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CRYPTOGRAPHIC CO-PROCESSOR

 CROSS-REFERENCE TO RELATED APPLICATIONS
This application is based on U.S. Provisional Patent Application Serial Nos.
60/059,082, 60/059,839, 60/059,840, 60/059,841, 60/059,842, 60/059,843,
60/059,844, 60/059,845 and 60/059,847, each of which was filed on September

16, 1997, the disclosures of which are incorporated herein by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which
is subject to copyright protection. The copyright owner has no objection to the
facsimile reproduction by anyone of the patent disclosure, as it appears in the
Patent and Trademark Office patent files or records, but otherwise reserves all

copyright rights whatsoever.

BACKGROUND OF THE INVENTION

Field Of The Invention

The present invention relates generally to a secure communication platform
on an integrated circuit, and more particularly relates to a digital signal processor

(DSP) with embedded encryption security features.

Description Of The Prior Art

Digital signal processors (DSPs) are widely used in devices such as
modems, cellular telephones and facsimiles. With an increase in digital
communications, data transmission security has become an issue in numerous DSP
applications. A standard DSP is not capable of providing data transmission

security; thus, additional hardware and software are required.
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Security for digital communications is available on various integrated
circuits. The integrated circuit security features include hardware implemented
encryption algorithms such as the Data Encryption Standard (DES), Hash function
algorithms and hardware implemented public key accelerators. The availability of
this hardware makes it possible to provide security for distributed computing;
however, no hardware implemented encryption algorithms have been known to be
incorporated in a DSP.

Software encryption algorithms have also been developed to provide
security for distributed computing. One commonly used encryption algorithm is
the Data Encryption Standard (DES). DES is a block cipher which operates on
64-bit blocks of data and employs a 56-bit key. Another commonly used standard
is the Digital Signature Algorithm (DSA). The DSA standard employs an
irreversible public key system. These algorithms and more are part of the public
domain and are available on the Internet.

Hash function algorithms are used to compute digital signatures and for
other cryptographic purposes. One Hash function algorithm is the U.S.
government’s Secure Hash Algorithm (SHA-1).

Another security standard commonly used is the Internet Protocol Security
Standard (IPsec). This standard provides security when communicating across the
Internet. The standard requires DES to encrypt an Internet Protocol data packet,
SHA-1 for authentication, and a public key algorithm for hand-shaking.

Since the IPsec standard requires different encryption algorithms, a
software library is usually created so that a desired algorithm may be accessed
when needed. Security systems employing encryption libraries are software
implemented and designed specifically to run on the user’s processor hardware.

Digital communication systems are not generally designed with security
hardware. In most systems, security is achieved by software, such as described
above, which is not entirely secure because there is no security hardware to block
access to the security software by an intruder. Another problem associated with
software encryption algorithms is that some of the software encryption algorithms

run slower than when hardware implemented.
2
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- OBJECTS AND SUMMARY OF THE INVENTION

It is an object of the present invention to provide a digital signal processor
with embedded security functions on a single integrated circuit.

It is another object of the present invention to provide a secure
communications platform that can implement a user’s application and dedicate
cryptographic resources to encryption and decryption requests on demand.

It is another object of the present invention to provide an increase in
encryption security through hardware implementations.

It is another object of the present invention to provide a security co-
processor for high speed networking products such as routers, switches and hubs.

A cryptographic co-processor constructed in accordance with one form of
the present invention includes a processor having encryption circuits built into it.
The processor is capable of processing various applications, such as modem and
networking applications. The encryption circuits and firmware make it possible to
add security to the various processing api)ﬁcations‘ Hardware such as encryption
and hash circuits are provided and structured to work together to provided
accelerated encryption/decryption capabilities. A memory is programmed with
cryptographic algorithms that support various encryption/decryption techniques.
The cryptographic co-processor is structured so that a manufacturer of data
communication products could substitute a current processor with the
cryptographic co-processor and receive encryption capabilities with little
modification to the existing product.

Since DSP’s are the building block of many communication systems, a
secured DSP with universal security features that may be selected by the
manufacturer of the equipment in which the DSP forms part of would have far
ranging benefits.

The benefits of a universal cryptographic co-processor (e.g., DSP) is that it
can perform standard processor functions and standard encryption functions with

no peripheral hardware or cryptographic software. Because the cryptographic co-
3
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processor is implemented on a standard processor platform (i.e., substrate or
monolithic chip), the processor that is being used in a manufacturer’s product can
be substituted with the cryptographic co-processor with little or no modification to
the original design. The manufactured product incorporating the secure, universal
co-processor now has encryption capabilities along with the original processor
capabilities.

A preferred form of the cryptographic co-processor, as well as other
embodiments, objects, features and advantages of this invention, will be apparent
from the following detailed description of illustrated embodiments, which is to be

read in connection with the accompanying drawing.

BRIEF DESCRIPTION OF THE DRAWING

Figure 1 is a block diagram of the cryptographic co-processor formed in
accordance with the present invention.

Figure 1A is a block diagram similar to Figure 1 showing another view of
the cryptographic co-processor of the present invention.

Figure 2 is a block diagram of the program memory preferably used in the
co-processor of the present invention for MMAP=0.

Figure 3 is a block diagram of the program memory preferably used in the
co-processor of the present invention for MMAP=1.

Figure 4 is a block diagram of the data memory preferably used in the co-
processor of the present invention.

Figure 5 is a block diagram of the PCI memory preferably used in the co-
processor of the present invention.

Figure 6 is a block diagram of the DMA subsystem preferably used in the
co-processor of the present invention.

Figure 7is a block diagram of the DSP “local” memory preferably used in
the co-processor of the present invention.

Figure 8 is a flow chart showing the DMA control preferably used in the

co-processor of the present invention. 4
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Figure 9 is a block diagram of the hash/encrypt circuit preferably used in
the co-processor of the present invention.

Figure 10 is a block diagram of the interrupt controller preferably used in
the co-processor of the present invention.

Figure 11 is a block diagram of the CGX software interface preferably used
in the co-processor of the present invention.

Figure 12 is a block diagram illustrating the layers of software preferably
used in the co-processor of the present invention.

Figure 13 is a block diagram of the CGX overlay interface preferably used
in the co-processor of the present invention.

Figure 14 is a block diagram illustrating the hierarchical interface of the
CGX kernel cryptographic service preferably used in the co-processor of the
present invention.

Figure 15 is a functional state diagram illustrating the CGX kernel
preferably used in the co-processor of the present invention.

Figure 16 is a functional tree diagram showing the KEK hierarchy
preferably used in the co-processor of the present invention.

Figure 17 is a block diagram of a symmetric key weakening algorithm
preferably used in the co-processor of the present invention.

Figure 18 is a functional tree diagram showing the symmetric key hierarchy
preferably used in the co-processor of the present invention.

Figure 19 is a portion of a computer program defining the PCDB data type
preferably used in the co-processor of the present invention.

Figure 20 is a block diagram of the kernel block preferably used in the co-
processor of the present invention.

Figure 21 is a portion of a computer program defining the kernel block
preferably used in the co-processor of the present invention.

Figure 22 is a portion of a computer program defining the command block

preferably used in the co-processor of the present invention.
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Figure 23 is a portion of a computer program defining the secret key object
preferably used in the co-processor of the present invention.

Figure 24 is a portion of a computer program defining the public keyset
preferably used in the co-processor of the present invention.

Figure 25 is a portion of a computer program defining the Diffie-Hellman
public keyset preferably used in the co-processor of the present invention.

Figure 26 is a portion of a computer program defining the RSA public
keyset preferably used in the co-processor of the present invention.

Figure 27 is a portion of a computer program defining the DSA public
keyset preferably used in the co-processor of the present invention.

Figure 28 is a portion of a computer program defining the DSA digital
signature preferably used in the co-processor of the present invention.

Figure 29 is a portion of a computer program defining the DSA seed key
preferably used in the co-processor of the present invention.

Figure 30 is a portion of a computer program defining the key cache
register data type preferably used in the co-processor of the present invention.

Figure 31 is a portion of a computer program defining the symmetrical
encryption context store preferably used in the co-processor of the present
invention.

Figure 32 is a portion of a computer program defining the one-way hash
context store preferably used in the co-processor of the present invention.

Figure 33 is a portion of a computer program defining one example of the
CGX wrap code and command interface preferably used in the co-processor of the
present invention.

Figure 34 is a portion of a computer program defining the CGX overlay
table preferably used in the co-processor of the present invention.

Figure 35 is a portion of a computer program defining the KCS object

preferably used in the co-processor of the present invention.
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DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A block diagram of the cryptographic co-processor hardware formed in
accordance with the present invention is illustrated in Figure 1. The cryptographic
co-processor is effectively broken down into three major components:
Input/Output (I/O) blocks 2, processor blocks 4 and security blocks 6. Preferably,
the co-processor may further include a standard direct memory access (DMA)
controller circuit 42, which will be described in greater detail. The Input/Output
blocks 2 provide several customized functions that enable the application to gain
access outside the cryptographic co-processor. The processor blocks 4 make up
the central prbcessing unit and control circuitry used to run and control the overall
dev.ice.. The security blocks 6 implement the security features of the cryptographic
co-pfocessor as well as protection schemes.

Like most general purpose DSP platforms, the cryptographic co-processor
includes components which provide several Input/Output (I/O) functions. These
components include a synchronous serial port 12, a bit I/O circuit 8, and an /O
interface circuit 14 to support Personal Computer Memory Card Industry
Association (PCMCIA) standard, or Peripheral Component Interconnect (PCI)
interfaces. The IDMA /O interface circuit 14 is a standard 16 bit interface
provided directly on the integrated DSP co-processor. The synchronous serial port
12 is a standard serial port which may be used for serial communications and
multiprocessor communications. The synchronous serial port 12 may be used to
interface to a coder/decoder (CODEC). The /O pins 8 are used to control
external devices such as analog to digital converters and are used for sensing inputs
from external devices (e.g., flow control bits, ring detection).

The processor blocks 4 include a DSP 20, reset control circuit 16 and clock
control circuit 22. The DSP 20 used in this embodiment is preferably Part No.
2183 manufactured by Analog Devices Inc. of Norwood, MA. However, the
secure communication platform may be embedded in any standard DSP or other
processor. The 2183 DSP provides the necessary processing power (MIPS) and
instructions to implement various applications (e.g., V.34 modem, ADSL, 10 Base

T Ethernet). The reset control circuit 16 is a standard circuit used to manage the
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reset of the DSP 20 and/or other hardware blocks tied to the cryptographic co-
processor platform. The clock control 22 contains a standard system clock which
synchronizes data flow. Standard program random access memory (RAM) 10 and
data RAM 18 are included in the DSP for storing application programs and data.

The security portion of the co-processor 6 includes an encryption circuit
36, arandom number generator circuit 38, a hardware public key accelerator
circuit 28, a secure kernel read only memory (ROM) 26, protected kernel random
access memory (RAM) 32, volatile key cache registers 34, hash circuit 30 and
kernel mode control circuit 24. It is, of course, understood that the encryption
circuit 36, random number generator circuit 38, public key accelerator circuit 28,
registers 34, hash circuit 30, mode control circuit 24 and other circuits used in the
co-broqessor may be implemented by discrete components or may be equivalently
formed as part of the DSP 20, which may be programmed to provide the functions
of these circuits. It should also be noted that the term “circuit” used herein
incorporates both hardware and software implemented connotations.

The encryption circuit 36 provides a hardware assisted DES engine. A
hardware assisted DES engine is provided because it is faster than a software DES
engine, which would require more operations to encrypt and decrypt. The DES
engine can be used to implement DES and Triple DES encryption and decryption.
Furthermore, it implements four cipher modes: Electronic Code Block (ECB),
Cipher Block Chaining (CBC), Cipher Feed Back (CFB), and Output Feed Back
(OFB). The DES and Triple DES encrypt/decrypt operations are pipelined and
preferably execute full 16-round DES in 4 clock cycles. The DES engine
preferably encrypts 64 bits of data at a time and has a separate state register 40
(i.e., the feed-back or initialization vector register) that can be read and written.
The state register 40 is important in allowing multiple encryption circuit contexts,
thus allowing packet switching. With a writable state register 40, a previous
context can be reloaded or a new one created. This minimizes the overhead of
changing cryptographic keys and initialization vectors. Hardware circuits are
provided for padding insertion, verification and removal which accelerates the
encryption operation. A control register is provided to program the algorithm and

mode to be used.
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The hardware random number generator 38 provides a true, non-
deterministic noise for the purpose of generating keys, initialization vectors and
other random number requirements. Random numbers are preferably 16 bit words
provided to the kernel. The secure kernel requests random numbers as needed to
perform requested commands and can directly supply from 1 to 65,535 random
bytes to a host application.

The hash circuit 30 provides hardware accelerated SHA-1 and MDS5 one-
way hash processing. The hash circuit is coupled with the encryption circuit 36
where the combined operation chains both hashing and encrypt/decrypt operations
to reduce processing time for data which needs both operations applied. For hash-
then-encrypt and hash-then-decrypt operations, the cryptographic co-processor
performs parallel execution of both functions from the same source and destination
buffers. For encrypt-then-hash and decrypt-then-hash operations, the processing is
sequential; however, minimum latency is achieved through the pipeline chaining
design. An offSet can be specified between the start of hashing and the start of
encryption to support certain protocols such as IPsec.

The hardware public key accelerator 28 is provided to support large
number addition, subtraction, squaring and multiplication. It operates with the
secure kernel to provide full public key services to the application program. The
kernel provides macro-level algorithms to perform numerous security functions,
such as Diffie-Hellman key agreement, Rivest Shamir Adleman (RSA) encrypt or
decrypt and calculate/verify digital signatures. The hardware public key

accelerator speeds up the computation intensive operations of the algorithms by
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providing the mathematical calculations. The secure kernel is embodied as
firmware which is mask programmed into a ROM. There are preferably 32K
words of kernel ROM 26 available for a cryptographic library and an Application
Programming Interface (API).

A kernel mode control circuit 24 is provided for controlling a security
perimeter around the cryptographic hardware and software. Because the
cryptographic co-processor has a general purpose DSP and a cryptographic co-
processor, the device may operate in either a user mode or a kernel mode. Inthe
user mode the kernel space is not accessible, while in the kernel mode it is
accessible. When in the kernel mode, the kernel RAM and certain registers and
functions are accessible only to the secure kernel firmware. The kernel executes
host requested macro level functions and then returns control to the calling
appliéation.

The protected kernel RAM 32 provides a secure storage area on the
cryptographic co-processor for sensitive data such as keys or intermediate
calculations during public key operations. The kernel mode control circuit 24
controls access by only allowing the internal secure kernel mode access to this
RAM. A public keyset and a cache of 15 secret keys may be stored in the
protected kernel RAM 32. The purpose of having a separate area for volatile key
RAM is security related. It isolates the RAM from the application thus making it
more difficult to accidentally leak RED (plaintext) key material.

A key feature of the co-processor of the present invention is its universality.
First, a manufacturer may substitute the co-processor of the present invention for a
conventional digital signal processor (DSP) in the equipment (e.g., modem, cellular
phone, etc.) which is being manufactured. The conventional digital signal
processor (DSP) does not provide secure communications. However, the co-
processor of the present invention performs all of the functions of the conventional
DSP but also has the unique capability of providing secure communications.

Secondly, the co-processor of the present invention is also universal in that
it provides a library of cryptographic algorithms which may be selected by the
manufacturer for use in the digital communications equipment that is being

manufactured. The manufacturer may select one or more encryption algorithms or

10
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functions (e.g., DES, HASH functions, etc.) for particular use with the equipment
being manufactured. The manufacturer uses one or more commands to access the
library and select the desired encryption algorithm or function from the library.

The advantage of the universal co-processor is that the user does not have to
recreate any encryption or hashing or public key algorithms, as they are pre-
programmed in the ROM library; all the manufacturer has to do is select whichever
algorithm he wishes to use in the encryption or hashing process. Selection of a
particular algorithm is facilitated by using a pre-programmed command set which
includes a number of encryption, public key and HASH commands. For example,
the command CGX-PUBKEY-ENCRYPT refers to a public key encrypt command
which is used to encrypt the application’s data using an RSA encryption algorithm
which is stored in the library. This operation implements encryption or the RSA
signature operation using the pubkey member of a public key structure.

These commands are recognized by a microprocessor forming part of the
co-processor, which accesses the library and retrieves the particular encryption
algorithm, for example, the RSA algorithm, from the library and uses it in the
encryption process.

The application software designer selects the éncryption and/or HASH
functions from the library and thus avoids having to directly communicate with the
crypto hardware.

Because the algorithms are mask programmed into the read only memory
(ROM) and are on the same platform, i.e., substrate, as the DSP, they are more
secure than if they were embodied in pure software.

As mentioned previously, a standard direct memory address (DMA)
controller circuit 42 is preferably included within the cryptographic co-processor to
facilitate bulk data movements without requiring continuous processor supervision.
It preferably allows 32 bit transfers to occur at up to 40 M words per second. The
DMA controller circuit 42 is coupled to the input/output section 2 and the security
section 6 of the co-processor.

An interrupt controller circuit 50 is coupled to the security blocks 6 and the
processor blocks 4. The interrupt controller circuit 50 provides enhancements to

the existing interrupt functions in the processor blocks 4. The interrupt controller

11
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circuit 50 provides interrupt generation capabilities to the processor blocks 4 or to
a standard external host processor. Under programmable configuration control, an
interrupt may be generated due to the completion of certain operations such as
encryption complete or hash complete.

An application register circuit 52 is coupled to the security blocks 6 and the
processor-blocks 4. The application register circuit 52 is a set of memory-mapped
registers which facilitate communciations between the processor blocks 4 and a
standard host processor via the PCI or PCMCIA bus. One of the registers is
preferably 44 bytes long and is set as a ‘mailbox’ up to hold a command structure
passed between standard host processor and the processor blocks 4. The
application register circuit 52 also provides the mechanism which allows the
proéess_or blocks 4 and the standard host processor to negotiate which has
ownership of the hash block circuit 30 and the encryption block circuit 36.

An external memory interface circuit 54 is coupled to the security blocks 6,
the processors blocks 4 and the direct memory address (DMA) controller circuit
42. The external memory interface circuit 54, provides an interface to external
memory. The preferred address width is 26 bits wide and the preferred data width
is 32 bits wide.

A laser variable storage circuit 56, is coupled to the security blocks 6 and
the processor blocks 4. The laser variable storage circuit 56 consists of 256 bits of
tamper-proof factory programmed data which is preferably accessible to the
processor blocks 4 and the secure kernel. Included in the laser variable bits are:
112-bit local storage variable (master key encryption key), 80-bit randomizer seed,
48-bit program control data (enables/disables various IC features and configures
the IC), and 16-bit standard cyclic redundancy check (CRC) of the laser data. The
program control data bits (PCDB) preferably includes configuration for perrﬁitted
key lengths, algorithm enables, red key encryption key loading and internal IC
pulse timing characteristics. Some of the PCDB settings may be overridden with a
digitally signed token which may be loaded into the cryptographic co-processor
when it boots. These tokens are created by the IC manufacturer and each is

targeted to a specific IC, using a hash of its unique identity (derived from the above

laser variable).

12
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A serial electrically erasable programmable read-only memory (EEPROM)
interface circuit 58 is coupled to the security blocks 6 and the processor blocks 4.
The serial EEPROM interface circuit 58 is used to allow an external non-volatile
memory to be connected to the cryptographic co-processor for the purpose of
storing PCI or PCMCIA configuration information (plug and play), as well as
general purpose non-volatile storage. For example, encrypted (black) keys could
be stored into EEPROM for fast recovery after a power outage.

The cryptographic co-processor may be integrated into a wide variety of
systems, including those which already have a processor and those which will use
the cryptographic co-processor as the main processor. The cryptographic co-
processor and more specifically the input/output blocks 2, can be configured to one
of tﬁree host bus modes: IDMA 72, PCI 76 or PCMCIA 76. All three of these
interface modes are industry standards. A bus mode input 66 and a bus select input
68 is coupled to the input/output blocks 2 for selecting the mode.

The bus mode input 66 is also coupled to a multiplexing circuit 60. The
multiplexing circuit 60 is a standard multiplexing circuit used to select between one
of the three host bus modes (IDMA, PCI, PCMCIA).

An external memory interface (EMI) 70 is a standard memory interface
used to interface with external devices. This interface is coupled to the processor
block 4.

An interrupt input circuit 62 is coupled to the processor blocks 4. The
interrupt input circuit 62 is a standard interrupt input circuit provided for the use
by external devices. A standard flag input/output circuit 64 is also coupled to the
processor blocks 4.

The master key (LSV) is intended to be different on each chip. Therefore,
it is not mask-programmed. Mask programming is done with lithography which
affects the artwork of the integrated circuit. Since no two chips should have the
same LSV, the LSV is preferably programmed into a memory of the chip by laser
trimming. Laser trimming is advantageous in that each die may be fabricated with
a different LSV so that each cryptographic co-processor is individualized with a
particular LSV.

13
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The following is a detailed description of the cryptographic co-processor
taken from a User’s Manual prepared by the assignee and owner of the invention,
Information Resource Engineering, Inc. (IRE). The cryptographic co-processor is
often referred to herein by the trademark ‘CryptIC’. The co-processor is also often
referred to by part number ADSP 2141. The following includes a description of each
of the major subsystems within the CryptIC co-processor, including complete register
details.

GENERAL DESCRIPTION

It can be seen from Figure 1A that the ADSP 2141 CryptIC is a highly
integrated Security Processor ASIC which incorporates a sophisticated, general
purpose DSP, along with a number of high-performance Cryptographic function blocks,
as well as a PCI, PCMCIA and Serial EEPROM interface. It is fabricated in .35u
CMOS triple-layer metal technology utilizing a 3.3V Power Supply. It is initially
available in a 208-pin MQFP package with a Commercial (0° — 70°C) Temperature
Range. A 208-pin TQFP package will follow.

DSP Core

The DSP Core is a standard Analog Devices ADSP-2183 with full ADSP-2100
family compatibility. The ADSP-2183 combines the base DSP components from the
ADSP-2100 family with the addition of two serial ports, a 16-bit Internal DMA port, a

Byte DMA port, a programmable timer, Flag I/O, extensive interrupt capabilities, and

- on-chip program and data memory. The External Memory Interface of the 2183 has

been extended to support up to 64M-words addressing for both Program and Data
memory. Some core enhancements have been added in the CryptIC version, including
on-chip Security ROM and Interrupt functions.

Refer to the Analog Devices ADSP-2183 Rev B datashest for further
information. (Available in Adobe Acrobat format at:
http://www analog.com/pdf/ADSP_2183 pdf)

14
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Secure Kernel (Firmware)

The Secure Kernel is embodied as firmware which is mask-programmed into
ROM within the DSP, thus rendering ifc tamper-proof. The Kernel provides the API
(Application Programming Interface) to applications which require security services
from the CryptIC. Those applications may be software executing in the ‘User Mode’
on the DSP, or they may be external ‘Host’ software accessing the CryptIC via a PCI
or PCMCIA bus. Approximately 40 Crypto commands — called CGX (CryptoGraphic
eXtensions) — are provided at the API and a simple Control Block structure is used to
pass arguments into the secure Kernel and return Status.

The Secure Kernel firmware runs under a ‘Protected Mode’ state of the DSP
as described below in section 0. This guarantees the security integrity of the system
during the execution of Kernel processes and, for example, prevents disclosure of

Cryptographic Key data or tampering with a security operation.

Kernel Mode Control

The Kernel Mode Control block is responsible for enforcing the ‘Security
Perimeter’ around the cryptographic functions of the Cryp#/C. The device may either
be operating in ‘User Mode’ (Kernel Space is not accessible) or ‘Kernel Mode’
(Kernel Space is accessible) at a given time. When in the Kernel mode, the Kernel
RAM and certain protected Crypto registers and functions (Kernel Space) are
accessible only to the Secure Kernel firmware. The Kernel executes Host-requested
Macro-level functions and then returns control to the calling application. The Kernel
Mode Control hardware subsystem will reset the DSP should any security violation
occur, such as attempting to access a protected memory location while in User mode.

(A readable register reports the memory address of the violation for debug purposes.)

Protected Kernel RAM

The 4K x 16 Kernel RAM provides a secure storage area on the Cryp#/C for

sensitive data such as Keys or intermediate calculations during Public Key operations.
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The Kernel Mode Control block (above) enforces the protection by only allowing
internal Secure Kernel Mode accesses to this RAM. A Public Keyset and a cache of
up to 15 Secret keys may be stored in Kernel RAM. Secure Key storage may be
expanded to 700 Secret Keys by assigning segments of the ADSP2183 internal Data
RAM to Be ‘Protected’. This is accomplished via a CGX INIT command argument.

Encrypt Block

The Encrypt Block performs high-speed DES and Triple DES encrypt/decrypt
operations. All 4 standard modes of DES are supported: Electronic Code Book
(ECB),_Cipher Block Chaining (CBC), 64-bit Output Feedback (OFB) and 1-bit, 8-bit
and 64-bit Cipher Feedback (CFB). The DES encrypt/decrypt operations are highly
pipelined and execute full 16-round DES in only 4 clock cycles. Hardware support for
Padding insertion, verification and removal further accelerates the encryption
operation. Context Switching is provided to minimize the overhead of changing crypto

Keys and IV’s to nearly zero.

Hash Block

The Secure Hash Block is tightly coupled with the Encrypt Block and provides
hardware accelerated one-way Hash functions. Both the MD-5 and SHA-1 algorithms
are supported. Combined operations which chain both Hashing and Encrypt/Decrypt
functions are provided in order to significantly reduce the processing time for data
which needs both operations applied. For Hash-then-Encrypt and Hash-then-Decrypt
operations, the CryptIC can perform parallel execution of both functions from the
same source and destination buffers. For Encrypt-then-Hash and Decrypt-then-Hash
operations, the processing must be sequential, however minimum latency is still
provided through the pipeline chaining design. An Offset may be specified between the
start of Hashing and the start of Encryption to support certain protocols such as IPsec,
and ‘Mutable bit’ handling is provided in hardware.
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Random Number Generator (RNG) Block

The hardware Random Number Generator provides a true, non-deterministic
noise source for the purpose of Generating Keys, Initialization Vectors (IV’s), and
other random number requirements. Random numbers are provided as 16-bit words to
the Kernel. The Security Kernel requests Random Numbers as needed to perform
requested CGX commands such as CGX_Gen Key, and can also directly supply from 1
to 65,535 Random Bytes to a host application via the CGX_Random CGX command.

Public Key Accelerator

The Public Key Accelerator module works in concert with the CGX Secure
Kernel firmware to provide full Public Key services to the host application. The CGX
Kernel provides Macro-level library functions to perform Diffie-Hellman Key
Agreement, RSA Encrypt or Decrypt, Calculate and Verify Digital Signatures, etc.
The hardware accelerator block speeds the computation-intensive operations such as

32 x 32 multiply, 32-bit adds/subtracts, Squaring, etc..

PCMCIA/OProcessor Interface
A standard 16-bit PCMCIA interface is provided directly on the Crypt/C. This

interface may also be used in certain applications as a generic 16-bit CProcessor

Interface.

PCY/Cardbus Interface

A full 66/33MHz PCI v2.1 bus interface has been added to the core DSP
functions. The 32-bit PCI interface supports both Bus Master and Target modes. The
CryptIC is capable of using DMA to directly access data on other PCI entities and pass
that data through its Encryption/Hash engines.
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32-Bit DMA Controller

The CryptIC incorporates a high-performance 32-bit DMA controller which
can be set-up to efficiently move data between Host PCI memory, the Hash/Encrypt
blocks, and/or External Memory. The DMA controller can be used with the PCI bus
in Master mode, thus autonomously moving 32-bit data with minimal DSP

intervention. Up to 255 long words (1020 bytes) can be moved at a time.

Application Registers

The Application Registers are a set of memory-mapped registers which
facilitate communications between the CryptIC DSP and a Host processor via the PCI
or PCMCIA bus. One of the Registers is 44 bytes long and is set-up to hold the CGX
command structure passed between the Host and DSP processors. The Application
Registers also provide the mechanism which allows the DSP to arbitrate whether it or

the DMA controller (Host) has ownership of the External Memory interface.

Serial EEPROM Interface

The Serial EEPROM interface is used to allow an external non-volatile memory
to be connected to the CryptIC for the purpose of storing PCI or PCMCIA
configuration information (Plug and Play), as well as general-purpose non-volatile
storage. For example, encrypted (Black) Keys or a digital certificate could be stored
into EEPROM for fast recovery after a power outage.

Interrupt Controller

The Security Block Interrupt Controller provides enhancements to the existing
Interrupt Functions in the ADSP 2183 core.
Primarily, the Interrupt Controller provides a new Interrupt Generation capability to

the DSP or to an external Host Processor. Under programmable configuration
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control, a ‘Crypto Interrupt’ may be generated due to completion of certain
operations such as Encrypt Complete, Hash Complete, etc. The interrupt may be
directed either at the DSP core, or provided on an output line (PF7) to a Host
subsystem.

Laser Variable Storage

The Laser Variable Storage consists of 256 bits of Tamper-Proof Factory
programnied data which is only accessible to the internal function blocks and the
Security Kernel. Included in these Laser Vaﬁable bits are:

e 112-bit Local Storage Variable (Master Key-Encryption-Key)

e 80-bit Randomizer Seed

e 48-bits Program Control Data (Enables/Disables various IC features and configures
the IC)

16-bit CRC of the Laser Data

The Program Control Data (PCD) bits include configuration for permitted Key
Lengths, Algorithm Enables, Red KEK loé.ding, Internal IC Pulse Shaping
Characteristics, etc. Some of the PCD settings may be overridden with a Digitally
Signed Token which may be loaded into the Crypt/C when it boots. These Tokens are
created by IRE and each is targeted to a specific Crypt/C using a Hash of its unique
identity (derived from the above Laser Variable).

Downloadable Secure Code

The CryptIC is designed to allow additional Security Functions to be added to
the device through a Secure Download feature. Up to 16k words of code may be
downloaded into internal memory within the DSP and this code can be given the
security privileges of the Kernel firmware. All downloaded firmware is authenticated
with a Digital Signature and verified with an on-chip Public Key. Additional functions
could include new Encryption, Hash or Public Key algorithms such as IDEA, RC-4,
RIPEMD, Elliptic Curve, etc.
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MEMORY CONFIGURATION

The CryptIC provides a large amount of on-chip 0 wait-state RAM, a block of
mask-programmed ROM and also provides an external memory bus interface in order
to allow a considerable expansion using off-chip devices. The on-chip RAM consists
of three separate groups: 16k x 24 of Internal Program RAM, 16k x 16 of Internal
Data RAM, and 4k x 16 of Kernel RAM.

Memory Map

The CryptIC memory map is very similar to that of the ADSP 2183, except
that it includes significantly more Off-Chip memory addressing, and has additional
Crypto Registers which are accessible to the User. The CryptIC memory maps are
shown in Figures 2-4 of the drawings.

The PMOVLAY register is responsible for selecting 8k-word ‘Pages’ of upper

Program Memory, as shown in the table below.

PMOVLAY register

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0

x| x| XIxlx|x|{x[x{x{x|X|x|x|{x|x]|X

msb Lsb
\ S\ 7/
PMOVLAYH PMOVLAYL
External Address Page Select

The 4 Isb’s (bits 3:0) are interpreted as follows:

1111 F Kermel ROM 0 (Base Page)
1110 E Kemnel ROM 1

1101 D Kernel ROM 2

1100 C Kernel ROM 3 (Top)

1011 B  reserved

0011 3  reserved

0010 2  External RAM Odd Pages
0001 1 -External RAM Even Pages
0000 0 Internal RAM

The 12 msb’s (bits 15:4) are mapped to the most-significant external address
pins on the CryptIC (addr 25:14).
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Thus, to address Kernel ROM page 1, the PMOVLAY register should be set
to 0x000E (although the uppermost 12 bits are ignored in this case). To address
External memory page 38, the PMOVLAY register should be set to 0x0131 (0x013
are the 12 msb’s representing pages 38 & 39 and a 1 in the least-significant nibble
indicates Extemal even page).

The DMOVLAY register is responsible for selecting 8k-word ‘Pages’ of lower
Data Memory, as shown in the table below.

DMOVLAY register
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0

xix|XIx|x{x!x|x|x!x|X|x|x|x|[x]|x

Jnsb N 1sb,
DMOVLAYH DMOVLAYL
External Address Page Select

The 4 Isb’s (bits 3:0) are interpreted as follows:

1111 Kernel RAM and Kernel Registers
1110 reserved
1101 reserved

0011 reserved

0010 External RAM Odd Pages
0001 External RAM Even Pages
0000 Internal RAM

The 12 msb’s (bits 15:4) are mapped to the most-significant external address
pins on the CryptIC (addr 25:14).

Thus, to address the Kernel RAM/Crypto Registers page, the DMOVLAY
register should be set to 0x000F (although the uppermost 12 bits are ignored in this
case). To address External memory page 159 (decimal), the DMOVLAY register
should be set to 0x04F2 (0x04F are the 12 msb’s representing pages 158 & 159 and a
2 in the least-significant nibble indicates External odd page).
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Register Set

The CryptIC contains a number of additional registers (beyond those in a
ADSP 2183) which are mapped into the ADSP 2183’s external data memory space.
Some of the Registers are intended to be accessed only by the Secure Kernel and are
referred to as Protected Registers (Table 2 below). (In some cases, designers may
require features of the CryptIC which are only available in Protected Registers.) The
Registers which are accessible either to the DSP running in the User mode or to an
outside PCI/PCMCIA Bus entity are referred to as Unprotected Registers and are
listed Table 1 below.

