , 
these two layers are combined by superimposing two or 
more images . In an embodiment , two combined images may 
include one projected image from the low - latency touch 
device , and a second from a traditional projector connected 
to a desktop computer running custom touch software , 
receiving input from the low - latency subsystem . 
[ 0061 ] The two projector solution described above is 
meant only to serve as one particular embodiment of the 
more general idea of combining a low latency response and 
a traditional response . In an embodiment , the visual output 
from the low and high - latency sub - systems are logically 
combined in the display buffer or elsewhere in the system 
before being sent to the display , and thus , displayed . In an 
embodiment , transparent , overlapping displays present the 
low and high - latency output to the user . In an embodiment , 
the pixels of a display are interlaced so that some are 

controlled by the low latency subsystem , and some are 
controlled by the high - latency sub - system ; through interlac 
ing , these displays may appear to a user to overlap . In an 
embodiment , frames presented on a display are interlaced 
such that some frames are controlled by the low latency 
subsystem and some frames are controlled by the high 
latency sub - system ; through frame interlacing , the display 
may appear to a user to contain a combined image . 
[ 0062 ] In an embodiment , the low - latency response may 
be generated predominantly or entirely in hardware . In an 
embodiment , the low - latency response may be generated 
from input sensor data received directly from the input 
sensor . In an embodiment , the low - latency response is 
displayed by having a high bandwidth link to the display 
hardware . 
[ 0063 ] In designing a user interface for a low - latency 
subsystem , one or more of the following constraints may be 
considered : 

[ 0064 ] Information : any information or processing 
needed from the high - latency subsystem in order to 
form the system ' s response to input will , necessarily , 
have high latency , unless such information or process 
ing is e . g . , pre - rendered or pre - served . 

[ 0065 ] Performance : the time allowed for formation of 
responses in low latency is necessarily limited . Even 
with hardware acceleration , the design of responses 
must be carefully performance - driven to guarantee 
responses meet the desired low latency . 

[ 0066 ] Fidelity : the fidelity of the rendered low - latency 
image may be indistinguishable from the higher - la 
tency rendering ( indeed , it may be pre - rendered by the 
high latency system ) ; additional constraints may be 
placed on fidelity to improve performance , such as , 
e . g . , that visuals are only monochromatic , and / or lim 
ited to visual primitives , and / or that the duration or 
characteristics of audio or haptic responses are limited . 
Constraints of this type may be introduced by various 
elements of the system , including acceleration hard 
ware or by the output hardware ( such as the display , 
haptic output device , or speakers ) . 

10067 ) Non - Interference : in embodiments where 
responses are hybridized combinations , some of the 
application ' s response may be generated in the low 
latency layer , and some in the high - latency layer , a 
consideration may be how the two are blended , e . g . , to 
provide a seamless response to the user ' s input . In an 
embodiment , low - latency responses do not interfere 
with any possible application response , which will 
necessarily occur later . In an embodiment , interference 
may occur between a low - latency response and the 
traditional response , but the interference may be 
handled through design , or through blending of the 
responses . 

10068 ] . In an embodiment , a design process was conducted 
to create a set of visual UI controls with differentiated low 
and high latency visual responses to touch . A metaphor was 
sought which would enable a seamless transition between 
the two layers of response . These visualizations included 
such information as object position and state . The designs 
were culled based on feasibility using the above - described 
constraints . The final design of such embodiment was based 
on a heads - up display ( HUD ) metaphor , similar to the 
visualizations used in military aircraft . The HUD was suit 
able , since traditional HUDs are geometrically simple , and 
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it is relatively easy to implement a geometrically simple 
display at an authentic fidelity . The HUD represents just one 
example of two visual layers being combined , though in 
many HUDs , a computerized display is superimposed on 
video or the “ real world ” itself . Accordingly , a HUD is 
generally designed to be non - interfering . 
[ 0069 ] Based on the HUD metaphor , an exemplary set of 
touch event and UI element - specific low - latency layer visu 
alizations were developed for a set of UI elements found in 
many direct - touch systems . These exemplary elements are 
both common and representative ; their interactions ( taps , 
drags , two - finger pinching ) cover the majority of the inter 
action space used in current direct - touch devices . The low 
latency responses developed in such an embodiment are 
described in Table 1 , and they are shown in FIG . 6 - 8 . 

