发明名称
一种适用于可控硅调光器的 LED 调光装置

摘要
本发明涉及一种适用于可控硅调光器的 LED 调光装置，包括整流器、假负载电路、过零检测电路、高频变压器、主电源驱动集成电路、次级整流及滤波电路、二次电源驱动集成电路和平均电压检测电路。实施本发明具有以下有益效果：可以实现使用可控硅调光器对 LED 灯泡进行亮度调节，具有调光效果好，使用寿命长，结构简单，利于环保节约能源的优点。
1. 一种适用于可控硅调光器的 LED 调光装置，其特征在于，包括：
    整流器，用于将交流电转化为直流电；
    假负载电路，包括一个 MOSFET 管和假负载电阻，使可控硅调光器进入正常工作的切换状态；
    过零检测电路，通过控制 MOSFET 管的开关来控制假负载电路的开或关，使可控硅调光器正常切换工作，同时降低假负载电路的损耗；
    高频变压器，改变电压，启动主电源驱动集成电路并使其进入正常开关工作状态；
    主电源驱动集成电路，在其关断时，高频变压器向次级整流及滤波电路释放能量；经整流、滤波后加到二次电源驱动集成电路，驱动 LED 光源发光；
    次级整流及滤波电路，用于整流和滤波；
    二次电源驱动集成电路，用于驱动 LED 光源发光；
    平均电压检测电路，用于检测调光彩压。

2. 根据权利要求 1 所述的适用于可控硅调光器的 LED 调光装置，其特征在于，所述的假负载电阻的阻值接近钨丝灯泡工作时的内阻。

3. 根据权利要求 2 所述的适用于可控硅调光器的 LED 调光装置，其特征在于，所述的平均电压检测电路将所检测到的调光电压输入到二次电源驱动集成电路的调光控制端口，改变二次电源驱动集成电路的开关占空比，从而改变 LED 光源的电流。

4. 根据权利要求 3 所述的适用于可控硅调光器的 LED 调光装置，其特征在于，所述的 LED 光源为一个或多个，单色或多色 LED 灯。
一种适用于可控硅调光器的 LED 调光装置

技术领域
[0001] 本发明涉及一种调光装置，更具体地说，涉及一种适用于可控硅调光器的 LED 调光装置。

[0002] 背景技术
[0003] 在现有技术中，可控硅调光器可以对传统的钨丝灯泡进行亮度调节，见图 1，可控硅调光器 5 的导通时间是由电路的电容 9 的充电时间来决定的，从而改变交流电正弦波的导通角，使钨丝灯泡 10 的电流改变，达到亮度的调节效果，电容 9 为前沿相切技术。如图 1 所示，可控硅调光器 5 与钨丝灯泡 10 串联，当接上电源的第一时刻，电流经保险丝 1，电感 2，可调电位器 7，电阻 8，电容 9，钨丝灯泡 10，形成充电电容 9 的充电回路，电容 9 的充电时间由可调电位器 7 的阻值大小决定，当电容 9 按一定时间充满电后，向触发二极管 6 触发可控硅调光器 5 的控制端，使可控硅调光器 5 导通，因钨丝灯泡 10 是阻性负载，所以经过可控硅调光器切相后的电压波形 1 与电流波形 3 是一致的（见图 2），其导通到关断时间也是一致的。因而可实现对钨丝灯泡 10 的调光功能。

[0004] LED 光源是节能型的新型光源，功率远比钨丝灯泡小，而且 LED 灯是低压直流供电的器件，需配有一个能峰转换的 LED 驱动电源，才能驱动 LED 灯发。LED 驱动开关稳压电源是容性负载，没有设计调光控制电路，所以当将图 1 所示的钨丝灯泡 10 换成带开关稳压电源的 LED 灯泡时，可控硅调光器 5 电流的导通时间，比电压的导通时间短（见图 3）。当没有电流经可控硅调光器 5 时，图 1 中的电阻 7 到电容 9 之间仍然有电压，此电压又会相对电容 9 进行充电，经一定时间充电后会再次对可控硅调光器 5 触发，可控硅调光器 5 就会出现在一个周期内重复导通两次以上的现象（见图 3），所以 LED 灯，因驱动开关稳压电源输入电流的断续，出现频闪光的现象。因此，在现有技术中，可控硅调光器对内置或外置开关电源的 LED 灯泡无法进行亮度调节。

[0005] 发明内容
[0006] 本发明要解决的技术问题在于，针对现有技术的上述缺陷，提供一种适用于可控硅调光器的 LED 调光装置，实现对 LED 灯泡亮度的调节。
[0007] 本发明解决其技术问题所采用的技术方案是：设计一种适用于可控硅调光器的 LED 调光装置。包括：
[0008] 1. 整流器，用于将交流电转化为直流电；
[0009] 2. 假负载电路，包括一个 MOSFET 管和假负载电阻，使可控硅调光器进入正常工作的调光状态；“MOSFET”是英文（Metal-Oxide-Semiconductor Field-Effect-Transistor）的缩写，译成中文是“金属氧化物半导体场效应管”；
[0010] 3. 过零检测电路，通过控制 MOSFET 管的开关来控制假负载电路的开或关，使可控硅调光器正常切换工作，同时降低假负载电路的损耗；
[0011] 4. 高频变压器，改变电压，启动主电源驱动集成电路并使其进入正常开关工作状态；
[0012] 5. 主电源驱动集成电路，在其关断时，高频变压器向次级整流及滤波电路释放能
量，经整流、滤波后加到二次电源驱动集成电路，驱动 LED 光源发光电；
(0013) 6. 次级整流及滤波电路，用于整流和滤波；
(0014) 7. 二次电源驱动集成电路，用于驱动 LED 光源发光；
(0015) 8. 平均电压检测电路，用于检测调光电压。
(0016) 以上所述的适用于可控硅调光器的 LED 调光装置，其特征在于，所述的假负载电阻的阻值接近钨丝灯泡工作时的内阻。
(0017) 以上所述的适用于可控硅调光器的 LED 调光装置，其特征在于，所述的平均电压检测电路将所检测到的调光电压输入到二次电源驱动集成电路的调光控制端口，改变二次电源驱动集成电路的开关占空比，从而改变 LED 光源的电流。
(0018) 以上所述的适用于可控硅调光器的 LED 调光装置，其特征在于，所述的 LED 光源为一个或多个，单色或多色 LED 灯。
(0019) 实施本发明的一种适用于可控硅调光器的 LED 调光装置，具有以下有益效果：可以实现使用可控硅调光器对 LED 灯泡进行亮度调节，使人们在使用 LED 灯具时，能够根据不同的环境对 LED 的亮度进行调节。LED 具有寿命长、光效高、无辐射、抗冲击及低能耗等优点，属于绿色的节能环保照明，因此使用本发明具有调光效果好，使用寿命长，结构简单，利于环保节约能源的优点。