All of the Protected Registers are memory-mapped in the Data Memory space
of the DSP at 0x1000 — 0x17FF. The Unprotected registers reside at 0x1800 —
Ox1FFF. The DMOVLAY register must be set to 0xO00F to access these registers.
From the Host perspective, the base register address in the PCI/PCMCIA space is set
by the BASEADDR register.

Note that although the DSP cannot directly read 32-bit registers, it can perform
a 32-bit DMA operation from a 32-bit register into its own external memory space.

See section on 32-bit DMA Controller, described under a main heading below.

In the table below, 16-bit address refers to the DSP and 32-bit address refers to
PCI host.

UNPROTECTED REGISTERS
ADDRESS | ADDRESS REGISTER R/W | Reset DESCRIPTION
(16 BIT) (32 BIT) NAME Default
APPLICATION REGISTERS
0x1880- 0x0000-2B | CGX Command R'W 44-byte CGX command register
0x1895
0x18A0 0x0040-41 | Status R 0x0000 | Application status
0x18A1 0x0042-43 | Lock R/W DSP/Host lock control
0x18A2 0x0044-47 | Misc Status R'W Miscellaneous status bits: DSP <—> host
0x18A3 N/A Select Delay R/W Delay configuration for memory pulse
generation
0x18A4 N/A Hash/Encrypt R/W Byte enables for data R/W to
Byte Enable Hash/Encypt block
0x18AS5 N/A Reset Violation R 0x0000 | Holds the memory type and Address of
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Memtype/Addr the last protection violation-induced
Reset
0x18A6 0x004C-4F | Extmem Config R/W External memory configuration
DMA & PCI REGISTERS
DSP-Visible Registers:
0x1840 N/A Host Address R/'W Lower 16-bits of Host Address
[15:0]
0x1841 N/A Host Address R/W Upper 16-bits of Host Address
[31:16]
0x1842 N/A Local Address R/'W Lower 16-bits of Local Address
[15:0]
0x1843 N/A Local Address R/'W Upper 16-bits of Local Address
[31:16]
0x1844 N/A Command R/W Command
0x1845- N/A Status/Config. R/W Status/Configuration Register
0x1846 N/A PCI Core R'W Status/Configuration for PCI core
Status/Config.
0x1847 N/A PCI Extmem R PCI External Memory Status
Status
PCI Host-Visible Registers:
N/A 0x00C0-C3 | PCI Target Page R/W Target Page specifier when Crypt/C
External Memory is Target
N/A 0x00C4-C7 | PCI Target Read R/W Maximum number of dwords for Target
Count Read Transfer
N/A 0x00C8-CB | Endian R/W Big/Little Endian select
PCMCIA Host-Visible Registers:
N/A 0x00C0-C1 | DMA Address R/W DMA address register
N/A 0x00C4-C5 | Start/Stop DMA R/'W DMA control
N/A 0x00C8-CB | Endian R/W Big/Little Endian select

UNPROTECTED REGISTERS (cont.)

HASH/ENCRYPT REGISTERS

Configuration Registers:

Protected 0x0200 H/E control R/W | 0x0000 | Hash/Encrypt block control word

Protected 0x021E Pad control R/W | 0x0000 | Pad control word

Protected | 0x0220-0223 | Length R/W | 0x0000 | 32-bit data length, in bytes

Protected 0x0224 Offset R/W | 0x0000 | Offset, (0 to 15 in dwords), from start of
hash (encryption) to start of encryption
(hash)

Protected 0x0226 Control R/W. | 0x0007 | Operation control.

Protected 0x0228 Consume Pad w Command to consume final pad block

Status Registers:

0x1016 0x022C Pad Status 0 R Decrypted next header byte, # Pad bytes,
Context 0

0x1017 0x022E Pad Status 1 R Decrypted next header byte, # Pad bytes,

23




WO 99/14881 PCT/US98/19316
Context 1

Protected 0x0230 GeneraiStatus R Status result from Hash/Encrypt
operation

Protected 0x0232 ControlReady R 1 = input ready for new control word, 0
= not readv

Protected 0x0234 DataReady R 1 = input ready for data FIFO, 0 = not
ready

Protected 0x0236 StatFreeBytes R Number free input bytes in crypto FIFO
(in 64-bit blocks)

Protected 0x0238 StatOutBytes R Number output bytes ready in crypto
FIFO (in 64-bit blocks)

Context 0 Registers:

Protected | 0x0240-0247 | Key3_0 w Key 3, for Triple DES: Crypto Context
0

Protected | 0x0248-024F | Key2 0 w Key 2, for Triple DES: Crypto Context
0

Protected | 0x0250-0257 | Keyl-0 W Key 1, for Triple DES or DES: Crypto
Context 0

Protected | 0x0258-025F | Salt 0 4 IV for kev decryption: Crypto Context 0

Protected | 0x0260-0267 | IV_0 R/'W 1V for data encrypt/decrypt: Crypto
Context 0

Protected | 0x0268-027B | Digest 0 R/W (Inner) Digest: Crvpto Context 0

Protected | 0x027C-028F | OuterDigest 0 w Outer Digest: Crypto Context 0

Protected | 0x0290-0293 | HashByteCnt_0 R/'W Starting byte count, for hash resume:

‘ Crypto Context 0

Context 1 Registers:

Protected | 0x02A0-02A7 | Key3_1 w Key 3, for Triple DES: Crypto Context
1

Protected | 0x02A8-02AF | Key2_1 w Key 2, for Triple DES: Crypto Context
1

Protected | 0x02B0-02B7 | Keyl_1 w Key 1, for Triple DES or DES: Crypto
Context 1

Protected | 0x02B8-02BF | Salt 1 W IV for kev decrvption: Crypto Context 1

Protected | 0x02C0-02C7 | IV_1 R'W IV for data encrypt/decrypt: Crypto
Context 1

Protected | 0x02C8-02DB | Digest 1 R/W (Inner) Digest: Crypto Context 1

Protected | 0x02D0-02EF | OuterDigest 1 w Outer Digest: Crypto Context 1

Protected | 0x02F0-02F3 | HashByteCnt 1 R/W Starting byte count, for hash resume:
Crvpto Context 1

Data In/Out FIFOs:

Protected |  0x0380 | Data FIFO | RW_| | FIFO: Data In/Data Out

INTERRUPT CONTROLLER REGISTERS

DSP-Visible Registers:

0x1800 N/A DSP Unmasked R Interrupt source current states — Prior to
Status mask
0x1801 N/A DSP Masked Statu| R Interrupt source current states — Post
mask
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0x1801 N/A DSP Clear Int w Clear selected Interrupt
0x1802 N/A DSP Mask Control| R/'W Interrupt mask register
0x1803 N/A DSP Int Config. R/W DSP Interrupt configuration register
0x1804 N/A Force Host Int W Force interrupt to Host (PCI/PCMCIA)
0x1805 N/A H/E Error Code R Provides the H/E Error Code
UNPROTECTED REGISTERS (cont.)
Host-Visible Registers:
N/A 0x0080-0081 | Host Unmasked R Interrupt source current states — Prior to
Status mask
N/A 0x0084-0085 | Host Masked Statu| R Interrupt source current states — Post
mask
N/A 0x0084-0085 | Host Clear Int \i Clear selected interrupt
N/A 0x0088-0089 | Host Mask Control| R/W Interrupt mask register
N/A 0x008C-008D | Host Int Config. R/W Host interrupt configuration register
N/A 0x0090-0091 | Force DSP Int W Force interrupt to DSP
N/A “0x0094-0095 | H/E Error Code R Provides the H/E Error Code
IDMA INTERFACE REGISTERS
Host-Visible Registers:
N/A 0x00A0-A1 | IDMA Indirect w Address latch for IDMA Indirect
Address transfers
N/A 0x00A4-A5 | IDMA Config R/W IDMA Configuration (Direct or Indirect)
N/A 0x8000-FFFF | IDMA Data R/W 32K IDMA Data Range
SERIAL EEPROM REGISTERS
0x1900 N/A Device ID R/W 16-bit PCI device ID
0x1901 N/A Vendor ID R/W 16-bit PCI vendor ID (11D4h)
0x1902 N/A Rev ID/Class R/W 8-bit chip Revision ID, 8-bits of PCI
Class Code
0x1903 N/A Class Code R/W remaining 16-bits of PCI Class Code
0x1904 N/A Header Type/Int R/W PCI header type & Interrupt Pin
0x1905 N/A Subsystem ID R/W 16-bit PCI Subsystem ID
0x1906 N/A Subsystem R/W 16-bit Subsystem Vendor ID
Vendor ID
0x1907 N/A Max Lat, Min R/'W Maximum Latency, Min Grant
Gnt parameters
0x1908 N/A Cardbusl R/W lower 16-bits of Cardbus CIS pointer
0x1909 N/A Cardbus2 R/W upper 16-bits of Cardbus CIS pointer
0x190A N/A Baddr maskl1 R/W Specifies 1 = modifiable 0 = our
addresses
0x190B N/A Baddr mask2 R/W Upper 16 bits
0x190C N/A CIS Size R/W CIS Size spec 16-bit (Upper 8 bits are 0)
0x190F N/A Cmd/Status R/W EEPROM Command and Status Register

Table 1 CryptIC Unprotected Register Set
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PROTECTED REGISTERS
ADDRESS | REGISTERNAME | R/W | Reset DESCRIPTION
(16 BIT) Default
HASH/ENCRYPT REGISTERS
Configuration Registers:
0x1000 H/E control R/W_10x0000| Hash/Encrvpt block control word
0x100F Pad control R/W_10x0000 Pad control word
0x1010-1011| Length R/W |0x0000| 32-bit data length, in bytes
0x1012 Offset R/W |0x0000{ Offset, (0 to 15 in dwords), from start of hash
(encryption) to start of encrvption (hash)
0x1013 Control R/W 10x0007 | Operation control.
0x1014 Consume Pad 4 Command to consume final pad block
Status Registers:
0x1016 Pad Status 0 R Decrypted next header bvte, # Pad bvtes, Context 0
0x1017 Pad Status 1 R Decrypted next header bvte. # Pad bvtes, Context 1
0x1018 GeneralStatus R Status result from Hash/Encrvpt operation
0x1019 . | ControlReady R 1 = input ready for new control word. 0 = not ready
0x101A DataReady R 1 = input ready for data FIFO. 0 = not ready
0x101B StatFreeBytes R Number free input bytes in crypto FIFO (in 64-bit
blocks)
0x101C StatOutBytes R Number output bytes ready in crypto FIFO (in 64-bit
blocks)
Context 0 Registers:
0x1020-1023 | Kev3 0 W Key 3, for Triple DES: Crvpto Context 0
0x1024-1027 | Key2 0 W Kev 2. for Triple DES: Crypto Context 0
0x1028-102B| Kevl1-0 W Key 1, for Triple DES or DES: Crypto Context 0
0x102C-102F| Salt 0 4 IV for key decrvption: Crypto Context 0
0x1030-1033] IV 0 R/W IV for data encrypt/decrypt: Crypto Context 0
0x1034-103D| Digest 0 R/'W (Inner) Digest: Crypto Context 0
0x103E-1047] OuterDigest 0 ! Quter Digest: Crypto Context 0
0x1048-1049 | HashByteCnt_0 R/W Starting byte count, for hash resume: Crypto
Context 0
Context 1 Registers:
0x1050-1053 | Key3 1 i Key 3, for Triple DES: Crypto Context 1
0x1054-1057| Kev2 1 W Kev 2. for Triple DES: Crvpto Context 1
0x1058-105B| Keyl 1 W Key 1, for Triple DES or DES: Crypto Context 1
0x105C-105F]| Salt 1 w IV for key decryption: Crypto Context 1
0x1060-1063 | IV 1 R/W IV for data encrypt/decrypt: Crypto Context 1
0x1064-106D| Digest 1 R/W (Inner) Digest: Crypto Context 1
0x106E-1077{ OuterDigest 1 W Quter Digest: Crvpto Context 1
0x1078-1079 | HashByteCnt_1 R/'W Starting byte count, for hash resume: Crypto
Context 1
Data In/Out FIFOs:
0x10C0 | Data FIFO | R'W | | FIFO: Data In/Data Qut
KEY MANAGEMENT REGISTERS
0x1180 RAM control R/W Selects the current KRAM owner: DSP, PK, DMA
0x1181 PM Reserve R/W Selects 1kword segments of PM to ‘Protect’ into
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Kernel

0x1182 DM Reserve R/W Selects 1kword segments of DM to ‘Protect’ into
Kernel

0x1183 KM RAM Reserve R/'W Selects 256-byte segments of KM to ‘Protect’ into
Kernel

0x1184 Hash/Enc Control R/W Selects owner of H/E block: DSP or Host

0x1185 Reset Control R/'W Allows internal reset of H/E. PK, RNG

Table 2 CryptIC Protected Register Set
BUS INTERFACES

The CryptIC supports multiple bus interfaces in order to allow it to be integrated

into a wide variety of host systems. These buses are:

5 e Host Processor bus

=> PCI (also Cardbus) - or -
= PCMCIA
= 2183 IDMA

e External Memory Interface (EMI) bus

-Or -

10 These buses will be described in the following sections.

Host Bus Mode Selection

The CryptIC-Host Bus may be configured for one of 4 personalities: ADSP
2183 Compatible IDMA Mode, IDMA Enhanced Mode, PCI Bus Mode, or PCMCIA

15 Bus Mode. The selection of mode is made with 2 Hardware control inputs

BUS_MODE and BUS_SEL at boot time.

Bus Mode O A BE {3
2183 IDMA Compatible Mode 0
2183 IDMA Enhanced Mode 0
PCI Bus Mode 1
PCMCIA Bus Mode 1

Table 3 Bus Mode Selection

A number of pins on the CryptIC are internally multiplexed in order to change

20 bus personalities. Refer to the Crypt/C Datasheet for details.
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This selection may not be changed after the CrypfIC comes out of power-up

Reset. It is typically expected that the Bus Mode signals are tied to ground or Vpp on
the PC Board.

PCY/Cardbus Host Processor Bus

When the CryptIC is configured for the PCI host bus mode, the Multiplex bus
pins become personalized to directly connect to a 3.3V PCI local bus. The PCI core
on the CryptIC is compliant with version 2.1 of the standard and supports a 32-bit
wide bus. The PCI clock speed may be run from 10MHz to 66MHz.

PCI Interface Specifications

The CryptIC’s PCI ‘core’ meets the following specifications:

e PCI Version 2.1

e Target / Master transfer capability

e Configuration Space Read/Write

e Memory Mode Read/Write — Single word or Burst transfer
e Abort and auto re-try

The PCI interface does NOT support the following:

¢ 1/O Mode Read/Write

o Fast Back-to-Back transactions

¢ Memory Write Invalidate operations

PCI Address Map

As shown in Figure 5, the CryptIC appears on the PCI Bus as a single
contiguous memory space of 128k bytes.

The CryptIC presents a 17 bit [16:0] address interface as a PCI Target.
Inbound PCI address bits [31:17] are decoded by the Crypt/C PCI core to determine
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whether or not the PCI access matches the PCI Memory Base Address Register, thus
determining whether the access is to the Crypt/C or not. However, bits [31:17] are

not reflected in the CryptIC register addresses.

Once the CryptIC's PCI address has been decoded, the next most significant
address bit, [A16], determines whether the lower 16 address bits should be decoded as
an internal CryptIC register/memory address or reflected to the CryptIC 's external
memory interface. If address bit 16 is 0, the 16 Isb’s are interpreted as CryptIC
internal register/memory address bits. If address bit 16 is 1, the 16 Isb’s [A15-A0] are
combined with the 11-bit page designator in the PCI Target Page Register to form the
external memory address. The PCI Target Page register is addressable by the Host
through the PCI Interface and specifies the 11 upper address bits for PCI transfers
from/to external memory. See section on PCI Target Page Register (TARGADCNT)
described further below.

PCI Target Mode Transfers

As a PCI Target entity, the CryptIC provides memory-mapped or I/O-mapped
access to its ‘unprotected’ memory and register space. This includes read/write access

through the CryptIC to the external memory connected to the EMI bus.

For all Target mode transfers, the Crypt/C DMA engine is called upon to
perform the data movements inside the Crypt/C between the PCI core and the desired
memory or register location(s). This DMA action is automatic and the initiating PCI
entity is unaware of the DMA participation in the transfer. It is important however to
note the DMA'’s target transfer role as it effects other DSP-initiated DMA operations.
Since Target transfers initiated from other PCI entities are typically unaware of other
DMA activities occurring within the Crypt/C, the DMA arbiter gives precedence to
Target DMA transfers. A DMA transfer in-process will not be preempted, however
any pending DSP-inititated DMA will be deferred until after all Target transfers have
been completed. (A status register in the DMA controller allow the DSP to determine
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whether it has seized the controller or whether a Target transfer is running.) Refer

also to 0 for more information on the DMA controller.

In addition, in order for Target transfers to occur to/from External Memory,
the DSP must grant ownership of the External Memory bus to the DMA engine. If the
Ext. mem. bus is not granted, then the data written to External memory will be lost and

a read will return invalid data. See section 0 for more information.

PCI Target transfers to/from the CryptIC may in some cases experience a
timeout abort and re-start due to latencies in the PCI core FIFO’s, address/data setup
times, memory wait-states, etc.. These are more likely to occur with reads than writes
due to the ‘round-trip’ nature of a read. In fact, if writes are kept to 8 dwords or
fewer, then timeout aborts can be avoided, since the PCI core write FIFO (12 dwords)

can store the written data until it can be DMA’ed to its destination within the CryptIC.

The interaction of the clock speeds of the PCI bus and of the Cryp#/C core
must also be considered. Ideally, the CryptIC core clock should be equal to or faster
than the PCI bus clock in order to allow it to unload incoming PCI data at least as fast
as it arrives. If this is the case, then only IDMA transfers or transfers to external

memory with >1 wait state will result in PCI timeout aborts for transfers >8 dwords.

PCI Master Mode Transfers

The CryptIC can use PCI Master Mode transfers for the most efficient transfer
of data into or out of the device. Master mode transfers are always performed under

control of the DSP. Refer also to 0 for more information on the DMA controller.

PCI Core Configuration Registers

As viewed from the PCI Host perspective, the 256-byte PCI configuration
space is defined below in Table 4. The fields marked xxxooooaex are ‘don’t cares’.
Shaded fields are read-only registers and are loaded from the serial EEPROM
connected to the CryptIC.
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31 16 15 0 Addr.
ekt { 00h
Status Command 04h
{ 08h
Master Latencv Timer Cacheline Size 0Ch
I/O Base Address 10h
Memorv Base Address 14h
Reserved (Dual Base) 18h
Reserved 1Ch
20h
24h
28h
| 2Ch
30h
Reserved 34h
38h
Interrupt Line 3Ch
Reserved Retry Timeout Value | TRDY Timeout Value | 40h
Reserved 44h-
FFh

Table 4 PCI Configuration Registers

The default values for the above registers are as follows:

Device ID =2F44h Subsystem ID = (0000h
Vendor ID =11D4h Subsystem Vendor ID = 0000h
Class Code = FF0000h Max_Lat =(00h
Revision ID =00h Min_Gnt = 00h
BIST = 00h Interrupt Pin =01h
Header Type = (0h

The upper 15 bits of the Base Address registers are writable, allowing the
selection of a 128k-byte address space for the Crypt/C. As part of automatic (plug &
play) PCI address mapping, it is common for the Host BIOS to write FF’s into the
Base Address registers and then to read-back the value to determine the address range
required by the target PCI device. In the case of the CryptIC, the lower 17 bits will be
read as 0’s, indicating 128k. Then, the BIOS writes an appropriate Base Address into

the upper 15 bits which were read as 1’s.
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2183 IDMA Host Processor Bus

The 2183 IDMA Host selection (Internal Direct Memory Access) allows the
CryptIC to offer the IDMA interface directly to an outside Host processor. The
CryptIC’s usage of the IDMA bus is identical to that described in the ADSP 2183
datasheet and ADSP-2100 Family User’s Manual.

The IDMA port allows a Host Processor to perform 16-bit DMA reads and
writes of selected areas of the CryptIC’s internal memory space. These areas include:
Internal Data Memory (DM) and Internal Program Memory (PM). Since PM is 24-
bits wide, two IDMA cycles are required to access it. IDMA transfers are
implemented using cycle-stealing from the CryptIC’s internal DSP processor. Note
that the CryptIC supports optional memory locking of lkword slices of DM or PM.
Any locked areas of memory are not visible to a Host via the IDMA port. Typically,
the locking of these memory spaces is performed by a custom ‘Extended’ program

invoked via the CGX Kernel interface.

External Memory Interface

The External Memory Interface (EMI) bus is a logical extension to the EMI
bus presented on a standard ADSP 218x processor. The Crypt/C has enhanced this

bus as follows:
e Extended data bus width from 8 / 16 / 24-bits to 8 / 16 / 24 / 32-bits
e Additional Addressing: from 14-bits (16k words) to 26-bits (64M words)

The EMI interface can support multiple memory types, including IO, Program
Memory (PM), Byte Memory (BM), and 16-bit or 32-bit Data Memory (DM).

Since the EMI bus is shared between the DSP and the DMA éngine within the
CryptIC, a control register is used to select which bus controller ‘owns’ the EMI bus.
(This applies to all EMI accesses — PM, DM, I/O, BM). Only the DSP has access to
this register, so it effectively becomes the arbiter for the EMI bus. This allows

straightforward contention management between direct DSP access and DMA access
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to external memory. It becomes more interesting when Host-initiated Target transfers
are expected to external memory, since there is no intrinsic arbitration provided. Ifa
Target transfer is attempted while the DSP owns the EMI bus, the PCI transfer will re-
try and then be aborted.

32-BIT DMA CONTROLLER
Overview
The CryprIC integrates a high-performance 32-bit DMA controller in order to
facilitate bulk data movements within the chip without requiring continuous DSP
supervision. The DMA subsystem allows 32-bit transfers to occur within the Crypt/C
at up'td 40 Mwords per second (160 Mbytes/s).
Figure 6 illustrates the functionality of the 32-bit DMA subsystem.

DMA Controller Functional Description

The DMA controller is shared between one of two ‘owners’; either the DSP or
the PCI Host processor. This essentially corresponds to whether a ‘Master’ (DSP-
owned) or ‘Target’ (Host-owned) transfer is needed. An arbiter manages any
contention issues when both the DSP and the Host attempt to control the DMA engine
at the same time, with Target transfers getting priority.

All DMA operations occur on 32-bit buses within the CryptIC, although for some
internal locations, the source or destination could be 16-bits wide. In this case, a bus
interface state machine converts the data between 16 and 32 bits (see the **’ markings
in the figure above).

Because the External Memory bus interface is also multiplexed between the
DMA engine and a direct connection to the DSP’s EMI bus, a DSP-controlled register
output bit (PCIEXTMEM bit 1) selects which is the ‘owner’ of the External Memory
bus. In typical applications (and the CGX Kernel), this bit is normally set to give
control to the DMA engine — ensuring that Target bus transactions can complete — and

would only be momentarily switched to the DSP during a non-DMA EMI transfer.
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DSP Initiated Transfers

When the DSP controls the DMA engine, it truly behaves as a general-purpose
DMA controller: The DSP specifies source and destination devices/addresses and the
byte count, and the DMA engine then executes the transaction. Status registers may
be polled for completion, or an interrupt may be generated at the end of the transfer.

For a PCI host bus, data movements can be handled between:

Case 1.PCI Host <—> DSP/Crypto* * DSP/Crypto includes: All Crypto registers, Hash/Encrypt block,
IDMA to DSP internal RAM, and Kernel RAM ~ if unlocked.

Case 2.PCI Host <—> External Memory

Case 3.External Memory <—> DSP/Crypto*

For cases 1 & 2 above, this is how a PCI ‘Master’ transaction occurs. Case 3 is
a memory-to-memory type transfer.

For a PCMCIA host bus, data movements can be only handled as Target
reads/writes between:

Case 1.PCI Host <—> DSP/Crypto*

For most DMA transactions, both the source and destination address pointers
will be automatically incremented for each word transferred. The only exceptions to

this are when either the source or destination of a transfer is:

e Hash/Encrypt Input FIFO
e Hash/Encrypt Output FIFO
¢ IDMA Data Register (Indirect mode only)

For those transfers, the FIFO/register address remains fixed and only the ‘memory’

side address automatically increments.
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Memory Map

Addresses and memory domains are specified as part of the DMA setup. Each
of the 3 domains — Host memory, External Memory, and DSP/Crypto-register — have
slightly different addressing techniques as shown below.

Host memory:
When one end of the DMA transaction is PCI memory (case 1 & 2 above), a
full 32-bit address is specified in the Host Address register. This allows a transfer to

be done to/from any location in PCI memory space.

Exteinal memory:

When transferring to or from External memory, the addressing is slightly
different for cases 2 & 3 above. For case #2 (PCI Host to/from External memory), a
full 26-bit external memory address is specified in the Local Address register. Also, bit
#31 in the Local Address register is set to ‘1’ to indicate External Memory.

For case #3 (External memory to/from DSP/Crypto-registers), bit #14 in the
Command register is set to ‘1°. Then, the 26-bit external memory address is specified
in the Host Address register.

DSP/Crypto-register memory:

When one end of the transaction is DSP/Crypto-register/KRAM space, then a
Word (16-bit) address is specified in the Local Address register. This causes the
address map to be shifted one address bit from the PCI (byte-oriented) map shown in

Figure 7 is the word memory map of DSP/Crypto-register addresses.

DMA Control Flow

Figure 8 is a flow chart showing the steps which are typically followed for a
DSP-initiated Master transfer.
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Code Samples
Below are some code samples for the three types of DSP-initiated DMA transfers:

1. PCI Host <—> DSP/Crypto

10

15

20

25

30

35

40

lvoid

Ipci_master_transfer(unsigned short *host_hiaddr, - Host 31-16 address bits
unsigned short *host_loaddr, - Host 15-0 address bits
unsigned short *dsp_addr, - DSP 15-0 address bits, intnl

unsigned short read, - O=write, non0 is a read
unsigned short bytes) - Number of bytes to read/write
of Host memory

This operation is used to read/write N bytes (i.e. bytes) from/to PCI
HOST memory using the DMA controller and performing master reads/writes.

!

!

!

!

!

!

!

!

!

! The PCI HOST addresses are the source addresses. In this example, the
1 DSP is the destination. In fact, the DSP address will be to a crypto
! register. This code is not concerned with locking in external memory,
! so it will not allow external memory access.

|

!

!

!

!

!

!

!

!

!

|

This operation will not bump the Host or DSP addresses after the read/write
of the block is complete. This will be left to the calling operation.

Register ar contains the 1st argument: host_hiaddr, and register ayl contains
the 2nd argument: host_loaddr. This is how the calling interface works with
Analog Device's C compiler and assembler tools.

This operation assumes the calling function will not request a read or a
write that exceeds the maximum transfer size of 1023 bytes.

pci_master_transfer_:

il=i4; Iget ptr to stack to get remaining args
m3=1;

modify(il,m3); ' lalign to argument 3, dsp_addr
myl=dm(il,m3); lobtain dsp address, dsp_addr
mr0=dm(il,m3); lobtain transfer direction, read
srO=dm(il,m3);, lobtain byte cnt, bytes

si=dmovlay; Isave away old DMOVLAY value
dmovlay=15; lenable CryptIC register's data page

! Ensure that the DMA controller is available to accept a command.
!

dma_control_ready:

sr1=dm(0x1845); 'read DMA status
af=sr1 and 0x8000; lif DMA control is not ready
if eq jump dma_control_ready; ithen continue to poll for ready

!
! Setup DMA address block for actual PCI HOST master read operation
|

dm(0x1840)=ayl; tlower 16 bits of 32bit address of host
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[ dm(0x1841)=ar; lupper 16 bits of 32bit address of host
dm(0x1842)=my1, IDSP address, 0:15
srl1=0;
dm(0x1843)=sri; linternal access, no upper address

f

! Setup the DMA command and issue it:
! No HOST generated interrupt

Byte count as read from stack above this

!
! Master read or write, depends on read argument
!
!

PCI transfer

ar=s10; Isets up transfer as master read
af=pass mr0; lif transfer is a read

if ne jump dma_write_control; Ithen write DMA control register
ar=s10 or 0x8000; Iset master write bit with length

dma_write_control:
dm(0x1844)=ar; Iwrite DMA control reg.
!
! Important, insert a delay of 2 instruction cycles to ensure that
! the transfer-active flag of the DMA status register will have time
! to be asserted. This avoids a false read by the DSP.
!
nop; nop;
!

! Poll until the PCI transfer is complete
!

dma_master_transfer_poll:

sr1=dm(0x1845); Iread DMA status
af=sr1 and 0x0008; lif master transfer in progress
if ne jump dma_master transfer_poll; tkeep polling

! Restore the DMOVLAY register and return to the calling function.
!
dmovlay=si; {restore previous data page

1ts; Ireturn to caller, pop return address

PCI Host Initiated Transfers (Target Mode)

When a PCI Host performs a Target Read or Target Write of memory or a
register within the Crypt/C, the DMA controller is automatically called into use. From
the Host’s perspective, most of the operation of the DMA controller is hidden. The
DMA controller interprets the PCI-supplied addresses and other bus control signals
and then generates the appropriate addresses for internal/external memory space.

For some PCI Target reads which experience latencies before data is retrieved,

the DMA controller may ‘fetch-ahead’ two or three dwords and place them in the PCI
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core’s read FIFO. This is important to consider when performing reads from the
Hash/Encrypt FIFO, since once data is read from the H/E FIFQ, it cannot be reversed.
Thus, the Host must ensure that no ‘fetch-ahead’ is performed in these cases.

The PCI_Target_Read_Count register is the mechanism to limit the maximum
‘fetch-ahead’ data which can be read. For example, if the Host is moving data through
the Hash/Encrypt FIFOs in 8-dword blocks, then the PCI_Target_Read Count register
should be programmed with an 0x08. See section on Target Read Count Register
(TARGRDCNT) described further below.

All Target mode reads or writes must occur on 32-bit dword boundary. The
only exception is reads or writes to the Hash/Encrypt block. In this case, the PCI
starting and ending address is decoded down to the byte level so that any number of

bytes may be written to or read from the H/E data FIFO.

PCMCIA Host Initiated Transfers

All PCMCIA transactions to the CryptIC are Target transfers. The DMA
controller described in this chapter is disabled when the PCMCIA bus is selected.
Instead, a separate 16-bit DMA controller is enabled and is controlled via the
PCMCIA DMA controller registers described in Applications Registers.

Both single-word reads and writes, as well as multi-word burst DMA transfers

are supported.

DMA Arbitration

Since the DMA is a shared resource between the DSP and Host Target mode
requests, a deterministic arbitration scheme is required for predictable results. The
Arbiter shown in Figure 6 is responsible for moving DMA requests into the DMA
engines working registers. The Arbiter gives priority to Host Target mode requests,
so this means the following:

Assume a DMA transaction is in progress, and that another DSP-initiated
transfer request is queued-up in the DSP control registers. If a Host (PCI or

PCMCIA) Target read or write request occurs before the in-progress transaction has
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completed, then the Host request will be serviced prior to the queued DSP request.

Note that any DMA transfer which is already running will never be preempted. The

only way for a DMA transfer to be aborted in mid-stream is for a Host bus error to

occur (e.g. a PCI abort due to a Parity error) or for the DSP to force an abort by

5 writing to the PCICSC register ‘Force End Transfer’ bit.

DMA Register Set

A set of memory-mapped control and status registers are used to operate the

DMA controller. These are considered Unprotected Registers, and therefore are

visible to either the DSP running in User mode or to an outside PCMCIA/PCI bus

10 entity. They are summarized in Table 5 and described in detail in the following

subsections.

(In the table below, 16-bit address refers to the DSP and 32-bit address refers

to PCI/PCMCIA host.
ADDRESS ADDRESS REGISTER Reset Default
(6BIT) | (32BIT) NAME RW DESCRIPTION
PCI APPLICATION REGISTERS
DSP-Visible Registers:
0x1840 N/A Host Address R/W Lower 16-bits of Host Address
[15:01
0x1841 N/A Host Address RW Upper 16-bits of Host Address
[31:16]
0x1842 N/A Local Address R'W Lower 16-bits of Local Address
[15:0]
0x1843 N/A Local Address RW Upper 16-bits of Local Address
[31:16]
0x1844 N/A Command R/W DMA Command
0x1845 N/A Status/Config. R/W DMA Status/Configuration Register
0x1846 N/A PCI Core RW Status/Configuration for PCI core
Status/Config.
0x1847 N/A PCI Extmem R PCI External Memory Status
Status
PCI Host-Visible Registers:
N/A 0x00C0-C3 | PCI Target Page RW Target Page specifier when Crypt/C External
Memorv is Target
N/A 0x00C4-C7 | PCI Target Read RW Maximum number of dwords for Target Read
Count Transfer
N/A 0x00C8-CB | Endian R/W Big/Little Endian select
PCMCIA Host-Visible Registers:
N/A 0x00C0-C1 | DMA Address R/W DMA address register
N/A 0x00C4-C5 | Start/Stop DMA R/W DMA control
N/A 0x00C8-CB | Endian R/W Big/Little Endian select

Table S DMA Controller Register Set
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PCI Host Address Low Register (PCIHAL)

This 16-bit Read/Write register allows the DSP Software to configure the
lower 16 bits of a PCI Host Address for a Master mode transaction. For a DSP-to-
External memory transfer, this contains the lower 16-bits of the External Memory

5 address, as shown in the table below. Note that this is a byte address.

