

United States Patent

[19]

Pauza et al.

[11] 3,846,734

[45] Nov. 5, 1974

[54] **FRAMES FOR ADAPTING A
MULTI-CONTACT ELECTRICAL
CONNECTOR TO ELECTRICALLY
CONNECT WITH VARIOUS STYLES OF
SUBSTRATES**

[75] Inventors: William Vito Pauza; Edward
Michael Poltonavage, both of
Palmyra, Pa.

[73] Assignee: AMP Incorporated, Harrisburg, Pa.

[22] Filed: Feb. 6, 1973

[21] Appl. No.: 330,158

[52] U.S. Cl. 339/17 CF, 174/DIG. 3, 317/101 CP,
339/91 R, 339/174, 339/176 MP

[51] Int. Cl. H01r 13/54, H05k 1/02

[58] Field of Search 339/17, 14, 75, 174, 176,
339/65, 66, 91, 192, 217, 92, 256, 99;
317/101 CP, 101 CC, 101 DH, 101 C;
174/DIG. 3

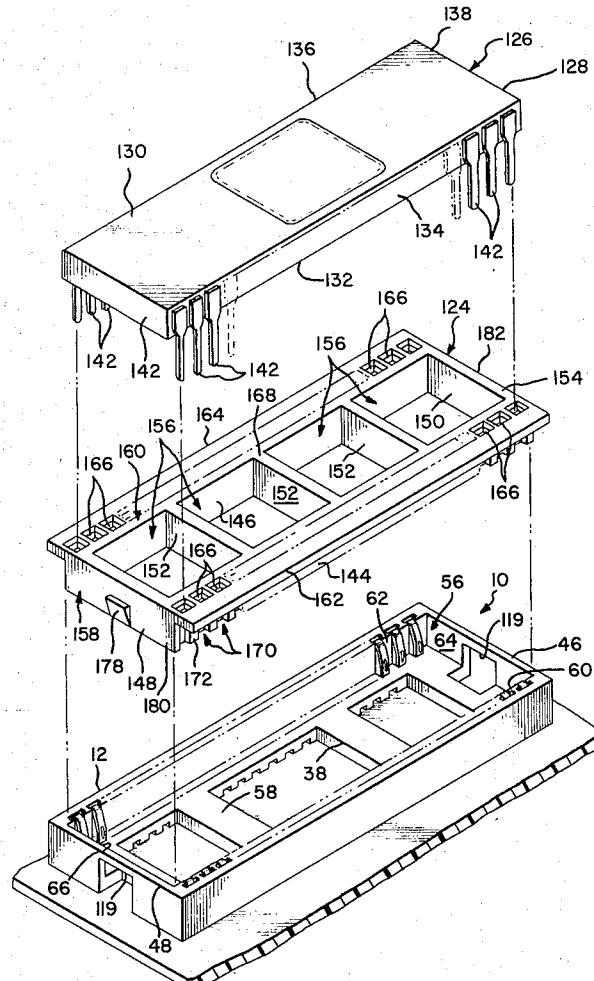
[56] **References Cited**

UNITED STATES PATENTS

3,345,541 10/1967 Cobaugh et al. 339/17 CF X

3,409,861	11/1968	Barnes et al.	339/17 CF
3,475,657	10/1969	Knowles.....	339/17 C X
3,605,075	9/1971	Stofkooper.....	339/126
3,710,299	1/1973	Weisenburger.....	339/17 C F
3,753,211	8/1973	Pauza et al.	339/75 MP
3,754,203	8/1973	Panza et al.	339/17 CF

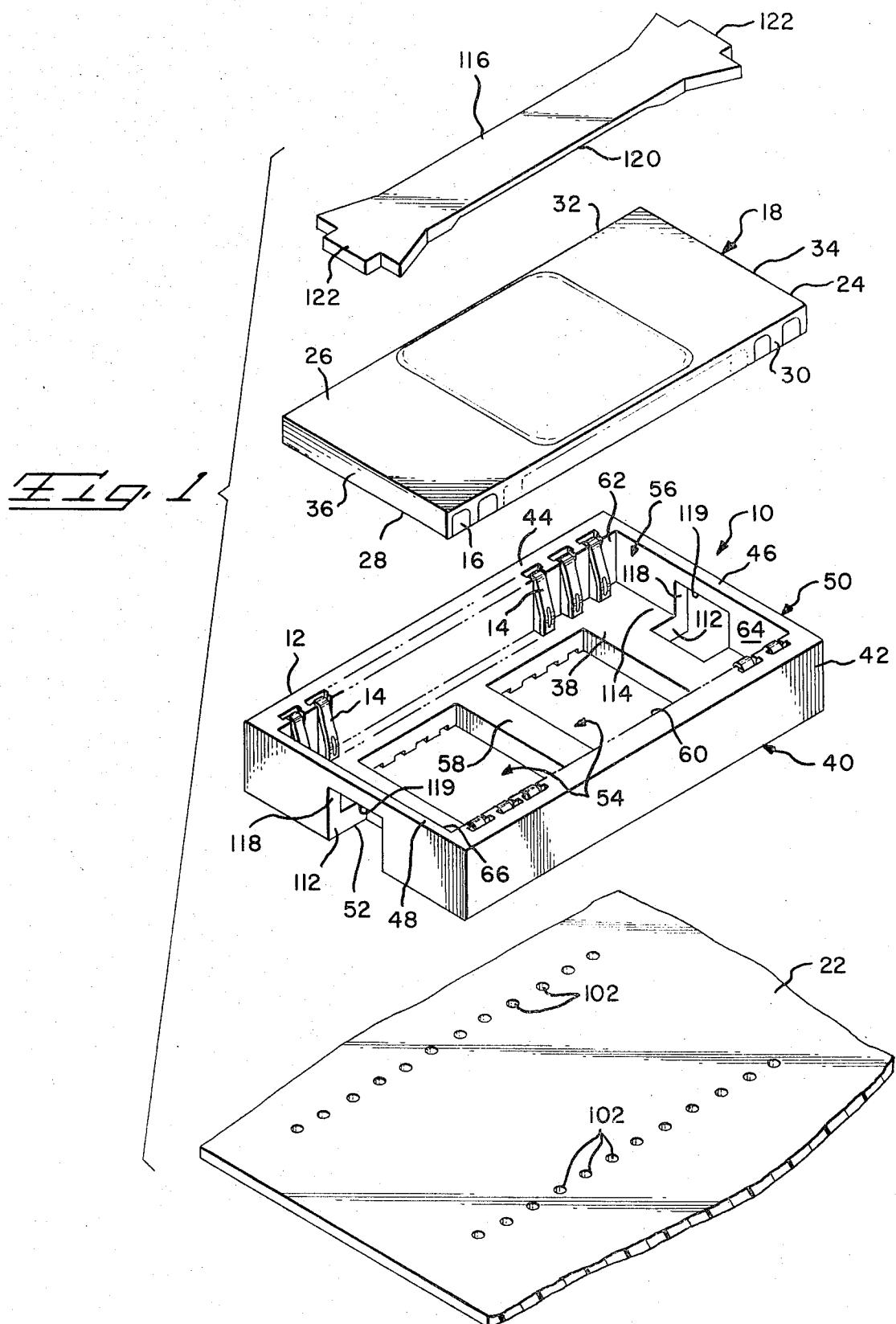
Primary Examiner—Paul R. Gilliam


Assistant Examiner—Terrell P. Lewis

Attorney, Agent, or Firm—William J. Keating; Jay L. Seitchik; Frederick W. Raring