stack . In an embodiment , the low - latency , low fidelity sub 
system 940 may be implemented in hardware , such as the 
FPGA 440 of FIG . 4 . 
0072 ] The bifurcation described in this embodiment cre 
ates a fundamental communication problem where any 
parameterization of the initial responses provided by the 
low - latency subsystem 940 required by application logic 
must be defined before the user begins to give input . Any 
response which requires processing at the time of presenta 
tion by the application will introduce a dependency of the 
low - latency system 940 upon the high - latency system 950 , 
and may therefore introduce lag back into the system . In an 
embodiment , later stages of the low - latency system ' s 940 
response to input may depend on the high latency subsystem 
950 . In an embodiment , dependency of the later stages of a 

TABLE 1 
Accelerated visuals for each element and touch event , which compliment 

standard high latency responses to touch input . 

Element Touch Down Touch Move Touch Up 
Button 
( FIG . 6 ) 

Bounds 
outlined 610 

( none ) If within bounds , 2nd 
outline 620 , else 
none 
Outline 710 fades 
when high - latency 
layer catches up 

Draggable / Resizable Bounds Outline changes and moves 
( FIG . 7 ) outlined 710 with input position 720 

and / or scales with input 
gesture 730 

Scrollable List List item If scroll gesture , list edges 
( FIG . 8 ) outlined 810 highlight 830 to scroll 

distance . 
If during scroll gesture , edge 
highlights 840 ) fade as high 
latency layer catches up 

If list item selection , 
outline 820 scales 
down and fades 

[ 0070 ] These three elements represent broad coverage of 
standard UI toolkits for touch input . Most higher - order UI 
elements are composed of these simpler elements ( e . g . radio 
buttons and checkboxes are both “ buttons , " a scrollbar is a 
" draggable / resizable " with constrained translation and rota 
tion ) . The accelerated input system and method described 
herein depends on the marriage of visuals operating at two 
notably different latency levels ; this latency difference has 
been incorporated into the design of low - latency visualiza 
tions . In an embodiment , users may be informed of the state 
of both systems , with a coherent synchronization as the 
visual layers come into alignment . In an embodiment , a user 
may be able to distinguish between the high and low latency 
portions of system feedback . In an embodiment , the visual 
elements are blended in a manner that provides no apparent 
distinction between the low - latency response and the tradi 
tional response . 
[ 0071 ] In an embodiment , an application developer uti 
lizes a toolkit to build their application through the normal 
process of assembling GUI controls . Upon execution , the UI 
elements bifurcate their visualizations , with high - and low 
latency visualizations rendered and overlaid on a single 
display . An embodiment of information flow through such a 
system is as shown in FIG . 9 . Information flows into the 
system from an input device 910 and is initially processed by 
an input processing unit ( IPU ) 920 , programmed via an IPU 
software toolkit 930 . UI events are then processed in parallel 
by two subsystems , a low - latency , low fidelity subsystem 
940 , and a high - latency subsystem 950 such as , for example , 
conventional software running in a conventional software 

low - latency subsystem ' s 940 response to input on the high 
latency subsystem 950 is managed such that the dependency 
does not introduce additional latency . In an embodiment the 
dependency would be avoided entirely . 
[ 0073 ] In an embodiment , UI element logic may be built 
into the low - latency subsystem . Between user inputs , the 
application executing in the high - latency subsystem 950 , has 
the opportunity to provide parameters for the low - latency 
subsystem ' s 940 model of the UI elements . Thus , in an 
embodiment , the MVC model of UI software design may be 
extended by providing a separate controller responsible for 
low - latency feedback . In an embodiment , in the software 
design , one or more of the following can be specified for 
each control : 

[ 0074 ] Element type ( e . g . , button , draggable object , 
scrollable list , etc . ) . 