Register Address (READ / WRITE

DSP: EME
0x1840 Not Visible Not Visible

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ll [l x I [xfx ] x]x x[x]x]x]x]
Msb Isb

16 Isb’s of Host Address [15:0]

10 PCI Host Address High Register (PCIHAH)

This 16-bit Read/Write register allows the DSP Software to configure the
upper 16 bits of a PCI Host Address for a Master mode transaction. If the transfer is
between External Memory and the DSP memory space (case 3), then this register
holds the 10 most-significant bits of the External Address [25:16], as shown in the

15 table below. Note that this is a byte address.

Register Address (READ / WRITE)
PSP SPEMETA €l
0x1841 Not Visible Not Visible

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[l [ [ [ Pl [ [ [ [ | [ [ ]
Msb Isb

16 msb’s of Host Address [31:16]
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PCI Local Address Low Register (PCIHAL)

This 16-bit Read/Write register allows the DSP Software to configure the
lower 16 bits of Local (Crypt/C) Address for a PCI Master transaction, as shown in
the table below. Note that this is a 16-bit word address.

5
Register Address (READ / WRITE)
SP: PCMEIA
0x1842 Not Visible Not Visible
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0
[xx[xx[xlxfxlxlalxlxlxxlx]x]x]

Msb . isb

16 Isb’s of Local Address [15:0]
PCI Local Address High Register (PCIHAH)

If the transfer is between a PCI Host and External Memory (case 3), then this

10 register holds the 10 most-significant bits of the External Address [25:16] and the

most-significant bit will be set to ‘1°. If the transfer is to/from the DSP/Crypto-
register space (cases 1 & 2), then there are no address bits contained here and the
most-significant bit will be ‘0’, as shown in the table below. Note that this is a 16-bit

word address.
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| Not Wsible | Not Visible

9876543210

xxxxxxxﬂ
Isb
]

10 msb’s of External Memory
Address [25:16}
(ignored for transfers
to/from DSP/Crypto-

regs)
Reserved (set to 0 on write)
1 = External Memory access,
0 = Internal access

PCI Command Register (PCIC)

This 16-bit Read/Write register, as shown in the table below, is used by the
DSP to write Commands to the DMA Controller function.

The first 10 bits indicate the byte count of the requested transfer. Bit 14
selects the type of transfer: Between the DSP/crypto registers and the External
Memory space (case 3), or between a PCI Host and either External Memory or the
DSP/crypto registers (case 1 or 2).

Bit 15 selects the direction of the DMA transfer.
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Register Address (READ / WRITE
......................... TeNCT mreersteee
Not Visible Not Visible

ixlX‘X|X|X]X‘X|XIXIXi|

.

Byte Count (0 —1023)

Reserved (set to O on write)

1 = DSP/Cryptregs<—>External Memory transfer,
0 = PCI Host transfer

1 = Master Write (i.e. towards Host Address)

0 = Master Read (i.e. towards Local Address)

DMA Status/Configuration Register (PCISC)

This 16-bit Read/Write register, as shown in the table below, allows the
DSP to configure/monitor the DMA function.

The first 2 bits are Read/Write and select the Wait States when the DMA
engine is transferring to or from External Memory. Note that the same number of

Wait States should be selected internal to the DSP in the DWAIT bits of the Wait
State Control Register.

Bit 2 is a Read-Only status bit which reflects the Host-selected Endian
state. All memory and registers within the DSP are Little Endian. The Endian bit

determines whether or not the Crypt/C has to do Endian conversion on data

to/from the host.

The next three bits [3-5] are general status bits which indicate the busy
status of the DMA engine for each of its three modes:

e Bit 3 set to 1 indicates that a DSP-initiated master transfer is running (could be
case 1, 2 or 3). Note that when this bit transitions from 1 to 0, it may cause a

Master PCI Transfer Complete interrupt to occur (see section 0).

e Bit 4 set to 1 indicates that a Host-initiated target transfer is running (could be

case 1 or 2).
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Bit 5 set to 1 is a further qualifier on Bit 3 (i.e. bit 3 will also be set): It

indicates that the transaction is for case 3.

Bits 12-14 provide PCI core status to the DSP:

Bit 12 indicates that the PCI core has completed a DSP-initiated master

transfer.

Bit 13 indicates that the PCI core has detected a PCI parity error on the bus.

Bit 14 indicates that the PCI core has experienced a PCI fatal error.

The last bit [15] indicates that the DSP may write into the DMA engine

register set. (Note that another DMA transfer may be underway, but since the

DSP side has double-buffered registers, another set of addresses and a command

may be queued. Note that when this bit transitions from 0 to 1, it may cause a

Master PCI Transfer

Queued interrupt to occur. (See section on DSP Unmasked Status Register
(DUSTAT) described further below.)

__Register Addrc:_ss (READ /

WRITE)

HPSpi

CME

0

x1845

Not Visible

) Not

Visible

1514 13 12 11 10 9 8 7 6 5 4 3 2

1 0

Ll lnlx]

Lx xlxlwln]x]

L

E External Memory Wait States (0 - 3)

44

1 = Big Endian, 0 = Little Endian

1 = Master Transfer Active

1 = Target Transfer Active

I =Local to Ext. Memory Transfer Active
Reserved (set to 0 on write)

1 = PCI Core Master Complete

1 = PCI Core Parity Error

1 =PCI Core Fatal Error

1 = Command Register Available

3

Control (R/'W)

> Status (R/O)
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PCI Core Status/Configuration Register (PCICSC)

This 16-bit Read/Write register, as shown in the table below, allows the
DSP to configure and monitor the PCI Core function. This register is not normally
accessed for most applications.

The first 7 bits allow the DSP to terminate PCI transfers under abnormal
circumstances. The last 8 bits provide real-time visibility of PCI core operation

status.

Register Address (READ / W )
D ) R e
0x1846 Not Visible

1514 13 12 11 10 9 8 7_‘6 54 3 2 10
lxlixIXlxlx|x|x

Ixlxlxlxlxlx]|x]

Target Force Retry h
— Target Force Abort

Target Transmit FIFO Flush
Target Receive FIFO Flush > Control R/W)
Master Transmit FIFO Flush
Master Receive FIFO Flush
Force End Transfer
Reserved (set to 0 on write)
Target Transmit FIFO Write h
Target Transmit FIFO Full
Target Receive FIFO Read
Target Receive FIFO Empty Status
Master Transmit FIFO Write | (R/O)
Master Transmit FIFO Full
Master Receive FIFO Read
Master Receive FIFO Empty /

PCI External Memory Status Register (PCIEMS)

This 16-bit Read only register, as shown in the table below, reports the
status of External memory and Master transfers. The least-significant 8 bits report
on the current word count of a transfer. They will start initialized to the number of
words in the transfer and will decrement down to 0. Bit 8 indicates if the External

Memory bus is in use by the DMA engine.
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Re

ister Address

"Not Visible Not Visible

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0

Tx[xlxlxlxlxlx]x]x]

I |
L‘—— Master transfer word count (0 - 255)

1 = External memory bus request, 0 = idle
Reserved (set to 0 on write)

PCI Target Page Register (TARGPAGE)

The table below shows the bit definitions for the Target Page Register.
These are used in order to select the 64 kbyte page which the PCI Host may access
for a Target read or write. This register is not used for DSP-initiated (Master)

transfers. Note that this register is only visible to the PCI Host processor.

Address (READ / WRITE)

0x00C0-C3

10 9 876543210
Tololololo]ololo]ololo]

|
l

11 msb’s of 26-bit external address
Reserved

Target Read Count Register (TARGRDCNT)

This register, as shown in the table below, specifies the maximum number
of dwords to fetch after a Target mode read has begun. Since Target reads can
sometimes timeout due to the access latencies in the path from PCI core to the
addressed location, it is desirable to fetch enough data so that on the PCI re-try,
sufficient data will be available in the PCI core read FIFO to complete the

transaction.
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On the other hand, anticipatory fetching data from an internal FIFO such as
the Hash/Encrypt data FIFO can be dangerous. If the Target read only requires 2
bytes from the FIFO, and 8 bytes are pre-fetched, then data will be lost. For
Target reads of the FIFOs, this register should be programmed with the size of the

transfer.

Register Address (READ / WRITE)

NA "N/'A” 0x00C4-C7

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|
I——-—— Maximum number of dwords to fetch on

Target read

Reserved

Endian Register (PCIENDIAN)

This register, as shown in the table below, specifies the ‘Endianness’ of
data transfers between the PCI bus and the Crypt/C. The DSP is little-endian, so if
it is communicating with a big-endian Host, then byte swapping is needed. Setting
a 1 in this register will cause a hardware byte-swap to occur on all PCI transfers to
any element of the erzptIC , including external memory and internal registers or

memory Spaces.

The status of this Host selection is reflected on the DSP side in the DMA

Status/Configuration register, described above.

Register Address (READ / WRITE)

NA I N/A 0x00C4-C7

|

J |—
Endian Select: 1 =Big Endian, 0 =
Little Endian
Reserved
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HASH/ENCRYPT SUBSYSTEM
Hash and Encrypt Block Overview

The Encrypt Block is tightly coupled to the Hash Block in the Crypt/C and
therefore the two are discussed together. Refer to Figure 9 for the following

description:

The algorithms implemented in the Combined Hash and Encryption Block
are: DES, Triple DES, MDS5 and SHA-1. Data can be transferred to and from the
module once to perform both hashing and encryption on the same data stream.

The DES encrypt/decrypt operations are highly paralleled and pipelined, and
execute full 16-round DES in only 4 clock cycles. The internal data flow and
buﬁ’ering allows parallel execution of hashing and encryption where possible, and
allow's processing of data concurrently with I/O of previous and subsequent blocks.
Context switching is optimized to minimize the overhead of changing

cryptographic keys to near zero.

The ‘software’ interface to the module consists of a set of memory-mapped
registers, all of which are visible to the DSP and most of which can be enabled for
Host access. A set of five, 16-bit registers define the operation to be performed,
the length of the data buffer to be processed, in bytes, the offset between the start
of hashing and encryption (or vice versa), and the Padding operation. If the data
length is unknown at the time the encrypt/decrypt operation is started, the Data
Length register may be set to zero which specifies special handling. In this case,
data may be passed to the Hash/Encrypt block indefinitely until the end of data is
encountered. At that time, the operation is terminated by writing a new control
word to the Hash/Encrypt Control Register (either to process the next packet or to
invoke the ‘idle’ state if there is no further work to do). This will ‘close-out’ the

processing for the packet, including the addition of the selected crypto padding.

A set of seven status registers provides information on when a new
operation can be started, when there is space available to accept new data, when

there is data available to be read out, and the results from the Padding operation.
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Crypto Contexts

There are also two sets of ‘crypto-context’ registers. Each context
contains a‘ DES or Triple DES key, Initialization Vector (IV), and pre-computed
hashes (inner and outer) of the Authentication key for HMAC operations. The
contexts also contain registers to reload the byte count from a previous operation
(which is part of the hashing context), as well as an IV (also called ‘salt’) for
decrypting a Black key, if necessary.

Once a crypto-context has been loaded, and the operation defined, data is
processed by writing it to a data input FIFO. At the I/O interface, data is always
written to, or read from, the same address. Internally, the hash and encryption
functions have separate 512-bit FIFOs, each with their own FIFO management
pointers. Incoming data is automatically routed to one or both of these FIFOs

depending on the operation in progress.

Output from the encryption block is read from the data output FIFO. In
encrypt-hash or decrypt-hash operations, the data is also automatically passed to
the hashing data FIFO. Output from the hash function is always read from the

digest register of the appropriate crypto-context.

The Initialization Vector (IV) to be used for a crypto operation can be
loaded as part of a crypto-context. When an operation is complete, the same
context will contain the resulting IV produced at the end, which can be saved away

and restored later to continue the operation with more data.

In certain packet-based applications such as IPsec, a feature is available that
avoids the need to generate and load random IV’s for outgoing (encrypted)

packets. The operating sequence for this feature is as follows:
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1) For the first encrypted packet after the CryptIC is initialized, two random
numbers should be generated and written to each context’s IV register. (This

can actually be done as part of the CryptIC boot process.)

2) Control bit 0 in the Hash/Encrypt Control register is set to a ‘1’ in order to
prevent subsequent software overwriting of the IV field in the two context

registers.

3) Now, at the end of each packet encryption or decryption, the IV register in the
active context will contain the last 8 bytes of ciphertext. This ‘random’ value
will remain in the IV register and not be overwritten when the context for the
next packet is loaded. (This technique is fully compliant with the IPsec
standards.)

4) For decrypted packets, the IV is typically explicitly included with the incoming
packet. Thus, the Control bit in step 2 will have to be set to a ‘0’ prior to
writing the IV into the context register. After the IV is written, the control bit

should be restored to ‘1°.

Padding

When the input data is not a multiple of 8 bytes (a 64-bit DES block), the
encrypt module can be configured to automatically append pad bytes. There are
several options for how the padding is constructed, which are specified using the
pad control word of the operation description. Options include zero padding, pad-
length character padding (PKCS #7), incrementing count, with trailing pad length
and next header byte (for IPsec), or fixed character padding. Note that for the
IPsec and PKCS#7 pad protocols, there are cases where the padding not only fills-
out the last 8-byte block, but also causes an additional 8-byte block of padding to
be added.

For the Hash operations, padding is automatically added as specified in the
MD-5 and SHA-1 standards. When the ‘Hash Final’ command is issued indicating
the last of the input data, the algorithm-specified padding bits are added to the end
of the hash input buffer prior to computing the hash.
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Data Offsets

Certain security protocols, including IPsec, require portions of a data
packet to be Hashed while the remainder of the data is both hashed and encrypted.
The CryptIC supports this requirement through the OFFSET register which allows
specifying the number of 32-bit dwords of offset between the hash and encrypt

operations.

Black Key Loads

The cryptographic keys loaded as part of a crypto-context can be stored
off-chip in a “black” (encrypted) form. If the appropriate control bit is set
(HECNTL bit 15), the DES or 3DES key will be decrypted immediately after it is
wﬁ&enjnto the Context register. The hardware handles this decryption
automatically. The KEK that covers the black keys is loaded in a dedicated KEK
register within the CryptIC. The IV for decrypting the Black secret key is called
'Salt' and must be stored along with the black key (as part of the context). Note
that 3DES CBC mode is used for protecting 3DES Black keys and single-DES
CBC is used for single-DES Black keys.

When Black keys are used, there is a 6-cycle overhead (0.18us @ 33MHz)
for DES keys or 36-cycle overhead (1.1us @ 33MHz) for triple-DES keys each
time a new crypto-context is loaded. (Note that if the same Context is used for
more than one packet operation, the Key decryption does not need to be
performed again.) Depending on the sequencing of operations, this key decryption
may in fact be hidden (from a performance impact perspective) if other operations
are underway. This is because the Black key decryption process only requires that
the DES hardware be available. For example, if the DSP is reading the previous
Hash result out of the output FIFO, the Black Key decryption can be going on in
parallel. Also note that the data driver firmware does NOT have to wait for the
key to be decrypted before writing data to the input FIFO. The hardware
automatically waits for the key to be decrypted before beginning to process data
for a given packet. So it is possible to make the impact of black key essentially

zero with efficient pipeline programming.
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The Key Encryption Key (KEK) for key decryption is loaded via the Secure
Kernel firmware using one of the CGX Key Manipulation commands (see “CGX
Interface Programmer’s Guide”). This KEK is typically the same for all black
keys, since it is usually protecting local storage only. It is designated the KKEK in
the CGX API.

One of the Laser Programmed configuration bits specifies whether Red
(Plaintext) keys are allowed to be loaded into the Cryp#/C from a Host. If the
RedKeyLoad Laser bit is set, keys may only be loaded in their ‘Black’ form. This
is useful in systems where export restrictions limit the key length which may be
used or where the external storage environment is untrusted. If the BlackKeyLoad
bit is not set, then keys may either be loaded either in their Black form, or in the
‘Red’ (unencrypted) form. Note that the Laser Configuration bit may be
overridden with a signed Enabler Token (see “CGX Interface Programmer’s

Guide”).

Depending on the definition of the 'Security Module Boundary' in a given
application, FIPS 140-1 may require the use of ‘black key’ to protect key material.
In other words, if the Security Boundary does not enclose the database where keys
are stored, then those keys must be protected from compromise. Black keyis a

satisfactory way to meet this FIPS requirement.

Encrypt and Hash Detailed Description

The following sections provide details on the operation of the

Hash/Encrypt block of the CryptIC.

DES Subsystem

The 512-bit (64 byte) crypto data FIFO allows up to eight 64-bit blocks to be
queued for processing. The FIFO is implemented as a circular buffer, where the
processed data is written back to the same location it came from. For most

applications, the optimum transfer size is 256-bits (32 bytes) which provides the most
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efficient ‘pipelining’. This allows a set of four 64-bit blocks to be queued, then while

those are being processed, the previous four blocks can be output, and a new set of

four blocks input.
DES Modes

The CryptIC DES/3-DES engine can perform any of the standard DES
modes: ECB, CBC, OFB, CFB in either Single-DES or Triple-DES. Since DES
operates on 64-bits at a time, data is always input to the algorithm in 8-byte lumps
(or padded to 8 bytes by the Crypt/C). The mode of DES operation is selected in
the HECNTL register at the same time as an Encrypt/Decrypt operation is started.

In the CBC, OFB and CFB modes, the DES algorithm block is used to generate a
‘Keystream’ which is XORed with Plaintext data in order to product Ciphertext.
This XORing is performed within the Encryption hardware, so the user only passes
Plaintext or Ciphertext data in and out of the CryptIC.

For Cipher Feedback mode, one of three feedback choices is available: 64-
bit, 8-bit, or 1-bit. In 64-bit CFB, data is written to the input FIFO in the same
manner as for all other modes. However in 8-bit or 1-bit CFB modes, null bytes
must be written to the data FIFO in order to align the desired byte or bit within the
8-byte DES output. For example, in 8-bit CFB mode, 7 null bytes must be written
after each ‘payload’ byte is written to the input FIFO.

The Triple-DES (3DES) processing performed by the encrypt hardware
employs the ‘Outer’ 3DES algorithm (as opposed to ‘Inner’ 3DES). This means
that, for a given input block of 8-bytes, the DES engine is first run in Encrypt, then
Decrypt, and finally again in Encrypt mode prior to any feedback or XOR
operations. Inner 3DES performs feedback operations between each of the 3 DES

operations. Most of the security protocol standards call for Quter 3DES, and it is

considered the stronger of the two modes.

Crypto Padding

To facilitate peak encrypt/decrypt performance, the Crypt/C supports the most
commonly needed Padding functions in hardware. The features include:
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e Generating and appending Pad bytes to the end of a Plaintext packet prior to

encryption

e Verifying correct Pad bytes after decrypting a packet

e Consuming (discarding) Pad bytes after decrypting a packet.

Four Padding Modes are supported in the Cryp#/C hardware, as shown in the table

below.

: Viode:: { 19} i b R

0 | ZeroPad | Appends 0 to 7 bytes of 0x00 to the Plaintext data to ensure the total number of
bytes has no remainder modulo 8.

1 IPsec Appends 0 to 7 pad bytes, followed by pad count ‘n’ (0 to 7) and then a “next
header” byte. The pad byte values are a count from 1 ton. The ‘Next Header’
byte is specified in the Pad Control register. A total of 2 to 9 bytes may be
appended.

2 PKCS #7 | Appends 1 to 8 bytes: Pad byte value = hex value of Pad count, so if 3 pad bytes
are needed, they will be: ‘03, 03, 03°.

3 Constant | Appends 0 to 7 bytes of a user-specified character to the Plaintext data to ensure

Pad the total number of bytes has no remainder modulo 8. The byte (any value from
0x00 to 0xfF) is specified in the Read/Write Pad Control Register.

If the Host system software wishes to implement another type of Padding
than is supported in hardware, then Mode 0 (Zero Pad) should be selected. The

Host simply insures that the end of the data to be encrypted falls on an 8-byte

boundary by inserting Pad characters on its own, in which case the Hardware

Padding engine will not add any bytes.

Pad Verification

There is a Pad Verify bit in the General Status register which checks for proper
padding in Pad Modes 1 and 2. (Note that this bit is invalid for all blocks read from the
hash/encrypt FIFO except the last block to be processed.) The Pad Verification
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operation checks the decrypted data for the correct Pad properties as specified in the
selected Padding Mode (The Next Header byte value is not validated for IPsec mode).
If Pad Modes 0 or 3 are selected, the Pad Verify bit will always read 0.

Pad Consumption

The application must always read-out the last block (8-bytes) of decrypted
plaintext data if there is at least one user-payload byte in it. When either Pad Mode
1 (IPsec) or Pad Mode 2 (PKCS #7) is selected, the CryptIC can notify the
application of the number of Pad bytes (including Pad, Pad length, and Next
Header if applicable) detected in the decrypted plaintext through the Pad Status
registers (HEPADSTATO/1). A count of 0 to 9 can be reported.

In addition, these padding modes can cause an additional block of 8 bytes
to be produced (since more than 7 bytes may have originally been added to the
packet). The presence of this additional block is detected by the Crypt/C and the
application may command the CryptIC to discard the last Pad block in order to
save the time of reading those 8 bytes. A write of any value to the Consume Pad

register will cause this discard to occur.

Hash Subsystem

Like the Encrypt/Decrypt subsystem, the hash processing section also has a
512-bit (64 byte) FIFO. This represents a single 512-bit input block to the hash
algorithm. When the hash buffer is buffer is full, and the algorithm section is done
processing previous data, the input block is immediately copied to the 512-bit
algorithm working buffer, and the entire 512-bit FIFO buffer is available for data

input again.

There are several options available to control hashing, in addition to selecting
between SHA-1 and MDS5. The application may choose to either set the initial state of
the hash operation from the constants defined for the algorithms, or from a digest

which is loaded as part of a crypto-context. To continue a previous operation, the
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previous ‘interim’ digest must be reloaded. If an operation is to be resumed, it is also
necessary to load the previous count of bytes processed. This can also be loaded as

part of the crypto-context.

Hash Padding

Controls are also provided to determine what is done at the end of the input
data stream. If the operation is to be resumed at a later time, then the operation
should be defined to exclude ‘final’ processing. In this case, no special processing
will be done at the end beyond making the resulting digest available as part of the
output crypto-context. If the operation is to include the end of last of the input
daté, then the control for ‘final’ processing should be set, which will cause the
paddfng operations defined for the hashing algorithms to be performed. These
include adding a ‘pad byte’ following the last byte of data, and placing a 64-bit
data length, expressed in terms of bits, at the end. If less than 9 bytes are available
between the last input data byte, and the next 512-bit block boundary, an extra
512-bit padding hash block will be added to contain the length. Any additional

bytes required to fill out the last or extra 512-bit blocks are set to zero.

As previously described, the same input data stream is internally buffered
by both the hash and encryption sections, depending on the data flow of the
operation selected. In the case of hash-encrypt, where the two components of the
operation are done in parallel, if any padding is added to the crypto block

according to the option selected, the same padding is added to the hash block.

HMAC

To support the IETF HMAC protocol, the module supports processing an
‘outer’ hash. Each crypto-context supports loading an ‘inner’ and an ‘outer’ pre-
computed initial digest. Typically, these would be the results of the HMAC keyed hash
pre-processing, and would be stored as part of the security association (SA) negotiated
for an IP connection. The pre-computed inner hash is loaded as the initial state of the

hash algorithm before processing the input data stream. At the end of the
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input data, normal ‘final’ processing is done, then the resulting digest is used as
data for an additional round of hash processing, where the initial state is the pre-

computed initial ‘outer’ keyed hash digest.

Hash/Encrypt Data Flow

Depending on how IP headers are processed in the packets to be
transformed using hash-encrypt, it may be that the data buffer ends up not being
double word aligned with respect to the starting point of the operation in the
buffer. If this is the case, PCI transfers can be done using PCI byte enables to
begin and end the operation on arbitrary bytes within their respective double
words. When the on-chip DSP is used to setup the PCI transfers using PCI Master
Mode, it has the capability to control the byte enables by setting the starting offset
and byte count. When PCI Target Mode transfers are used, the PCI host is
responsible for controlling the byte enables. Byte enables are also used on the 16-
bit DSP bus. In this case, the enable signals are set in a register in another block
and passed in as a two bit wide signal. This capability only applies to I/O to the
data FIFOs. All other registers assume full word (16-bit bus) or double word (32-

bit bus) transfers.

The hash-encrypt block also supports communication with host processors
which may be either big endian or little endian, in terms of the order of storage
within a double word. The default assumption is little endian. If big endian is
selected, the module will reorder the input and output bytes, and in the case of the
32-bit bus, align them with the proper edge of the resulting double word. Endian
processing applies to both the data and crypto-context registers, but not the

control and status registers, where it can be handled in the application software.

The hash-encrypt block is designed to support zero wait state reads on the 16-
bit bus to the DSP, and 1 wait state reads on the 32-bit bus to PCI (due to endian
processing). Writes experience a one clock latency, as they are first latched, then
written to the target address. Writes can be zero wait from the host’s perspective,

however, as long as a read is not attempted in the immediately following cycle.
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Hash/Encrypt Subsystem Notes

Note that due to the pipelining nature of the module, it is possible to begin
a new operation before all the data from the previous operation has been processed
and read out. The sequence of steps is simplified if operations are performed

serially with no overlap.

Final processing for hashing operations, and padding of a short trailing
crypto block, is initiated automatically. The end of the input data stream for an
operation is determined by counting the number of bytes input and comparing to
the byte length entered as part of the operation control. An operation may be
ended prematurely by entering a new operation control. If the length field is set to

zero, this is the only way to cause a normal end.

Operations can be aborted by resetting the hash-encrypt block. All
registers except the KEK will be reinitialized. The hash-encrypt block can be reset

in the CryptIC via the kernel mode block hash-encrypt control register.

If black keys are used, the KEK register must be loaded prior to loading
either of the crypto contexts.

In the case where the DSP is performing all hash-encrypt actions as a result
of calls from application software to the Crypto CGX interface, then all actions

described above are reads and writes via DSP (16-bit).

When the DSP is managing the interactions in PCI system, and the data
resides in PCI host memory, then the status polling and control actions take place
via DSP reads and writes on the 16-bit bus. It this case, however, the crypto-
context and data FIFO I/O takes place on the 32-bit bus, as a result of PCI Master
Mode transfers initiated by the DSP.

When a host processor is directly managing all aspects of hash-encrypt

operation, then all I/O takes place on the 32-bit bus, although in some cases the upper
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16-bits of the bus are not used (such as in a PCMCIA environment or with a 16-bit

embedded processor).

The Kernel Mode firmware releases access of the Hash/Encrypt function

block to the PCI/PCMCIA host whenever it is not executing a CGX command.

Hash/Encrypt Registers
Table 6 lists the memory-mapped register interface to the hash-encrypt

module within the Cryp?/C. These registers may be accessed either from the DSP

in Kernel mode, or if granted permission, from a PCI/PCMCIA host external to the
CryptIC. Addresses on the 16-bit bus from the DSP are to 16-bit words.
Addresses on the 32-bit bus (from PCI host) are to the first 8-bit byte of the 32-bit

transfer. Transfers on the 32-bit bus should always be aligned to double word

boundaries.
ADDRESS | ADDRESS | REGISTER | R/W | Reset DESCRIPTION
(16 BIT) (32 BIT) NAME Default
Configuration Registers:
0x1000 0x0200 H/E control R/W {0x0000| Hash/Encrypt block control word
0x100f 0x021e Pad control R/W [0x0000 | Pad control word
0x1010-1011{0x0220-0223 | Length R/W 10x0000| 32-bit data length, in bytes
0x1012 0x0224 Offset R/W |0x0000| Offset, (0 to 15 in dwords), from start of hash
(encryption) to start of encryption (hash)
0x1013 0x0226 Control R/W }0x0007| Operation control.
0x1014 0x0228 Consume Pad N Command to consume final pad block
Status Registers:
0x1016 0x022¢ Pad Status 0 R Decrypted next header byte, # Pad bytes, Context 0
0x1017 0x022¢ Pad Status 1 R Decrypted next header byte, # Pad bytes, Context 1
0x1018 0x0230 GeneralStatus R Status result from Hash/Encrypt operation
0x1019 0x0232 ControlReady R 1 = input ready for new control word. 0 = not ready
0x101a 0x0234 DataReady R 1 = input ready for data FIFO, 0 = not ready
0x101b 0x0236 StatFreeBytes R Number free input bytes in crypto FIFO (in 64-bit
blocks)
0x101c 0x0238 StatOutBytes R Number output bytes ready in crypto FIFO (in 64-bit
blocks)
Context 0 Registers:
0x1020-1023]0x0240-02+7 | Xcv3 O LW Key 3, for Triple DES: Crypto Context 0
0x1024-1027}0x0248-024F | Key2 0 W Key 2, for Triple DES: Crypto Context 0
0x1028-102B| 0x0250-0257| Keyl-0 w Key 1, for Triple DES or DES: Crypto Context 0
0x102C-102F| 0x0258-025F | Salt O \ IV for kev decryption: Crypto Context 0
0x1030-1033]0x0260-0267| IV O R/W TV for data encrypt/decrypt: Crypto Context 0
0x1034-103D|0x0268-027B| Digest 0 R/W (Inner) Digest: Crypto Context 0
0x103E-1047| 0x027c-028F | OuterDigest 0 | W Quter Digest: Crypto Context 0
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0x1048-1049} 0x0290-0293 | HashByteCnt 0| R/'W Starting byte count, for hash resume: Crypto
Context 0
Context 1 Registers:
0x1050-1053|0x02A0-02A7| Key3 1 w Key 3, for Triple DES: Crypto Context 1
0x1054-1057]|0x02A8-02Af| Key2 1 W Key 2, for Triple DES: Crypto Context 1
0x1058-105B|0x02B0-02B7| Keyl 1 W Key 1, for Triple DES or DES: Crypto Context 1
0x105C-105F0x02B8-02BF| Salt 1 W IV for key decryption: Crypto Context 1
0x1060-106310x02C0-02C7{ IV 1 R/W IV for data encrypt/decrypt: Crypto Context 1
0x1064-106D0x02C8-02DB] Digest 1 R/W (Inner) Digest: Crypto Context 1
0x106E-1077|0x02D0-02EF| OuterDigest 1 W Outer Digest: Crypto Context 1
0x1078-1079| 0x02F0-02f3 | HashByteCnt_1| R/'W Starting byte count, for hash resume: Crypto
Context 1
Data In/Out FIFOs:
0x10c0 | 0x0380 |DataFIFO | R'W | | FIFO: Data In/Data Out

Table 6 Hash/Encrypt Registers

Hash/Encrypt Control Register (HECNTL)

This 16-bit Read/Write register, as shown in the table below, allows

selecting configuration settings for the Hash/Encrypt subsystem.

PSP

PCL

0x1000

0x0200 - 0x0201

0x0200 — 0x0201

1514 13 12 11 10 9 8 7 6 3

4

32 10

0]

Allow [V writes to context registers:
0 = allow software to write to IV
1 = ignore data written to IV registers

Reserved

Pad Control Register (HEPADCNTL)

Shown in the table below are the bit definitions for the Pad Control
Register:
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Register Address (READ / WRITE
i PCMCEAL 3 PCE i
x1009 0x011e - 0x011f 0x011c - 0x011f

D8P

15 14 13 12 11 10 9 8 1 0
lololofofofofofo 0lo]
I | | | L
LPadModa:
0=Zero Pad, 1=IPsec, 2=PKCS#7,
3=Constant Pad
Reserved
Next Header byte (IPsec), or Pad Byte constant
(Mode 3)

Control Register (HECNTL)

Shown in the table below are the bit definitions for the Hash/Encrypt
Control Register:

Register Address (READ / WRITE)

Sl PCMGEA

0x0126 - 0x0127 0x0126 - 0x0127

“inlizlinlwlol8l 7615141312110
1

0 0
- LTI

‘—-— Operation :
(0=encrypt; 1=decrypt; 2=hash; 3=hash-enc; 4=dec- “
hash; 5=hash-dec; 6=enc-hash; 7=idle) f1
1 = Triple-DES, 0 = DES t of 2°

Mode: (0=ECB; 1=CBC; 2=OFB, 3=CFB)
# feedback bits (0 = 64-bits; 1 = 8-bits; 2 = 1-bit)
1= SHA, 0 = MD5

1 = initial hash state is algorithm constants
0 = use inner Digest as initial state

1 = load hash byte count, 0 = start from zero

1 = perform outer hash
1 = perform hash ‘final’ processing

1 = use context 1, 0 = use context 0

= offset is from start of 2™ sub-operation to start of 1
sub-operation.
0 = offset is from start of 1* sub-operation to start of 2"
sub-operation.

1 = decrypt key before use
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Consume Pad Register (HECONSPAD)

This 16-bit Write-Only register, as shown in the table below, allows the
Software to command a discard of the last 8-byte block of decrypted data in the
Hasb/Encrypt output FIFO. This is typically used to avoid the bus bandwidth of

transferring the Pad block back to host memory.