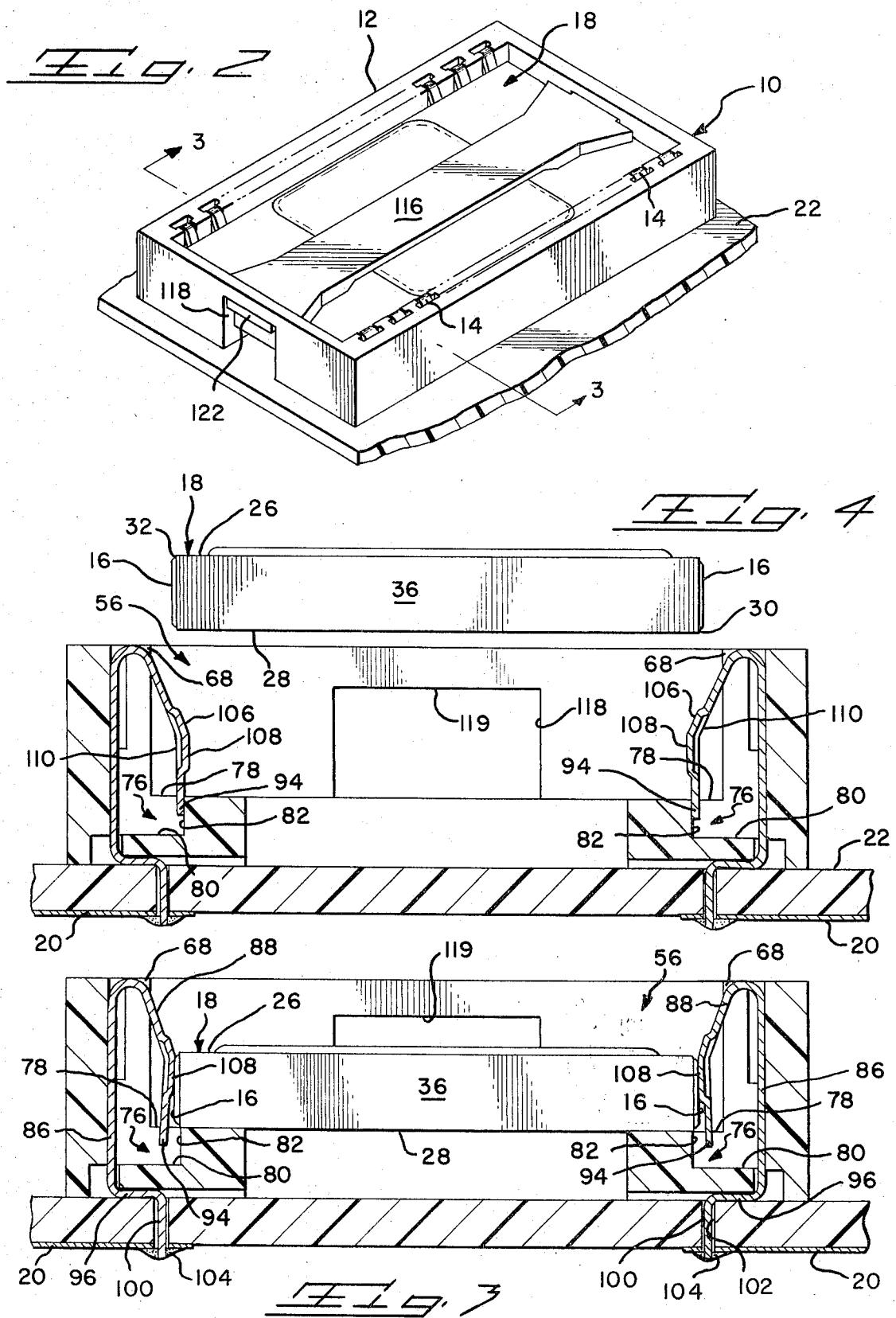
[57] **ABSTRACT**

Frames are provided to adapt a multi-contact electrical connector to be electrically connectable with more than one style of ceramic substrate or the like. The connector is originally designed to accommodate therein a leadless ceramic substrate having two rows of spaced apart electrical terminal contact pads respectively disposed on two opposite side surfaces of the substrate. By insertion of either one of two different frames into the connector instead of the leadless substrate, the connector will be adapted to receive a corresponding one of two other styles of substrates.