[ 0075 ] Bounding dimensions ( e . g . , x position , y posi 
tion , width , height , etc . ) . 

[ 0076 ] Conditional : additional primitive information 
( e . g . , size of list items in the case of a scrollable list , 
etc . ) . 

[ 0077 ] In an embodiment , logic for a given element - type ' s 
response to touch input is stored in the low - latency subsys 
tem 940 . Further parameterization of the low - latency sub 
system ' s responses to user input could be communicated in 
the same manner , allowing a greater degree of customiza 
tion . In an embodiment , sensor data is processed to generate 
events ( or other processed forms of the input stream ) , which 
are then separately distributed to the low - latency subsystem 
940 and to the high - latency subsystem 950 . Events may be 
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generated at different rates for the low - latency subsystem 
940 and high - latency subsystem 950 , because the low 
latency subsystem is capable of processing events faster than 
the high - latency subsystem , and sending events to the high 
latency sub - system at a high rate may overwhelm that 
subsystem . The low - and high - latency subsystems ' response 
to user input is therefore independent but coordinated . In an 
embodiment , one subsystem acts as the “ master , " setting 
state of the other subsystem between user inputs . In an 
embodiment , the relationship between the low - and high 
latency subsystems includes synchronization between the 
two subsystems . In an embodiment , the relationship between 
the low - and high - latency subsystems includes the ability of 
the high - latency subsystem to offload processing to the 
low - latency subsystem 940 . In an embodiment , the relation 
ship between the low - and high - latency subsystems includes 
the ability of the low - latency subsystem 940 to reduce its 
processing Load and / or utilize the high - latency subsystem 
950 for pre - processing or pre - rendering . In an embodiment , 
a second graphical processing and output system ' s response 
is dependent upon a first graphical processing and output 
system , and state information is passed from the first graphi 
cal processing and output system to the second graphical 
processing and output system . In such embodiments , infor 
mation passed from the first graphical processing and output 
system to the second graphical processing and output system 
is comprised of one or more pieces of data describing one or 
more of the graphical elements in the user interface . This 
data may be , e . g . , the size , the location , the appearance , 
alternative appearances , response to user input , and the type 
of graphical elements in the user interface . The data passed 
from the first graphical processing and output system to the 
second graphical processing and output system may be 
stored in high - speed memory available to the second graphi 
cal processing and output system . The passed data may 
describe the appearance and / or behavior of a button , a slider , 
a draggable and / or resizable GUI element , a scrollable list , 
a spinner , a drop - down list , a menu , a toolbar , a combo box , 
a movable icon , a fixed icon , a tree view , a grid view , a scroll 
bar , a scrollable window , or a user interface element . 
[ 0078 ] In an embodiment , an input processing system 
performs decimation on the user input signals before they 
are received by one or both of the first or second graphical 
processing and output systems . The decimated input signals 
or non - decimated signals are chosen from the set of all input 
signals based on information about the user interface sent 
from the first graphical processing and output system . The 
decimation of input signals may be performed by logically 
combining the set of input signals into a smaller set of input 
signals . Logical combination of input signals may be per 
formed through windowed averaging . The decimation con 
siders the time of the user input signals when reducing the 
size of the set of input signals . The logical combination of 
input signals can be performed through weighted averaging . 
In an embodiment , the user input signals received by the first 
and second graphical processing and output systems have 
been differentially processed . 
[ 0079 ] In an embodiment , communication between the 
high - latency and low - latency layers may be important . 
Some points which are considered in determining how the 
high - and low - latency subsystems remain synchronized are 
described below : 

10080 ] Latency differences : Low - latency responses may 
use information about the latency difference between 

the high - and low - latency layers in order to synchronize 
responses . In an embodiment , these latency values are 
static , and thus preprogrammed into the FPGA . In an 
embodiment where latency levels may vary in either 
subsystem , it may be advantageous to fix the latency 
level at an always - achievable constant rather than hav 
ing a dynamic value that may become unsynchronized , 
or provide an explicit synchronization mechanism . In 
an embodiment where latency levels may vary in either 
subsystem , a dynamic value may be used , however , 
care should be taken to avoid becoming unsynchro 
nized . In an embodiment where latency levels may vary 
in either subsystem , an explicit synchronization mecha 
nism may be provided between the subsystems 940 , 
950 . 