Register Address (WRITE ONLY)
5 DSP: S POMIGTA i
0x1014 0x0228 - 0x0229 | 0x0228 — 0x0229

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Lxx [ I x Dl [ [ e [ [x [ ] x ]

L - [ |
Don’t Care

Pad Status Register 0 (HEPADSTATO)

Shown in the table below are the bit definitions for the Pad Status Register

1514 13 121110 9 8 7 6 5 4 3 2 1 0
lolololololololo 0lololol

I Il J 1

Number of Pad Bytes in last decrypted Block (0-
15)

Reserved
Decrypted Next Header byte (IPsec)

Pad Status Register 1 (HEPADSTATI)

Shown in the table below are the bit definitions for the Pad Status Register
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P:

0x1017

0x012e — 0x012f

0x012e - 0x012f

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0

lololololo]olo]o
L |

olololo

General Status Register (HESTAT)

Number of Pad Bytes in last decrypted Block (0-15)
Reserved
Decrypted Next Header byte (IPsec)

Shown in the table below are the bit definitions for the Hash/Encrypt General

Status Register:

Register Address (READ /ONLY)

DSP

PCMEIA

0x1018

0x0130 — 0x0131

0x0130 — 0x0131

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lololololo]o

lololofofofo]

Mmoo
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1 = Output data available (from crypto block)

1 = Hashing is complete for context 0

1 = Hashing is complete for context 1

1 = Encryption / Decryption is complete for context 0 *
1 = Encryption / Decryption is complete for context 1 *
1 = Processing for Context 0 is complete

1 = Processing for Context 1 is complete

Reserved

1 = Pad Block Added on Encrypt, context 0

1 = Pad Block Added on Encrypt, context 1

1 = Pad Verification Fault, context 0 **

1 = Pad Verification Fault, context 1 **

1 = Extra Pad Block Detected on decrypt, context 0 **
1 = Extra Pad Block Detected on decrypt, context 1 **
Reserved

Reserved

* TV is available to be read from Context
** Valid only after last decrypted block
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APPLICATION REGISTERS

The Application Registers (4ppRegs) subsystem provides a bi-directional
mailbox facility between a Host and the CryprIC and also contains some miscellaneous
configuration registers. The mailbox is specifically designed to facilitate the transfer of
CGX crypto commands back and forth between the Crypt/C and the calling Host.

Overview

The AppRegs mailbox subsystem is designed to follow a ‘ping-pong’ protocol
between CryptIC and Host. Default power-up ownership of the mailbox is given to
the Host. After either side writes an entire message to the mailbox, it automatically
switches state so that the other entity is given ‘ownership’ of the mailbox. Optionally,
an Interrupt may be sent to the DSP/Host when the other side has finished writing a

message.

Up to a 44-byte (22 word) message may be written to the mailbox by the DSP.
The procedure should designate that the least-significant word of the message be
written last, since that initiates an ‘End-of-Message’ sequence. (By using the least-
significant word for termination, any length of message from 1 to 44 bytes can be

supported.)

Application Registers Register Set

A set of memory-mapped control and status registers are provided in the
‘Application Registers’ subsystem. These are considered Unprotected Registers, and
therefore are visible to either the DSP running in User mode or to an outside
PCMCIA/PCI bus entity. They are summarized in Table 7 and described in detail in

the following subsections.

(In the table below, 16-bit address refers to the DSP and 32-bit address refers
to PCI/PCMCIA host.
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ADDRESS | ADDRESS REGISTER Reset
(16 BIT) (32 BIT) NAME RW efaul DESCRIPTION
APPLICATION REGISTERS
0x1880- | 0x0000-2B | CGX Command R/W 44-byte CGX command register
0x1895
0x18A0 | 0x0040-41 | Status R |0x0000] Application registers status
0x18A1 0x0042-43 | Lock R/W DSP/Host lock control
0x18A2 0x0044-47 | Misc Status R/W Miscellaneous status bits; DSP <—> host
0x18A3 N/A Select Delay R/'W Delay configuration for memory pulse
i generation
0x18A4 N/A Hash/Encrypt R/W Byte enables for data R/W to Hash/Encypt block
Byte Enable
0x18AS5 N/A Reset Violation R |0x0000| Holds the memory type and Address of the last
Memtype/Addr protection violation-induced Reset
0x18A6 0x004C-4F | Extmem Config R/IW External memory configuration

Table 7 Application Register Set

Mailbox Data Register (MAILDAT)

This is actually a contiguous set of register comprising 44-bytes, as shown in

the table below. The least significant word of this register has special properties.

When written by the DSP, the Isword will cause a ‘DSP_Wrote_Command’ interrupt

to be issued to the Host processor (if enabled). Similarly, a Host write will cause a

‘Host_ Wrote_Command’ interrupt to be issued to the DSP processor (if enabled). In

addition, writing the least-significant word will cause the ownership of the mailbox to

automatically flip to the other party.

From the DSP perspective, the mailbox appears as 22 consecutive 16-bit

locations:
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DSP Register Address (READ / WRITE)

0x1895 Data Word 21
0x1894 Data Word 20
0x1893 Data Word 19
0x1882 Data Word 02
0x1881 Data Word 01
0x1880 Data Word 00 (Isw) **

** End-of-Write Trigger Word

From the Host perspective, the mailbox appears as 11 consecutive 32-bit

locations which are byte-addressable, as shown in the table below:

0x002B Data Byte 43 (msb)

0x002A Data Byte 42
0x0029 _ Data Byte 41

0x0002 Data Byte 02
0x0001 Data Byte 01
0x0000 Data Byte 00 (Isb) **

** End-of-Write Trigger Byte

DSP AppRegs Status Register (DSPAPPSTAT)

This 16-bit Read-only register, as shown in the table below, allows the DSP
Software to monitor the status of the Mailbox.

10 Bit #0, Mailbox Write Own, allows the DSP to determine who may next write into the
Mailbox.

Bit #1, Host has read Mailbox, allows the DSP to monitor when the Host processor
has received a transmitted message in the Mailbox. Bit 1 will be latched as a ‘1’ when

the Host has read the least significant data byte of the Mailbox. As soon as the DSP
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reads DSPAPPSTAT, this bit will automatically be cleared and re-armed for the next
Host Mailbox read.

Bits #2 & 3 are read-only status bits which reflect the semaphores written (and read) in
the DSPSEMA and HOSTSEMA registers.

Address (READ ONL
PSP SCMCE
0x18A0 Not Visible Not Visible

8 7 6 5 4 3 2 1 0
0lofo]o]

Mailbox Write Ownership
1 = DSP has Write Access
0 = Host has Write Access

1 = Host has Read Mailbox

DSP Miscellaneous Semaphore bit
Host Miscellaneous Semaphore bit
Reserved

Host AppRegs Status Register (HOSTAPPSTAT)

This Read-only register, as shown in the table below, allows the Host Software

to monitor the status of the Mailbox.

Bit #0, Mailbox Write Own, allows the Host to determine who may next write into the
Mailbox.

Bit #1, DSP has read Mailbox, allows the Host to monitor when the DSP processor
has received a transmitted message in the Mailbox. Bit 1 will be latched as a ‘1’ when
the DSP has read the least significant data byte of the Mailbox. As soon as the Host
reads HOSTAPPSTAT, this bit will automatically be cleared and re-armed for the next
DSP Mailbox read.

Bits #2 & 3 are read-only status bits which reflect the semaphores written (and read) in
the DSPSEMA and HOSTSEMA registers.
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Register Address (READ ONLY)
=5 | PeMCIA. 1 Pd T
Not Visible 0x0040-0x0041 0x0040-0x0041

3 2 1 0

1514 13 12 11 10 9 8 7 6
ToJoJolo]

Mailbox Write Ownership
5 1 = Host has Write Access
0 = DSP has Write Access

1 = DSP has Read Mailbox
Host Miscellaneous Semaphore bit

DSP Miscellaneous Semaphore bit

10 Reserved

AppRegs Lock (APPLOCK)

This 16-bit Read/Write register, as shown in the table below, allows the DSP to
lock-out Host write access to the Command/Response register. Setting this register to

15 0x01 effectively makes the Mailbox one-way from the DSP to the Host.

From the Host perspective, this register is.read-only.

Register Address (READ / WRITE)
PSP PCMCIA Pl
0x18A1 0x0042-0x0043 |  0x0042-0x0043

Mailbox Lock
0 = Host has Write Permission
1 = DSP has Locked-out Host Writes

Reserved
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DSP (Host) Miscellaneous Semaphore Register (DSPSEMA, HOSTSEMA)

Viewed from the DSP, this 16-bit Read/Write register, as shown in the table
below, allows the DSP Software to assert a semaphore bit to be read by the Host via |

the AppRegsStatus register.

5 When viewed from the Host, the Isb of this 32-bit Read/Write register allows
the Host Software to assert a semaphore bit to be read by the DSP via the

AppRegsStatus register.

The CGX Kernel may be programmed to use these two bits for ownership
arbitration of the Hash/Encrypt subsystem. In order to enable this feature, the
10 appropriate CIS initialization bit must be set when calling the CGX_INIT routine.
Refer to the CGX Software Users Guide for more defails on the behavior of this

function.

If the above CGX usage of these semaphores is not selected, then they may be

used for any general purpose DSP to Host signalling.

15
DSPSEMA
Reglster Address (READ / WR.ITE)
T DSPEE E..::: ----- PCMCIA B ;r
[—i 0x18A3 | Not Visibie ; \'ot Visible
3 2 1 0
13 12 g 7 6 5 4
‘ \ DSP Miscellaneous Semaphore bit
Reserved
20
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HOSTSEMA

Not Visible 0x0044-ox0047 OX0044-0x0047

1514 13 12 11 10 9 8 7 6 5 4 3 2 1

%lg]

Host Miscellaneous Semaphore bit

Reserved

Hash/Encrypt Byte Enable Register (HEBYTEEN)

This 16-bit Read/Write register, as shown in the table below, allows the DSP
Software to manage reading and writing fractional words in or out of the
Hash/Encrypt FIFO’s. Since the DSP is oriented towards a 16-bit bus width, but the
10 FIFO’s can manipulate data down to byte granularity, it is necessary for the DSP to
specify whether its low or high order byte is to be transferred in or out of the FIFOs.

Register Address (READ ONLY)

Oxl 8A0 Nof Visible

151413‘121]109876543210

15 l | 1 = DSP low Byte Enable
1 = DSP high Byte Enable
Reserved

Reset Reason/Instruction Register (RSTREASON)

20 This 16-bit Read/Write register, as shown in the table below, allows the DSP
processor to determine the offending address and memory type which caused a Kernel
protection violation reset. The contents of this register are preserved across a CryptIC

reset (although of course, not across a power-cycle.) This is useful in de-bugging
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software which is written for the User Mode of the Crypt/C. Refer to section
previous described on Kernal Mode Control for more information about the protection

features of the CryptIC.

The four memory types are as follows:

PM Instruction Fetch An instruction fetch was made either to one of the four blocks of
Kernel ROM (i.e. the 4 Isb’s of PMOVLAY were set to 0xC, D, E or
F and a fetch was made between address 0x2000 and 0x3FFF), or to
an internal program memory (PM) location which has been locked-in
as Protected Memory by an Extended Mode program.

DM Data Fetch A data fetch was made to an internal data memory (DM) location
which has been locked-in as Protected Memory by the Kernel. With
the standard CGX kernel and no Extended Mode programs active,

: none of the internal DM should be protected.
PM Data Fetch A data fetch was made to an internal program memory (PM) location
. which has been locked-in as Protected Memory by the Kernel. With
the standard CGX kernel and no Extended Mode programs active,
none of the internal PM should be protected.

Protected Registers/ A data fetch was made to either the Kernel RAM area or one of the

Kernel RAM Data Fetch  Protected crypto registers. This would mean that the 4 Isb’s of
DMOVLAY were set to OxF and a data fetch was made between
address 0x0000 and 0x17FF

Due to a design ‘feature’ of the CryptIC, this register must be read twice,

ignoring the first data read.
Register Address (READ / WRITE) __

PSP CMEIA
0x18A5 Not Visible Not Visible

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0
lolololololololololololololololo]

i l
I

14-bit Memory Address which caused violation
Memory Type which caused violation

00 = PM Instruction Fetch

01 = DM Data Fetch

10 = PM Data Fetch

11 = Protected Registers/Kemel RAM data fetch

External Memory Configuration Register (EXMEMCFG)

This 16-bit Read/Write register, as shown in the table below, allows selecting

configuration settings for the external memory subsystem.
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Bit O configures the nature of the external memory bus. It should normally be
programmed at CryptIC power-up and left unchanged. One effect of this bit is that it
changes the behavior of external address bit [0] and the CS32 and DMS pins. In 16-bit
memory mode, only DMS should be used and AQ functions to select even and odd

words of memory.

In 32-bit mode, then memory devices must be used which allow 16-bit bus
enables (e.g. either a 32-bit wide device with upper and lower 16-bit enables, or a pair
of 16-bit wide devices). In this case, A0 should be left disconnected. DMS will select

the ‘lower’ 16-bits of external memory, and CS32 will select the ‘upper’ 16-bits.

Bit #1, External Memory Own, allows the DSP to arbitrate who owns the external
memory bus: either the DSP or the DMA controller (and therefore also the Host
processor). Typically, software will leave this bit set to 1 except when external
memory must be accessed by the DSP. This allows PCI Target mode transfers to
occur to ExtMem (since a Target transfer cannot always be predicted by the DSP).

IRE’s CGX software always leaves this bit set to 1 (DMA controller owns),

unless it is in the middle of an operation which requires DSP access to ExtMem.

Register Address (READ / WRITE) -
lizfgfffazf--::;i;Dsp-;-e;:::::';fzsrszf;;zaz;aifzpcmcm:-a;;:as;':?a;;:;zié:zz;:_;:3;pc1;::~;;3;-;:J
| 0x18A6 | 0x004C — OX004F | UXU04C — Ox004F |

6 5 4 3 2

12 11 10 9 8 7

oTo]

|

‘ External Memory Width

0 = 32-bits

1 = 16-bits
External Memory Own

0 =DSP

1 = DMA Engine (ie. Host)
Reserved
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INTERRUPT CONTROLLER

Interrupt Controller Overview

The CryptIC enhances the existing Interrupt controller within the ADSP 2183
DSP with some additional functions related to the Crypto functional blocks and the
5 external Host bus interfaces. Two additional Interrupt Controller subsystems have

been added to the basic 2183 Interrupt Controller as shown in Figure 10.

The DSP Interrupt Controller allows programming between 1 and 7 sources
for the IRQ2 interrupt to the DSP. The DIMASK register provides the Mask to select
which interrupt source is enabled. A pair of status registers, DUSTAT and DMSTAT,

10 allow the DSP firmware to read the status of any interrupt source either before or after

the Mask is applied.

The Host Interrupt Controller allows programming between 1 and 4 sources
for the HostIntO interrupt output signal (which may be connected to the interrupt
input of the Host system). The HIMASK register provides the mask to select which

15 interrupt source is enabled. A pair of status registers, HUSTAT and HMSTAT, allow
the Host firmware to read the status of any interrupt source either before or after the
Mask is applied.
Interrupt Source Descriptions
20 The DSP and Host Interrupt Controllers support the following additional

interrupt sources, as shown in the table below.
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Jescripto

Host Interrupt

This is a software-forced interrupt towards the DSP from the Host.
DSP Interrupt This is a software-forced interrupt towards the Host from the DSP.
H/E Context 0 Done This indicates that the Hash/Encrypt engine within the CrypfIC has just

finished fully processing a command for Context 0. It will occur after either
the Length bytecount has decremented to 0 or if the H/E Control word is
written with an idle command (111 in the 3 1sb’s).

H/E Context 1 Done

Same as above, but for Context 1.

Host wrote Command

The Host Processor has just written the least-significant word of the
Application Registers mailbox. This notifies the DSP of this event.

DSP wrdte Command

The DSP has just written the least-significant word of the Application
Registers mailbox. This notifies the Host of this event.

Master DMA Transfer Done

Indicates that a DSP-initiated Master DMA transaction is complete. This is
triggered from bit 3 of the DMA Status/Config. Register going from 1 to 0.

Master DMA Transfer Queued

Indicates that a DSP-initiated Master DMA transaction has just been
queued in the double-buffered holding register, thus there is no room for
another DSP DMA command. This is triggered from bit 15 of the DMA
Status/Config. register going from 0 to 1.

Host External Memory Conflict

A DMA transfer was attempted to or from External Memory, but the
ownership bit was not set to allow the transfer (ie. the DSP had ownership.)
See EXMEMCEFG register in section 0.

Hash/Encrypt Error

A Hash/Encrypt error occurred. The error code is given in the H/E Error
Code register.

IRQ2

This is simply the IRQ2 external pin on the Crypt/C. This allows the DSP
to ‘OR’ it in with the other crypto-related interrupt sources

Table 8 Interrupt Sources

Interrupt Control Registers (INTC)

The Interrupt Control and Status Registers, as shown in the table below,

consist of two sets of 6 registers which allow the DSP or the Host system to enable or

disable crypto interrupts, check the status of the most recent interrupt, force an

interrupt, etc.
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ADDRESS | ADDRESS REGISTER R/W | Reset DESCRIPTION
(16 BIT) (32 BIT) NAME efaul
INTERRUPT CONTROLLER REGISTERS
DSP-Visible Registers:
0x1800 N/A DSP Unmasked R Interrupt source current states — Prior to mask
Status
0x1801 N/A DSP Masked R Interrupt source current states — Post mask
Status
0x1801 N/A DSP Clear Int w Clear selected Interrupt
0x1802 N/A DSP Mask R/'W Interrupt mask register
Control
0x1803 N/A DSP Int Config. | R/'W DSP Interrupt configuration register
0x1804 N/A Force Host Int W Force interrupt to Host (PC/PCMCIA)
0x1805 N/A H/E Error Code R Provides the H/E Error Code
Host-Visible Registers:
N/A 0x0080-0081 | Host Unmasked R Interrupt source current states — Prior to mask
Status
N/A 0x0084-0085 | Host Masked R Interrupt source current states — Post mask
Status
N/A 0x0084-0085 | Host Clear Int W Clear selected interrupt
N/A 0x0088-0089 | Host Mask R'W Interrupt mask register
Control
N/A 0x008C-008D | Host Int Config. | R/W Host interrupt configuration register
N/A 0x0090-0091 | Force DSP Int W Force interrupt to DSP
N/A 0x0092-0093 | H/E Error Code R Provides the H/E Error Code

Table 9 Interrupt Register Set

DSP Unmasked Status Register (DUSTAT)

This 16-bit Read-Only register, as shown in the table below, provides interrupt

status visibility to the DSP, prior to the interrupt mask being applied. Thus, the DSP

can view all potential sources of incoming interrupt. All of these sources, whether

masked in or out, will be latched in this register and must be cleared using the DICLR

register in order to view a subsequent interrupt.
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e, .sddress (READ ONLY)

B

“Not Visible

1514 131211 10 9 8 7 6 5 4 3 1
o]ololololololofo]

1=1RQ2

1 = Master DMA Transfer has been Queued
1 = Master DMA Memory Transfer is Done
1 = Host Wrote Command Register

1 = Hash/Encrypt Context 0 is Done

1 = Hash/Encrypt Context 1 is Done

1 = Host External Memory Conflict -

1 = Host Issued Interrupt

1 = Hash/Encrypt Error

Reserved

DSP Masked Status Register (DMSTAT)

This 16-bit Read-Only register, as shown in the table below, provides
Interrupt Status visibility to the DSP, after the Interrupt Mask is applied. This lets
the DSP view the selected sources of Interrupts which are directed to IRQ2.

(Note that the DSP must enable IRQ2 via the IMASK register and the global ENA
INTS command must be issued in order to actually receive the interrupt.) As with

the Unmasked status register, all interrupt bits are latched and must be cleared

using the DSP Clear Interrupt register.

B\ P
0x1801 Not Visible Not Visible

15 14 13

1110 9 8 7 6 5 4 3 2 1 0
oloflololololololo]

1=1RQ2

1 = Master DMA Transfer has been Queued
1 = Master DMA Memory Transfer is Done
1 = Host Wrote Command Register

1 = Hash/Encrypt Context 0 is Done

1 = Hash/Encrypt Context 1 is Done

1 = Host External Memory Conflict

1 = Host Issued Interrupt

1 = Hash/Encrypt Error

Reserved
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DSP Clear Interrupt Register (DICLR)

This 16-bit Write-Only register allows the Processor to Clear pending
Interrupts. It is located at the same address as the Masked Status Register (Write vs.
Read) which facilitates performing a read to detect pending interrupts followed by a

5 write of the same bits in order to clear the latched interrupt status.

PSP T

StHE : G EPCLin
0x1801

Not Visible

151413121110_‘9”876543210

ololololofolofolo]

1 = Clear IRQ?2 interrupt
1 = Clear Master DMA Transfer Queued interrupt

1 1 = Clear Master DMA Transfer Done interrupt

1 = Clear Host Wrote Command interrupt

1 = Clear HashEnc Context 0 done interrupt

1 = Clear HashEnc Context 1 done interrupt

15 ' 1 = Clear Host Ext. Memory Conflict Status interrupt

1 = Clear Host Issued Interrupt

1 = Clear Hasl/Enc Error interrupt

Reserved

20 DSP Mask Control Register (DIMASK)

This 16-bit Read/Write register, as shown in the table below, allows
configuring the Interrupt Masks for the Crypto subsystem.
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Register Address (READ / WRITE)
‘DSP HHPCMCIA C
0x1802 |  Not Visible Not Visible

1514 13 12 11 10 9 8 7 6 5 4 3
ololololololololo]

1 =Mask IRQ2

1 = Mask Master DMA Transfer Queued
1 = Mask Master DMA Transfer Done

1 = Mask Host Wrote Command Register
1 = Mask Hash/Encrypt Context 0 Done
1 = Mask Hash/Encrypt Context 1 Done
1 = Mask External Memory Conflict

1 = Mask Host Issued Interrupt

1 = Mask Hash/Enc Error

Reserved

DSP Interrupt Configuration Register (DICFG)

eued
jone

This 16-bit Read/Write register, as shown in the table below, allows
configuring the Interrupt type which will be fed into the IRQ2 interrupt line of the
CryptIC’s DSP. Note that this only effects the final output of the Interrupt

subsystem.

Configuring for Pulse will cause the internal interrupt signal to pulse low
for two clock cycles when activated. When set for Level, the interrupt signal will
be set low until cleared by the DSP (i.e. it will follow the bit in the Masked Status
Register).

Register Address (READ / WRITE)
0x1803 Not Visible Not Visible

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1

Interrupt Output Signal Type:
1 = Pulse, 0 = Level
Reserved

Force DSP Interrupt Register (DIFRC)

This 16-bit Write-Only register, as shown in the table below, allows the
DSP Software to Force a Crypto subsystem Interrupt to the external Host
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processor. Lhe data contents of the Write operation are ignored — any Write to

this address will cause an interrupt, if enabled by the HIMASK register.

Register Address (WRITE ONLY)

0x1804 Not Visible Not Visible

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L Ll [ [ [ [ [ [ D D T [ [x [ [ x]

|
Don’t Care

DSP or Host H/E Errors Register (DSPHERR, HOSTHERR)

This 32-bit Read/Write register, as shown in the table below, provides the
error code which resulted in a H/E Error interrupt. Reading a ‘1’ in a bit position
within this register indicates the type of error which occurred. In order to clear the

error latch, 0’s should be written to the desired bit positions.

Register Address (READ/WRITE)

0x1805 Not Visible Not Visible

1514 13 121110 9 8 7 6 5 4 3 2 1 0
olololo]o]

1 = Write attempted to Hash FIFO, buff not rdy
1 = Write attempted to Crypt FIFO, buff not rdy
1 = Attempted to use Red key when not allowed
1 = Attempt to write Control word when not rdy

1 = Overflow operation on Length count (more
bytes written than non-0 Length specifies)

Reserved

Host Unmasked Status Register (HUSTAT)

This 32-bit Read-Only register, as shown in the table below, provides
interrupt status visibility to the Host, prior to the interrupt mask being applied.
Thus, the Host can view all potential sources of incoming interrupt. All of these
sources, whether masked in or out, will be latched in this register and must be

cleared using the HICLR register in order to view a subsequent interrupt.
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can view all potential sources of incoming interrupt. All of these sources, whether
masked in or out, will be latched in this register and must be cleared using the HICLR

register in order to view a subsequent interrupt.

Register Address (READ
S EMEL
Not Visible | 0x0080 — 0x0081 | 0x0080 — 0x0081

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

olofololo]
; |
1 = DSP Wrote Command Register
1 = Hash/Encrypt Context 0 is Done
1 = Hash/Encrypt Context 1 is Done
1 = DSP Issued Interrupt
10 *—eree————— | = Hasl/Enc Error
Reserved
Host Masked Status Register (HMSTAT)
This 32-bit Read-Only register, as shown in the table below, provides Interrupt
Status visibility to the Host, after the Interrupt Mask is applied. This lets the Host
15 view the selected sources of Interrupts which are directed to PF7 which is normally

connected to the Host bus interrupt. As with the Unmasked status register, all

interrupt bits are latched and must be cleared using the Host Clear Interrupt register.
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Register Address (READ ONLY)

Not Visible

8 76 543210
ololololo]

| |

’ 1 = DSP Wrote Command Register
1 = Hash/Encrypt Context 0 is Done
1 = Hash/Encrypt Context 1 is Done
1 = DSP Issued Interrupt

1 = Hash/Enc Error

Reserved

Host Clear Interrupt Register (HICLR)

This 32-bit Write-Only register, as shown in the table below, allows the Host to
Clear pending Interrupts. It is located at the same address as the Masked Status
Register (Write vs. Read) which facilitates performing a read to detect pending
interrupts followed by a write of the same bits in order to clear the latched interrupt

status.

Register Address (WRITE ONLY)

‘DSP

Not Visible 0x0084 — 0x0085

1514 13 12 11 10 9 8 7 6 35

4 3 2 1 0
ololololo]

1 = Clear DSP Wrote Command'interrupt

1 = Clear HashEnc Context 0 done interrupt
1 = Clear HashEnc Context 1 done interrupt
1 = Clear DSP Issued Interrupt interrupt

1 = Clear Hash/Enc Error interrupt
Reserved

Host Mask Control Register (HIMASK)

This 32-bit Read/Write register, as shown in the table below, allows
configuring the Interrupt Masks for the Crypto subsystem.
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SP

CMi

Not Visible

0x0088 — 00089

0x0088 — 0x0089

Host Interrupt Configuration Register (HICFG)

1 = Mask DSP Wrote Command Register
1 = Mask Hash/Encrypt Context 0 Done
1 = Mask Hash/Encrypt Context 1 Done
1 = Mask DSP Issued Interrupt

1 = Mask Hash/Enc Error

Reserved

This 32-bit Read/Write register, as shown in the table below, allows

configuring the Interrupt type which will be fed to the PF7 interrupt line out of the

CryptIC. Note that this only effects the final output of the Interrupt subsystem.

Configuring for Pulse will cause the PF7 interrupt output to pulse low for two

clock cycles when activated. When set for Level, the interrupt signal will be set low

until cleared by the Host (i.e. it will follow the bit in the Masked Status Register).

Register Address (READ / WRITE)

::::DS:

........... ST

................. &

Not Visible

0x008C - 0x008D

0%008C — 0x008D _

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Force Host Interrupt Register (HIFRC)

Interrupt Output Signal Type:
1 = Pulse, 0 = Level

Reserved

This 32-bit Write-Only register, as shown in the table below, allows the Host

Software to Force a Crypto subsystem Interrupt to the DSP processor. The data
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contents of the Write operation are ignored — any Write to this address will cause an

interrupt, if enabled by the DIMASK register.

Register Address (WRITE ONLY)
ISP PEMETL
Not Visible 0x0090 - 0x0091

0x0090 — 0x

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0
IX[XiXIX‘X|X'X1XlXIXIX’XIX|XIX|X|

Don’t Care

SERIAL EEPROM
Serial EEPROM Overview

The CryptIC provides an interface port for connection of a 2kbit (256-byte)
serial EEPROM (93C66 or equiv.). The principal purpose of this is to allow automatic
boot-loading of the PCI or PCMCIA port configuration parameters. The serial
EEPROM is not mandatory however, since the DSP may directly program these
configuration settings into the PCI/PCMCIA bus core using the registers described
below. It should be noted however, that the DSP must be able to program these
settings before it can communicate using the PC/PCMCIA bus. This implies that the
CryptIC could not be boot-loaded from the PCI/PCMCIA bus unless a EEPROM was

connected.

A secondary use of this EEPROM port can be application-specific. Since there
is extra unused space in the EEPROM, a user application may use the remaining space
for non-volatile storage of a relatively small amount of data. Examples could include:
A Black KEK, a digital certificate, a user authentication ‘master’ password, etc.. Since
the EEPROM is directly connected to the Cryp#IC and can only be controlled by the

DSP, there is a certain amount of intrinsic protection to this data store.

For PCI applications, the PCI configuration parameters occupy the first 13
locations of the EEPROM, leaving 243 bytes remaining for user-specific applications.

In Cardbus systems, there is additional CIS storage required after the first 13 locations.
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For PCMCIA applications, the CIS configuration parameters occupy the first
TBD locations of the EEPROM, leaving TBD bytes remaining for user-specific

applications.
For applications which do not use either the PCI or the PCMCIA buses, the
entire EEPROM (256 bytes) is available for applications.

In order for user applications to utilize the serial EEPROM, a low-level
software driver must be written on the DSP to implement the unique bit-level protocol
of the serial EEPROM. The EEPROM Command/Status port simply provides
read/write access directly to the four EEPROM signal lines: Serial Clock (SK), Data In
(DI), Data Out (DO), and Chip Select (CS). Refer to the manufacturers datasheet for
the EEPROM for information on its protocol. |

‘Manual’ Host Bus Configuration

As mentioned above, the DSP can override the automatic bootloading of the
Host bus (PCU/PCMCIA) static configuration parameters from a EEPROM. The

sequence of operations is as follows:

a) Set [bit 1] of the EECMDSTAT register to ‘1’ to stop the autoload state

machine.
b) Write valid configuration into the first 13 EEPROM registers.

¢) Set [bit 0 & bit 1] of the EECMDSTAT register to ‘1’ to remove the
EEPROM busy indication and enable the Host bus.

d) Poll [bit 2] of the EECMDSTAT register to verify a ‘0’ (not busy).

EEPROM Control Registers

The EEPROM Control and Status Registers, as shown in the table below,
consist of 14 registers which allow the DSP to directly configure the PCI or PCMCIA
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configuration registers. The last register, the Command/Status register allows general
control of the serial EEPROM interface.

ADDRESS | ADDRESS REGISTER Reset
(16 BIT) | (32 BIT) NAME R'W | Default DESCRIPTION
SERIAL EEPROM REGISTERS
0x1900 N/A Device ID R/W 16-bit PCI device ID
0x1901 N/A Vendor ID R/W 16-bit PCI vendor ID (11D4h)
0x1902 N/A Rev ID/Class R'W 8-bit chip Revision ID, 8-msb’s of PCI Class
Code
0x1903 N/A Class Code R/W remaining 16-1sb’s of PCI Class Code
0x1904 N/A Header Type/Int R/W PCI header type & Interrupt Pin
0x1905 N/A Subsystem ID R/W 16-bit PCI Subsystem ID
0x1906 N/A Subsystem W 16-bit Subsystem Vendor ID
Vendor ID
0x1907 N/A Max Lat. Min Gnt | R/'W Maximum Latency. Min Grant parameters
0x1908 N/A Cardbusl R/W lower 16-bits of Cardbus CIS pointer
0x1909 N/A Cardbus2 R/'W upper 16-bits of Cardbus CIS pointer
0x190A N/A Baddr mask1 R/'W Specifies 1 = modifiable 0 = our addresses
0x190B N/A Baddr mask2 R/W Upper 16 bits
0x190C N/A CIS Size R/W CIS Size spec 16-bit (Upper 8 bits are 0)
0x190F N/A Cmd/Status R'W EEPROM Command and Status Register

EEPROM Command/Status Register (EECMDSTAT)

This 16-bit Read/Write register, as shown in the table below, allows control

and status monitoring of various serial EEPROM functions. It also provides access to

the input/output lines of the EEPROM, if enabled.

Bit 0: Clear EEPROM busy indication. The DSP should write a 1 to this bit after it

has loaded the 13 PCI configuration registers.

10 Bit 1: Allows the DSP to shut-off the automatic hardware state machine which
attempts to automatically download the PCI config/PCMCIA CIS into the bus
interface core. It must be set to a 1 in order to program the first 13 EEPROM
registers.

Bit 2: This bit indicates whether the hardware state machine is still attempting to load

15 the configuration from the EEPROM into the bus core. It must be a 0 to enable
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the PCI interface. It will clear to O if state machine finishes or if the DSP writes
altobitO.

Bits {7:4] allow the DSP direct access to the corresponding pins on the EEPROM
device. For these register bits to be active, a ‘1’ must be written to the Stop EEPROM
State Machine [bit 1] of this register.

(READ / WRITE)
N/A N/A

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lelxlx 010'0‘

l | '
L 1 = Force EEPROM busy clear & enable PCI (r/w)
1 = Stop EEPROM state machine (r/w)
1 = EEPROM Busy (read only)
Reserved
EEPROM SK (Serial Clock) (r/w)
EEPROM CS (Chip Select) (r/w)
EEPROM DI (Data In to EEPROM) (z/w)
EEPROM DO (Data Out from EEPROM) read only
Reserved

BOOT LOADING

Boot Loading Overview

The CryptIC provides multiple modes of boot-loading it operating software.
Virtually all implementations of the CryptIC require at least some application-specific
code running on its internal DSP. Of course, the CGX security kernel is hard-coded

into ROM on the device and does not need to be boot-loaded from the outside.
The boot modes are as follows:
e Byte Memory Booting (BDMA)

e Host Bus Booting

- From PCI
- From PCMCIA
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- From IDMA

e Local ROM Booting

Byte Memory Booting

In order to bootload the Crypt/C from Byte memory, an 8-bit wide PROM
must be connected to the Crypt/C’s external memory bus in the ‘Byte Memory’ space
(using BMS chip select).