1 Claim, 11 Drawing Figures

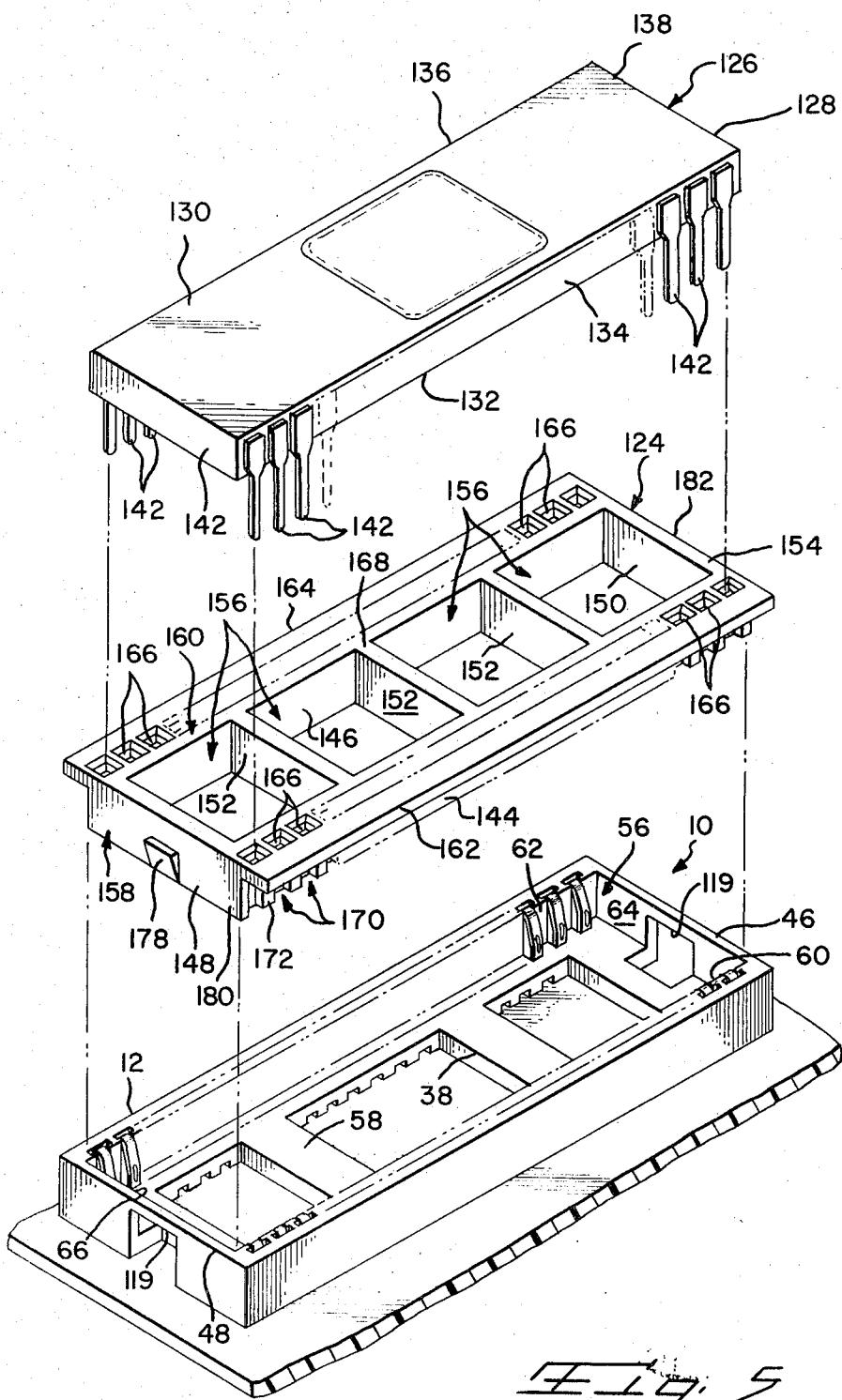
PATENTED NOV. 5 1971

3,846,734


SHEET 1 OF 7

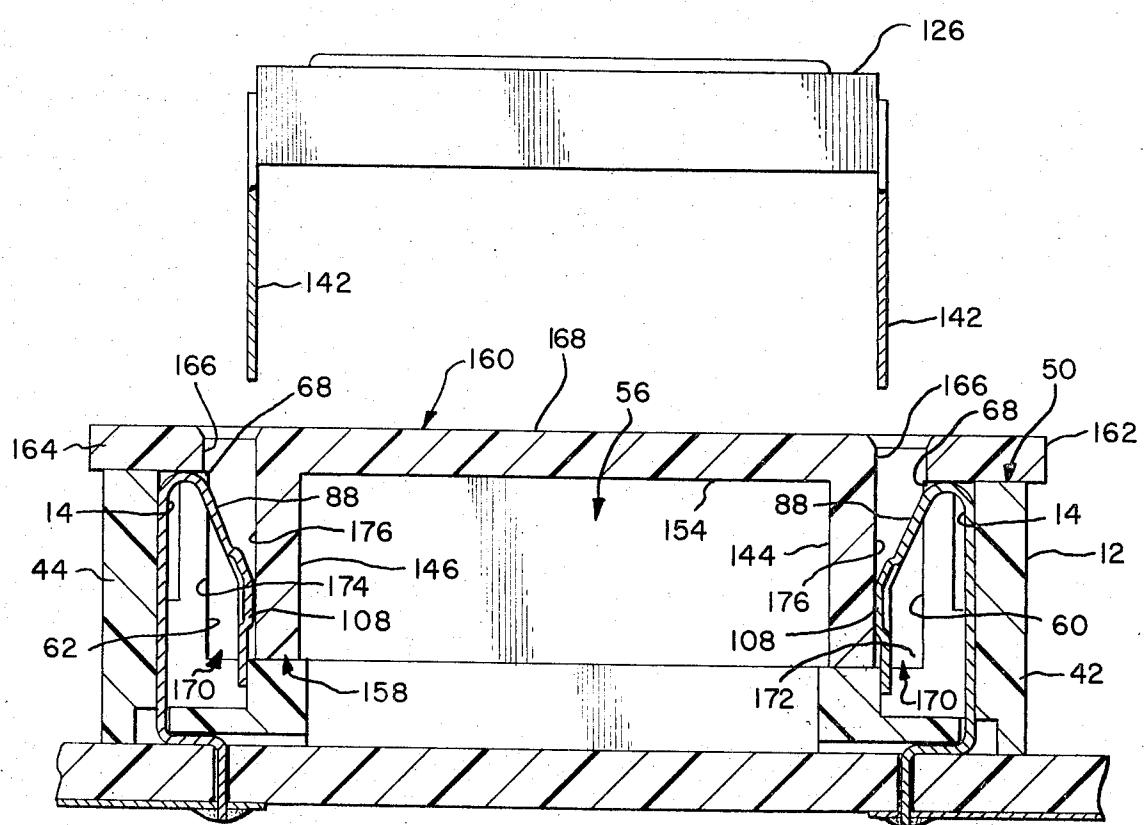
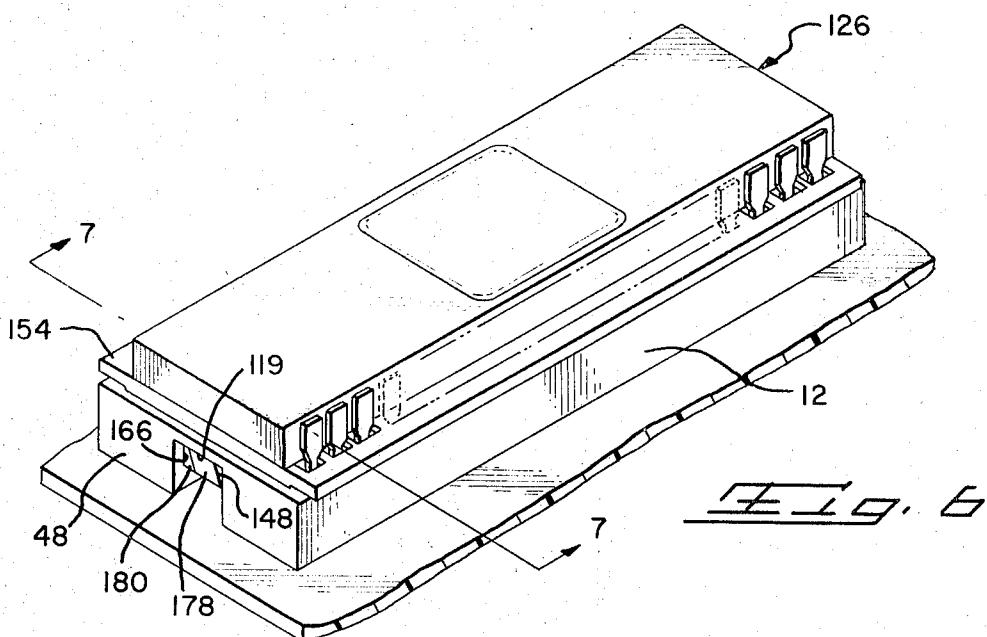
PATENTED NOV 5 1974