[ 0081 ] Hit testing : Hit testing decisions are often con 
ditional on data regarding the visual hierarchy and 
properties of visible UI elements . In an embodiment , 
this consideration can be resolved by disallowing over 
lapping bounding rectangles , requiring a flat , ‘ hit test 
friendly ' map of the UI . In an embodiment separate hit 
testing may provide the necessary information ( object 
state , z - order , and listeners ) to the low - latency subsys 
tem . In an embodiment both the low - and high - latency 
subsystems may conduct hit testing in parallel . In an 
embodiment the low - latency subsystem conducts hit 
testing , and provides the results to the high - latency 
subsystem . 

[ 0082 ] Conditional responses : Many interface visual 
izations are conditional not only on immediate user 
input , but on further decision - making logic defined in 
the application logic . 

[ 0083 ] Two illustrative examples of conditional response 
logic are as follows : Consider a credit - card purchase sub 
mission button , which is programmed to be disabled ( to 
prevent double billing ) when pressed , but only upon vali 
dation of the data entered into the form . In such a case , the 
behavior of the button is dependent not only on an imme 
diate user interaction , but is further conditional on additional 
information and processing . Consider also linked visualiza 
tions , such as the one shown in FIG . 10 . In this case , 
feedback is provided to the user not only by the UI element 
they are manipulating 1010 , but also by a second UI element 
1020 . These examples could be programmed directly into a 
low - latency subsystem . 
[ 0084 ] In an embodiment , the division between the high 
and low - latency subsystems may be independent of any user 
interface elements . Indeed , the division of responsibility 
between the subsystems can be customized based on any 
number of factors , and would still be possible in systems that 
lack a user interface toolkit , or indeed in a system which 
included mechanisms to develop applications both within 
and without the use of a UI toolkit which might be available . 
In an embodiment , the division of responsibility between the 
two subsystems can be dynamically altered while the sub 
systems are running . In an embodiment , the UI toolkit itself 
may be included within the low - latency subsystem . The 
ability to customize responses can be provided to application 
developers in a number of ways without departing from the 
systems and methods herein described . In an embodiment , 
responses may be customized as parameters to be adjusted 
in UI controls . In an embodiment , responses may be cus 
tomized by allowing for the ability to provide instructions 
directly to the low - latency subsystem , in code which itself 
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executes in the low - latency subsystem , or in another high - or 
low - latency component . In an embodiment , the state of the 
low - latency subsystem could be set using data generated by 
application code , e . g . , at runtime . 
[ 0085 ] While many of the examples described above are 
provided in the context of a touch input , other embodiments 
are contemplated , including , without limitation , pen input , 
mouse input , indirect touch input ( e . g . , a trackpad ) , in - air 
gesture input , oral input and / or other input modalities . The 
architecture described would be equally applicable to any 
sort of user input event , including , without limitation , mixed 
input events ( i . e . , supporting input from more than one 
modality ) . In an embodiment , mixed input devices may 
result in the same number of events being generated for 
processing by each of the low - and high - latency subsystems . 
In an embodiment , mixed input devices would be differen 
tiated in the number of events generated , thus , for example , 
touch input might have fewer events than pen input . In an 
embodiment , each input modality comprises its own low 
latency subsystem . In an embodiment , in systems compris 
ing multiple low - latency subsystems for multiple input 
modalities , the subsystems might communicate to coordi 
nate their responses . In an embodiment , in systems com 
prising multiple low - latency subsystems for multiple input 
modalities , the multiple subsystems may share a common 
memory area to enable coordination . 