To specify bootloading from Byte memory via the BDMA port, the following

mode pin states must be set:

MMAP =0

BMODE =0
BUS_MODE = Don’t care
BUS_SEL = Don’t care

When the Crypt powers-up, it will automatically begin DMA’ing the first 32
Program Memory words (96 bytes) into the base of internal Program Memory (PM).
It will then begin program execution at address 0x0000 with a BDMA interrupt
pending.

In fact, this bootloading process is identical to that for a standard ADSP
2181/2183 device. Refer to the Analog Devices ADSP-2100 Family User’s Manual

for more information on ‘Boot Memory Interface’.

Host Bus Booting

The CryptIC may also be bootloaded via the Host processor bus interface. The

procedure is slightly different, depending on which bus mode is selected.
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PCI Bus Booting

In order to bootload from the PCI bus, the following mode pin states must be

set:

MMAP =0
BMODE = 1
BUS_MODE = |
BUS_SEL =0

In addition, a serial EEPROM must be connected to the CryptIC in order for it
to automatically load its PCI default configuration parameters and enter the PCI-
Enabled state.

Once the CryptIC is powered-up, its PCI core will automatically initialize itself
and the DSP will enter a Reset state. It will then wait for code to be bootloaded from
the PCI host.

The PCI host will initially program the necessary data in the PCI Configuration
registers of the CryptIC (ie. Base Address Registers, etc.), and then may begin
downloading a bootloader code segment into the CryptIC’s internal PM memory
space. Downloading occurs by using Target mode IDMA writes into the internal PM

space. See section PCI Address Map described previously for additional information.

The procedure dictates that PM address 0x0000 be loaded last, since this
causes program execution to begin automatically (Reset is deasserted by the CryptIC).
Refer to the Analog Devices ADSP-2100 Family User’s Manual for more information
on ‘Bootloading through the IDMA port’.

ACRONYMS/TERMS
ACRONYMS

The following table is a list of acronyms used with the description of the co-

processor.
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| Acronvm Meaning

ASIC Application-Specific Integrated Circuit

CGX CryptoGraphic eXtensions

CT Cipher Text

DES Data Encryption Standard

D-H Diffie-Hellman

DMA Direct Memory Access

DSA Digital Signature Algorithm

v Initialization Vector

KCR Key Cache Register

KEK Key Encryption Key

LSV Local Storage Variable

MAC Message Authentication Code

PCDB Program Control Data Bits

PIN Personal Identification Number

PT Plain Text

SHA Secure Hash Algorithm

SHS Secure Hash Standard
TERMS

The following table is a list of terms used with the description of the co-processor.

Term Meaning
BLACK Key A secret/private key that is encrypted or covered
by a KEK, it can be securely given to another
) party.
Covered Key A secret key that has been encrypted, via a KEK,

to protect the key from being seen by an
undesirable party. Similar to a Black key.

Key Cache Register (KCR) A4 working storage area for secret keys,
addressable via a register ID between 0 and N.

Key RAM (KRAM) A volatile public key work area. The public key
will be lost during a power-down or reset. '

Local Storage Variable (LSV) A4 non-volatile Laser-programmed secret key that
can be used by the application as its own unique
private key. Each CryptIC has a unique LSV
programmed into it at the factory.

Program Control Data Bits Programmable control bits to customize the secure

(PCDB) Kernel features (such as allowing RED key
exportation/importation, LSV changes, exportable
chip, etc.).

RED Key A secret/private key that is not encrypted or
covered by another KEK. It is in its raw
unprotected form.
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The following is a detailed description of the cryptographic co-processor
taken from a CGX interface programmer’s guide prepared by the assignee and owner
of the invention, Information Resource Engineering, Inc. (IRE). As with the previous
description taken from the user’s guide, the cryptographic co-processor is often
referred to herein by the trademark ‘CryptIC’. The co-processor is also often referred
to by part number ADSP 2141. The following includes a detailed description for
software developers intending to use the CGX library embedded in the CryptIC . It
includes an overview of the CryptIC’s CGX software architecture, its key management
structure, the command interface, and a detailed description of CGX commands.
Incérporated herein by reference is also the Analog Devices ADSP-2100 family
User’s Manual which includes further information on programming the DSP
embedded within the CryptIC.

GENERAL DESCRIPTION

The CryptIC device is designed to be a highly integrated, general purpose
‘security system on-a-chip’. It combines a set of high-performance Hardware blocks to
accelerate time consuming cryptographic operations, together with an embedded Digital

Signal Processor (DSP) which serves as a crypto system controller. The DSP:

- Implements a ‘Security Kernel” which simultaneously enforces certain security
policies within the CryptIC and insulates Applications from the details of many

complex cryptographic operations.

- Can be used as a security co-processor to manage data movement between a

Host system and the CryptIC.

Can be used to run general-purpose User applications such as a V.34 modem

or a Network Interface Card controller.

The Security firmware which is mask-programmed into ROM on the CryptIC is
designated as the CGX (CryptoGraphic eXtensions) Kernel. It is a suite of
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approximately 40 functions which are available to Applications which require security

services.

A protection model is built into the DSP so that security-related and real-time
intensive applications can coexist. At any instant in time, the DSP can either be
operating in ‘Kernel Mode’ which means that one of the CGX commands is in process
or it can be in ‘User Mode’ which means that a user application is running. In Kernel
Mode, all of the CryptIC resources are available to the CGX firmware. In User Mode,
access to Key Storage locations and many of the Security Blocks is restricted in order
to enforce proper security policy. A degree of multi-tasking can be achieved between
User and Kernel processes, and Kernel Mode processing can be interrupted by User
code. In addition, a subset of the CGX commands may be preempted by another CGX

command.

To simplify Application-level access to crypto functions and allow the
coexistence of general-purpose applications running on the DSP, an Application
Programming Interface (API) is provided to the CGX Kernel. The CGX Command
Interface defines the boundaries between the security functions (which the CGX
Kernel implements) and the externally running applications, either on the CryptIC’s
DSP or on external Hosts communicating via the PCPCMCIA bus. A block diagram
of the CGX software interface is shown in Figure 11.

CGX SOFTWARE OVERVIEW

One of the primary goals of the CryptIC CGX software is to abstract the
hardware blocks of the Cryp#IC from the application in a secure and efficient manner.
The CGX Kernel has been designed so as to avoid the common problems of linking-in
security software with an application or worrying about what resources the application

must set aside to accommodate the security software.

The CGX interface is designed so that it can be viewed in one of two ways,

depending on the preference of the application programmer. The actual CGX interface
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is the same for both views; the difference is in how the application utilizes the CGX

interface.

¢ It can be viewed as a Crypto Library with a C-structure like interface with

argument and pointer-passing

* It can be viewed as a Hardware-accelerated subsystem of the chip, with a register-

based interface

In the hardware-oriented view, the CGX interface appears as a 21-word
register set (the command block) which is mapped into an application-specified
memory space in the CryptIC. This is similar to the concept of the MMX (Multi-
Media éXtension) instructions enhancements to Intel’s Pentium chips. The CryptIC
can similarly be viewed as a single-chip general-purpose processor with added CGX

(CryptoGraphic eXtensions) instructions.

To implement the CGX command set, both hardware and software components
are integrated on the Crypt/C. The hardware components are essential in providing
the crypto acceleration and for the protection/security of the CGX Kernel and key
material from the user application and the external world. As shown in Figure 12, the
CryptIC’s hardware components are accessed mainly in the Crypto Library, and some

are also used in the CGX Command Processor to implement protection features.

The CGX software resides within the dashed line illustrated in Figure 12. The
application runs on the DSP and uses the CGX Command Interface as an API to
access the CGX command set. To better understand the software architecture of the
CryptIC security software, a description of each layer is provided in the sub-sections

below.
Application Laver

The application layer is where the actual application program and data space

resides. The application has full-control of the general purpose DSP and its associated
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hardware resources. In order to access the cryptographic services, the application
must invoke the command interface and pass-in a command code and arguments. The
application running in the User space of the DSP can implement anything from a router

security co-processor to a V.34 modem data pump.

Residing as part of the application layer are the macro functions which IRE
provides in its cgx.h file. These macros assist the application in preparing the

command messages prior to calling the CGX kernel.

CGX Command Interface Layer

The CGX command interface layer is an Application Programming Interface
(API) which defines the boundaries between the application and the CGX Kernel. The
CGX command interface provides the hardware mechanism to enter and exit the CGX
Kernel to execute a specific cryptographic command. Part of the command interface
function invokes the kernel protection logic to isolate the CGX Kernel and its
associated security resources from the external application via the Kernel Protection
Logic built into the Crypt/C. This prevents the possibility of leaking Red key material

or of unauthorized external access to the CGX Kernel’s program or data space.

The software interface to the CGX Kernel is via a data structure called the
kernel block. The kernel block is split into two fields: the command block and status
block. The command block is used to request a specific cryptographic command and
to provide a means to pass-in arguments. The status block provides the application
with a means to track the status of the CGX Kernel (i.e. is it active or idle) and a

means to determine the result status of a requested cryptographic service.

Therefore, all communications between the application and CGX Kernel is via
the command interface and a Kerne! block. The command interface is discussed in

more detail in the section Command Interface.
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CGX Command Processor Layer

The CGX Command Processor implements a secure Operating System
responsible for processing application requests for various cryptographic services. The
CGX Command Processor is invoked by the application via a call to the CGX entry
address (0x2000 with PMOVLAY=0x000F). Once the CGX Kernel is active, it can
process the requested cryptographic function specified in the kernel block defined as
part of the CGX command interface layer. The CGX Command Processor is
responsible for maintaining the security of the internal cryptographic software, key

material, and associated security devices.

Like other operating systems, the CGX Command Processor is responsible for
time-sharing the security resources. It does this through DSP context management,

preemption management, and system integrity management.

DSP Context Management: Once the CGX Command Processor is activated
via the call to address 0x2000, it invokes its DSP context management software. The
DSP context management software is responsible for saving the application’s current
context (i.e. the DSPs registers, frame pointer, and stack pointer). This allows the
CGX Kernel to use the full DSP register set. Furthermore, the CGX Command
Processor must update the application’s status block to reflect a ‘running’ state. Once
a cryptographic function is complete, the CGX Command Processor cleans up,
modifies the application’s status block with the result of the cryptographic service,

restores the applications DSP context, and returns back to the application.

Preemption Management: For certain CGX commands, the Command
Processor can allow a new command to preempt a running one. This includes when it
is actively processing one of the public key or digital signature commands and the
preempting command is a hash or symmetric key command. This feature is provided
because some of the public key commands can take hundreds of milliseconds to

complete. However, if a preemptive request comes in and the CGX Kernel is not
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executing one of the preemptable commands, the CGX Command Processor will

return a CGX_BUSY_S status code and will not execute the command.

System Integrity Management: Lastly, the CGX Command Processor is
responsible for monitoring the security integrity of the CryptIC software and hardware
resources. As part of initialization processing, the CGX Command Processor runs a
suite of self-tests to verify the health of the security components. The CGX Command
Processor will not give control of the DSP to the application uﬁtil the self-test suite
completes successfully. Furthermore, there are several protection mechanisms to
prevent key material leakage which require the CGX Command Processor to explicitly
set hardwa:e register bits enabling specific cryptographic service. This level of control
is oniy permitted for the CGX Command Processor; thus preventing accidental or

intentional access to areas of the security blocks not allowed.

CGX Overlay Laver

The CGX overlay layer is provided as the interface into IRE’s CryptoLIB
software. The CryptoLIB software is a library that is designed for multiple platforms,
ranging from the PC to embedded systems. The CGX overlay acts as the ‘wrap code’
to enable the library to execute on the Cryp#IC platform unmodified. Figure 13
illustrates the data flow through the CGX overlay layer.

When a cryptographic request is received, the CGX Command Processor
parses the kernel block to determine the cryptographic command to execute. The
CGX Command Processor executes a CGX overlay operation from a table, based on
the command value embedded in the command block portion of the kernel block. The
CGX overlay operation is responsible for extracting the arguments from the kerne!/
block and invoking the proper CryptoLIB operations. In some cases, the CGX overlay
operation may invoke several CryptoLIB operations. In effect, this is an object-
oriented approach where the CGX overlay class is the parent class to the CryptoLIB

classes.
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CryptoLIB Layer

The CryptoLIB layer contains IRE’s Crypto Library software and it also
contains drivers for the Crypt/C hardware blocks as well as ‘soft’ versions of the
hardware algorithms (the soft versions are ifdef’ed out at compile time for the
CryptIC). The CryptoLIB software is a library of many cryptographic classes
implementing various cryptographic algorithms from symmetrical encryption

algorithms to one-way Hash functions, to public key operations.

The CryptoLIB API is transparent to whether it is running with hardware
acceleration or utilizing the library’s software crypto functions. This hides the
implementation of the Crypt/C platform and allows full reuse of the general CryptoLIB

software. This provides several advantages including:
e The CryptoLIB software can be independently used in the PC environment

¢ The software only ‘C’ version of CryptoLIB can be used during development of
products which will use the CryptIC.

e Enhancements and modifications to the CryptoLIB can be made and tested in the

PC environment before migrating them into the hardware of the CryptIC.

CGX SOFTWARE COMPONENTS

This section describes the various software components that make up the
CryptIC in more detail than the previous section. From the CGX programmer’s
perspective, it is primarily an architectural reference, since most of this functionality is

hidden inside the CGX kernel.

CGX Command Processor

The CGX Command Processor is made up of many software components:

e Reset processing
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¢ Initialization processing
¢ Contention/preemption/reentrance processing
e Configuration storage
e Key storage
e Command interface
e Context management

e Kernel operations

The following sub-sections describe the components that make up the CGX

Command Processor.

Reset Processing

When the CryptIC is first powered-up, or after any Reset event, control is
given to the CGX Kernel prior to allowing any application code to execute. The CGX
Kernel performs a very quick ‘reset-initialization’: It first checks a 32-bit INIT flag
location in KRAM to determine if the Kernel has previously been initialized. Ifit has,
then the DSP’s Computational registers and DAG registers are cleared. If the Kernel
has not been initialized, then the DM_Reserve and PM_Reserve registers are cleared in
order to free the DSP’s internal PM and DM for application use. Finally, the CGX
Kernel jumps to address 0x0000 in program memory (PMOVLAY=0) to resume the

normal reset sequence.

Initialization Processing

There are two modes of initialization processing in the CGX kernel: Full-Init
and Basic-Init. Full-Init occurs when the application issues the CGX_INIT command
to the CGX kernel. Basic-Init is a safety net which will be automatically run if a CGX

command is issued prior to the Full-Init being run.

The Full-Init actually executes the Basic-Init processing, but in addition
provides some Kernel and Hardware configuration capability. When CGX_INIT is
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called, the application may supply a Kernel Configuration String (KCS) and/or a
Program Control Data Bits (PCDB) configuration string in order to modify the
behavior of the CGX kernel and the hardware functions of the CryptIC.

At some point after a reset, and the application code has control, the first CGX
command is executed, passing control to the CGX Kernel. When the CGX Kernel is
entered, it must first determine what type of operation to perform: Basic Initialization
or CGX command processing. To determine what to do, the CGX Kernel reads the
INIT flag, which is a 32-bit location in Kernel RAM. This flag represent the
initialization state of the CGX kernel: If the flag is set to a pre-determined value, then
it is an indication that the kernel mode has been previously entered and initialization
has occurred, thus the CGX Command Processor proceeds to service the kernel block

and implement the requested CGX command.

If the flag is not set to the proper value, then the kernel will assume that it first

has to perform Basic-Init processing.

Note that it is normally expected that the application will first execute the
CGX_INIT command prior to requesting any other CGX commands.
However, since this cannot be guaranteed, the following processing is included

in the CGX entry processing.

Basic-Init Processing

If the CGX Kernel sees that the INIT flag has not been set when a CGX
command is issued, it first enters the ‘Basic-Init’ mode to perform self-tests and other
initialization steps. Upon returning from Basic-Init, the CGX Kernel sets the INIT
flag, assuming the self-tests pass. From this point on, until the next power-cycle, the
INIT flag will indicate that the kernel has been initialized and the CGX Kernel will not
re-execute the startup self-tests.

As part of the Basic-Init processing, the CGX Kernel executes a set of self-
tests to check the integrity of its ROM (using a pre-calculated MAC) Kernel RAM,
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and associated security devices (1.e. RNG). If any of these self-tests fail, the CGX
Kermnel returns a failure code (ie. CGX_RAM_FAIL_S)to the application via the status
field of the kernel block and does not set the INIT flag. Furthermore, it will not

execute any command until the self-tests pass and the INIT flag is written with a valid

value.

Once the self-tests complete successfully, the CGX Kernel can proceed with
the remainder of its initialization. There are several areas to initialize, the extended
RAM/ROM Reserve bits, the PCDBs, and the KCS. Once the Basic-Init is complete,

the CGX Kernel will proceed to process the original requested CGX command.
Full-Init Processing

At any time after reset, the initialization mode can be reentered by the
application by using the CGX_INIT command. As part of the initialization command,
the application must pass in two initialization strings, the PCDB string and the Kernel
Configuration String (KCS). The initialization strings are an array of defined bits to
allow the application to set, disable, and enable various features of the CGX Kernel
(KCS) and of the CryptIC hardware blocks (PCDBs). Once the full initialization is
complete, the CGX Kernel enters an idle mode and returns to the caller, waiting to

service application requested CGX commands received across the command interface.

The following sub-sections define the initialization strings and the areas that are
initialized as part of the Basic-Init or upon the application’s request for the CGX_INIT

command.

PM/DM Reserve Bits

If the initialization mode is entered for the first time, the INIT flag will not
match its predefined value. In this case, the initialization routine must clear the
PM_Reserve and DM_Reserve registers. These are two 16-bit registers for which

each bit represents a 1K memory block of internal PM or DM memory. A bit set to ‘1’
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indicates that the corresponding 1k memory block has been locked into use by the

CGX Kernel and cannot be accessed in user mode.

These bits are preserved through resets. Therefore, if any of the
PM/DM_Reserve bits are set (i.e. a 1) the CGX Kernel must erase the RAM blocks
that are locked, since there may be sensitive information in this memory. Then after
each locked block is erased, the CGX kernel can release them by clearing the PM &
DM Reserve bits to a 0.

Programmable Control Data Bits (PCDB) Initialization

The PCDBs are laser-programmed at the factory with a set of defaults and may
later be changed by the application via a special unlock-data token that IRE or a
designated OEM can provide. The end-user can use an unlock-data token provided by
IRE to later enable/disable various features via the initialize command (i.e.
CGX_INIT). Managing the access to the PCDBs with an unlock data message allows
IRE or other OEMs to control what type of services customers have access to. The
PCDB bits must be initialized if not already done. Initially, the laser-burned copy of
the PCDBs are moved to the working RAM copy. However, by invoking the
CGX_INIT command, the application can re-program some of the RAM shadowed
PCDB bits, providing a digitally-signed token is presented along with the request.

If the application desires to later change the PCDBs back to the factory laser
default, the application can use the restore-default command, CGX_DEFAULT.

The PCDBs allow the application to customize the CGX Kernel’s
cryptographic operations and control. The PCDBs contain such items as: a bit to
allow importing Red KEKs, enabling/disabling crypto-algorithms to make a device
exportable, configuring symmetric and public key lengths, etc. Refer to the section
Kemal Comfiguration String (KCS) for a detailed description of the PCDB bits and

their meanings.
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Contention, Preemption, and Reentrance Processing

The CGX Kernel is preemptive, and for certain commands it is also reentrant.
Being preemptive means that if an interrupt occurs while the CGX Kernel is active, it
allows the interrupt to vector to the application’s interrupt service routine (ISR) in
‘User memory’. Then after the interrupt has been completely processed, the CGX
Kernel is resumed via the application’s Return From Interrupt (RTI) instruction; thus

the preempted CGX operation is continued.

For certain CGX commands (ie. public key and digital signature), it is possible
to interrupt the command while it is running and then, within the interrupt service
routine, issue another CGX command. The CGX Kernel firmware maintains two
stacks and workspaces in order to allow 1 level of preemption/reentrance. The CGX

commands are shown in the table below.

CGX_INIT

CGX DEFAULT
CGX RANDOM

CGX _GET CHIPINFO

ymmetric Key
CGX_UNCOVER _KEY
CGX_GEN_KEK
CGX_GEN KEY

CGX LOAD KEY
CGX_DERIVE KEY
CGX_TRANSFORM KEY
CGX_EXPORT KEY
CGX_IMPORT KEY
CGX_DESTROY KEY
CGX_LOAD KG

oo oo oo |oijo o
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CGX _ENCRYPT

CGX DECRYPT

CGX_GEN PUBKEY

CGX_GEN _NEWPUBKEY

CGX_GEN NEGKEY

CGX PUBKEY ENCRYPT

CGX PUBKEY DECRYPT

CGX_EXPORT PUBKEY

CGX _EXPORT PUBKEY

o O o; oo |ja o

CGX LOAD EXTENDED

CGX_EXECUTE_EXTENDE

CGX HASH INIT

CGX HASH DATA

CGX HASH ENCRYPT

CGX HASH DECRYPT

O 0O o (O
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CGX PRF DATA

0

CGX PRF KEY 0
CGX MERGE KEY g
0

O

CGX MERGE_LONG KEY
CGX _LONG2B

CGX GEN_RKEK

CGX_SAVE KEY

dath Comniands

CGX MATH g
Table 10 CGX Command Preemption

If an application attempts to perform a CGX preemption (ie. 2™ call into CGX)
which violates the above policy, or if it attempts to preempt a CGX command with
another one while the Kernel is already running a 2™ command, then the CGX call will
return quickly with a CGX_BUSY _S error code in the Status block. In this case, the
application will have to return from interrupt in order to let the currently running CGX

command complete before attempting another CGX call.

To aid the application in determining the state of the CGX Kernel, a simple
contention management scheme is available to the application. Contention
management is necessary in order to prevent the application from attempting to re-
enter the CGX Kernel while it is in a preempted state. This is a simple problem from
the stand-point of the CGX Kernel because internally it can maintain semaphores to
determine if preemption of an active command is allowed or whether it is already one
level deep, executing a 2* CGX command. To easily allow the application to
determine the CGX Kernel’s state, the status of the CGX Kernel (i.e. active, complete,
etc.) can be queried by the application at any time. The state can be obtained by
looking at the current status block in DSP internal or external memory (the status

block is part of the kernel block, as explained later).
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This scheme has three advantages: First, the application does not have to
invoke a command to query the state of the CGX Kernel, it can be read directly from
the status block in memory. Secondly, it removes the complexity and burden of the
application keeping track of the CGX Kernel’s state on its own. Lastly, the status
block proﬁzides the means for the CGX Kernel to retrieve the status result of the CGX
operation (success or error code) which can be used by the application to debug/test

the cryptographic operations.
Saving DSP Context at Interrupt

When a CGX operation is interrupted by the application, certain elements of
the DSP processor’s context must be saved and then restored upon return-from-
interrupt. (This is of course necessary with any interrupt service routine.) The DSP
hardware automatically saves the Program Counter on the hardware PC Stack and the
Status Registers on the Status Stack. It is up to the application to determine if it
should pull these values off of the hardware stack and move them to an application

software stack.

In addition, the interrupting code must save the DAG registers, the PX register
(lower 8-bits of Program Memory reads) and PMOVLAY, DMOVLAY registers as
well as the computational registers (2 banks). In order to optimize interrupt
processing, the application code can be designed to run in the Primary register set,
while the CGX code can execute in the Secondary set. In this case, the application
code will have to insure that the register set selection (MSTAT register) is properly

handled upon interrupt and return-from-interrupt.

Once the external interrupt service completes, it restores the CGX Kernel
context and invokes the RTI operation. The Status registers and Program Counter are
automatically popped off the hardware stack at the RTT instruction. The return-from-
interrupt operation vectors back into the CGX Kernel mode, at which point the Kernel
Protection logic will resume and the interrupted CGX command processing will

continue.
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Storage Management

The CGX Command Processor is responsible for the storage devices associated
with the security block of the CryptIC. The storage areas that concern the CGX
Command Processor are the CGX Kernel’s KRAM, the volatile Key Cache Registers,
and the PM/DM_Reserve RAM blocks.

Furthermore, for the CGX Command Processor to fully protect key material
and algorithms, it provides a protection of the DSP’s registers as well as its RAM
space. Although the RAM space is protected via specialized hardware, the CGX
Command Processor uses critical regions (interrupts disabled) to protect registers. For
exam'plé, when key material is moved in or out of the Kernel RAM, the DSP’s
registers are used. Therefore, a potential to read the key material exists should an
intruder try to single-step the CGX Kernel via interrupts. Although the application can
not read the protected KRAM and kernel ROM, it could read the DSP’s registers.
Therefore, all key material movement is done via the mem_cpy operation. This
operation copies data from one place to another with interrupts disabled, and at the
end it sets the registers it used to 0. This prevents applications from single stepping
the Kernel. The same is done to the pm_cpy operation which is used to read program

memory.

As mentioned earlier, the hardware provides key aspects to protecting various
memory stores. In particular, the hardware provides several bus transceivers to only
allow one memory to be accessed at a time. So that when the external RAM/ROM is
accessed the external application can not read any of the CGX Kernel’s internal
memory (KRAM, kernel ROM, and extended RAM/ROM). Furthermore, the bus
transceivers are placed on some of the security block memory devices in order to
prevent the CGX Kernel from accidentally mixing Red key material with other memory
devices used by the CGX Kernel. The following sub-sections outline the areas where

the CGX Kernel enforces the security model.
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Volatile Key Storage

The volatile key storage houses the private portion of a public key in the public
key area and a fixed number of secret keys in the Key Cache Register (KCR) area. The
volatile key area is also referred to as the actively working keys. All cryptographic
commands operate only on the active volatile working keys. The application is

responsible for moving keys between the outside world and the KCRs.

The CGX Command Processor only allocates enough space in the volatile
KRAM for 15 symmetric Key Cache Registers. The CGX Command Processor
provides ease of access to the secret keys by allowing them to be referenced by a

register ID with numbers from 0 through 14.

Extended (Reserved) RAM Blocks

Under various circumstances, one or more lkword segments of PM and/or DM
memory can be locked-into the kernel space. For example, as part of the CGX_INIT
processing, the application can request to allocate some of the DM towards extending

the number of Key Cache Registers.

The CGX Command Processor takes care of setting and resetting the
PM_Reserve and DM_Reserve bits to lock and unlock blocks of memory. It also
manages the secure information which is stored in these blocks and insures that if a

block is unlocked, that its data is first erased.

Command Interface Processing

The CGX Command Processor is responsible for managing the command
interface between the application and itself or the cryptographic services. The
command interface to the CGX Kernel is accomplished using a shared memory block
and a special transfer address mechanism. The shared memory block (kernel block)
provides the means for the application to communicate with the CGX Kernel, allowing

the application the ability to query the CGX Kernel’s status and request cryptographic
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services. The special transfer mechanism (CGX Kernel transfer routine) allows the
application to invoke the CGX Kernel. The command interface is described in detail in

the section Command Interface.

Command Processor Micro-Operations

The CGX Command Processor is similar to a command interpreter; it
consumes the command and its arguments, invokes the proper service to execute the
command, and returns the result. However, the CGX Command Processor is a little
more complicated than that since it must perform several more micro-tasks similar to
an OS. It must perform context switching, I/O services, and monitor the security,

integrity, and health of the internal hardware components.

The CGX Command Processor is comprised of three modules of software: the

entry code, the cryptographic service executor, and the exit code.

Entry

When the transfer vector is initiated by the application, the CGX Kernel is
entered by setting the PMOVLAY register to 0x000F and then executing a CALL
0x2000 instruction. From the call instruction and some associated hardware logic and
signals, the internally ROM encoded CGX Kernel program block is overlaid in the
upper portion of the DSP’s program space. This allows the CGX Kernel code to
become active and transparent to the application. When the ROM-based CGX Kernel
program block is overlaid, the processor immediately branches to the CGX Command
Processor entry handler. The purpose of the CGX Command Processor entry handler
is to determine the type of service it must perform. The entry code is all written in
assembler due to real-time constraints of context saving and service restoration in the

case of a command preemption.

The entry code runs with all interrupts disabled upon entry. The interrupts
remain disabled for just for the entry code, until a point at which the CGX kernel has

verified that it can perform the operation and has saved the application’s context.
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Once the entry code is operational, it sets up a local stack to execute from,
and the CGX Command Processor saves the context of the externally running
application (i.e. saves registers, the PC return address, the stack pointer, frame pointer,
etc.), assigns a global pointer to the command block, writes a CGX_RUNNING _S
code to the external status block (i.e. the CGX Command Processor is active),
reenables interrupts, and calls the cryptographic command interpreter (described in the

next sub-section).

However, if the CGX Command Processor is already active, it sets up a second
local stack to execute from, (i.e. it is now being preempted) it saves the context of the
extérnally running application (i.e. saves registers, the PC return address, the stack
pointér, frame pointer, etc.), it saves a context of the preempted cryptographic
command (i.e. save the global pointers to the command/status blocks, etc.), assigns a
global pointer to the command block, writes a CGX_RUNNING_S code to the
external status block (i.e. the CGX Command Processor is active), reenables
interrupts, and calls the cryptographic command interpreter (described in the next sub-

section).

Cryptographic Service Execution

The cryptographic command interpreter is fairly simple. The code accesses the
command block pointer established in the entry code and based on the command, it
invokes a cryptographic operation from a table of CGX overlay operations. No
arguments are passed into the overlay operations. The overlay operations use the
command block pointer to get access to the argument list. Figure 14 illustrates this

hierarchical approach to accessing the cryptographic operations.

The purpose of the layered hierarchical approach is simply to isolate the
knowledge each layer needs to operate within the CGX Kernel. This allows the lowest
level, the CryptoLIB to only have to implement cryptographic operations. To make
this work, a middle layer called the CGX overlay is provided. The middle layer
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actually implements the wrap code around the cryptographic library, enabling
memory, accessing the key RAM, etc..

As Figure 14 shows, the overlay operation is responsible for invoking the
CryptoLIB operations in order to carry out the requested cryptographic service. The
overlay wrap code extracts the inputs and outputs from the command block and passes
them as arguments to the CryptoLIB operations. Furthermore, the overlay operations,
which are actually CGX Kernel operations, are responsible for enabling write access to
external RAM and for updating the status field of the status block. This isolates the
control of the sensitive hardware access features to the CGX Kernel only. Once the

overlay operation is complete, the exit code is invoked.
Exit

The exit handler of the CGX Command Processor performs the following:
o disable interrupts to establish a critical region,
e restores the external application’s DSP context,
e writes the result code to the status block,
¢ re-enables interrupts, and

* cause the transfer back into the application and user memory space.

Also, as a security precaution, the write access enable to external RAM is

disabled before returning to the application.

CGX Overla

The purpose of the overlay operations is two fold: first, it provides a
standardized interface to IRE’s CryptoLIB. The overlay operations contain some wrap
code and calls to CryptoLIB operations. The second purpose is to allow the reuse of
IRE’s CryptoLIB intact. Without the overlay operations, the CryptoLIB code would
have to understand the kernel block interface; thus creating a non-standard package.

Instead, a clean implementation of the CryptoLIB, using a C interface, is possible.
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There is a CGX overlay operation for every cryptographic command provided
by the command interface. The CGX operations reside in a single table that is accessed
by the CGX Command Processor software by the command value embedded in the
command block of the kernel block. Part of this table are bits that represent the

preemption requirements and the privilege access bits.

CryptoLIB

The CryptoLIB software is a library of software functions that implement a full
suite of cryptographic services. It is designed to be portable and flexibie and the

interface allows for certain functions to be customized by the application.

The interface to the CryptoLIB follows the ANSI C standards, and the
CryptoLIB is all written in ANSI C format. The reason behind this is so that the same

library base can be used in desktop environments as well as embedded applications like
the CryptIC.

Therefore, since no special modifications to the CryptoLIB have been made,
the CGX Kernel is recognized as another application to the CryptoLIB software. The
CGX Kernel uses the library calls as would any other application in a PC environment
or another embedded environment would. This has been accomplished because of the

CryptoLIB’s ability to allow it to be customized by the application.

Hardware / Platform Specific Drivers
A number of CrypfIC specific drivers are provided. The drivers provided are:
e a BIGNUM hardware assist driver,
e arandom number generator driver, and

e crypto-block operations (i.e. DES engine).

110



10

15

20

25

WO 99/14881 PCT/US98/19316

SELF-TESTS

The self-test routines provide an integral part of determining the integrity and
health of the security blocks. The self-test operations are used as part of the CGX
Kernel reset processing to verify the health of the security blocks. The following is a
list of self-tests that are supported:

e CGX Kernel code integrity check,
> This self-test checks the integrity of the CGX Kernel’s program by running a
MAC over its entire 32K program space and comparing the MAC to the
ROM encoded MAC.
e randomizer check,
> This self-test checks the operation of the hardware randomizer. The method
for this test is described in the FIPS 140-1 document for ‘Continuous
Random Number’ test.
e volatile key storage checks
> This self-test checks the volatile key storage (i.e. internal KRAM). The
purpose is to verify the key storage integrity. To do this read, write, and

stuck-at checks are performed.

SOFTWARE STATES
The CGX Kernel is driven by a state machine as shown in Figure 15. As can be

seen in the figure, the state machine is fairly simple, comprising only four states.

RESET State

The RESET state can be transitioned to from any one of the four states,
including the RESET state. The RESET state is entered upon powering up of the
CryptIC, through the command of the application, or a fatal error detected by the
CGX Kernel.
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As discussed in the section Reset Processing, the RESET state performs the
Basic-Init functions which include testing the sanity and integrity of its services,
resources, and program. If any of these items fail, the CGX Kernel will reset the

processor and the RESET state will be re-entered.