3,846,734


SHEET 2 OF 7

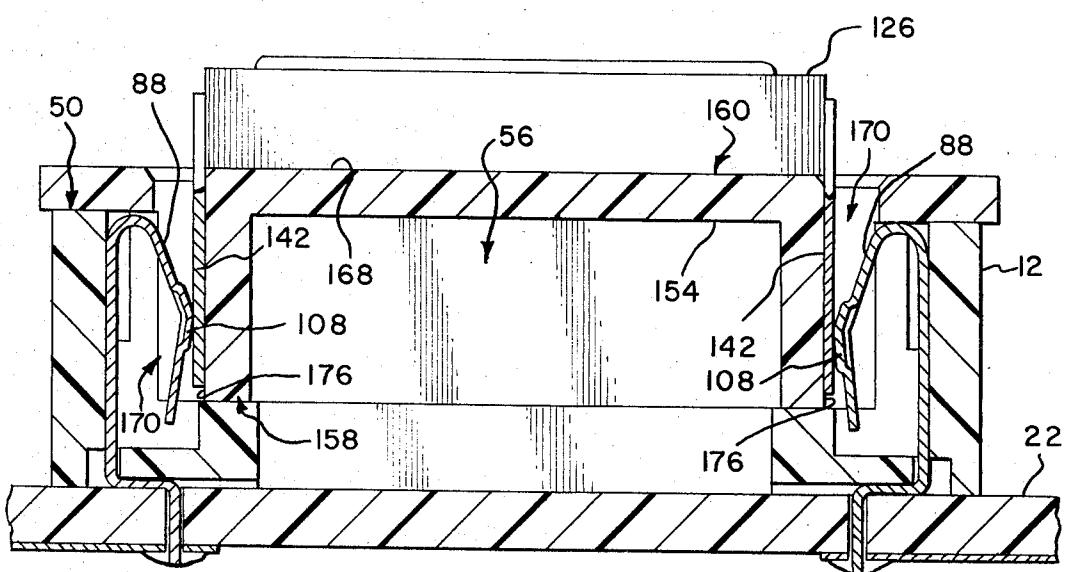
PATENTED NOV 5 1974

3,846,734



SHEET 3 OF 7

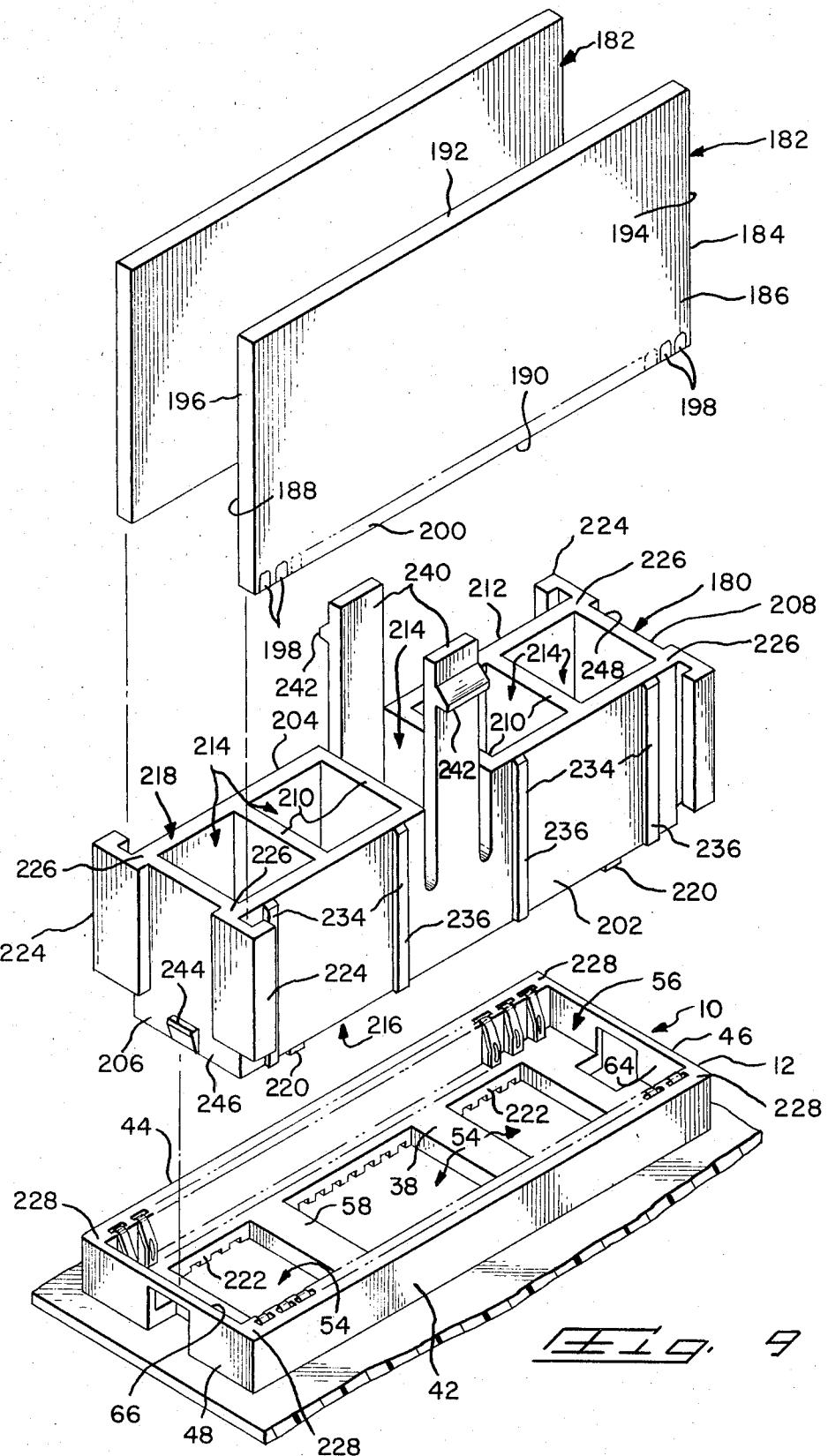
PATENTED NOV 5 1974

3,846,734


SHEET 4 OF 7

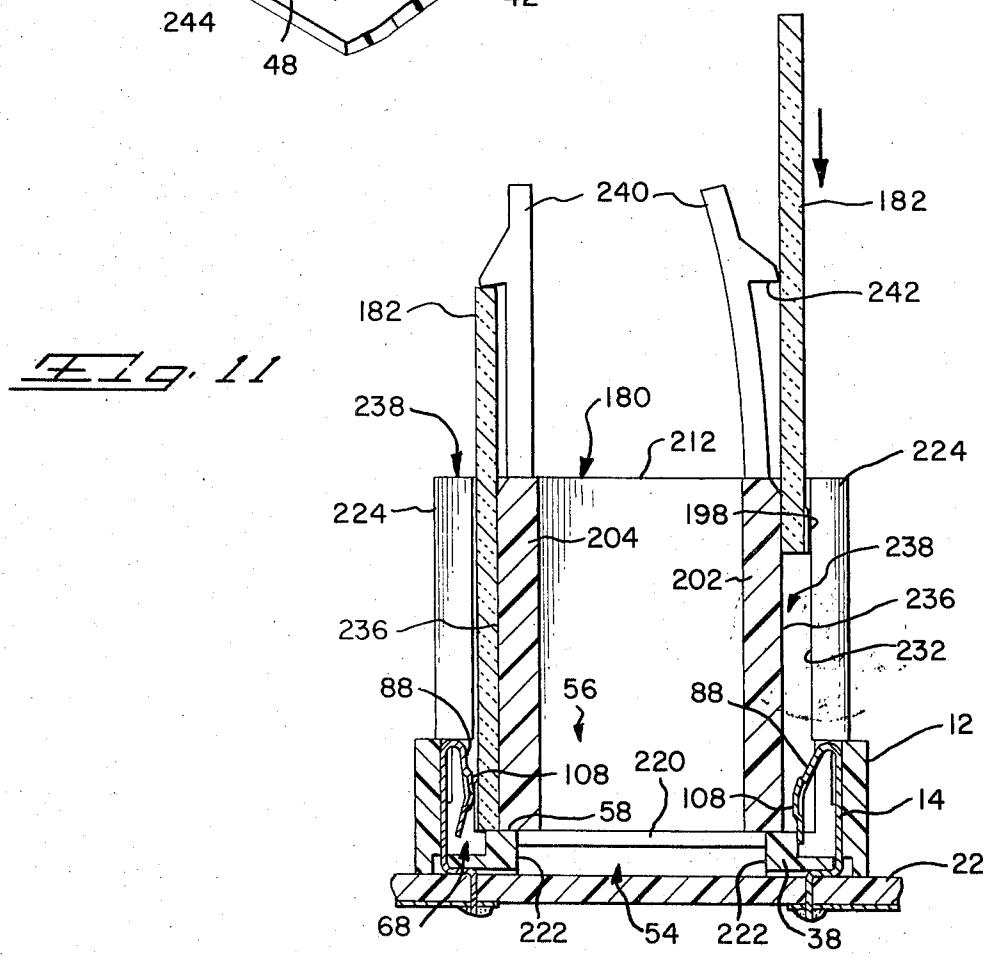
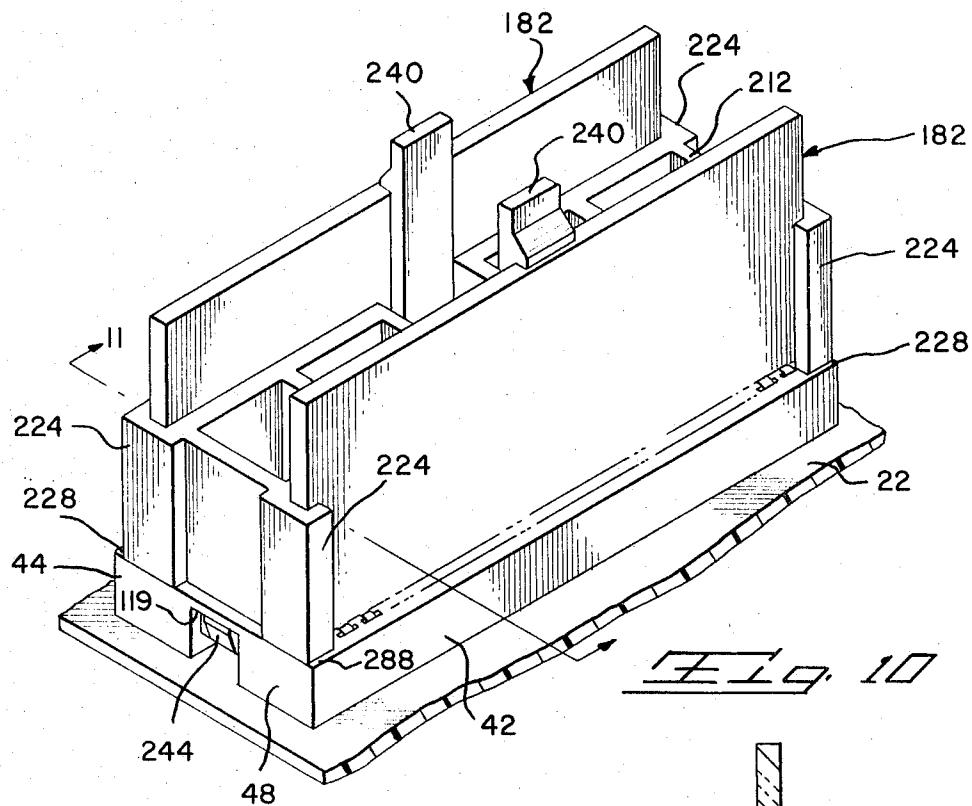
PATENTED NOV 5 1974

3,846,734


SHEET 5 OF 7

PATENTED NOV 5 1974

3,846,734



SHEET 6 OF 7

PATENTED NOV 5 1974

3,846,734

SHEET 7 OF 7

FRAMES FOR ADAPTING A MULTI-CONTACT ELECTRICAL CONNECTOR TO ELECTRICALLY CONNECT WITH VARIOUS STYLES OF SUBSTRATES

BACKGROUND OF THE INVENTION

1. Field Of The Invention

The present invention broadly relates to multicontact electrical connectors for interconnecting ceramic substrates or the like with external electrical circuitry and more particularly is concerned with a method of, frames useful for, and multi-contact electrical connector assemblies which result from, adapting a multi-contact electrical connector, of the general type mountable on a circuit board or the like, from being one only of a first connector class capable of electrically interconnecting external circuitry of the circuit board with two rows of spaced apart terminal contact pads disposed respectively on two opposing side surfaces of a leadless ceramic substrate, to one of a second connector class capable of electrically interconnecting the external electrical circuitry of the circuit board with two rows of spaced apart electrical terminal leads disposed respectively on two opposing side surfaces of a leaded ceramic substrate which leads extend therefrom in a substantially common direction, or to one of a third connector class capable of electrically interconnecting external circuitry of the circuit board with one row of spaced apart terminal contact pads disposed respectively on one longitudinal edge margin of one of the face surfaces of another leadless ceramic substrate.

2. Description Of The Prior Art

Integrated circuit devices or similar devices are commonly mounted on relatively thin ceramic plates, commonly referred to as substrates, which have conductors thereon extending from the integrated circuit device or "chip" to the marginal portions of the substrate. At the present time, ceramic substrates or the like packaging integrated circuit devices or the like are commercially available in several styles of "leadless" and "leaded" substrates.

A first style is a leaded ceramic substrate or the like which has two rows of spaced apart terminal leads respectively disposed on two opposite side surfaces of the leaded substrate which leads connect with the conductors extending from the chip being packaged by the substrate and extend from the substrate in a substantially common direction.

A second style is a leadless ceramic substrate or the like which has one row of spaced apart electrical terminal contact pads respectively disposed on one longitudinal edge margin of one of the face surfaces of the leadless substrate which pads connect with the conductors extending from the chip being packaged by the substrate.

A third style is another leadless ceramic substrate or the like which has two rows of spaced apart electrical terminal contact pads respectively disposed on two opposite side surfaces of the leadless substrate which pads connect with the conductors extending from the chip being packaged by the substrate.

Heretofore, it has been the common practice to design a different multi-contact electrical connector for electrically interconnecting each of the styles of leaded and leadless ceramic substrates with external electrical circuitry.

One connector designed for the aforementioned first style of ceramic substrate or the like, that being the leaded substrate, is illustrated and described in U.S. Pat. No. 3,696,323. Other connectors are illustrated and described in U.S. Pat. Nos. 3,573,617, 3,602,874, 3,602,875, and 3,701,077.