附图说明
(0020) 下面将结合附图及实施例对本发明作进一步说明，附图中：
(0021) 图 1 是现有技术中使用于可控硅调光器调节钨丝灯泡亮度的电路原理图，图中：1 保险丝；2 电感；3 电阻；4 电容；5 双向可控硅调光器；6 双向触发二极管；7 可调电位器；8 电阻；9 电容；10 钨丝灯泡。
(0022) 图 2 是现有技术中使用于可控硅调光器调节钨丝灯泡亮度时，可控硅调光器切相后的电压波形与电流波形的示意图，图中：1 输入交流电压波形；3 输入交流电流波形。
(0023) 图 3 是图 1 中的钨丝灯泡换为 LED 灯时电压波形与电流波形示意图，图中：1 输入交流电压；3 输入交流电流。
(0024) 图 4 是本发明一种适用于可控硅调光器的 LED 调光装置实施例的电路原理图，图中：1 线绕电阻；2 电感；3 电阻；4 整流桥；5、6、7、8、9、10 电阻；11 电容；12 电阻；13 电容；14 假负载电阻；15MOSFET 管；16 二极管；17 电阻；18 电阻；19 稳压管；20 运算放大器；21 电解电容；22 电阻；23 基准 IC；24、25 电阻；26 电解电容；27 电阻；28 二极管；29 电阻；30 电容；31 电阻；32 二极管；33 高频变压器初级线圈；34 高频变压器反馈线圈；35、36 电阻；37 电容；38 主电源集成块；39 次级线圈；40 二极管；41 电解电容；42 电阻；43 二级电源集成块；44 电阻；45 二极管；46 电感。
(0025) 图 5 是本发明一种适用于可控硅调光器的 LED 调光装置实施例的程序流程图。
(0026) 图 6 是本发明一种适用于可控硅调光器的 LED 调光装置实施例中加入假负载电路时，可控硅调光器进入正常切相工作状态的波形图，图中：1 输入交流电压；3 输入交流电流。
(0027) 图 7 是本发明一种适用于可控硅调光器的 LED 调光装置实施例中整流后直流电压与过零检测电路输出驱动的波形图，图中：1 整流后直流电压；2 过零检测电路输出驱动。
具体实施方式

[0028] 本发明的具体实施方式是：如图 1 和图 4 所示，市电经可控硅调光器切相后的电压，加到 LED 调光电源输入两端，经整流桥 4 整成直流电压后，通过二极管 16 给电解电容 21 滤波，当电解电容 21 充满电后，电压经过电阻 17 启动 MOSFET 管 15 开通，电流从假负载电阻 14 流入 MOSFET 管 15 到地，形成回路。因假负载电阻 14 的阻值较小接近钨丝灯泡工作时的内阻，所以使可控硅调光器进入正常切相工作状态（见图 6），同时电压经高频变压器初级线圈 33，启动主电源集成电路 38，并给运算放大器 20 供电，此时过零检测信号由电阻 7、9、10 和电容 11 去耦后，输入到运算放大器 20 的反相输入端，并与运算放大器 20 的内部同相基准作比较后，输出端控制 MOSFET 管 15 的开或关，在过零检测信号是上升沿时，运算放大器 20 控制 MOSFET 管 15 关断；当是下降沿时，运算放大器 20 控制 MOSFET 管 15 导通（见图 7）。导通时，为可控硅调光器内部触发电路提供充电回路，使可控硅调光器进入正常切相工作状态，可控硅调光器被触发导通后，为了降低假负载电阻 14 的损耗，运算放大器 20 控制 MOSFET 管 15 关断。可控硅调光器的维持电流将由主电源集成电路块 38 驱动的二次电源集成电路 43 和 LED 灯源消耗的电流所维持，由电阻 7、8、12 和电容 13 组成的平均电压检测电路，所检测到的调光电压输入到二次电源集成电路 43 的调光控制端口，通过控制二次电源集成电路 43 的开关占空比的大小，来控制 LED 灯源的电流大小，从而改变 LED 灯源的亮度。当可控硅调光器的导通角越大时，平均电压检测电路的电容 13 两端电压越高，输入到二次电源集成电路 43，使其占空比变大，驱动 LED 灯源的电流也变大，LED 灯源的亮度随之增加，所以 LED 灯源的亮度就可随可控硅调光器的调节而发生线性变化，从而实现可控硅调光器对 LED 灯泡的调光功能。

[0029] 综上所述，如本技术领域中普通技术人员可以了解的，本说明书中所述的只是本发明的一个较佳实施例，凡依本发明的构思所做的改变或修饰，皆应在本发明的权利要求保护范围内。
图6

图7