At the successful completion of self-tests the CGX Kernel will transition to the
IDLE state. The only other state the CGX Kernel can transition to is the RESET

state.

IDLE State

The IDLE state can be transitioned to from either the COMMAND state or
COMMAND BLOCK state. The IDLE state is entered upon the successful
completion of the CGX Kernel’s reset self-test suite or after the completion of a

cryptographic command requested by the application.

In the IDLE state the CGX Kemel is inactive, it is idly waiting for the
application’s request for the next cryptographic command. Upon the request of a
cryptographic command the CGX Kernel will transition to the RESET, COMMAND,
or COMMAND _BLOCK state. The CGX Kernel will transition to the RESET state if
an invalid kernel block is received. The CGX Kernel will transition to the
COMMAND state if the preemption bit in the control field in the CGX overlay tupple
data structure (cgx_overlay_tuple) is set to a 0; otherwise if the bit is set to a 1, it
transitions to the COMMAND BLOCK state. The preemption bit is described in the
section CGX Overlay Interface.

COMMAND State

The COMMAND state can be transitioned to from either the
COMMAND_BLOCK state or IDLE state. The COMMAND state is entered upona
request from the application of a cryptographic command; either back from preemption

or an initial application request. When in the COMMAND state, the CGX Kernel
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allows the current cryptographic command to be preempted. However, only certain

commands can be preempted and only certain commands can cause the preemption.

All of the public key and digital signature operations have the preemption bit
set to a 0; thus allowing them to be preempted and causing the CGX Kernel to enter
the COMMAND state from the IDLE state. A number of other CGX commands are
allowed to preempt the public key and digital signature algorithms (see section 0).

Furthermore, the CGX Kernel only allows one level deep of preemption.
Therefore, upon preemption the CGX Kernel transitions into the
COMMAND_BLOCK state to prevent further preemptions. Thus, the cryptographic
opération that caused the preemption must run to completion before the original one

can complete or another one can preempt.

At the completion of the requested cryptographic command the CGX Kernel
transitions back to the IDLE state. However, if some sort of severe error or hardware
failure occurred the CGX Kernel will reset the processor; thus transition to the RESET

state.

COMMAND BLOCK STATE

The COMMAND_BLOCK state can be transitioned to from either the
COMMAND state or IDLE state. The COMMAND_BLOCK state is entered upon
request by the application of a cryptographic command; either through preemption out
of the COMMAND state, or via a single application request of a non-preemptable
cryptographic command. When in the COMMAND _BLOCK state, the CGX Kernel

will not allow the current cryptographic command to be preempted.

At the completion of the requested cryptographic command, the CGX Kernel
transitions back to the IDLE state if it was not previously entered due to preemption.
If the CGX Kernel entered the COMMAND BLOCK state because the application
requested a CGX command that caused an active CGX command to be preempted, the

CGX Kernel will transition back into the COMMAND state to complete the original
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CGX command. However, if some sort of severe error or hardware failure occurred,

the CGX Kernel will reset the processor; thus transitioning to the RESET state.

KEY MANAGEMENT
INTRODUCTION

It is well known that a carefully designed and implemented Key Management
infrastructure is a critical component of a good security system. In keeping with the
philosophy of a ‘security system on-a-chip’, the CryptIC incorporates a powerful and

secure key management system into both its hardware and CGX firmware.
There are generally 5 elements of key management to consider:

1) Key Generation

2) Key Distribution

3) Key Storage

4) Key Selection (and use)
5) Key Destruction

The CryptIC’s features support a consistent flow of Key Material through all of the
five phases. In particular:

The facilities are provided by the CGX library (and the integrated hardware blocks)

to generate and safely store key material.

e Key ‘covering’ with a Key Encryption Key (KEK) is a CGX service which allows

secure key distribution and secure storage.

e Key selection is consistently handled through CGX library arguments and
safeguards are implemented against key hijacking, spoofing, alteration, etc..

e Key destruction may easily be achieved either by powering-off the CryptIC, or by

executing a Destroy_Key CGX command.
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The CryptIC allows a wide range of key management implementations, since it
is only concerned with supplying the primitive key management utilities. This allows
the application using the CryptIC to create either a simple ‘flat’ key management
structure, or a highly layered and complex ‘military-grade’ key management system.

The following sections describe the types of keys used on the CryptIC, the key
handling and usage conventions, and finally a discussion of key storage requirements

and definitions.

KEYS

The CryptIC supports the following algorithms and key sizes for Symmetric
(secret key) and Asymmetric (public key) cryptographic operations, shown in the table

below:

40 — 56 bits
Triple-DES (two key) 64 — 112 bits 8 bits
120 - 168 bits 8 bits

Triple-DES (three key)

e

512 - 2048 bits _

512 — 2048 bi

512 — 2048 bits
512 - 2048 bits 64 bits

* requires RSA licensed version of CryptIC
Table 11 Algorithms and Key Sizes
Since the CryptIC implements multiple cryptographic algorithms, there is a
need for several types of key. The following descriptions of the keys are grouped into
Symmetric keys (also known as secret keys) and Asymmetric keys (or public key

pairs).

SYMMETRIC KEYS

Symmetric keys are used in order to support the symmetric cryptographic
algorithms (i.e. DES, Triple DES). The CryptIC supports several symmetric key types

115



10

15

20

25

WO 99/14881 PCT/US98/19316

for data encryption and key encryption (covering/covering). In addition to describing
the three types of symmetric keys, there are several other issues discussed in this

section. These include: key length, key generation, key access, and key protection.

Symmetric Key Types

There are three types of symmetric keys used on the CryptIC:

e Data Encryption Keys (DEK(5)
e Key Encryption Keys (KEKS)
e Message Authentication Code keys (HMAC).

Each of the keys are described along with their respective properties in the

following subsections.

Data Encryption Keys (DEKs)

Data encryption keys (otherwise known as session keys or traffic keys) allow a
message, a communications channel, a data file, etc. to be encrypted using one of the

symmetric algorithms (i.e. DES, triple-DES, etc.) supported by the CryptIC.

All DEKSs are stored in and retrieved from volatile Key Cache Registers
(KCRs) or written to the encrypt hardware engine’s context_0 or context_1 data key
register. By default, a DEK is not allowed to be exported (i.e. read by the application)
unless it is covered by a key encryption key. However, the DEK must be uncovered in

the CryptIC device to be used as a traffic key.

A DEK can be generated via all the means described in the section Symmetric
Key Generation, or can be imported as a Red key that was generated by an external

application (assuming the applicable Program Control Data Bit allows Red key load).

Typically, DEKSs are short lived (ephemeral); they are around long enough to
encrypt the active secure channel. Once the secure channel is no longer required, the
DEK is destroyed. The CGX Kernel that controls the cryptographic operations on the

CryptIC is not responsible for destroying DEKs since it doesn’t know when a secure
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channel has terminated. This is left to the application via the CGX_DESTROY_KEY
command. However, the CGX Kernel will destroy all volatile key cache locations

upon a reset or protection violation.

Key Encryption Keys (KEKs)

A key encryption key (otherwise known as a covering key) allows keys to be
off-loaded from the CryptIC for storage (ie. power-down recovery, key escrow, etc.),
to allow key distribution, or for the secure exchange of traffic keys. The CryptIC
supports five types of KEKs:

e Local Storage Variable (LSV)

¢ internal Generator Key Encrypting Key (GKEK)

» one or more application Key Encrypting Keys (KEKs)

e one or more Hash/Encrypt Data Key protection KEKs (DKEKSs)
e optionally a Recovery KEK (RKEK) '

Only the LSV is preserved across resets since it is laser-stored within the
CryptIC. Therefore, the storage requirements for other KEKs must be implemented by
the application. This would be achieved by off-loading the KEK covered by another
KEK. (The LSV is used to cover the RKEK and GKEKs. GKEKSs or other KEKSs are
used to cover application KEKs, DKEKSs and DEKs.) The KEK heirarchy is shown in
Figure 16.

Local Storage Variable (LSV)

The LSV is a non-volatile 112-bit KEK which is laser-burned into each
CryptIC device at fabrication. It is unique to each Crypt/C produced and can be
considered that chip’s master ‘root’ key. Only GKEKs and the RKEK may be covered
by the LSV.
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Internal Generator KEK (GKEK)

The GKEK allows the application to safely build its own symmetric key
hierarchy trees securely by not allowing any of the user key’s Red material to be
exposed. The GKEKSs allow for the off-loading of internally generated user keys to be
stored in the application’s non-volatile store. The GKEKs effectively insulate the LSV
from any direct attack, since GKEKs are always trusted and cannot be imported or

exported.
Application-created KEKs

Applications can generate multiple KEKs by calling upon the CGX library to
generate a KEK and then request the Crypt/C to use the generated key to
cover/uncover other keys. The application must off-load or export the KEK and store
it for later use. This means the application must first cover the newly generated KEK
with either the GKEK or another KEK so that it can leave the CryptIC. This approach
offers a layered model of KEKs.

Hash/Encrypt Data key protection KEKs (DKEK3S)

DKEKSs are used exclusively to cover and uncover DEKs which will be used in
the Hash/Encrypt hardware engine. This KEK will typically be written into the
hardware context 0 or context 1 DKEK register so that it can automatically decrypt
‘Black’ DEKs which may be stored in a crypto context database off-chip. DKEKs
cannot encrypt other KEKs.

Recovery KEK (RKEK)

A single RKEK is supported in the CryptIC. The RKEK is always a Diffie-
Hellman derived key and requires an IRE-certified request to generate it. It may be
off-loaded from the CryptIC covered by the LSV. The RKEK is used for covering
DEKs, KEKs, or DKEKs for escrowing off-chip or for Key Recovery

implementations.

118



10

15

20

25

WO 99/14881 PCT/US98/19316

HMAC Keys

An HMAC key is a special type of key which does not impose formatting
constraints. An HMAC key type may be used to store the secret output of a hash
result — perhaps as part of a key derivation process, or it may be used to store a secret
value to be used as the input to an HMAC function. HMAC keys may be from 40 to
160-bits long in 8-bit steps.

Since it is un-formatted, key weakening is never applied to an HMAC key.

Symmetric Key Lengths

The CryptIC supports several key lengths depending on the symmetric block
algorithm and the type of device (i.e. domestic version versus exportable one). The key
length can be adjusted between the range of 40 bits and 168 bits, depending on the
PCDB programming within the CryptIC (i.e. configured for domestic or export).

For a domestic CryptIC all DES and Triple DES keys can have a 40 bit to 168
bit key length, programmable in 8-bit increments by the application. This allows for
variable key lengths other than the typical 40, 56, 112, and 168-bit key lengths. The
CryptIC defines triple DES keys as three 56 bit DES keys (i.e. 168 bits in total),
however a triple DES key will actually occupy 192 bits (i.e. 24 bytes) since in DES,
one bit of each key byte is considered a parity bit.To allow for non-standard size keys,

a symmetric key weakening algorithm is used and described below in this section.

Any key which is specified to be 40, 48 or 56-bits will automatically be
considered a single-DES key. Any key which has an effective length of 64 to 112 bits
will become a two-key, triple-DES key. That is, the significant bits of the key will be
distributed between the first and second 56-bit sub-keys, and then the third sub-key
will be a copy of the first. Any key with an effective length of 120 to 168 bits will
become a three-key, triple-DES key.
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This means that any key longer than 56 bits is represented in a triple DES
form - ie. three 56-bit DES keys. The keys are always expanded to the full 168-bits in

a manner to reflect the number of bits chosen by the application.

Symmetric Key Generation

Symmetric keys can be generated six ways on the CryptIC as described in the

table below:

‘echnigy

Jescription

Generate DEK from RNG | CGX_GEN_KEY Samples the output of the Random Number
Generator to assemble the desired length DEK

Generate KEK from RNG | CGX_GEN_KEK Samples the output of the Random Number
Generator to assemble the desired length GKEK

Negotiate Diffie-Hellman | CGX_GEN_NEGKEY Perform the Diffie-Hellman G exponentiation
in order to arrive at a shared secret value. Based
on ANSI X9.42.

Hash from CGX_DERIVE_KEY Derive a symmetric secret key by hashing an

Password/Passphrase application-supplied Password or Passphrase.

Transform key (i.e. IPsec)

CGX_TRANSFORM_KEY

Transform a key using a combination of Hashing,
Mixing with fixed data and re-Hashing, XORing, |
etc.

Import a Red key from the

application

CGX_LOAD_KEY

Import a Red key provided by the application.

Table 12 Key Generation Techniques

Symmetric Key Representation

Symmetric keys are represented in three ways, an Internal form, an IRE
External form, and a Inter-operable External form. The first two representations
are used in order to enforce the security policy of the Crypt/C, and the last is used in
order to allow the CryptIC to share key material with other vendor’s implementations.

Symmetric Key IRE Internal Representation

Symmetric keys are stored within the Crypt/C in Key Cache Registers (KCRs).

Note that all of the data stored is in a plaintext (Red) form so that the CGX software

may access it without the overhead of decrypting anything. Untrusted software

running in the ‘User Mode’ of the DSP does not have access to the KCRs.
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The format of the storage is as follows:
[type][keylength][key-bits][weakened_keybits][keycount][attributes]

The type field specifies the algorithm for which the key is to be used (eg. DES,
3-DES, RC-§, etc.)

The keylength field indicates the length, in bytes, of the key. For the CryptIC,
it will be either 8 or 24.

The keybits field is 192-bits long (three 64-bit DES keys). It contains the
actual key bits which will be used by the DES or triple-DES algorithm. For single-
DES, only 64-bits are used and the remaining 128-bits will be zero. The least
significant bit of each byte is considered the DES parity bit and is ignored.

The weakened _keybits field is 64-bits long and contains the ‘original’ bit values which
were overwritten by 0’s during the key weakening process. This is necessary if the key
needs to be Exporfed in an interoperable format. Prior to exporting, the key is ‘un-
weakened’ back to its original form. Upon importing a key, the weakening process is
again performed to restore the original key. This behavior and thus the need to
preserve the ‘weakened bits’ is needed in order to protect against key-size tampering

when exporting/importing a key.

The keycount field indicates the length of the key in 64-bit blocks. For the
CryptIC, it will be either 1 or 3. Although the keycount can be inferred from the

keylength field, it is provided in order to optimize performance.
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The attributes field is a 16-bit value with the following bit definitions,

shown in the table below:

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ixlxxx{xlxx[x[x]x]

I |
1 = Empty
1 =DEK

1 = HMAC key
1=DKEK

1=KEK

1=GKEK

1=RKEK

1=LSV

1 = Trusted key

1 = Parent KEK is Trusted
Reserved

This attributes field is created when the key is first generated and stays with
the key both internally and when it is off-loaded. The only exception is when a key
is Exported or Imported. In these operations, the key is always considered
Untrusted and the import/export operation specifies the key type.

Symmetric Key IRE External Representation

When a symmetric key is off-loaded, the key must be put into an ‘IRE-
external’ form. The external form consists of all of the original random key bits,
salt bits, attributes, and SHA-1 message digest. The entire external form is
encrypted, including the SHA-1 message digest. The salt bits and attributes are
pre-pended to the key bits to provide randomness to skew the external key once it
is encrypted (in CBC mode).

[userfield][type][keylength] ...
... Exzx{[salt][attributes][key-bits][weakened-bits][keylength][hash-digest][DES-

pad]}
... [32-pad]

Where Exgx indicates the encryption of the data in {} by the specified KEK.
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The secretkey object is 576 bits / 72 bytes / 18 dwords long. This contains the

following:

Userfield 16 An application-specified field which may be used for any purpose

type 16 Algorithm for which the key was created (DES, triple DES)

keylength 16 Length of the key, in bytes. This field is duplicated inside the covered portion
salt 54 Random bits used to enhance the key encryption process. Similar to an IV
attributes 10 Attribute bitmap. See description above

key-bits 192 | The actual DES or triple-DES key bits. If DES, then last 128 bits are zero
weakened-bits 64 The bits overwritten in the key-weakening process

keylength 16 Length of the key, in bytes. Duplicated here to be included in the Hash

hash digest 160 | A SHA-1 hash of the key, attributes and salt. Provides an authentication code
DES-pad 16 Zero-pad bits to round-up to the nearest 64-bit boundary (for DES encryption)
32-pad 16 Zero-pad bits to round-up to the nearest 32-bit dword boundary

The purpose of the DES-pad field is because DES is 8-byte block oriented and

the seven blocks are formed so they can each be properly encrypted without needing

padding. The 32-pad field allows the secretkey object to fall on a 32-bit dword

boundary which eases handling on the PCI bus.

The SHA-1 message digest is computed over the salt, attributes, key-bits and

weakened-bits fields. Once the message digest is inserted in the object, the salt

through message digest fields are encrypted by a KEK. The encryption mode is

typically CBC, although for untrusted keys, the application may specify a different

mode. A fixed IV is used for encrypting the key blob, since the random salf takes care

of randomizing the encryption. This symmetric key blob is then returned to the

application.

Upon loading-in the Black symmetric key blob, the CGX Kernel decrypts the

key blob and runs the SHA-1 hash over the specified bits and compares the message

digest to the one stored in the blob. If the message digest comparison fails, the

symmetric key is rejected (i.e. not loaded).
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Symmetric Key Inter-Operable External Representation

When an application chooses to exchange an IRE symmetric key with another
crypto-vendor, the symmetric key must be converted from IRE’s storage format into
one that is more easily extractable so that it can inter-operate with other crypto-
vendors. (Note that keys which are exported from or imported to the CryptIC are

always considered untrusted.)

To do this, a basic storage format based on Microsoft’s CryptoAPI has been
adopted. The general form of the symmetric key to be exported/imported is:

Exex {[salt-bits][key-bits][data-bits] }
Where Exgx indicates the encryption of the data in {} by the specified KEK.

The application can specify no salt, it can explicitly define the salt bits, or it can
request the CryptIC to generate the salt bits. The key bits consist of the Red
symmetric key bits as defined in the IRE external symmetric key formation. A DES
key will occupy 8 bytes and a triple-DES key (2-key or 3-key) will occupy 24 bytes.
The key bits are laid out in big-endian form. The data field is supplied by the
application, it can contain anything the application chooses, or it may be omitted if the

application desires.

The one to three pieces of external symmetric key (salt, key bits, and data) are
put into a buffer that is then encrypted by a symmetric KEK. The attributes and

message digest of the IRE External form are not included in this format.

Since the external symmetric key must be covered with a symmetric KEK, the
salt bits (if present) must be in multiples of 8 bytes and the data bits (if present) must
be in multiples of 8 bytes as well. The exception to this rule is for HMAC keys. In
this case the key must be in multiples of 2 bytes. Therefore, an HMAC key with a
length of 5 bytes will be exported as 6 bytes with the 6" byte exported as a 0.

In the case of covering the external symmetric key with a public key, the salt

bits (if present) can be as many bytes as the application chooses and the data bits (if
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present) can be as many bytes as the application chooses. However, the entire size of
the salt, key, and data bits must be less than or equal to the size of the public key's

modulus used to cover them.

Symmetric Key Weakening Process

As shown in Figure 17, the symmetric key weakening algorithm is similar to the
one created by IBM called CDMF key shortening. IRE’s approach is similar, with the
difference in that we write Os into the key bits starting at 0 going for the amount to be

shortened by. In the CDMF approach, various bits are masked with zero.

To implement the key weakening scheme, the number of random key bits to be
used is important. For 40-bits to 56-bits, 64-bits of random data are to be provided, for
64-bits to 112-bits, 128-bits of random data are to be provided, and for 120-bits to
169-bits, 192-bits of random data are to be provided. The number of random bits

specified is critical in that it allows the key shortening algorithm to work correctly.

The weakening process consists of two encryptions; thus implying there are at
least two fixed symmetric keys used to do this. There are 14 unique fixed symmetric
keys used for this process. A set of symmetric keys for each key length between 8-bits

and 56-bits is provided; thus 7 pairs of fixed symmetric keys.

The algorithm to shortening the symmetric key is first to encrypt a full 64-bits
with the first key of the fixed symmetric key set. Once the encryption is complete that
output is shortened by overwriting it with zeros for the amount to be shortened by.
For example, if a 40-bit key is needed, the first 24-bits of the interim result will be
overwritten. Once the zeros are written onto the interim result, it is encrypted again
with the second fixed key. The result of the second encryption is then used as the
weakened symmetric key. This has the effect of distributing the weakened bits over
the entire key.

Since we allow for key lengths to be between 40-bits and 192-bits with

increments of 8-bits we also have to distribute the weakened key between the 3 key
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blocks (a block is defined as a 64-bit key block) if the key is to be 64-bits or greater.
For 40-bits to 56-bits the key distribution does not occur, it fits in one key block.

To distribute larger keys they are first evenly distributed between the first two
key blocks if they can all fit. This means that a 72-bit key is broken up so that 40-bits
are in block one and the other 32-bits in block 2. This means that the bits are evenly
distributed into blocks 1 and 2 and if the key length is odd (meaning the key length can
not evenly distribute into the two key blocks) the extra 8 bits is put into block 1. Then
when the key is laid out in the two blocks, block 1 is copied to block 3 to create a
triple DES key. However, if there 128-bits or more of key, then the remaining bits are

put into block 3 to complete the triple DES key.

HMAC keys are never weakened.

Symmetric Key Access and Protection

Providing access to the symmetric keys has been carefully considered in light of
security and flexibility. Since the philosophy of the CryptIC is to provide a general-

purpose interface, the application is given a variety of importing and exporting rules.

Each of the symmetric key types have their own rules on key access and are
addressed in more detail below in their respective sections. Furthermore, depending
on the Program Control Data Bits (PCDBs), the application could be allowed to
import its own Red keys to be used as KEKs and DEKs.

ASYMMETRIC KEYS

Asymmetric keys allow for the implementation of public key algorithms and
digital signatures. The following sections describe the public keysets (public and
private) that are used by the three asymmetric cryptographic algorithms supported by
the CryptIC.
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Asymmetric Key Types

Like symmetric keys, the Crypt/C supports several flavors of asymmetric keys.

The three types are:
Diffie-Hellman public keys:  Used for computation of a negotiated key based on a previously
generated modulus and base
RSA public keys: Used for both encryption and digital signatures
DSA public keys: Used for digital signatures only

The application is responsible for storage of public keysets, eliminating the
5 need for the CGX Kernel to store public keys. The modulus and public parts of the
keyset are stored off-chip in the Red form, while the private portion of the key is
covered. When requesting a public key operation, the application is required to provide
as a parameter the public keyset it wishes to use. The CGX Kernel, in turn, makes a
local copy of the public key and, if necessary, uncovers the private portion into the
10 public key working kernel RAM in the Crypt/C. When the operation completes, the
local copy of the private key is destroyed.

Diffie-Hellman

As in all public key schemes Diffie-Hellman uses a pair of keys, public and
private. However, Diffie-Hellman is unique in that it does not perform
15 encryption/decryption or signatures as do the other public key systems. Rather, it
implements a means to generate a shared secret or a negotiated DEK (i.e. traffic key or

session key).

Unlike RSA, a fixed modulus (n) and generator (g) can be shared among a
community of users; therefore, the generation of a new stored modulus will not occur
20 often. The modulus, public key and private keys can be exported/imported from/to the
| CryptIC.

A new public key (X) is generated upon request by the application; many

private and public keys can be generated from one common modulus. At the same
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time, a private key (x) is also generated. The public key is generated using the newly

generated private key (X = g" mod n).

A shared secret key or DEK can later be created by using the other CryptIC’s
public key (DEK = Y* mod n). The negotiated DEK can be exported from the
CryptIC but it must first be covered by one of the CryptIC’s KEKs (GKEK, or an
application-generated KEK).

RSA

As in all public key schemes RSA uses a pair of keys, public and private, to
encrypt/decrypt and implement digital signatures. However, unlike Diffie-Hellman the
modulus can not be fixed. A new modulus must be generated for each new public key
pair. The public exponent is calculated, based on a starting point specified by the
application (up to 64-bits maximum). Typically, the starting exponent is 65537, which
avoids all of the known attacks on the fixed exponent of 3. Therefore, the public key
is made up of the modulus (n = pq) and an exponent (e >= 65537).

The private key (d) is generated by taking the multiplicative inverse of the
public key (d = e mod ((p-1)(g-1)). Like the public key, an optimization is performed
by using the values of p and q during the decryption and signing operations of RSA.
The optimization consists of precomputing d, and d, and using the Chinese Remainder
theorem (CRT). Therefore, the CGX kernel keeps p and q and the precomputations
around as part of the private key.

The key pair can be exported from the CryptIC. The public key returned is
made up of e and n, the private key returned is made up of d, p, q, dp, dg, p'mod q,
and q'mod p. Storing all of these values is essential in order to optimize the RSA
decryption process using the Chinese Remainder Theorem. Naturally, allowing these
private components to be seen would be a security breach, therefore the private key
components are returned covered via one of the CryptIC’s GKEKSs or an application-
generated KEK.
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DSA

DSA also uses a pair of keys, public and private, to implement digital
signatures only. Unlike RSA, fixed moduli (p and q, and generator g) can be shared
among a community of users. Therefore, the generation of a new stored modulus will
not occur often. The modulus, public key and private keys can be exported/imported
from/to the CryptIC.

The public key is composed of two pieces: the public key (y) and the modulus
data (p, q, and g). The Crypt/C will allow a modulus size to be between 512 and 2048

bits with increments of 64 bits.

The private key (x) is a random 160-bit number. For every signature, a new
160-bit k is created. Once the signature is created, k can be destroyed. Furthermore,
the signature process creates r and s, they are used in the verification process to
generate v which is compared to r to verify a signature. The Cryp#/C’s command
CGX_SIGN returns r and s and the command CGX_VERIFY expects r and s as

arguments.

A DSA key pair can be exported from the Crypt/C. The public key returned is
made up of y, p, q, and g; the private key returned is made up of x. The private key is
returned covered via one of the CryptIC’s GKEKs or an application-generated KEK.

Program Control Data Key (PCDK)

The PCDK is a fixed DSA public key that is stored in masked ROM. The
PCDK is used to verify the digital signature on a PCDB modification token (this is
explained in more detail in the section Programmable Control Data Bits Initialization
String (PCDB_IS) or to verify the signature on ‘Extended Code’ which may be loaded
into the chip at run-time. The PCDK is hard-coded into the CGX kernel and cannot be
off-loaded or exported.
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Asymmetric Key Lengths

Since the CryptIC supports several public key algorithms, the requirements for
public key pairs and their moduli differ. However, in general the Crypt/C will support
keys and moduli in the range of 512 bits to 2048 bits in multiples of 64 bits.

Asymmetric Key Generation

Public key generation like symmetric key generation is very important to the
security of the system. Poorly generated public keys or moduli will result in inferior
crypto-protection. The main tenet behind public key generation is the generation of
random numbers with a high probability of being prime. The Cryp#I/C implements a
widely accepted method of testing for primality, the Rabin-Miller algorithm.
Moreover, all prime numbers generated by the chip will have the most significant bit
set and will be odd.

The CryptIC will never reuse the same modulus for an RSA or DSA new
public key. However, the CryptIC does allow for a common exponent to be used for
the RSA exponent. The typical choice is to use the a starting point of 65537 as the

RSA encrypt exponent.

DSA Key Generation

The application has several configurable ways to generate the public keyset for
DSA operations. It can generate the modulus’ p and q in a safe or weak manner. The
safe method is based on appendix A of the X9.30 specification. It goes through a
formal method of creating p and q from a 160 bit seed and 16 bit counter. In this

method the application is ensured of not using a ‘cooked modulus’.

In the weak method, the modulus’ p and q are generated in a simple method of
finding q a prime factor of p — 1. This doesn’t provide for a seed and counter but

generates p and q faster.

130



10

15

20

25

WO 99/14881 PCT/US98/19316

In either case, p and q are tested to determine if they are prime. As noted
earlier, they are tested using the Rabin-Miller primality test and the application can
specify the number of times it wants to run the test. The more times it is run, the
higher the probability that the number is prime. However, the more times the test is
run, the ldnger it takes to generate p and q. Also, as part of the primality test, the
prime number to be tested goes through a small divisor test of the primes between 1
and 257.

The private exponent is generated using the random number generator and the
public exponent is derived from the private and modulus data. Furthermore, the
application can change the private and public parts as often as it chooses for a given

modulus using the CGX_GEN_NEWPUBKEY command.

RSA Key Generation

The RSA moduli, p and q, are generated by first finding a prime number p and

then another prime number q that is close in value to p.

In either case, p and q are tested to determine if they are prime. As noted
earlier, they are tested using the Rabin-Miller primality test and the application can
specify the number of times it wants to run the test. The more times it is run, the
higher the probability that the number is prime. However, the more times the test is
run, the longer it takes to generate p and q. Also, as part of the primality test, the
prime number to be tested goes through a small divisor test of the primes between 1
and 257.

The public exponent is created by finding an e that is relatively prime to O(n),
the product (p-1)(q-1). The starting point of this search is 65537. In most cases e
remains 65537. In the event that J(n) = 65537k, where k >= 1, then the encryption

exponent will be the next largest odd value which is relatively prime to C(n).

The private exponent is found by taking the multiplicative inverse of e mod (p-

1)(g-1).
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Diffie-Hellman Key Generation

The application has several configurable ways to generate the public keyset for
Diffie-Hellman operations. It can generate the modulus p in a safe or weak manner.

The safe method finds a safe prime, one of 2q + 1.

In the weak method, the modulus p is generated as a random number. In this
case, the modulus is weak but will be generated very quickly. Furthermore, the

modulus p is not tested for primality.

In either case, p and q are tested to determine if they are prime. As noted
earlier, they are tested using the Rabin-Miller primality test and the application can
specify the number of times it wants to run the test. The more times it is run, the
higher the probability that the number is prime. However, the more times the test is
run, the longer it takes to generate p and q. Also, as part of the primality test, the
prime number to be tested goes through a small divisor test of the primes between 1

and 257.

The private exponent is generated using the random number generator and the
public exponent is derived from the generator, private exponent and modulus.
Furthermore, the application can change the private and public parts as often as it

chooses for a given modulus using the CGX _GEN_NEWPUBKEY command.

Asymmetric Key Representation

Asymmetric key sets are represented in one of two forms, an /RE external
form, or an /nter-operable External form. The IRE External form is a subset of the
Inter-operable External form. The external form is modeled after the Microsoft
CryptoAPI specification.. Note that the asymmetric key sets contain the Public key, the
Modulus/Generator, and the Private key. Only the private key portion is covered by a
KEK.
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Asymmetric Key IRE External Representation

When an application chooses to create an IRE private key for local storage,
this format is used. This is the format that is returned for the CGX_GEN_PUBKEY
and CGX. GEN_NEWPUBKEY operations.

[userfield][type][keylength][datapage][pointer-to-modulus][pointer-to-pubkey] ... ...
[pointer-to-privkey] and:

The modulus/generator element is: [modulus-generator-packed]
The public key element is: [public-keybits-packed]
The private key element is: Exgx {[salt-bits][private-keybits-packed]}

Where Exzx indicates the encryption of the data in {} by the specified KEK.

For the private key portion, the application can specify salt, no salt, or request
the CryptIC to generate the salt-bits. Moreover the application can use the salt bits as
a means to prepend a formatted packet of data in front of the private key. The key bits
are the Red private key bits. For DSA it will just include, x, a 160-bit key. For Diffie-
Hellman it will just include the private key, %, a key between 160 and 2048-bits. For
RSA the private key bits will be p, q, d mod (p-1), d mod (g-1), and q' mod p, and d

(in this order). The key bits are laid out in little-endian form.

The private key bits and salt are put into a buffer that is encrypted by an

~untrusted symmetric KEK.

If salt is to be supplied, it must be in 16-bit units, no single bytes allowed.
Furthermore, the total byte count of salt, and key bits must be a multiple of 8-bytes in
order to fall on a DES block boundary.

Asymmetric Key Inter-Operable External Representation

When an application chooses to exchange an IRE private key with another
crypto-vendor, the private key must be translated from IRE’s storage format into one

that is more easily extractable.
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To do this, a basic storage format based on Microsoft’s CryptoAPI has been
adopted. The general form of the private key element to be exported/imported is:

The private key element is: Exgx{[salt-bits][key-bits][data-bits]}
Where Exzx indicates the encryption of the data in {} by the specified KEK.

The application can specify salt, no salt, or request the Cryp#I/C to generate the
salt bits. Moreover the application can use the salt bits as a means to prepend a
formatted packet of data in front of the private key. The key bits are the Red private
key bits. For DSA it will just include, x, a 160 bit key. For Diffie-Hellman it will just
include the private key, x, a key between 160 and 2048 bits. For RSA the private key
bits will be p, q, d mod (p-1), d mod (g-1), and q"' mod p, and d (in this order). The
key bits are laid out in little endian form. The data field is supplied by the application, it
can contain anything the application chooses or it can be left out if the application does

not require it.

The private key (salt, key bits, and data) are put into a buffer that is encrypted

by an untrusted symmetric key.

If salt or data are to be supplied, they must be in 16 bit units, no single bytes
allowed. Furthermore, the total byte count of salt, key bits, and data bits must be a
multiple of 8 bytes in order to fall on a DES block boundary.

KEY HANDLING REQUIREMENTS

An important requirement to defining a key management scheme is setting
forth requirements on how the keys are handled by the CGX Kernel and application.
The CGX Kermel presents several requirements on key handling for both public and
symmetric keys. This is followed by a detailed discussion of secret/public key

hierarchy and control.