Another connector designed for the aforementioned second style of ceramic substrate or the like, that being a leadless substrate, is illustrated and described in U.S. Pat. No. 3,601,751.

A further connector designed for the aforementioned third style of ceramic substrate or the like, that being another, different leadless substrate, is illustrated and described in a copending U.S. patent application, Ser. No. 186,876, filed Oct. 6, 1971. An improvement upon the connector described in the aforementioned application for Letters Patent is the connector illustrated and described in our copending U.S. patent application, Ser. No. 321,106, filed Jan. 4, 1973. The latter connector, originally designed for use in conjunction with the aforementioned third style of substrate, has two rows of pre-loaded electrical contacts retained therein which impose high normal contact forces upon the contact pads of the third style of substrate even though only a relatively slight deflecting of the spring portions of the contacts by the substrate occurs when the substrate is positioned in the connector between the two rows of contacts.

While the latter connector does not per se form the invention disclosed by the instant application, the principle of the present invention is directly applicable, although not so limited in its application, to the latter connector. The principle which broadly characterizes the present invention is the adaptation of a connector from being one of a first connector class intended only for utilization with one style of substrate to one of a second or third connector class available for utilization with a selected one of the other styles of substrates. This principle represents a rather substantial departure from the aforementioned common practice of designing a different connector for each of the different styles of substrates.

OBJECTS AND SUMMARY OF THE INVENTION

An object of the invention, therefore, is to substantially eliminate the need for a different multicontact electrical connector for each of the various styles of leadless and leaded ceramic substrates or the like by adapting a connector normally only used in conjunction with a leadless substrate having contact pads on its opposing side surfaces to additionally accommodate a leadless substrate having contact pads on a edge margin of its face surface or a leaded substrate having leads extending from its opposite side surfaces.

Another object of the invention is to provide frames to be selectively used in conjunction with the connector to adapt the connector to accommodate the aforementioned additional substrates.

A yet another object of the invention is to provide the capability of interchanging between the styles of substrates used with a connector after the connector has been mounted on a circuit board with its multiple contacts soldered to the external electrical circuitry of the board.

A further object of the invention, therefore, is to provide adapting frames which are both insertable into, and removable from, the connector after the connector

has been mounted on the circuit board with its multiple contacts soldered to the circuitry of the board.

A still further object of the invention is to provide connector assemblies, comprised by the connector in combination with separate frames, into and from which the additional styles of substrates may be readily plugged and unplugged.

These and other objects of the invention are achieved in a preferred embodiment thereof wherein a method is provided for adapting a multi-contact electrical connector, of the general type mountable on a circuit board or the like, from being one of only a first connector class, capable of receiving and supporting therewithin in a generally parallel, spaced relationship to the board a leadless ceramic substrate or the like having two rows of spaced apart electrical terminal contact pads respectively disposed on two opposite side surfaces of the leadless substrate and capable of electrically interconnecting external electrical circuitry of the board with the contact pads of the leadless substrate, to being a selected one of second and third connector classes, wherein a connector of the second class is capable of supporting in a spaced relationship to the connector and in a generally parallel, spaced relationship to the board a leadless ceramic substrate or the like having two rows of spaced apart electrical terminal leads respectively disposed on two opposite side surfaces of the leadless substrate which leads extend therefrom in a substantially common direction and capable of electrically interconnecting the external electrical circuitry of the board with the terminal leads of the leadless substrate, and wherein a connector of the third class is capable of supporting in a generally perpendicular, spaced relationship to the board another style of a leadless substrate or the like having a row of spaced apart electrical terminal contact pads disposed on a longitudinal edge margin of one face surface of the leadless substrate and capable of electrically interconnecting the external electrical circuitry of the board with the contact pads of the leadless substrate. Two separate frames are provided by the adapting method, each of which being capable of being separately received within the connector in place of the leadless substrate for which the connector was originally designed. After one of the frames is inserted into the connector, the one of the two substrate styles for which the connector has now been adapted to accommodate by the one frame, may be readily plugged or inserted into the connector.

Other objects and attainments of the invention will become apparent to those skilled in the art upon a reading of the following detailed description when taken in conjunction with the drawings in which there is shown and described an illustrative embodiment of the invention; it is to be understood, however, that this embodiment is not intended to be exhaustive nor limiting of the invention but is given for purpose of illustration in order that others skilled in the art may fully understand the invention and the principles thereof and the manner of applying it in practical use so that they may modify it in various forms, each as may be best suited to the conditions of a particular use.

BRIEF DESCRIPTION OF THE DRAWINGS

In the course of the following detailed description reference will be frequently made to the attached drawings in which:

FIG. 1 is a perspective exploded view showing the multi-contact electrical connector, originally illustrated and described in our aforementioned copending patent application, Ser. No. 321,106, filed Jan. 4, 1973, which forms the preferred embodiment of the connector to be adapted to accommodate other styles of ceramic substrates according to the principle of the present invention;

FIG. 2 is a perspective view of the connector of FIG. 1 showing the style of leadless substrate, for which the connector was originally designed, supported in the connector and the connector mounted on the circuit board;

FIG. 3 is a cross-sectional view taken along line 3—3 of FIG. 2; FIG. 4 is a cross-sectional view similar to that of FIG. 3 but showing the substrate aligned with the connector prior to insertion of the substrate into the connector;

FIG. 5 is a perspective exploded view showing the connector mounted on the circuit board and aligned with a frame for adapting the connector to accommodate another style of substrate, that being a leaded substrate, which is illustrated in the view in alignment with the frame;

FIG. 6 is a perspective view of the frame assembled to the connector with the leaded substrate plugged into the assembled connector and frame;

FIG. 7 is a cross-sectional view taken along line 7—7 of FIG. 6;

FIG. 8 is a cross-sectional view similar to that of FIG. 7 but showing the leaded substrate aligned with the assembled connector and frame prior to plugging of the substrate into the assembly;

FIG. 9 is a perspective exploded view showing the connector mounted on the circuit board and aligned with another frame for adapting the connector to accommodate a different style of leadless substrates which are illustrated in the view in alignment with the frame;

FIG. 10 is a perspective view of the frame of FIG. 9 assembled to the connector with both of the leadless substrates of FIG. 9 plugged into the assembled connector and frame; and

FIG. 11 is a cross-sectional view of the assembled connector and frame with one of the leadless substrates plugged therein taken along line 11—11 of FIG. 10, further showing the other of the same style of leadless substrates in the process of being plugged into the assembly.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now in greater detail to the various figures of the drawings wherein like reference characters refer to like parts, there is shown at 10 in FIGS. 1 and 2 a multi-contact electrical connector which, as stated hereinbefore, is also illustrated and described in our aforementioned copending patent application. The connector 10 forms the preferred embodiment of the connector to be adapted to accommodate other styles of ceramic substrates or the like according to the principle of the present invention. A substantial portion of the description of the connector 10 contained in our aforementioned patent application will be repeated hereinafter in order that the principle of the present invention and its practical applications will be readily understood upon a reading of the instant application.

However, reference may be made to our aforementioned patent application for a complete, detailed description of the connector 10, which description is incorporated herein by reference thereto.

The connector 10 is generally comprised by an insulating housing 12 and a plurality of electrical contacts 14 arranged in two opposing rows in the housing 12.

The connector 10 was originally designed to serve the function of electrically interconnecting terminal contact pads 16 of a ceramic substrate 18 supported within the housing 12 between the rows of contacts 14 with external electrical circuitry such as the conductors 20 on one side of a printed circuit board 22 as shown in FIG. 3. The substrate 18, referred to hereinbefore as the third style of ceramic substrate, comprises a generally rectangular ceramic body 24 having parallel faces 26, 28, side surfaces 30, 32, and end surfaces 34, 36. Conductors (not shown) contained in the ceramic body 24 extend from the terminal contact pads 16 on the side surfaces 30, 32 of the third style of substrate 18.

As stated hereinbefore, the connector 10 is, in part, comprised by an insulating housing 12. The housing 12 may be manufactured by conventional injection molding methods from any suitable dielectric material, such as polycarbonate or a glass filled nylon.

The housing 12 is generally rectangular having a base wall 38 at a forward side 40 of the housing 12 and a pair of opposing, elongated, parallelly-aligned side walls 42, 44 and a pair of opposing, relatively short, parallelly-aligned end walls 46, 48 extending from the base wall 38 toward a rearward side 50 of the housing 12. The housing 12 is mountable on the circuit board 22 at an exterior surface 52 of the base wall 38 of the housing 12. The base wall 38 of the housing 12 has two large openings 54 extending therethrough to facilitate dissipation of the heat generated within the housing 12 and to minimize the amount of material in the housing 12.

A central substrate-receiving cavity 56 is defined within the housing 12 by the interior surfaces 58, 60, 62, 64, 66 of the walls 38, 42, 44, 46, 48 of the housing 12. The interior surface 58 of the base wall 38 is capable of supporting the third style of substrate 18 thereon at the face 28 of the third style of substrate 18 in a generally parallel relationship to, and spaced from, the circuit board 22 when the third style of substrate 18 is received within the central cavity 56 and when the housing 12 is mounted on the board 22 at the exterior surface 52 of the base wall 12 as shown in FIGS. 2 and 3.