Input Processing 
[ 0086 ] In an embodiment of the invention , low - latency 
input data from the input hardware is minimally processed 
into a rapid stream of input events . This stream of events is 
sent directly to the low - latency sub - system for further pro 
cessing . Events from this same stream may then be deleted , 
or the stream may be otherwise reduced or filtered , before 
being sent to the high - latency subsystem . Events may be 
generated at different rates for the low - latency subsystem 
940 and high - latency subsystem 950 because the low 
latency subsystem is capable of processing events faster than 
the high - latency subsystem , and sending events to the high 
latency sub - system at a high rate may overwhelm that 
subsystem . The low - and high - latency subsystems ' response 
to user input may therefore be independent but coordinated . 
[ 0087 ] The reduction of events can be optimized . In an 
embodiment , representative events may be selected among 
candidate events based on criteria associated with one or 
more of the application , the UI element , the input device , 
etc . An example of this for pen input when the user is 
drawing digital ink strokes might include selecting events 
which fit best to the user ' s drawn stroke . Another example 
for speech input is to favor events where subsequent events 
in the output stream would have similar volume , thereby 
" evening out ” the sound coming from the microphone . 
Another example for touch input is to favor events which 
would result in the output event stream having a consistent 
speed , providing more “ smooth ” output . This form of intel 
ligent reduction acts as an intelligent filter , without reducing 
performance of the high - latency subsystem . In an embodi 
ment , new events ( e . g . , consolidated events or pseudo 
events ) could be generated which represent an aggregate of 
other events in the input stream . In an embodiment , new 
events ( e . g . , corrected events , consolidated events or 
pseudo - events ) may be generated that represent a more 
desirable input stream , e . g . , a correction or smoothing . For 
example , for in - air gesture input , for every 10 events from 

the high - speed input device , the high - latency subsystem 
may be sent the same number or fewer events which provide 
an “ average ” of actual input events , thus smoothing the input 
and removing jitter . New events could also be generated 
which are an amalgam of multiple " desired ” levels of 
various parameters of an input device . For example , if the 
intelligent reductions of the tilt and pressure properties of a 
stylus would result in the selection of different events , a 
single , new , event object could be created ( or one or more 
existing event objects modified ) to include the desired 
values for each of these properties . 
[ 0088 ] In an embodiment , an IPU or low - latency subsys 
tem system might be used to provide the high - latency 
system with processed input information . One or more of 
methods could be used to coordinate the activities of the two 
subsystems . These include : 

10089 ] a . In an embodiment , the low - latency subsystem 
can respond to all user input immediately , but wait for 
the user to stop the input ( e . g . lifting a finger or pen , 
terminating a gesture ) before providing the input to the 
high - latency system . This has an advantage of avoiding 
clogging the system during user interaction while still 
processing the totality of the data . 

[ 0090 ] b . In an embodiment , the low - latency system can 
provide a reduced estimate of input in near real - time ; 
and may optionally store a complete input queue that 
can be available to the high - latency system upon 
request . 

10091 ] c . In an embodiment , user feedback may be 
divided into two steps . The first , a low - latency feed 
back , would provide a rough , immediate representation 
of user input 1130 in FIG . 11 . The second , a high 
latency system response 1140 , could replace the first 
1130 , whenever the high - latency system is able to 
compute a refined response , for example after lift - off of 
the pen 1150 tip . Alternatively , the high latency feed 
back could be continuously " catching up ” to ( and 
possibly subsuming ) the low latency feedback . 

10092 ] d . In an embodiment , the low - latency system can 
infer simple gesture actions from the input stream , and 
thus generate gesture events which are included in the 
input queue in addition to , or replacing , the raw events . 

( 0093 ] e . In an embodiment , an IPU or low - latency 
subsystem can use multiple input positions to predict 
future input positions . This prediction can be passed 
along to the high - latency subsystem to reduce its effec 
tive latency . 

[ 0094 ] f . In an embodiment , algorithms which may 
benefit from additional samples , or earlier detection , 
are executed in the IPU or low - latency subsystem . In an 
embodiment , the execution of these events can be 
limited in time . For example , the initial 50 events can 
be used to classify an input as a particular finger , or to 
differentiate between finger and pen inputs . In an 
embodiment , these algorithms can run continuously . 