The following are requirements the application must abide by in order to create and

manipulate keys using the CryptIC:
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1) By default, Red key exchange between the application and the CGX Kernel is

2

3)

4

5)

6)

7

only allowed in the direction from the application to the CGX Kernel (i.e.,
loading), for all user symmetric keys (KEKs and DEKs). Absolutely no Red
key exportation is allowed.

All keys stored in the internal KCRs are in the Red form, no internal Black key

storage is allowed.

Black keys are not allowed as part of encryption or public key operations. In
other words a key must be uncovered, in its Red form, before it can be used in
any of the CGX Kernel commands. This is true for the private key of a public

keyset as well.

All key management commands supported by the Crypt/C (e.g.
CGX_GEN_KEY, CGX_GEN_KEK, or CGX_GEN_PUBKEY, etc.) are
atomic. This means that when a key is created, derived, or negotiated, a
covered (i.e. Black or encrypted) copy of the key is returned at the same time,
as part of the same command. Therefore, the only way to get back a key (i.e.
the Black one) is via the command that created it. This prevents an intruder

application from hijacking a key.

All keys used or stored by the Crypt#/C fall under two umbrellas of protection,
trusted or untrusted. Trusted keys can never be exposed in their Red form; the
CryptIC stores them in a secure and protected manner. An untrusted key can

be used in many flexible ways but secure protection is left to the application.

All keys in a trusted tree (see Figure 18) can not move from that tree, they are

permanently stored in the tree.

All keys in an untrusted tree (see Figure 18) can move to other untrusted trees
and/or a trusted tree, once under a trusted tree the key can not move (as stated

in item 6 above).
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8) There are two classes of keys, IRE external keys (symmetric and public) and
interoperable keys (symmetric and public). IRE external keys contain secure
attributes that describe its trust and key type. Interoperable keys contain
nothing but the key material, formatted with optional salt bits in the front and

optional application-supplied data bits at the end of the key material.

9) Internal IRE keys contain two attributes: Use and Trust level. The use
attributes specify the key type (ie. KEK, DEK, DKEK). The trust level is
Trusted or Untrusted (as explained in item 5 above). The use attribute

mandates how a key can be used and which commands will allow it.

10) As a means to combat many types of cipher-text attacks on Red key storage, all
symmetric keys and private keys (of a public keyset) will include ‘Salt” which
are random bits prepended to the key material prior to encrypting. The random
salt data helps to prevent statistical cipher-text attacks; thus better securing a

covered key.

11)In order to off load and protect user keys securely (i.e. Diffie-Hellman
negotiated ones, CGX_GEN_KEY ones, or imported Red user keys) a
generated internal key encryption key (GKEK) must be used. This provides an
internally protected conceptual boundary around the CryptIC device and the
application’s non-volatile storage memory. This is because the GKEK is an
extension of the CryptIC, it is never exposed and the keys covered under it are

therefore never exposed.

12) The LSV is laser programmed at the factory and is unique for each CryptIC

device.

13) The LSV is a two-key, triple-DES key (i.e. 112 bits), all GKEKSs are covered
under the LSV using triple DES in the CBC mode.

14) All GKEKs are internally generated using the CGX_GEN_KEK command.
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15) To off-load a GKEK, it must be covered under the LSV (no other covering
key is permitted).

16) All GKEKs are triple DES keys (i.e. 192 bits), all user keys are covered under

the GKEK using triple DES in the CBC mode. The CGX Kernel supplies a
fixed IV.

17) The LSV can not be exported in any form. Furthermore, the LSV can only be
used by the CGX_GEN_KEK, CGX_GEN_RKEK or
CGX _UNCOVER_KEY commands.

18) GKEKs can not be exported/imported, although they may be off-loaded in IRE
External form. Furthermore, GKEKSs can only be used to cover user keys, not
as traffic keys. Therefore, the GKEK can only be used by the
CGX_UNCOVER_KEY, CGX_GEN_KEY, CGX_DERIVE _KEY,
CGX_LOAD_KEY, CGX_GEN_PUBKEY, and CGX_GEN_NEWPUBKEY

commands.

19) A user key can be created internally via CGX_GEN_KEY (for symmetric keys)
and CGX_GEN_PUBKEY (for public keys), imported in the Red form,
derived via CGX_DERIVE _KEY, or negotiated via the Diffie-Hellman key
exchange (symmetric key only).

20) User keys are also known as KEKs, DEKs (a symmetric key), or a Public

keyset. All user keys must be covered by a GKEK, RKEK or KEK in order to
be exported.

21) Once a user key is covered under a GKEK it can not be covered by any other
key. In other words, the user key can not be propagated down or across in the

symmetric key hierarchy. This rule prevents key stealing or spoofing.

22) User keys covered by a KEK can use either the DES or triple-DES algorithm.

For untrusted keys, the application is responsible for providing an I'V for the

appropriate modes (i.e., CBC, CFB, and OFB).
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23) The depth of the symmetric key hierarchy is unlimited, KEKs can be covered
under KEKs ‘N’ deep as long as it abides by these key handling rules. This is
the same for trusted KEKSs as well.

24) The CGX Kernel knows if a KCR contains a key, the key type, the key length,
and its attributes. Anything beyond that is the responsibility of the application.

Symmetric Key Handling

The CryptIC provides support for eight kinds of symmetric keys: LSV,
hardware only, protection, generated, loaded, imported, negotiated, transformed, and
derived. The master key is the unique LSV laser programmed into each Crypt/C
device. The LSV provides the ability for the application to safely off-load key material

with out the possibility of exposing the key’s Red contents.

Hardware only keys, DKEKs, are internally generated symmetric keys (via the
CGX_GEN_KEY operation) that are used to cover symmetric keys, DEKs, only. The
DKEK keys allow applications to load Black symmetric DEKs into the hash/encrypt
crypto interface to be uncovered and used as traffic keys. This allows the application
to use the hash/encrypt hardware interface securely since keys are never exposed in the

Red form.

Protection keys, GKEKSs, are internally generated symmetric keys (via the
CGX_GEN _KEK operation) that can only be covered by the LSV. The prdtected
keys allow the application to build a symmetric key tree hierarchy that to the
application is protected internally within the Cryp#/C device. This protectionis a
conceptual boundary around the Crypt/C and the application’s non-volatile memory

storage. Protected keys are returned in the Black form.

Generated keys are user keys generated internally to the CryptIC, they never
reside in the Red form outside the bounds of the Cryp?/C device. All generated keys
are created via the CGX_GEN_KEY operation. An internal user key can be used as a
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KEK or DEK, but is always known as a trusted key by the CGX Kernel unless the

application requests it to be untrusted.

Loaded keys are user keys loaded in the Red form. They can be used as a KEK
or DEK, but is always known as a untrusted key by the CGX Kernel. The loaded key
may be covered by a GKEK or another trusted or untrusted KEK. Loaded keys play
an important role for applications such as ANSI X9.17 where the application must
supply the master keys. The master keys are then used to cover the session keys that

can be generated by the CryptIC or imported.

Imported keys are user keys imported from another vendor’s crypto-system, in
the Black form. They can be used as a KEK or DEK, but is always known as an
untrusted key by the CGX Kernel. The imported key can be covered by a GKEK or a
trusted/untrusted KEK.

Negotiated secret keys are the result of a Diffie-Hellman key exchange.
Negotiated user keys can be used as KEKs or Ks, but are always known as an
untrusted key by the CGX Kernel. The negotiated key can be covered by a GKEK or a
trusted/untrusted KEK.

Transformed symmetric keys are the result transforming an HMAC key into a
useable DES, Triple DES, or RC5 key. The transforms are all based on the current
IPsec working group papers on HMACs. Transformed user keys can be used as KEKs
or DEKs, but are always known as an untrusted key by the CGX Kernel. The
negotiated key can be covered by a GKEK or a trusted/untrusted KEK.

Derived keys are the result of a cryptographic operation that converts a pass-
phrase into a symmetric key using a one-way HASH algorithm. Derived keys can be
used as KEKs or DEK, but are always known as an untrusted key by the CGX Kernel.
The derived key can be covered by a GKEK or a trusted/untrusted KEK.

Figure 18 presents the symmetric key tree hierarchy supported by the
commands of the CrypfIC.
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The keys shown in Figure 18 represent their type (in upper case: LSV,
GKEK, KEK, DKEK, or DEK), trust level (the lower case letter to the left of key
type, t for trusted and u for untrusted), generation method (the superscript as defined

below), and the key movement method (the subscript as defined below).

le = not exportable

e = exportable

g = generated

n = negotiated (Diffie-Hellman)
1 = loaded

1= imported

t = transformed

d = derived

Since the CryptIC does not contain non-volatile storage, the CGX Kernel must
allow a means for the applicatioq to safely off-load symmetric keys into some external
non-volatile storage for future use. This is accomplished through the classification of
symmetric keys shown in Figure 18 above. All trusted keys (the ones in the white oval)
are securely protected via the LSV symmetric key hierarchy. All the other keys (in the
gray shaded are of the box) are untrusted and the storage scheme is left to the

application.

The trusted tree provides a means to securely store symmetric keys. The
storage is secure because the parent KEK is a trusted key and by definition a trusted
key means that the key was created in a manner that prevents it from being exposed in
the Red form. Therefore, the child keys under a trusted KEK are securely protected

because the parent KEK is not compromised.

A trusted key must contain attributes. The attributes are used to define the
class of the key and its type. The class defines the key as a trusted or untrusted and
the type defines the key to be used as a KEK or data key (DEK) only; it can’t be both.

140



10

15

20

25

WO 99/14881 PCT/US98/19316

For all IRE symmetric keys, the type and class will be securely stored with the key
material. Therefore when a key is reloaded into the Cryp?IC, the type and class is
reliably restored.

At the root of the trusted tree resides the LSV. The diagram shows that the
LSV is trusted (tLSV), it has been laser programmed (LSV™), and is not exportable
(LSV,). The LSV is the master KEK for the CryptIC; it is used as the covering KEK
of protected keys, GKEKs; it can not be used by the general encryption commands.

Under the LSV resides the protection keys, the GKEKs. The sole purpose of
these keys is to limit the exposure of the LSV so that the application can not determine
the LSV from plain-text attacks. The GKEKs are trusted keys (tGKEK), are internally
generated so that the Red key material is not easily detectable (GKEK?®), and are not
exportable (GKEK.).

Under the GKEKs, the application is free to build its own trusted tree or make
it a flat one which resides directly under the GKEK and no deeper. To build a deeper
secure trusted tree, the application must create trusted KEKs. The trusted KEKSs
(tKEK) shown in Figure 18 are formed via the CGX_GEN_KEY command (KEK®)
and can never be exported (KEK..). A trusted KEK is similar to the GKEK in all
aspects except that its parent KEK is either a GKEK or another trusted KEK; not the
LSV. Therefore, the trusted tree can be as deep as one wants but the parent of each
branch must be a trusted KEK. Furthermore, all child keys under a trusted KEK can

not be exported, they are permanently stored under the trusted KEK.

All session keys (DEKs) stored under a trusted KEK or GKEK can be either
trusted or untrusted. The trust state of these keys does not matter; it’s the fact that
they are stored under a trusted parent that matters. Being a trusted DEK has one
slight difference then an untrusted DEK. The difference is that trusted DEKs (tDEK)
shown in Figure 18 are formed via the CGX_GEN_KEY command (DEK?®).

Untrusted DEKSs are created in some untrusted means therefore the Red key material
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could be determined more easily. However, like trusted DEKs untrusted DEKs under
a trusted KEK can not be exported.

Before describing the untrusted trees there is one more interesting point about
trusted trees. In Figure 18, there are two untrusted KEKs which both reside under
trusted KEKs (one under a tKEK and the other under a tGKEK). They are both
untrusted and therefore their children reside in the untrusted umbrella (the gray area).
Although the untrusted KEKs can not be exported (because their parent KEKs are

trusted) their children can because their parent is untrusted.

Untrusted trees are ones where the parent KEK of the tree is untrusted.
Therefore, all keys regardless of depth under the initial untrusted parent will be marked
as untrusted and will be allowed to be exported. No trusted DEK or KEK can be

created under an untrusted KEK.

A good example of the untrusted tree is shown in the bottom right side of
Figure 18. The parent KEK is untrusted (i.e. KEK) and could have been created in a
multitude of ways (KEK®™, generated, negotiated, loaded, imported, and derived)
and is exportable (KEK,). All of its children are marked as untrusted and could have

been created in many ways, as with its parent. The child keys are exportable.

There is another type of an untrusted tree, called the dangling tree. All
dangling trees are by definition are untrusted because the root key is always an
untrusted KEK or it has no root KEK at all (ie. an untrusted DEK). The upper right
hand of Figure 18 shows an example of a dangling tree. In this example the parent is
the root and is an untrusted KEK. Furthermore, the parent KEK is not exportable

because there is no parent KEK to cover it.

One example of this dangling untrusted tree is the case where the untrusted
parent or root KEK was created as a derived key (i.e. via a pass-phrase). The
application then stores keys under this derived untrusted KEK. It can now safely store

away the untrusted keys and not have to store the parent KEK. Anytime it wants to
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use one of the stored keys it must use the CGX_DERIVE_KEY operation to

regenerate the untrusted parent KEK.

Another example of a dangling tree is shown in the lower left corner of Figure
18. In this example the dangling tree is flat, it is a single untrusted DEK. This key is
untrusted and can not be exported because it has no parent to uncover it with.

However, the real usefulness of this key is its use as a session key for one time only.

The DKEK keys are not shown in the diagram in Figure 18 because they
function identically to the KEKSs in the diagram with one exception. The exception is
that the only keys that can be covered under them are DEKs of any type (i.e. derived,
loaded, etc). At no time will a KEK or another DKEK be allowed under a DKEK.
The DKEK key is reserved for the use of the hardware crypto-block interface. To
allow applications to load in Black symmetric DEKs from an external context store (ie.

in PCI or External memory space) and not have to expose their keys in the Red form.

Asymmetric Key Handling

Asymmetric keys contain three components: the public exponent, the modulus
and generator, and the private exponent. The private exponent can be imported in the
Red form, but only ekported in the Black form (the private key must be covered).
Public key sets can be internally generated using the CGX_GEN_PUBKEY or
CGX_GEN_NEWPUBKEY (generates the exponents of a Diffie-Hellman or DSA

public keyset) commands.

All asymmetric keys are known as untrusted keys, therefore they can be used to

cover symmetric keys to be exported or be exported themselves.

Public keys can be used as covering keys, key exchange keys, and signature
keys. However, the application should create different keys for these tasks to protect
the keys from various attacks. The CryptIC does not enforce key types for public
keysets as it does with symmetric keys.
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A public keyset can only be covered by a trusted or untrusted symmetric key,
not another public key. Only the private part of the public keyset gets covered; the

public key and modulus/generator are always in the Red form.

SOFTWARE DATA OBJECTS
This section describes the various software data objects that make up the CGX

Kernel.

Configuration Data
The CGX Kernel maintains the program control data bits. The functionality of

the bits are described in the section Kernal Configuration String (KCS). The following

sub-sections describe the data storage definitions for the program control data bits.

Program Control Data Bits

The PCDB allows the application to customize the CGX Kernel. For example,
the PCDB contains a bit to allow the exportation of Red key material. However, the
application must obtain an unlock-data message to get the proper permission to
permanently change the non-volatile copy of the PCDBs. Without the appropriate
unlock-data message the application is denied access to the PCDBs. Obtaining the
unlock-data message and the process of using it is discussed in the section Kernal

Configuration String (KCS).

Figure 19 specifies the data definition for the PCDB bits.

PCDB Bit Definitions

The following lists the PCDB words in lowest memory order, defining the bits

that are programmable by the application:
Word 0:

As shown in the table below:
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Bits 0 - 4 set the maximum allowed symmetric key (DES, triple-DES) length.
The starting size is 40-bits and these bits allow a step size of 1 byte up to 168-bits.

Bits 5 - 7 set the maximum allowed asymmetric key (RSA, DSA, D-H) length.
The starting size is 512-bits and these bits allow a step size of 256-bits up to 2048
bits.

Bit 8 selects whether triple-DES is allowed for traffic encryption. It is always
allowed for Key encryption.

Bit 9 selects whether the Crypt/C will allow Red key loading.

Bit 10 selects whether the RSA public key algorithms are enabled. A royalty fee is
due to RSA for those chips which have this feature enabled.

Bits 11 — 15 are reserved.

Word 0

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘xlxlx xIxIx'x‘xlexlxl

Symmetric key maximum length (in bytes — 40 to 168)
Asymmetric key maximum length (in 256’s — 512 to 2048)
1 = Triple-DES enabled for traffic encryption

1 = Allow Red key loading

1 = RSA algorithms enabled

Reserved (set to 0)

Word 1:

As shown in the table below:

Bits 0 - 2 set a hardware delay-line which is used for adjusting the timing pulse for
External Memory access. This is typically configured at the factory to account for

IC process changes.

Bits 3 - 14 set the hardware revision number of the Cryp#IC. This value is returned
in the CGX_GET_CHIPINFO command.
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e Bit 15 is reserved.

Word 1
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0

Lx Do oDl D [ lw T T [ e [

External memory pulse shaping

Hardware revision number code
Reserved (set to 0)

Command Interface
The major component to the command interface is the use of the shared
memory, the kernel block, to allow command communication between the application
and the CGX Kernel. The following sub-sections defined the kernel block and its two

members: the command block and the status block.

Kernel Block

The kernel block is the CGX Kernel’s pipeline or socket to the outside world
(i.e. the application). The kernel block provides the application and CGX Kernel with
the ability to communicate with one another. The kernel block is a pre-formatted
shared block of RAM located in the DSP’s data address space, either in internal DM or
external DM. The kernel block is shown in Figure 20.

The kernel block is comprised of two areas: the command block and the status
block. The command block is used as the data transfer area between the application
and CGX Kernel for servicing cryptographic commands. The status block is used to
keep the application updated on the status of the CGX Kernel.

The kernel block consists of a status member and a pointer to the command block.
Allowing the blocks to be defined as pointers allows the application to build static
kernel blocks with the possibility of globalizing the status block. By globalizing the
status block the application can reference the single instance; thus making status
checks easier to perform. The section Kernal Block Object defines the kerne! block as

a very simple C data structure.
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Moreovér, the shared block approach is important for two other reasons. The
first is to make the software interface to the CGX Kernel compiler-independent.
Otherwise, the interface would be achieved via arguments pushed onto the software
stack. All compiler languages support different calling frames; therefore, it would be
difficult to come up with a simple scheme to handle all languages easily and efficiently.

The second reason for the shared block approach is to optimize the access to
the CGX Kernel. Using the shared block approach, the application can set up static
kernel blocks. A static kernel block would have pre-configured arguments and
commands. The application would reuse the command block and never have to update
it, similar to using a DMA controller. For example, the application could set up a
static traffic encryption command block. The command block would be set up once
with the following arguments: CGX_ENCRYPT command, the crypto-block context
object, a data-in and data-out pointer, and a data-in size. Then for every block(s) of
data to encrypt the application would only invoke, cgx_secure_transfer(), with a
pointer to the static kernel block. Like a DMA operation, the input buffer is obtained
from the data-in pointer and the output buffer is obtained from the data-out pointer.
The application would only have to replenish the data-in buffer and consume the data
in the data-out buffer after the service completes. This would save processing time
because the application would only have to populate the kernel block once prior to
traffic.

The status field provides the CGX Kernel status back to the application (ie.
return result code). The status field is a place holder for cryptographic service result

codes, the acceptable status codes are specified in the section Status Definitions.

Kernel Block Object

The kernel block object is made up of two independently addressable blocks.
Figure 21 illustrates the kernel block.

The kernel block uses a pointer to the command block to allow for global

substitutions of the block. For example, the application may have many static
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command blocks for several cryptographic services while it only has one kernel block

for the entire application.

The 4 word kernelblock object may reside in either the internal DM data page
or in any external DM page of the Crypt/C. 1t is important however that when the
CGX call is made (transfer vector), that the DMOVLAY register is set to the page in
which the kernelblock object resides. The CGX Kernel will not modify the
DMOVLAY register until it has read-in the kernel block.

Member Details

The DeviceNo member, as shown below, is used to allow the application to
specify which class of command is being requested and the memory model for the

command block arguments.

0x0000 ByteCode Comman

0x0001 ByteCode Command DSP Internai DM

0x0002 CGX Command PCI (32-bit addresses)

0x0003 CGX Command DSP DM (14-bit address, data page)
0x0004 CGX Command Mixed Mode (dp = bitmap)

DeviceNo codes 0 and 1 are reserved for special ByteCode commands which

are used in factory testing. Codes 2 ~ 4 are used for CGX commands.

DeviceNo code 0x0002 specifies that if any of the 10 arguments in the
command block are pointers, then they will be defined as 32-bit PCI address pointers.
For example, if for a given CGX command, argument #3 is a pointer to a data source,

then it will be a 32-bit PCI address.

DeviceNo code 0x0003 specifies that if any of the 10 arguments in the
command block are pointers, then they will be defined as DSP Data Memory (DM)
address pointers. The least-significant word of each argument will hold the 14-bit DM
address. The most-significant word for each argument will hold the 16-bit
DMOVLAY value for the DM address, thus allowing the pointer to reference any page
in internal or external CryptIC memory.
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DeviceNo code 0x0004 specifies that the dp member of the kernel block is a
bitmap, specifying for each of the 10 arguments whether they are a pointer into PCI
memory space (1) or an address/overlay page in DSP data memory space (0). Again,
this only applies for those arguments which are pointers rather than explicit data. For
example, é CGX command could be executed with a command block pointing to data
values both in local DSP memory as well as PCI memory. This avoids having to copy

data into the DSP memory prior to executing a CGX command.

The member, dp, is provided to allow flexible location of the command block
within the CryptIC’s memory spaces. The kernel block (which includes the status
block) will be in whatever page is currently active (specified by the DMOVLAY
register) when CGX was entered. However, the dp member allows the application to
allocate the command block in any of the external data pages available. This avoids
having to use the valuable internal data space if the application chooses not to. As part
of the CGX Kernel entry operation the CGX Kernel will save the previous data page
and set the 2183 data page to the one passed in the kernel block. Upon exit the CGX

Kernel will restore the old data page it saved in the entry operation.

The application may use the status field to determine if a cryptographic service
completed successfully or not. The status code will indicate whether the CGX Kernel
is busy or not, and will provide a success or failure result code. Note: the application
must never modify the status field. The CGX Kernel is the only software that should
write to the status field. If the application modifies the status field it may not know if
the CGX Kermel is active.

Command Block

The command block provides the argument interface between the application
and the CGX Kernel. The command block is comprised of several fields as shown in

the C data structure definition below. The command block is made up of a command
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field and argument list. The command field is loaded with the operation code. The

available commands are listed in the section Command Definitions.

The argument list is used to pass-in the command arguments. The argument
list is a fixed array of void pointers. The void pointer allows you to establish a pointer

to any object as well as passing in arguments by value.

Although most of the commands take a variable number of arguments, the
command block is always fixed with 10 argument locations. However, the application
does not have to assign the unused arguments to anything if the command does not use
them. See the section Command Specification & Arguments for a detail listing of

conﬁma_nd argument specifications.

Command Block Object

The command block object is used by the application as the communication
channel to the CGX Kernel or as the argument list for a cryptographic service. The
command block is made up of a command (i.e. the micro commands as defined in the
section Command Definitions), and the list of arguments (a maximum of 10 arguments
are allowed). The argument list can contain pointers to various objects to be passed

into the CGX Kernel. Figure 22 illustrates the command block object.

KEY OBJECTS

Secret Key

As shown in Figure 23, the secret key object, secretkey, is used to represent a
symmetrical key between the application and the CGX Kernel. The data structure
contains the key length (i.e. length, allowing the maximum key length of 192 bits for
the triple DES algorithm), application specific data, the secret key type (i.e. DES,
triple DES, etc.), and the raw buffer (i.e. k[16]).

The raw buffer, k, houses the actual secret key. As part of the secret key,
some salt bits are pre-pended to the buffer, k. There are a total of 54 bits of salt

150



10

15

20

25

WO 99/14881 PCT/US98/19316

added, followed by 10 bits of key attributes. The key attributes (for details see the
section Symmetric Key IRE Internal Representation) define the type of key (i.e.
KKEK, KEK, DEK etc.) and its trust level (i.e. Trusted or Untrusted). The next 192
bits contain the actual key bits, followed by 64 bits of overwritten key weakening
data. Then, the 16-bit keylength field appears, followed by a 160-bit SHA-1 digest of
the first 256 bits of k. The digest is used to authenticate the salt, attributes, and key.

The secretkey object is only used as a means to communicate and securely
store keys off of the chip. Internally, the chip uses the same secretkey structure minus
the last 192 bits of the buffer, k, the SHA-1 digest data.

All secret keys will have a type defined as: CGX_DES_A or
CGX_TRIPLE DES_A. The secret key type is used by the CGX Kernel so that it can
internally transform the secret key to be usable for the secret key algorithm specified in
the type field.

The secret key is stored in a buffer of 16 bit units or WORD16 data types.
This allows for more efficient storage and access schemes. By default, the key is
stored with its most significant bits in the upper bits of the final WORD16 item. The

salt data will fill-in the unused least significant bits of the raw key buffer.

The extra field is 16 bits of data provided to the application for what ever it
chooses. The CGX Kernel does not read or write this field. Furthermore, it will

preserve this field while the key is internally stored in volatile or non-volatile memory.

Public Key

The public key object, publickey, is used to represent an asymmetric key that
is to be used between the application and the CGX Kernel. The data structure is made
up of a modulus, public key, and private key objects. The publickey object can
accommodate Diffie-Hellman, DSA, and RSA public keys; otherwise known as the

public keysets. The publickey object can only manage a maximum key length and/or
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modulus length of 2048 bits. Public key modulus length can be regulated with
PCDBs. If required, an ‘Enabler Token’ can override the factory laser settings of the
PCDBs.

Figure 24 defines a generic public keyset. The type field identifies the kind of
public key contained in the structure. Based on the type field, the application assigns
pointers to the appropriate keyset objects: modulus, privkey, and pubkey objects for
the appropriate type (i.e. Diffie-Hellman, RSA, and DSA). These pointers reference

blocks of data stored in little-endian form.

All public keysets are stored in a packed form. Packed keys are defined as key
structures in which the least significant byte of the next public key structure member
abuts the most significant byte of the current member. In this way, fragmentation

within data structures is minimized and portability of data is enhanced.

The length field specifies the length (in bits) of the modulus for this public key
object. The extra field is 16 bits of data provided to the application for whatever it
chooses. The CGX Kernel does not read or write this field. Furthermore, it will
preserve this field while the public keyset is internally stored in volatile or non-volatile

memory.

The following sections define the public keyset objects for each of the
algorithm types supported.

Diffie-Hellman Public Keyset

The Diffie-Hellman keyset implements the following formula: ¥ = g mod n.
The two variables g and # are combined to form the modulus, Y is the public key, and y
is the private key. The contents of the private key must be protected. Therefore, the
variable y of the DHprivkey object must be covered before it can be exported. Also, a
salt field is included to avoid cipher-text attacks on the covered Diffie-Hellman private
key. Figure 25 illustrates the three objects that make up a Diffie-Hellman keyset.
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RSA Public Keyset

4 mod

The RSA keyset implements the following formulas: ¢ = m° mod n,m=c
n, where n = p q. The variable » is the modulus, e is the public key, and p, g, and d
make up the private key. The variables p, g, d mod (p-1), d mod (g-1), and q' modp
are kept around as for optimization; they are used by the Chinese remainder theorem.
This data must be protected as the private key is. Therefore, the privkey object must
be covered before it can be exported. Also, a salt field has been added to avoid cipher-
text attacks on the covered RSA private key. Figure 26 illustrates the three objects that

make up a RSA keyset.

DSA Public Keyset

The DSA keyset’s variables implements the following signing formula: r = (@
mod p) mod q, and s = (k' (H(m) + x r)) mod q. The following variables implement
the verification formula: u/ = (H(m) (s’ mod g)) mod q, and u2 = (r (s' mod q)) mod
g, and v = ((g"' y°) mod p) mod q, where y = g* mod p. The variables p, g, and g
make up the modulus, y is the public key, and x is the private key. The other variables
r, s, and v are results from the actual calculation and are not stored in a DSA public
keyset. However, the contents of the private key must be protected. Therefore, the
variable x of the DSAprivkey object must be covered before it be exported. Also, a salt
field has been added to avoid cipher-text attacks on the covered DSA private key.
Figure 27 illustrates the three objects that make up a DSA keyset.

Digital Signature

The digital signature object, signblock, is used to represent a digital signature

for DSA public key only. The data structure contains the sign result vectors.

The DSA signblock is represented as two vectors, 7 and s, to house the results
of the DSA digital signature sign operation; stored in two buffers of 16 bit units or
WORDI6 data types. This allows for more efficient storage and access schemes. By
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default, the two vectors are stored with its most significant bits in the upper bits of the
WORDI16 buffers. Figure 28 shows the DSA signblock object definition.

Seed Key

For generating reproducible prime numbers for DSA modulus’, p and q, a seed
key object is required. The seed key object is used by the application to provide a 160
bit seed value for generating the primes and for a counter to be used in verifying the

primes.

The DSA seedkey object is represented as a 32 bit counter and a 160 bit seed
buffer. Figure 29 shows the DSA seedkey object definition.

Key Cache Register Data Type

Key cache registers are represented by a register ID value. The register ID can
be between 0 and 14 (the maximum allowable key cache registers). However, key
cache register number 0 is reserved for reference to the LSV (laser-trimmed) key cache

register. The key cache register data type is shown in Figure 30.

Red Keys

The CGX Kernel allows the importation of Red key material, both secret and
public keys.

Context Management

Context management for the CGX Kernel is a critical requirement from the
point of view of security, real-time, and storage. Context management allows the
application to interleave several occurrences of a cryptographic operation. For
example, the CGX Kernel only has one KG (or crypto-block) to encrypt with.
However, some applications (e.g. packet networks) may have several encryption
sessions going on at the same time. If the CGX Kernel did not implement context

management then it could not start an encryption session for another party until the
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current party released the resource. This is because the use of the crypto-block
requires state information about the encryption session to be saved between calls to the
encryption command, CGX_ENCRYPT. If the state information isn’t saved between
calls then the next block will not encrypt correctly. So without context management,

the application cannot share various resources of the CGX Kernel.

Context Stores

Like the kernel block the context stores are defined as blocks of memory with
pointers to buffers specified by byte counts or implicit byte counts; thus providing a

language (i.e. compiler or assembler) independent block interface.

Symmetrical Encryption Context Store

The context store for symmetrical (i.e. secret key) cryptographic commands
(CGX_ENCRYPT and CGX_DECRYPT) are shown in Figure 31.

The size of the crypto_cntxt block is 12 bytes of contiguous memory. The
config field is used to select the encryption configuration (i.e. modes, loading
configuration, and feed-back count); the constants to use for this field are defined in
the document titled, CryptIC Command Interface Specification. The size of the KCR
ID is 2 bytes. Note that the iv buffer size is fixed to 8 bytes. However, depending on
algorithms used in the fiture, the iv buffer can grow easily if need be. This is because
the iv buffer is at the end of the object and can be added to and still allow for backward
compatibility.

The state information to restore the secret key context is saved in the buffer, iv,
after each call to the CGX_ENCRYPT or CGX_DECRYPT commands. The
application is responsible for priming the iv buffer with an initial random value when
starting a new encryption session for a key. Moreover, to implement a simple
resynchronization service, the application only needs to modify the iv buffer.

The CGX Kernel writes back the feed-back register of the hardware crypto-block into
the iv buffer for the CBC, CFB, and OFB modes after each call to CGX_ENCRYPT
or CGX_DECRYPT. Theiv buﬁ‘er must remain unchanged by the application to
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maintain synchronization with the receiving end of the encryption session. There is no
iv buffer required in the case of the ECB mode; the iv buffer pointer is ignored and the
application is not required to set it. Another advantage of the crypto_cntxt is that the
application has full access to the iv (i.e. the feed-back register or crypto-block state

information) at any time.

One-Way HASH Context Store

The context store for the one-way HASH cryptographic commands
(CGX_INIT_HASH and CGX_HASH_DATA) is shown in Figure 32.

‘The size of the hash_cntxt block is 96 bytes of contiguous memory. The
algorithm field is used to select the one-way HASH function algorithm (i.e., MD5 or
SHS); the constants to use for this field are defined in the document titled, Crypt/C
Command Interface Specification. Note that the digest buffer size is variable
depending on the algorithm used; MDS5 uses a 128-bit digest and SHS uses a 160-bit
digest. Only after closing the hash will the message digest field point to the message
digest. The length of the state information is fixed for all algorithms based on the use
of a union. The length of the state buffer is defined to be 96 bytes or 48 words.

SOFTWARE INTERFACES
This section describes the two major software interfaces, the command

interface and the CGX overlay.

Command Interface
As discussed earlier the command interface provides the API between the CGX
Kernel and the application. This is accomplished via a shared memory block and a
transfer vector. The shared memory is implemented via the kernel block and the

transfer mechanism is via specialized hardware logic.

156



10

15

20

25

WO 99/14881 PCT/US98/19316

Shared Memory
The kernel block (defined in the section Kernel Block) provides the shared

memory necessary for the CGX Kernel and application to communicate with one
another. Furthermore, unlike other shared memory schemes the kernel block is not a
static area. The kernel block is reestablished for each cryptographic command request.
This has the advantage of allowing the application to dynamically allocate the kernel
block on the fly or better yet controlling which pieces of the kernel block (the
command and/or status blocks) are statically versus dynamically allocated. The
advantage with this is that the application can setup several static copies for each of
the cryptographic commands before hand. Thus reducing the overhead of having to
repopuiate the command fields before each call to the CGX Kernel.