As more clearly shown in FIGS. 3 and 4, a two of spaced apart contact-receiving cavities 68 extend through each of the side walls 42, 44 of the housing 12 from the forward side 40 to the rearward side 50 of the housing 12. The contact-receiving cavities 68 open into the central cavity 56 at the interior surfaces 60, 62 of the side walls 42, 44.

Still referring to FIGS. 3 and 4, a row of spaced apart recesses 76, the purpose for which will be explained hereinafter, is formed in the interior surface 58 of the base wall 38 of the housing 12 along each of a pair of opposing longitudinal edge portions 78 of the base wall 38 which edge portions 78 are respectively located adjacent to the interior surfaces 60, 62 of the side walls 42, 44 of the housing 12. Each of the recesses 76 correspond to, and open into, one of the contact-receiving

cavities 68. Each of the recesses 76 have a floor 80 at a location therein which is remote from the interior surface 58 of the base wall 38 of the housing 12. Further, each of the recesses 76 have a shoulder 82 at a location therein which is remote from the corresponding contact-receiving cavity 68 and which adjoins the floor 80 of the recess 76 and faces in a direction generally toward the corresponding cavity 68.

The connector 10 is further comprised, as stated hereinbefore, by a plurality of electrical contacts 14 arranged in two opposing rows in the housing 12. Each of the contacts 14 may be fabricated by a conventional stamping and forming operation from any suitable metal, such as pre-tin plated stainless steel.

The contact 14 is basically comprised by a flat, central post portion 86, a resiliently flexible spring portion 88 which extends outwardly from one end of the flat post portion 86, and a terminal portion 100 which extends from the opposite end of the flat post portion 86. One contact 14 is retained in each of the contact-receiving cavities 68 of the housing 12.

The terminal portion 100 is capable of electrical and mechanical connection to the conductor 20 of the circuit board 22 when the housing 12 is mounted on the board 22 preferably by insertion of the terminal portion 100 through an aperture 102 formed through the circuit board 22. The preferred electrical and mechanical connection of the terminal portion 100 of the contact 14 to the conductor 20 of the board 22 is achieved by a solder 104.

With the contact in its fully inserted position and desired configuration as shown in FIGS. 3 and 4, the flexible spring portion 88 extends from its respective cavity 86 proximate the rearward side 50 of the housing 12 in an overlying relationship to the plane of the interior surface 58 of the base wall 38 and in a direction generally toward the corresponding one of the recesses 76 formed in the interior surface 58 of the base wall 38.

During insertion of the contact 14 (prior to formation of a bent portion 96 in the post portion 86) into a contact-receiving cavity 86 from the rearward side 50 of the housing 12, the spring portion 88 is partially flexed or deflected in a direction generally toward its respective cavity 86 so that a terminating free end 94 of the spring portion 88 will extend into the corresponding one recess 76 upon continued insertion of the contact 14. Upon extension into the one recess 76, the free end 94 of the spring portion 88 is designed to abut the shoulder 82 of the one recess 76 at a location along the shoulder 82 which is spaced from the floor 80 of the one recess 76 to thereby provide the spring portion 88 of the contact 14 in a pre-loaded condition and also to avoid any tendency for the free end 94 to drag on the floor 80 of the recess 76 upon further deflection of the spring portion 88 toward its respective cavity 86.

The spring portion 88 of each contact 14 has a camming surface 106 thereon located remote from the free end 94 of the spring portion 88. The leading opposing longitudinal edges of the third style of substrate 18 engage the camming surfaces 106 during insertion of the substrate 18 into the housing 12 and cause further flexing or deflection of each of the spring portions 88 toward its respective one of the contact-receiving cavities 68 until each of the spring portions 88 has deflected to its respective desired fully loaded condition at which time the third style of substrate 18 is positioned upon

60
65

the interior surface 58 of the base wall 38 between the rows of contacts 14.

The spring portion 88 of each contact 14 has a contact surface 108 thereon located adjacent to the free end 94 of the spring portion 88. When the contact 14 is in its fully inserted position as shown in FIG. 4, the contact surface 108 of the spring portion 88 is disposed adjacent to, and in an overlying relationship to the plane of, the interior surface 58 of the base wall 38 and in a facing relationship toward the opposing row of contacts 14. In the preferred embodiment, the contact surface 108 is disposed generally perpendicular to the plane of the interior surface 58. The contact surface 108 preferably is on an embossment on the spring portion 88 as shown at 110 in order to define a precise contact area on the spring portion 88.

Therefore, as is readily illustrated in FIGS. 3 and 4, when the third style of substrate 18 is placed in the substrate-receiving cavity 56 of the housing 12 and supported on the interior surface 58 of the base wall 38 of the housing 12 between the opposing rows of contacts 14 with the contact pads 16 of the third style of substrate 18 respectively electrically engaging the contact surfaces 108 on the contacts 14 in the two opposing rows of contacts 14, the spring portion 88 of each of the contacts 14 will be additionally flexed or deflected toward its corresponding cavity 68 so as to displace the free end 94 of the spring portion 88 of each contact 14 away from the shoulder 82 of the corresponding recess 76. With the free end 94 of the spring portion 88 so displaced from the shoulder 82 of the recess 76 and from the floor 80 of the recess 76, as shown in FIG. 3, a desired predetermined contacting pressure is achieved between the contact surface 108 and the contact pad 16 by substantially normal or perpendicular forces imposed on the pads by the spring portions 88 to provide a good electrical connection therebetween the contact surfaces 108 and the pads 16 having a desired low contact resistance characteristic.

Referring again to FIG. 1, there is illustrated a slot 112 formed through each of the end walls 46, 48 of the housing 12 at the forward side 40 of the housing 12 and also through each of a pair of opposite edge portions 114 of the base wall 38 respectively adjacent to the end walls 46, 48. These slots 112 provide access by a convention prying tool (not shown) to the face 28 of the third style of substrate 18 on which face 28 the substrate 18 is mounted on the interior surface 58 of the base wall 38 in order to facilitate one manner of removal of substrate 18 from the housing 12.

Also shown in FIG. 1, a strap 116 is provided for assembly to the housing 12 in an overlying relationship to the third style of substrate 18 when the substrate 18 is supported on the interior surface 58 of the base wall 38. An interengaging means in the form of a slot 118 is disposed on each of the end walls 46, 48 of the housing 12 for securing the strap 116 to the housing 12 as best shown in FIG. 2. The slots 118 defined shoulders 119 respectively in the interior surfaces 64, 64 of the end walls 46, 48 which face toward the plane of the interior surface 58 of the base wall 38 and engage with opposite end tabs 122 of the strap 116 to secure it to the housing 12 with the substrate 18 therebetween. Although the contact spring portion 88 provide adequate retention of the third style of substrate 18 therebetween under most conditions, the strap 116 is an optional feature of the connector 10 which may be benefi-

cial if the circuit board 22 on which the connector 10 and the third style of substrate 18 are mounted is disposed in a vertical position or an inverted position instead of the horizontal position as shown in FIG. 2. 5 Also, the strap 116 may be of benefit when the connector 10 is used in an environment wherein severe vibrations may be encountered.

The strap 116 has a central recess 120 on its forward facing surface into which a prying tool or the like (not shown) may be inserted in order to flex the strap 116 and thereby disengage opposing end tabs 122 of the strap 116 from shoulders 119 of the slots 118 of the end walls 46, 48 of the housing 12 and thereby achieve disassembly of the strap 116 from the housing 12.

It is apparent from the drawings that the connector can be serviced from its rearward side; that is it can be assembled to the board and the third style of ceramic substrate 18 can be "plugged" into, and "unplugged" from, the connector 10 from its rearward side.

As stated hereinbefore the principle which broadly characterizes the present invention is the adaptation of a connector from being one of a first connector class intended only for utilization with one style of substrates to one of a second or third connector class available for utilization with a selected one of other styles of substrates. FIG. 5 through 8 and 9 through 11 respectively illustrate two embodiments of the present invention which represent physical applications of the aforementioned principle.

Referring now generally to FIGS. 5 through 8, and more particularly to FIG. 5, there is shown at 124 an adapter frame forming one embodiment of the present invention. As stated hereinbefore, the connector 10 was originally designed to accommodate therein only one style of a ceramic substrate or the like, that being the leadless substrate 18 referred to hereinbefore as the third style of ceramic substrate. However, according to the principle of the present invention, the connector 10 may be adapted to accommodate a leaded ceramic substrate or the like, referred to hereinbefore as the first style of ceramic substrate, which is shown at 126 in FIG. 5, by providing the frame 124 which is designed to be received within the connector 10 in place of the third style of substrate 18 and by inserting the frame 124 therein, preferably, prior to the mounting of the first style of substrate 126 thereon.