100951 g . In an embodiment , the process of the low 
latency subsystem passing a stream of events to the 
high - latency subsystem might be delayed in order to 
receive and process additional sequential or simultane 
ous related inputs which might otherwise be incorrectly 
regarded as unrelated inputs . For example , the letter “ ” 
is often drawn as two separate , but related , strokes . In 
the normal course , the portion of the input stream 
passed from the low - latency to the high - latency system 
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would include a “ pen up ” signal at the end of drawing 
the first line . In an embodiment , the reduction process 
waits for the very last frame of input within the sample 
window to pass along an “ up ” event , in case the pen is 
again detected on the display within the window , thus 
obviating the need for the event . 

Hardware Architecture 
[ 0096 ] In an embodiment , data flows through two over 
lapping paths through the components of the system to 
support both high - and low - latency feedback . FIG . 12 shows 
one such system , which includes an Input Device 1210 , an 
IPU 1220 , a System Bus 1230 , a CPU 1240 and a GPU 1280 
connected to a Display 1290 . A User 1200 performs input 
using the Input Device 1210 . This input is sensed by the IPU 
1220 which in various embodiments can be either an FPGA , 
ASIC , or additional software and hardware logic integrated 
into a GPU 1280 , MPU or SoC . At this point , the control 
flow bifurcates and follows two separate paths through the 
system . For low - latency responses to input , the IPU 1220 
sends input events through the System Bus 1230 to the GPU 
1280 , bypassing the CPU 1240 . The GPU 1280 then rapidly 
displays feedback to the User 1200 . For high - latency 
response to input , the IPU 1220 sends input events through 
the System Bus 1230 to the CPU 1240 , which is running the 
graphical application and which may interact with other 
system components . The CPU 1240 then sends commands 
via the System Bus 1230 to the GPU 1280 in order to 
provide graphical feedback to the User 1200 . The low 
latency path from Input Device 1210 to IPU 1220 to System 
Bus 1230 to GPU 1280 is primarily hardware , and operates 
with low - latency . The high - latency path from Input Device 
1210 to IPU 1220 to System Bus 1230 to CPU 1240 back to 
System Bus 1230 to GPU 1280 is high - latency due to the 
factors described earlier in this description . In a related 
embodiment , the Input Device 1210 communicates directly 
with the GPU 1280 and bypasses the System Bus 1230 . 
[ 0097 ] FIG . 13 shows a familiar programming paradigm 
called Model View Controller . In this paradigm , the User 
1300 performs input on the Controller 1310 , which in turn 
manipulates the Model 1320 based on this input . Changes in 
the Model 1320 result in changes to the View 1330 , which 
is observed by the User 1300 . Some of the latency addressed 
by the present invention is due to latency in the input , 
communication among these components , and display of the 
graphics generated by the View 1330 component . 
[ 0098 ] FIG . 14 shows an embodiment of an architecture 
that supports developing and running applications on a 
system with blended high - and low - latency responses to user 
input . The User 1400 performs input with the input device 
1410 . This input is received by the IPU 1420 . The IPU 1420 
sends input events simultaneously to the Controller 1430 
running in the high - latency subsystem via traditional mecha 
nisms and to the View Model ( L ) 1490 running in the low 
latency subsystem . Input is handled by the Controller 1430 , 
which manipulates the Model 1440 running in the high 
latency subsystem , which may interact with data in volatile 
memory 1450 , fixed storage 1470 , network resources 1460 , 
etc . ( all interactions that introduce lag ) . Input events 
received by the View Model ( L ) 1490 result in changes to the 
View Model ( L ) which are reflected in changes to the View 
( L ) 1491 , which is seen by the User 1400 . Changes to the 
Model 1440 result in changes to the high - latency subsys - 
tem ' s View ( H ) 1480 , which is also seen by the User 1400 . 