The first style of ceramic substrate 126 comprises a generally rectangular ceramic body 128 having parallel faces 130, 132, side surfaces 134, 136, and end surfaces 138, 140. Conductors (not shown) contained in the ceramic body 128 extend from the electrical terminal leads 142 on the side surfaces 134, 136 of the first style of substrate 126. The leads 142 extend from the substrate 126 in a substantially common direction which is generally parallel to the side surfaces 134, 136 and perpendicular to the faces 130, 132.

The frame 124 may be manufactured by conventional injection molding methods from any suitable dielectric, insulating material, such as polycarbonate or a glass filled nylon.

The frame 124 is generally rectangular having a pair of opposing, elongated, parallelly-aligned side walls 144, 146, a pair of opposing, relatively short, parallelly-aligned end walls 148, 150, and several spaced apart intermediate walls 152 which are parallelly-aligned with each other and with the end walls 148, 150 and interconnect the side walls 144, 146. This arrangement

of the side walls 144, 146, end walls 148, 150, and intermediate walls 152 together defines a body 154 of the frame 124 having four large openings 156 therethrough to facilitate dissipation of the heat generated within the connector 10 and the substrate 126 and to minimize the amount of material in the frame 124.

The body 154 of the frame 124 has, in general, a forward end 158 and a rearward end 160. The forward end 158 is capable of being received in the central cavity 56 of the housing 12 between the rows of contacts 14 retained in the housing 12 and capable of being supported on the interior surface 58 of the base wall 38 of the housing 12. When the forward end 158 of the body 154 is so received by, and supported in, the housing 12, as more clearly shown in FIG. 8, the rearward end 160 of the body 154 extends from the housing central cavity 56 to a location beyond the rearward side 50 of the housing 12.

Two lateral portions 162, 164 respectively extend outwardly from the two side walls 144, 146 of the body 154 at the rearward end 160 thereof. Each of the lateral portions 162, 164 overlie one of the two opposing rows of contacts 14 and one of the two rows of contact-receiving cavities 68 of the side walls 42, 44 of the housing 12 at the rearward side 50 thereof when the forward end 158 of the body 154 is received and supported in the housing central cavity 56, as shown in FIG. 8.

A plurality of spaced apart apertures 166 are arranged in two rows and defined respectively in the two side walls 144, 146 of the body 154 at the rearward end 160 thereof adjacent respectively to the two opposing lateral portions 162, 164 of the frame body 154.

Edge surfaces of the side walls 144, 146, end walls 148, 150 and intermediate walls 152 at the rearward end 160 of the frame body 154 together define a mounting surface 168 on the rearward end 160 of the frame body 154 which is located between the rows of apertures 166. The mounting surface 168 is spaced from the rearward side 50 of the housing 12 when the forward end 158 of the body 154 is received and supported in the housing cavity 56, as shown in FIG. 8. The mounting surface 168 on the frame body 154 will mount the third style of substrate 126 thereon, as shown in FIG. 7, in a spaced relationship to the rearward side 50 of the housing 12, and generally parallel, spaced relationship to the circuit board 22, after the housing 12 is mounted on the board 22 and the forward end 158 of the frame body 154 is received and supported in the housing cavity 56.

A plurality of spaced apart slots 170 are arranged in two rows and defined respectively in the exterior surfaces 172, 174 of the side walls 144, 146 of the frame body 154. As shown in FIG. 8, the exterior surfaces 172, 174 of the side walls 144, 146 are disposed respectively adjacent to the two rows of contacts 14 and the interior surfaces 60, 62 of the side walls 42, 44 of the housing 12 when the forward end 158 of the body 154 is received and supported in the housing cavity 56. Each of the slots 170 is aligned with one of the apertures 166 at the rearward end 160 of the body 154 and extends therefrom to the forward end 158 of the body 154. Each of the slots 170 is capable of accommodating therein one of the contact spring portions 88 with the one aperture corresponding to each slot 170 aligned with the one contact spring portion 88 being accommodated by each slot 170 when the forward end 158 of the

frame body 154 is received and supported in the housing cavity 56. Each of the slots 170 have an interior surface portion 176 facing in a general direction toward the contact surface 108 on the contact spring portion 88 being accommodated in each slot 170 when the forward end 158 of the frame body 154 is received and supported in the housing cavity 56.

As shown in FIG. 7, the portion of the forward end 158 of the frame body 154 between the interior surface portions 176 of the two rows of slots 170 is generally disposed between the rows of the terminal leads 142 of the first style of substrate 126 with each of the interior surface portions 176 of the slots 170 accommodating therealong one of the terminal leads 142 and supporting the one lead 142 in electrical and mechanical contact with the corresponding one contact surface 108 of the contact spring portion 88 being accommodated in each slot 170 when the first style of substrate 126 is mounted on the mounting surface 168 of the rearward end 160 of the frame body 154 after the forward end 158 of the body 154 is received and supported in the housing cavity 56. The interior surface portion 176 of each slot 170 supports the lead 142 as it is being inserted therealong and prevents deflection of the lead 142 away from the respective contact spring portion 88. Therefore, as the lead engages the contact surface 108 of the contact spring portion 88, the contact spring portion 88 must flex or deflect in a general direction away from the interior surface portion 176 of the slot 170 in order to allow the lead 142 to pass therebetween since the lead 142 is not allowed to deflect and the contact surface 108 and the interior surface portion 176 are initially either disposed substantially in non-pressurized engagement with each other or only an extremely small gap exists therebetween.

Referring again to FIG. 5, a ramped lug 178 is disposed on each of the exterior surfaces 180, 182 of the end walls 148, 150 of the frame body 154 (only the lug 178 on end wall 148 is shown) at the forward end 158 thereof and projects outwardly therefrom. The exterior surfaces 180, 182 of the end walls 148, 150 of the body 154 are located proximate to the interior surfaces 66, 64 of the end walls 48, 46 of the housing 12, with the lugs 178 respectively engaging the shoulders 119 in the interior surfaces 64, 66 of the end walls 46, 48 of the housing 12, when the forward end 158 of the body 154 is received and supported in the housing cavity 56 as shown in FIG. 6. By means of the engagement between the lugs 178 of the frame body 154 and the shoulders 119 of the housing 12, the body 154 is retained in the housing cavity 56. The material of the housing 12, while forming a substantially rigid structure, is still sufficiently resiliently deformable to allow outward bowing of the mid-sections of the end walls 46, 48 of the housing 12 in order to allow the lugs 178 of the frame 124 to pass by the end walls 46, 48 to their desired position under the shoulders 119. Likewise, the edge of a thin knife or other suitable tool may be used to again bow the end walls 46, 48 outwardly enough to allow the lugs 178 to pass by the end walls 46, 48 during retraction of the frame 124 from the housing 12.

When the frame body 154 has been received in the housing cavity 56, as shown in FIG. 8, the connector 10 is now adapted to receive the first style of leaded substrate 126. When the first style of leaded substrate 126 is "plugged" into the now adapted connector 10 by in-

serting the leads 142 of the two rows thereof respectively through the apertures 166 in the two rows thereof and along the interior surface portions 176 of the two rows of slots 170 until the first style of substrate 126 is mounted on the mounting surface 168 at the rearward end 160 of the frame body 154, the leads 142 engage the contact surfaces 108 of the contacts 14 and thereby cause the pre-loaded contact spring portions 88 of the contacts 14 to become additionally flexed or deflected toward their respective cavities 68, as shown in FIG. 7. The desired predetermined contacting pressure is thereby achieved between the leads 142 and the contact surfaces 108 by the substantially normal or perpendicular forces imposed on the leads 142 by the additionally flexed and loaded spring portions 88 to provide a good electrical connection therebetween having a desired low contact resistance characteristic.

It is readily apparent that the first style of substrate 126 may be "unplugged" from its position of FIG. 7 by gripping the substrate 126 at its end surfaces 138, 140 and retracting it back to its position of FIG. 8.

Referring now generally to FIGS. 9 through 11, and more particularly to FIG. 9, there is shown at 180 another adapter frame forming another embodiment of the present invention. According to the principle of the present invention, the connector 10 may also be adapted to accommodate preferably two of another leadless ceramic substrate or the like, referred to hereinbefore as the second style of ceramic substrate, which is shown at 182 in FIG. 9, by providing the frame 180 which is designed to be received within the connector 10 in place of the third style of substrate 18 and by inserting the frame 180 therein, preferably, prior to the supporting of the second style of substrate 182 therein.

The second style of ceramic substrate 182 comprises a generally rectangular ceramic body 184 having parallel faces 186, 188, side surfaces 190, 192, and end surfaces 194, 196. Conductors (not shown) contained in the ceramic body 184 extend from spaced apart terminal contact pads 198 arranged in a row thereof and disposed on a longitudinal edge margin 200 of one face surface 186 of the second style of substrate 182.

The frame 180 may be manufactured by conventional injection molding methods from any suitable dielectric, insulating material, such as polycarbonate or a glass filled nylon.

The frame 180 is generally rectangular having a pair of opposing, elongated, parallelly-aligned side walls 202, 204, a pair of opposing, relatively short, parallelly-aligned end walls 206, 208, and several spaced apart intermediate walls 210 which are parallelly-aligned with each other and with the end walls 206, 208 and interconnect the side walls 202, 204. This arrangement of the side walls 202, 204, end walls 206, 208, and intermediate walls 210 together defines a body 212 of the frame 180 having five large openings 214 therethrough to facilitate dissipation of the heat generated within the connector 10 and to minimize the amount of material in the frame 180.

The body 212 of the frame 180 has, in general, a forward end 216 and a rearward end 218. The forward end 216 is capable of being received in the central cavity 56 of the housing 12 between the rows of contact surfaces 108 of the contacts 14 retained in the housing 12 and capable of being supported on the interior surface 58 of the base wall 38 of the housing 12. When the

forward end 216 of the frame body 212 is so received by, and supported in, the housing 12, as more clearly shown in FIG. 11, the rearward end 218 of the body 212 extends from the housing central cavity 56.

Ribs 220 interconnect the two side walls 202, 204 at the forward end 216 of the frame body 212 and project therefrom. The ribs are received in the openings 54 of the base wall 38 of the housing 12 and engaged with opposing side portions 222 of the openings 54 to thereby center the frame body 212 between the rows of contact surfaces 108, as clearly shown in FIG. 11, when the forward end 216 of the frame body 212 is received and supported in the housing central cavity 56.

Guide structures 224 are formed on the rearward end 218 of the frame body 212 at each of four corners 226 defined by the respective intersections between the side walls 202, 204 and the end walls 206, 208. Each of the guide structures 224 have a right-angled shape and project outwardly from the side walls 202, 204.

When the forward end 216 of the frame body 212 is received and supported in the housing central cavity 56, each of the guide structures 224 seats on respective corners 228 defined by the intersections between the respective side walls 42, 44 and end walls 46, 48 of the housing 12, as shown in FIG. 10. The guide structures 224 may be viewed as two pairs respectively projecting from the side walls 202, 204. First interior surface portions 230 of one of the two pairs of guide structures 224 are aligned parallel to, and generally face toward, each other as are the first interior surface portions 230 of the other of the two pairs of guide structures 224. Second interior surface portions 232 of one of the two pairs of guide structures 224 are aligned in the same plane as are the second interior surface portions 232 of the other of the two pairs of guide structures 224. Further, the second interior surface portions 230 of each of the two pairs of guide structures generally face toward their respectively adjacent one of the side walls 202, 204. The first interior surface portions 230 of each respective pair of guide structures are spaced from each other through a distance slightly greater than the length of the second style of substrate 182 whereby each of the pairs of guide structures is capable of receiving one of the substrates 182 therebetween.

Each of the side walls 202, 204 of the frame body 212 preferably have a plurality of spaced apart rails 234 formed thereon which individually extend from the forward end 216 to the rearward end 218 of the frame body 212 and project outwardly from the respective side walls 202, 204. Each of the rails 234 have an exterior surface portion 236. The exterior surface portions 236 of the respective rails on one of the side walls 202, 204 are aligned in the same plane as are the exterior surface portions 236 of the respective rails 234 on the other of the side walls 202, 204. Furthermore, the plane of the exterior surface portions 236 of the plurality of rails 234 disposed on one of the two side walls 202, 204 is aligned generally parallel to the plane of the second interior surface portions 232 of the pair of guide structures 224 disposed on that same one of the two side walls 202, 204 and is spaced therefrom through a distance slightly greater than the thickness of the second style of substrate 182 to thereby, in effect, define a slot 238 through which one of the substrates 182 may be received, as shown in FIG. 11. When the forward end 216 of the frame body 212 is received and supported in the housing cavity 56, as shown in FIG.

11, the pre-loaded contact spring portions 88 of one of the rows of contacts 14 extends into the forward end of the slot 238 with the contact surfaces 108 on each of the contact spring portions 88 in that row thereof preferably being spaced from the plane of the exterior surface portions 236 of the rails 234 on the one of the side walls 202, 204 adjacent to that row of contact spring portions 88 through a distance slightly less than the thickness of the second style of substrate 182.

FIG. 11 depicts the frame 180 received and supported in the housing cavity 56 with one of the substrates 182 fully inserted into the frame 180 to a desired final position. At this final position, the substrate 182 at its side surface 190 is supported on the interior surface 58 of the base wall 38 of the housing 12 between the exterior surface portions 236 of the rails 234 on the side wall 204 of the frame body 212 and the corresponding one of the rows of contact surfaces 108 in a generally perpendicular relationship to the plane of the interior surface 58 of the base wall 38 of the housing 12 and in a generally perpendicular, spaced relationship to the circuit board 22. As the substrate 182 is inserted to this final position, the leading edge margin of the substrate 182, with the row of contact pads 198 thereon in facing relationship to the contact surfaces 108, engages the contact spring portions 88 and flexes or deflects them in a general direction toward their respective contact-receiving cavities until the substrate 182 is seated on the interior surface 58 of the housing base wall 38. The desired predetermined contacting pressure is thereby achieved between the contact pads 198 and the contact surfaces 108 by the substantially normal or perpendicular forces imposed the contact pads 198 by the additionally flexed and loaded spring portions 88 to provide a good electrical connection therebetween having a desired low contact resistance characteristic.

It is readily apparent that the second style of substrate 182 may be readily "unplugged" from its position within the connector and frame assembly as well as readily "plugged" therein. The right-hand portion of FIG. 11 illustrates one of the substrates 182 in the process of being plugged into the assembly (by reversing the arrow, the substrate 182 may be viewed in the process of being unplugged from the assembly).

Referring again to FIG. 9, each of the side walls 202, 204 is partially discontinuous at a midsection thereof. A resiliently flexible latch arm 240 is formed on each of the side walls 202, 204 and extends through the discontinuous mid-section of each side wall and projects rearwardly from the rearward end 218 of the frame body 212. Each of the latch arms 240 has latching shoulder 242 projecting outwardly therefrom and facing toward the forward end 216 of the frame body 216. As illustrated in FIG. 11, one latch arm 240 may be 55 flexed toward the other when a substrate 182 is inserted into the slot 238 of the frame 180 adjacent thereto. After the substrate 182 is fully inserted to its resting position within the connector and frame assembly, the latch arm 240 is released and returns to its original unflexed condition, as illustrated in the left-hand portion of FIG. 11, to thereby positively lock the sub-

strate in the desired rested position within the assembly.

Referring again to FIG. 9, a ramped lug 244 is disposed on each of the exterior surfaces 246, 248 of the end walls 206, 208 of the frame body 212 (only the lug 244 on end wall 206 is shown) at the forward end 216 thereof and projects outwardly therefrom. The exterior surfaces 246, 248 of the end walls 206, 208 of the body 212 are located proximate to the interior surfaces 66, 64 of the end walls 48, 46 of the housing 12, with the lugs 244 respectively engaging the shoulders 119 in the interior surfaces 64, 66 of the end walls 46, 48 of the housing 12, when the forward end 216 of the frame body 212 is received and supported in the housing cavity 56 as shown in FIG. 10. By means of the engagement between the lugs 244 of the frame body 212 and the shoulders 119 of the housing 12, the body 212 is retained in the housing cavity 56. As stated hereinbefore, the material of the housing 12, while forming a substantially rigid structure, is still sufficiently resiliently deformable to allow outward bowing of mid-sections of the end walls 46, 48 of the housing 12 in order to allow the lugs 244 of the frame 180 to pass by the end walls 46, 48 to their desired position under the shoulders 119. Likewise, the edge of a thin knife or other suitable tool may be used to again bow the end walls 46, 48 outwardly enough to allow the lugs 244 to pass by the end walls 46, 48 during retraction of the frame 180 from the housing 12.

It is thought that the invention and many of its attendant advantages will be understood from the foregoing description and it will be apparent that various changes may be made in the form, construction and arrangement of the adapter frames described without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the forms hereinbefore described being merely the preferred embodiments thereof.

What is claimed is:

1. In combination, a printed circuit board having an electrical circuit thereon, apertures in said board, a ceramic substrate having a plurality of electrical contacts exposed to one side of said substrate, said contacts on the substrate comprising electrical leads extending at an angle to the plane of the substrate, and a housing for connecting said substrate to said board, said housing comprising:
 - a member having a pair of opposed parallel sides, electrically conductive spring members positioned in said parallel sides to accommodate the ceramic substrate and effect an electrical connection with the contacts,
 - means on the spring members for electrically attaching them to the circuitry of a printed circuit board, and locking means to retain said substrate in electrically conductive relationship with said housing, said locking means comprising a frame with slots therein that receive the leads and wedge them against the spring members, and a detent on the frame that snaps into a slot in the housing.

* * * * *