In an embodiment , these two types of changes seen by the 
user are shown on the same display . In an embodiment , these 
two types of changes are reflected to the user via other 
output modalities ( such as , e . g . , sound or vibration ) . In an 
embodiment , between inputs , the Model 1440 updates the 
state of the ViewModel ( L ) 1490 and View ( L ) 1491 so that 
the View Model ( L ) 1490 contains the needed data to present 
the GUI ' s components in the correct location on the sys 
tem ' s display and so that the ViewModel ( L ) 1490 can 
correctly interpret input from the IPU 1420 in the context of 
the current state of the Model 1440 ; and so that the View ( L ) 
1491 can correctly generate graphics for display in the 
context of the current state of the Model 1440 . 
[ 0099 ] By way of example , consider a touch - sensitive 
application with a button that among its functions responds 
to a user ' s touch by changing its appearance indicating that 
it has been activated . When the application is run , the 
application reads the location , size , and details of the appear 
ance of the button from memory and compiled application 
code . The View ( H ) 1480 code generates the necessary 
graphics which are presented to the user to display this 
button . The Model 1440 updates the state of the View Model 
( L ) 1490 to record that this graphical element is a button , and 
that it should change appearances from a " normal " appear 
ance to a “ pressed ” appearance when touched . The Model 
1440 also updates the state of the View ( L ) 1491 to record the 
correct appearance for the “ normal ” and “ pressed ” states in 
the View Model ( L ) 1490 . This appearance may be a descrip 
tion of low - fidelity graphical elements , or a complete raster 
to display . In this example , the “ pressed ” state is represented 
by a displaying a white box around the button ' s position . 
[ 0100 ] A User touches the touch - screen display , and input 
data describing that touch is received less than 1 ms later by 
the IPU 1420 . The IPU 1420 creates an input event repre 
senting a touch - down event from the input data and sends 
this input event to the application Controller 1430 . The 
Controller 1430 manipulates the Model 1440 . In this case , 
the Controller 1430 is indicating to the Model 1440 that the 
button has been touched and that the application should 
perform whatever commands are associated with this button . 
At the same time that the IPU 1420 sends an event to the 
Controller 1430 , it sends an event to the ViewModel ( L ) 
1490 indicating that the button has been touched . The 
View Model ( L ) 1490 was previously instructed by the Model 
1440 as to what to do in the case of a touch , and in this case 
it responds to the touch event by changing its state to 
“ pressed ” . The View ( L ) 1491 responds to this change by 
displaying a white box around the button , feedback that 
corresponds to its " pressed ” appearance . The change to the 
Model 1440 that the button is touched causes an update of 
View ( H ) 1480 , so that it too reflects that button is now 
touched . The User , who see the output of both View ( H ) 1480 
and View ( L ) 1491 , sees the immediate feedback of their 
touch by View ( L ) 1491 followed a fraction of a second later 
by the feedback from View ( H ) 1480 . 
[ 0101 ] Throughout the text of this application , the word 
" event " is used to describe information describing attributes 
of user input . This term is used generally , and thus includes 
embodiments in which event driven architectures are 
employed ( with actual event objects being passed between 
software elements ) , as well as more basic input streams in 
which the " event " being described is simply present in the 
stream of information . Such events may be , e . g . , non - object 
orient types of events or object - oriented types events . 
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[ 0102 ] The present system and methods are described 
above with reference to block diagrams and operational 
illustrations of methods and devices comprising a computer 
system capable of receiving and responding to user input . It 
is understood that each block of the block diagrams or 
operational illustrations , and combinations of blocks in the 
block diagrams or operational illustrations , may be imple 
mented by means of analog or digital hardware and com 
puter program instructions . These computer program 
instructions may be provided to a processor of a general 
purpose computer , special purpose computer , ASIC , or other 
programmable data processing apparatus , such that the 
instructions , which execute via the processor of the com 
puter or other programmable data processing apparatus , 
implements the functions / acts specified in the block dia 
grams or operational block or blocks . In some alternate 
implementations , the functions / acts noted in the blocks may 
occur out of the order noted in the operational illustrations . 
For example , two blocks shown in succession may in fact be 
executed substantially concurrently or the blocks may some 
times be executed in the reverse order , depending upon the 
functionality / acts involved . 
[ 0103 ] While the invention has been particularly shown 
and described with reference to a preferred embodiment 
thereof , it will be understood by those skilled in the art that 
various changes in form and details may be made therein 
without departing from the spirit and scope of the invention . 

1 . A method for processing user input , comprising : 
maintaining state information relating to an existing state , 

wherein the state information is maintained with a 
high - latency subsystem ; 

receiving signals via a user input ; 
obtaining the state information relating to the existing 

state , wherein the state information is obtained using a 
low - latency subsystem ; 

generating at least one programmable low - latency output 
based at least in part on the state information and at 
least some of the signals , the low - latency output being 
output with low latency relative to the high - latency 
subsystem ; 

generating at least one high - latency output using at least 
some of the signals , wherein the high - latency output is 
generated by the high - latency subsystem ; and 

wherein the low - latency subsystem processes at least 
some of the signals independently of the high - latency 
subsystem . 

2 . The method of claim 1 , further comprising decimating 
signals received via the user input . 

3 . The method of claim 2 , wherein the decimation of 
signals received comprises windowed averaging of the sig 
nals received . 

4 . The method of claim 2 , wherein the decimation of 
signals received involves weighted averaging of the signals 
received . 

5 . The method of claim 1 , wherein the low - latency 
subsystem comprises UI element logic . 

6 . The method of claim 1 , further comprising pre - render 
ing using the high - latency subsystem . 

7 . The method of claim 1 , further comprising reducing 
processing load of the high - latency subsystem by off - load 
ing processing tasks to the low - latency subsystem . 

8 . A method for processing user input , comprising : 
receiving signals via a user input ; 
exchanging state information between a low - latency sub 

system and a high - latency subsystem , wherein the 
low - latency subsystem responds to received signals 
faster than the high - latency subsystem ; 

generating at least one low - latency output based at least in 
part on at least some of the received signals , the 
low - latency output being output with low latency rela 
tive to the high - latency subsystem ; 

generating at least one high - latency output using at least 
some of the received signals , wherein the high - latency 
output is generated by the high - latency subsystem ; and 

wherein the low - latency subsystem processes at least 
some of the signals independently of the high - latency 
subsystem . 

9 . The method of claim 8 , further comprising decimating 
signals received via the user input . 

10 . The method of claim 9 , wherein the decimation of 
signals received comprises windowed averaging of the sig 
nals received 

11 . The method of claim 9 , wherein the decimation of 
signals received involves weighted averaging of the signals 
received . 

12 . The method of claim 8 , wherein the low - latency 
subsystem comprises UI element logic . 

13 . The method of claim 8 , further comprising pre 
rendering using the high - latency subsystem . 

14 . The method of claim 8 , further comprising reducing 
processing load of the high - latency subsystem by off - load 
ing processing tasks to the low - latency subsystem . 

15 . A method for processing user input , comprising : 
detecting user inputs ; 
outputting a stream of input events corresponding to 

detected user input ; 
receiving at least one event from the stream of user input 

events corresponding to the detected user input at a 
high - latency subsystem , wherein the high - latency sub 
system maintains state information ; 

generating an output with the high - latency subsystem ; and 
receiving at least a portion of the stream of user input 

events corresponding to the detected user input ; and 
generating an output with a low - latency subsystem , 
wherein the generated output of the lower - latency 
subsystem is lower latency than the output of the 
high - latency subsystem , wherein the output of the 
lower - latency subsystem is based , at least in part , on the 
state information . 

16 . The method of claim 15 , further comprising decimat 
ing the stream of input events . 

17 . The method of claim 16 , wherein the decimation of 
the stream of input events comprises windowed averaging of 
the stream of input events . 

18 . The method of claim 16 , wherein the decimation of 
the stream of input event involves weighted averaging of the 
stream of input events . 

19 . The method of claim 15 , wherein the low - latency 
subsystem comprises UI element logic . 

20 . The method of claim 15 , further comprising pre 
rendering using the high - latency subsystem . 

* * * * * 