Like everything there are disadvantages to not having a fixed static kernel
block. The most interesting disadvantage is that the CGX Kernel becomes a
synchronously driven engine; not asynchronous. This is because if it was
asynchronous, the CGX Kemel could post events, asynchronously, to the status block
to report the health of its crypto-functions in real-time. However, the CGX Kernel
does not run asynchronously; it only runs when it is invoked by the application and the
rule is that it has control of the processor until it completes. Furthermore, the CGX
Kernel will only modify the current kernel block while a cryptographic command is

executed.

CGX Kernel Transfer Vector

In order to execute a cryptographic service, the application must explicitly
invoke the CGX Kernel. To do this a special transfer vector mechanism has been
created. The transfer mechanism is a specific call to address 0x2000 instruction with
the PMOVLAY register set to 0x000F. The AR register must contain a pointer to the
kernel block which defines the command requested.

When the software call instruction occurs, the special hardware logic (along

with some hardware signals and counters) overlay the ROM encoded CGX Kernel
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program block over a portion of the application’s program space. Once control has
been passed to the Kernel, the application is prevented from monitoring the CGX
Kernel’s ROM, RAM or register areas.
To avoid forcing the application to understand the transfer mechanism, a single
transfer véctor routine is supplied by IRE to be used by the application. Furthermore,
all of the cryptographic command definitions are provided as ‘wrap code’ around this

single transfer operation; thus alleviating the application of supporting this operation.

CGX Kernel Transfer Vector Operation

The CGX Kernel transfer operation is fast and simple. The general idea behind
the transfer operation is to establish a calling frame (kernel block and command block),
transfer into the command mode of the CGX Kernel, execute the command, and return
back to the application with the results.

The CGX Kernel transfer operation may be implemented as a function call by
the application. A header file defining the operations for all of the cryptographic
services is provided. These definitions consist of a macro that is used as wrap code to
the transfer vector operation. The macros populate the kermel! block with the
appropriate commands and arguments. For example, to encrypt a block of data using
the encryption command, CGX_ENCRYPT, the application would use the macro
wrap definition illustrated in Figure 33 and found in the cgx.h header file provided by
IRE to the customer. The cgx.h header file is provided to the application as the
software interface to the CGX Kernel cryptographic services. The application only
needs to use this definition file and the transfer operation,

_cgx_transfer_secure_kernel, to interface to the CGX Kernel .

As can be seen in Figure 33,the wrap code prepares the kernel block for
communications between the application and the CGX Kermel. (Optimizations to the
wrap code have been previously suggested in the description of the kernel block. It is
possible that the application can establish the kernel block once and just call the

transfer operation cgx_transfer_secure_kernel over and over. This would speed things
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up so that the kernel block populate code would not be re-executed. This would only
be useful for repetitive commands, like traffic encryption.) Looking at the example
closer, one notices a call to the operation, cgx_transfer secure_kernel, at the end of
the macro wrap code cgx_encrypt. The transfer operation,
cgx_transfer_secure_kernel, performs the actual transfer of control from the
application to the CGX Kernel. The transfer operation is responsible for assigning the
kernelblock object pointer to the AR register and forcing a software interrupt to cause

control to be transferred to the CGX Kernel.

When the transfer operation is invoked it simply performs these four steps:

e First it saves the return address to the calling function (i.e. the application) on the
software stack,

e second it populates a general purpose register with the pointer to the kernel block
in the AR register,

o third it transfers control to the CGX Kernel by forcing a software interrupt, and

o fourth the CGX Kernel returns back into the transfer operation in the application
memory space, because of the PC stack save caused by the software interrupt, and

it returns to the c‘alling application’s operation because of the saved address in step
1.

CGX Overlav Interface

As discussed earlier, the main purpose of the overlay operation is to provide
the proper wrap code around the CryptoLIB operations. This allows the total reuse of
the CryptoLIB software and hiding the Crypt/C platform specific hardware functions
from the application and the CryptoLIB software. To do this, there is a one to one
mapping of CGX overlay operations (the wrap code) to each cryptographic command

supported by the CGX Kernel.
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CGX Ovérlay Table Definition

Figure 34 shows a single CGX overlay tupple. The CGX overlay table
contains N CGX overlay tupples or entries. The member cgxf is a pointer to the CGX
overlay operation that is invoked by the CGX Kernel if the control variable satisfies the

necessary requirements. The control variable contains a preemption bit.

CGX Overlay Table Processing

To simplify things, the CGX overlay operations reside in a table of CGX
overlay tuples as defined by the data structure, cgx_overlay_tuple, that is indexed by
the cmd field of the command block of the kernel block (e.g. kb->cb->cmd). Once the
CGX Kernel determines which tupple out of the CGX overlay table is the correct
tupple to access, it must perform another check to determine if the application has

proper access to the tupple.

To do this, the CGX Kernel must first verify the preemption bit (part of the
control field) allows it to enter the command mode. The preemption bit occupies the
most significant bit (i.e. bit 15) of the control variable; thus the preemption mask value
is 0x8000. If the bit is a 1, it must enter the command block mode. In the
command_block mode, the CGX Kernel will not let another command preempt the
current command. If the bit is a 0, the CGX Kernel will enter the command mode
where the current command can be preempted by a secret key encryption/decryption

or one-way Hash command.

COMMAND INTERFACE RESOURCES

Besides the set of CGX cryptographic commands, the application is presented
with various resources, mainly in the area of configuration registers and storage. As in

most processor platforms, the developer is presented with a set of instructions and
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memory stores (either memory or registers) to manipulate data; with the CryptIC the

application is also presented with memory storage capabilities.

INITIALIZATION PROCESSING

The initialization process of the CGX Kernel can be invoked at any time via the
CGX Command Interface. To invoke the initialization processing of the CGX Kernel,
the CGX_INIT command is issued. This command allows the application to
customize the CGX Kernel in two ways: the Kernel Configuration String and PCDB

settings.

To do this, the CGX Kemnel allows the application to pass in initialization
strings for the two areas. The initialization strings are an array of defined bits to allow
the application to set, disable, and enable various features of the CGX Kernel. The
following sub-sections define the initialization strings allowed as part of the
CGX _INIT command.

Kernel Configuration String (KCS)

The Kernel Configuration String is a set of bit-mapped words which control
certain features in the CGX kernel. These features include: Semaphore handling and
feature enables. The KCS object definition is shown in Figure 35.

Programmable Control Data Bits Initialization String (PCDB_IS)

Program Control Data Bits (PCDBs) are a set of bit-mapped words which
control certain features in the CryptIC. These features include: Symmetric and Public
key lengths, RED key load enable, Algorithm enables, etc. The CryptIC is laser-
programmed at the factory with a defauit set of PCDBs.

The PCDB_IS allows the application to customize the CGX Kernel PCDBs.
For example, the PCDB_IS allows the application to give the CGX Kernel permission
to change lengths of key material. However, the PCDB_IS needs an unlock-data
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message to gain permission to change the PCDBs. This message is digitally sfgned
using an IRE private key, and the CryptIC verifies the signature with its public key.
Without the unlock-data message the application is denied access to the PCDBs and
the PCDB_IS is ignored.

The PCDB_IS’s first word is used to specify the number of words succeeding
the first word. If the application only wants to program data in the first word of the
PCDB_IS it would only need to set the size word (the first word of the PCDB _IS)toa
Ox1, and then pass in a PCDB_IS buffer of two words. The remaining words take on
the factory default settings. Furthermore, depending on the unlock-data message, the
application may not gain permission to all of the PCDBs. The CGX Kernel will ignore
any bits in the PCDB_IS that the application has no permission to change in the
PCDBs.

The following lists the PCDB_IS words in lowest memory order, defining the

bits that are programmable to the application:
Word 0:

As shown in the table below:

Bits 0 - 4 set the maximum allowed symmetric key (DES, triple-DES) length. The
starting size is 40-bits and these bits allow a step size of 1 byte up to 168-bits.

* Bits 5 - 7 set the maximum allowed asymmetric key (RSA, DSA, D-H) length.
The starting size is 512-bits and these bits allow a step size of 256-bits up to 2048
bits.

* Bit 8 selects whether triple-DES is allowed for traffic encryption. It is always
allowed for Key encryption.

* Bit 9 selects whether the Crypt/C will allow Red key loading.

* Bit 10 selects whether the RSA public key algorithms are enabled. A royalty fee is
due to RSA for those chips which have this feature enabled.
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¢ Bits 11 — 15 are reserved.

Word 0
‘109876543210
Ixlx el el x e xIx [ [ x[x]

l | | |

Symmetric key maximum length (in bytes ~ 40 to 168)
Asymmetric key maximum length (in 256’s - 512 to 2048)
1 = Triple-DES enabled for traffic encryption

1 = Allow Red key loading

1 =RSA algorithms enabled

Reserved (set to 0)

10 Word 1:
As shown in the table below:

* Bits 0 - 2 set a hardware delay-line which is used for adjusting the timing pulse for

External Memory access. This is typically configured at the factory to account for

IC process changes.

15 * Bits 3 - 14 set the hardware revision number of the Crypt/C. This value is returned
in the CGX_GET_CHIPINFO command.

e Bit 15 is reserved.

Word 1
1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

xlx'xlxlxlX]xlxlx'x|x’x}x|x|x|

l I |
20 L

External memory pulse shaping
Hardware revision number code
Reserved (set to 0)

KFEY STORAGE

25 The CGX Kernel provides several areas for storage of symmetric and public
keys. It contains three areas: Key RAM, Key Cache Registers (KCRs), and the
Application Space. The Key RAM is a working area for one public key. A working

area implies that it is volatile; in other words the public key is lost on power-down and
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resets. All public key operations (i.e., encryption or digital signatures) use the volatile
key RAM for that single public key storage and for intermediate results.

The volatile Key Cache Registers provide a working area for many symmetric
keys. Again, this is a working area so all the keys will be lost during a power-down or
reset. The 15 volatile Key Cache registers are addressable via register Ids from 0
through 14 (where 14 is the last addressable register). The key cache register, 0, is
reserved for the LSV symmetric key. The command interface uses the key cache

register Ids as the addressing mechanism for storage, retrieval, and encryption.

Note: Additional key storage can be achieved within the CryptIC through the
use of extended RAM. A parameter can be passed in the CGX_INIT command to
request allocation of increments of 1kbyte of internal DSP Data RAM to key storage.

Up to 700 symmetric keys can be accomodated in this manner.

The Application Space can be used for non-volatile or long time storage for
persistent key material. The CryptIC does not contain non-volatile memory (other
than the Laser-programmed bits). However, the section Key Management discusses

how keys can be stored off chip securely using the commands discussed in this memo.

COMMAND INTERFACE DEFINITIONS

The following sub-sections provide a listing of the command interface
definitions. The definitions provide the proper argument values for micro commands,
status information, and object definitions. These definitions must be used in order to

communicate correctly with the CGX Kernel.

COMMAND DEFINITIONS

The following table represents the valid command definitions:
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| Name Value I
General Commands
CGX INIT 0x0000
CGX DEFAULT 0x0001
CGX RANDOM 0x0002
CGX GET CHIPINFO 0x0003
Encryption Commands
CGX UNCOVER KEY 0x0004
CGX GEN KEK 0x0005
CGX GEN KEY 0x0006
CGX LOAD KEY 0x0007
CGX DERIVE KEY 0x0008
CGX TRANSFORM KEY 0x0009
CGX EXPORT KEY 0x000A
CGX IMPORT KEY 0x000B
CGX DESTROY KEY 0x000C
CGX LOAD KG 0x000D
CGX ENCRYPT 0x000E
CGX DECRYPT 0x000F
Public Key Commands
CGX GEN PUBKEY 0x0010
CGX GEN NEWPUBKEY 0x0011
CGX GEN NEGKEY 0x0012
CGX PUBKEY ENCRYPT 0x0013
CGX PUBKEY DECRYPT 0x0014
CGX EXPORT PUBKEY 0x0015
CGX IMPORT PUBKEY 0x0016
Digital Signature Commands
CGX SIGN 0x0017
CGX VERIFY 0x0018
Extended Algorithm Commands
CGX LOAD EXTENDED 0x0019
CGX EXEC EXTENDED 0x001A
Hash Commands
CGX HASH INIT 0x001C
CGX HASH DATA 0x001D
CGX HASH ENCRYPT 0x001E
CGX HASH DECRYPT 0x001F
Math Commands
CGX MATH 0x0021
Wame Value
PRF Commands
CGX PRF KEY 0x0020
CGX PRF DATA 0x001F
CGX MERGE KEY 0x0021
CGX MERGE LONG KEY 0x0022
CGX LONG KEY EXTRACT 0x0023
RKEK Commands
CGX GEN RKEK 0x0024
CGX SAVE KEY 0x0025

Table 13 Command Definitions
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STATUS DEFINITIONS

The following table represents the allowable status definitions, returned by the
CGX K_ernel:

Command Value Description
CGX SUCCESS S 0x0000 Cryptographic service completed successfully.
CGX_WEAK KEK S 0x0001 A weakly generated KEK (a secret key) was used as an
argument. The KEK is rejected and the service fails.
CGX_EMPTY REG_S 0x0002 An empty key cache register was referenced, the
service fails.
CGX_INVALID_REG S 0x0003 An invalid key cache register was given, the service
fails.

CGX_ACCESS_DENIED_S 0x0004 Attempt to export RED key material but the
RED_KEY EXPORT ENABLED PCDB bit is not
enabled, the service fails.

CGX WEAK KEY_S 0x0005 A weakly generated key (a secret key) was used as an
argument. The key is rejected and the service fails.

CGX_HARDWARE_FAILURE_S 0x0006 One or more hardware devices used to implement the
requested service has failed.

CGX BAD MODULUS S 0x0007 A bad modulus (i.e.. not greater than 0) was used.
CGX_INVALID KEY _LEN S 0x0008 Invalid secret key length used. Only 40, 64, and 128
bit length secret key lengths allowed.
CGX_BAD_MODE_S 0x0009 Invalid mode (ie., only ECB, CBC, CFB, and OFB
modes allowed) used. The service fails.
CGX_PRIVILEGE _DENIED S 0x000A Invalid login ID and/or PIN, or login ID does not have
privilege access to cryptographic operation.
CGX INVALID CMD S 0x000B Invalid command opcode (i.e.. constant val.) provided.
CGX_INVALID LEN_S 0x000C Invalid length (i.e., constant value) provided. Returned
for public kev operations only.
CGX_BAD_KEYSET S 0x000D Specified public keyset source location is empty or
contains the incorrect public keyset.

CGX_INVALID _SIGNATURE_S O0x000E The digital signature verification failed; the signature
of the application’s message does not match the
signature of the verification signature block.

CGX_BIGNUM_FAIL_S 0x000F Public key processing failed due to large integer failure
(i.e., overflow condition).
CGX BAD KEK S 0x001F Invalid KEK or NULL when KEK argument required.

CGX RAM FAIL S 0x0011 low level RAM diag's failed
CGX_ROM_FAIL_S 0x0012  low level ROM diag's failed
CGX_LSV_FAIL S 0x0013  low level LSV CRC test failed

CGX NULL PTR S 0x0020 NULL Pointer passed when argument required.
CGX FAILED TOKEN SN S 0x0028 cmd failed token serial number check
CGX_FAILED_TOKEN VERIFY_ 0x0029 cmd failed token verify signature
S
CGX FAILED RKEK S 0x002A cmd failed RKEK
CGX FAILED NEG KEY S 0x002B failed Diffie Hellman negotiate key

CGX FAILED SAVE KEY S 0x002C failed save key operation
CGX FAILED GEN RKEK S 0x002D failed gen RKEK operation
CGX FAILED LOAD KEY S 0x002E failed load key operation

CGX PROG NOT RUN 0x002F Start address O supplied (to IRE internal test
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Command Value  Description

programs)

CGX STARTED S 0x00FC Application has made the request to CGX.

CGX RUNNING S 0x00FD CGX has accepted the call and is running.

CGX FAIL S O0x00FE General catch-all failure code.

CGX BUSY S 0x00FF _ Secure Kernel Busy. can not be preempted.

Table 14 Status Definitions

ALGORITHM. MODE. AND KEY USAGE DEFINITIONS
This section defines the algorithms, mode, and key usage definitions for

5 symmetric key, public key, digital signatures, and one-way Hash operations.

Key Usage Definitions

The following table defines the key usage bits that must be specified when
generating, loading, negotiating, or deriving a public or symmetric key. The constant
values referenced in the table must be used in order to use an IRE symmetric or public

10 key within the confines of the CryptIC device.
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Name Value Description

CGX_KCR_DEK 0x0002 This key definition is reserved for symmetric keys that are
to be used for traffic or message encryption only.

CGX_KCR_DKEK 0x0008 This key definition is reserved for symmetric keys that are
to be used to cover other symmetric or public keys. The
covered key must be a DEK, not a KEK.

CGX_KCR_KEK 0x0010 This key definition is reserved for public keys and
symmetric keys that are to be used to cover other symmetric
or public keys.

CGX_KCR_UNTRUSTED 0x0100 This constant can be or’ed with any of the three definitions

above to force a newly generated, loaded, negotiated, or
derived symmetric or public key to be known as an
untrusted key. This is important if the application intends
to export a particular key; only untrusted keys can be
exported. Furthermore, the untrusted key must not be
under (i.e. covered by) a trusted parent or it can’t be
exported as well.

Table 1S5 Key Usage Definitions

Symmetric Key Algorithms

The following tables define the symmetric key algorithms and their operating modes. The

constant values referenced in the tables must be used in order to access the CGX Kernel’s symmetric

key algorithms.

Name Value  State Context Description
Length (i.e., the
dynamic IV)

DES

CGX DES A  0x0001

0 bits (0 bytes) Single DES: ECB, CBC. CFB, and OFB

Triple DES

CGX TRIPLE DES A  0x0002

128 bits (16 bytes) _ Triple DES: ECB. CBC. CFB, and OFB

RCS

CGX RC5 A 0x0004

0 bits (0 bytes) Single RC5: ECB, and CBC

HMAC

CGX_HMAC_A  0x0008

0 bits (0 bytes) Only used by the CGX_TRANFORM_KEY

command for IPsec kev transforms.

Table 16 Symmetric Key Algorithm Bits
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Name Value Description
CGX ECB M 0x0001 Electronic CodeBook Mode. No IV
CGX CFB M 0x0002 Cipher FeedBack Mode. IV required
CGX OFB M 0x0004 Output FeedBack Mode. IV required
CGX CBC M 0x0008 Cipher Block Chaining Mode. IV required
CGX_1BIT_FB 0x0010 Feedback bits for both the OFB mode and the
CFB modes above. Defines 1-bit feedback.
CGX 8BIT FB 0x0020 Defines 8-bit feedback.
CGX 64BIT FB 0x0040 Defines 64-bit feedback.

Table 17 Symmetric Key Mode Bits

The symmetric key algorithm bits are supplied in the symmetric key object

(discussed in the memo, CryptIC Software Architecture), the key type field. When

symmetric keys are created or imported into the CryptIC the type of the symmetric

key specified in the key type field of the symmetric key object defines the type of

symmetric key algorithm to use. The symmetric key algorithm bits are not used as part

of the algorithm field of the crypto_cntxt object.

Also, the bits (7 through 9) of the algorithm word, of the algorithm field of the

crypto_cntxt object, is used to contain the special encryption control bits. Currently,

there are two bits used to specify how keys are loaded into the KG during encryption.

The masks are or ’ed into the algorithm and mode constants defined above.
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Name Bit Mask  Description

CGX_AUTOLOAD_C 0x0080 This mask is used to request the CGX Kernel to
perform an auto load key when encrypting. The use
of auto load means that if the key is already loaded
into the KG (i.e., the crypto-block) don’t repeat the
key load for this operation. This is the default
mode.

This mask is used to request that the CGX Kernel
CGX_FORCELOAD_C 0x0100 always loads the key when encrypting,

This mask is used to request that the CGX Kernel
CGX_NOLOAD_C 0x0200 perform no key load when encrypting.

. This mask is used to request that the CGX Kernel
CGX_RESYNC_C 0x0400 re-start the OFB or CFB mode. To restart traffic
synchronization it only has to encrypt the IV before
it can encrypt/decrypt traffic.

Table 18 Symmetric Key Load Definitions

Public Key Algorithms

The following table defines the supported public key algorithms (this includes
5 digital signatures as well) and their operating modes. The constant values referenced

in the table must be used to access the CGX Kernel’s public key algorithms.

Name Value Description
CGX RSA A 0x0001 RSA public key, encryption and signatures.
CGX DSA A 0x0002 DSA public key, signatures.
CGX DH A 0x0003 Diffie-Hellman public key, key exchange.

Table 19 Public Key Algorithm Definitions

One-Way Hash Algorithms

10 The following table defines the supported one way HASH algorithms and their
operating modes. The constant values referenced in the table must be used to access

the CGX Kernel’s one-way HASH algorithms.
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Name Value  Msg, Digest Length Description

CGX MDS A 0x0000 128 bits (16 bytes) Specifies the MD5 one way HASH algorithm.

CGX SHS A 0x0001 160 bits (20 bytes) Specifies NIST’s one way HASH algorithm, SHS-1.

Table 20 One Way HASH Algorithm Definitions
IPsec Symmetric Key Transformation Algorithms

The following table defines the supported IPsec symmetric key transformation
algorithms supported. The constant values referenced in the table must be used to
access the CGX Kernel’s CGX_TRANSFORM_KEY command.

Name Value Description
CGX_XOR_V  0x0001 This operation exclusive-ors a data pattern with
' the symmetric key and then HASHes it.
CGX_PREPEND_V  0x0002 This operation pre-pends the data pattern to the
symmetric key and then HASHes it.
CGX_APPEND_V  0x0004  This operation appends the data pattern to the
symmetric key and then HASHes it.

Table 21 [Psec Symmetric Key Transformation Algorithm Definitions
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COMMAND SPECIFICATION & ARGUMENTS

The following portion of this description defines the command set by specifying

in detail a description of the command, the argument list specification (i.e., the kernel

block and command block configuration), and result codes. When an asterisk is pre-

pended to the command name it implies the command is optional and it may not be

implemented.

General Commands

INIT (Initialize Secure Kernel)

Command Name: CGX_INIT

Command Description:

The Init command is used to initialize the secure Kernel; the Init
command can be used at any time. However, the entire command
interface, volatile key RAM, and volatile key cache registers are reset;
the processor is not reset. The Init command allows the application to
customize the secure Kernel’s PCDBs, the number of Key Cache
Registers (from 15 to 700) and the command interface using the KCS.
In particular the application must present the unlock-data message at

this time to reprogram any PCDBs that it has permission to change.

The command takes, as an input, pointers to unsigned character
buffers. The use of unsigned char is to standardize on a little endian
memory model as the default. Using the Init command, the application
can then change the endian memory model to the memory model it

desires.

There are three programmable areas: Program Control Data
Bits via the pcdb initialization string (includes the signed token),
extending the Key Cache Registers by requesing to lock internal DM,
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and the Kernel Configuration via the kc initialization string. See the
section Software Data Objects for detailed information defining the
PCDB and KCS initialization strings.

Command Interface:
/* initialize the secure kernel */
cgx_init( kernelblock *kb,

unsigned char *pcdb,
unsigned char *kdat,

unsigned char *kstart,
unsigned char *kc)

Arguments:

kb->cb->cmd = CGX_INIT;

/* the PCDB initialization string */

/* set to NULL if no initialization required */

/* the first byte must contain string length in bytes */
kb->cb->argument[0] = (VPTR)pcdb;

/* extended key RAM pointer */

/* set to NULL if no extended KCR required */
kb->cb->argument[1] = (VPTR )kdat;

/* extended key RAM start pointer */

/* set to NULL if no extended KCR required */
kb->cb->argument[2] = (VPTR )kstart;

/* the Kernel Configuration String */

/* set to NULL if no initialization required */

/* the first byte must contain string length in bytes */
kb->cb->argument[3] = (VPTR)kc;

Status:

kb->sb->status = CGX_SUCCESS_S

DEFAULT (Restore Factory Default Settings)

Command Name: CGX_DEFAULT

Command Description:

The Default command is used to undo all of the initialization

processing that occurred via the CGX_INIT command. This command
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forces the secure Kernel to reset all of the settings (i.e., command

interface and PCDBs) back to factory default settings.

The Default command can be used at any time. However, the
entire command interface, volatile key RAM, volatile key cache

registers, and PCDB settings are reset; the processor is not reset.

Command Interface:
/* Restore factory default settings */
cgx_default( kernelblock *kb )

Arguments:
kb->cb->cmd = CGX_DEFAULT;

Status:
kb->sb->status = CGX_SUCCESS_S

RANDOM (Generate Random Numbers)
Command Name: CGX_RANDOM

Command Description:
The Random command is used to obtain random bytes of data.
The random bytes come from the random number generator hardware
device. The application is allowed to request between 1 and 65535

bytes of random data at a time.

Command Interface:
/* Generate a random number */
cgx_random( kernelblock *kb,
VPTR rbuf,
unsigned short rbuf_size )

Arguments:
kb->cb->cmd = CGX_RANDOM,;

/* the number of random bytes, between 1 and 65535 bytes */

kb->cb->argument[0] = (VPTR)rbuf_size;
/* a buffer to hold the requested random numbers */
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kb->cb->argument[1] = (VPTR)rbuf;

Status:
kb->sb->status = CGX_SUCCESS_S, or
5 CGX_HARDWARE_FAILURE /* RNG hardware failure */

See Also: CGX_TEST

GET CHIPINFO (Return CryptIC System Information)
10 Command Name: CGX_GET_CHIPINFO

Command Description:
The Get_Chipinfo command is used to obtain system
information about the secure Kernel. The system information is

returned in a data structure defined as:

15 typedef struct _chipinfo {
WORD16 hw_vsn; /* contains the hardware version number */
WORD16 sw_vsn; /* contains the software version number */
WORD16 kcr_max; /* returns max number of KCRs */
WORDI16 ker_used; /* returns bit-map of active KCRs */

20 WORD16 pcdb[N]; /* contains all of the program control */
/* data bit values */
WORD16 serial_number[10]; /* unique CryptIC ID */
} chipinfo;
25 The application need not use the data structure; however it must

pass a pointer to a buffer of the same size as the chipinfo data structure.
In any case, the returned data reflects the current status of the secure

Kemel’s programmable values and its hardware and software release

numbers.
30
Command Interface:
/* obtain information about the secure Kernel and CryptIC */
cgx_chipinfo( kernelblock *kb,
VPTR cbuf’)
35

Arguments:
kb->cb->cmd = CGX_GET_CHIPINFO;
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/* a buffer to hold the requested chip info, */
/* must allow enough space as defined in data structure above */
/* in fact an instance of the data struct can be used */
kb->cb->argument{1] = (VPTR)cbuf;

Status:
kb->sb->status = CGX_SUCCESS_S

See Also: CGX_INIT

Encryption Commands

UNCOVER KEY (Load And Decrypt A Secret Key)

Command Name: CGX_UNCOVER_KEY

Command Description:

The Uncover Key command allows a generated KEK (ie.
GKEK) or user created key to be decrypted and stored in the key
cache. The generated or internal GKEK can only be uncovered by the
LSV (i.e. KCR 0) and the user keys can be uncovered by a generated or
internal KEK or a user key (i.e. KKEK or KEK), not the LSV. The
Uncover Key operation allow user keys to be uncovered using any of
the supported secret key algorithms (i.e., DES, Triple DES, etc.), in
any of the modes (i.e., ECB, CFB, OFB, and CBC). As for GKEKs,
they can only be uncovered by the LSV in the triple DES CBC mode;
any attempt to bypass this will fail. The operation copies the secret key
from the application’s memory in the covered form (i.e., BLACK) and

decrypts it into the source key cache register, key.

Like the rule for uncovering the GKEK, any key to be
uncovered by a GKEK must also use the triple DES CBC mode. Also,
an IV will be returned in the application supplied IV buffer of the
crypto_cntxt object. Therefore, the basic requirement is that the parent
KEK (i.e. LSV) to GKEKs must be a triple DES key and the GKEK
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itself must be a triple DES key. This implies the use of triple DES in
the CBC mode when these two KEKs are used for uncovering and

covering of keys.

Prior to invoking the encryption command, the application must
setup the crypto_cntxt block. The application is responsible for setting
the mode, masking in one of the special key load options (described
below), setting the appropriate secret key KCR ID, and for populating
the iv buffer. If the key is a traffic/encryption key (i.e., keys that are
not GKEKs), the IV buffer must be populated with the same I'V used by
the cover operation. Therefore, the application must have archived the

IV buffer along with the covered key.

The iv buffer of the crypto_cntxt block must be read- and write-
able; the iv buffer is used to maintain the feedback register for the CBC,
CFB, and OFB modes. In the ECB mode the iv buffer is ignored.
However, in the case of uncovering keys, the IV buffer is not updated
as is done in normal encryption. This is because the original IV may be

needed to uncover the key again later.

The Uncover Key command allows the application to mask in
one of the special configuration and mode control bits defined in section
0, into the algorithm field of the crypto_cntxt block. The control bits
are used by the secure Kemel to determine how to load secret keys
before the actual encryption of the plain text takes place. The control
bits allow the application to request one of these options: auto-load,
force-load, or no-load. Auto-load allows the secure Kernel to check
which key is currently loaded into the KG, if it's the same as the key
specified for the encryption command it is not loaded; otherwise the
key is loaded. Force-load tells the secure Kernel to always load the

key. No-load tells the secure Kernel to not load the key; more than
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likely the application has already loaded the key (maybe via the
CGX LOAD_KG command). By default, auto-load is assumed.

Command Interfaces:
/* single encryption mode for key uncover */
cgx_uncover( kernelblock *kb,
kcr key,
secretkey *black key,
crypto_cntxt *cc)
Arguments:
kb->cb->cmd = CGX_UNCOVER_KEY;
/* uncovered and store in key cache register number, key */
kb->cb->argument{0] = (VPTR)key;
/* the secretkey object holding key to uncover */
kb->cb->argument[1] = (VPTR)black_key;

/* configuration and mode definition, KEK kcr, crypto_cntxt */
kb->cb->argument[2] = (VPTR)cc;

Status:
kb->sb->status = CGX_SUCCESS_S,
CGX_EMPTY_REG_S,
CGX BAD_MODE S, or // GKEK only uses 3DES, CBC
CGX_INVALID REG_S

See Also: CGX_COVER_KEY

GEN KEK (Generate An Internal Key Encryption Key)
Command Name: CGX_GEN_KEK

Command Description:

The Generate KEK command allows the application to generate
an internal key encryption key (i.e. a GKEK) to be used to cover user
secret keys or public keys. The GKEK is generated using the output of
the random number generator. In order to return the GKEK it must be

covered with the LSV, no other secret key is allowed.
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Besides generating a GKEK, this command places a copy of
the key in its RED form in a KCR location and returns a BLACK copy
of the key all at one time; thus it is an intrinsic key function. By
returning a BLACK copy of the GKEK immediately, another
application is prevented from obtaining the GKEK before the
application responsible for its creation does so. Furthermore, this
avoids the potential of duplicate copies of a GKEK; thus strengthening
its trust.

The GKEK is viewed as a trusted KEK by the secure Kernel.
Therefore, it can never be exported from the device in a BLACK or
RED form after it has been created and the initial BLACK copy was

returned to the application.

The newly generated KEK is left in the specified key cache
register, destkey, in the RED form.

The Generate KEK command only generates Triple-DES secret
keys. Once a GKEK is created, the secure Kernel only recognizes the
GKEK as an internal key. Furthermore, the newly generated GKEK
can only be used to cover/uncover application secret keys and public
keys. Moreover, when an uncover operation is invoked to load a
GKEK, the application is not allowed to specify any algorithm; the
secure Kernel assumes triple DES in CBC mode. Also, the application
is not allowed to provide a IV;, the secure Kernel provides it. This

holds true for keys that are covered under a GKEK as well.

Command Interfaces:

/*generate a secret key GKEK */
cgx_gen kek( kernelblock *kb,
ker destkey,
secretkey  *bk)
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Arguments:
kb->cb->cmd = CGX_GEN_KEK;

/* KCR ID number to place newly generated GKEK */
kb->cb->argument{0] = (VPTR)destkey;

/* BLACK secretkey to return the covered GKEK in */
/* The GKEK is covered by the LSV */
kb->cb->argument[1] = (VPTR)bk;

Status:
kb->sb->status = CGX_SUCCESS _S,
CGX_FAIL S,
CGX_INVALID REG_S, or
CGX_HARDWARE FAILURE S /* RNG hardware failure */

See Also: CGX_UNCOVER _KEY

GEN RKEK (Generate a Recovery Key Encryption Key)
Command Name: = CGX_GEN_RKEK

Command Description:

25

30

35

An RKEK is a Diffie-Hellman negotiated, triple DES, trusted
symmetrical key. The RKEK is created by an application, an escrow
agent and IRE safenet trusted services to produce the two parts of a
negotiated key. IRE safenet trusted services delivers to the application
a signed token that contains the chip’s serial number and the public key
necessary to create the negotiated key. The RKEK can only be
generated once the token has been verified.

Besides generating an RKEK, this command places a copy of
the key in its RED form in a KCR location and returns a BLACK copy
of the RKEK covered by the LSV all at one time; thus it is an intrinsic
key function. By returning a BLACK copy of the RKEK immediately,
another application is prevented from obtaining the RKEK before the
application responsible for its creation does so. Furthermore, this
avoids the potential of duplicate copies of a RKEK; thus strengthening

its trust.
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The RKEK is viewed as a trusted KEK by the secure Kernel.
Therefore, it can never be exported from the device in a BLACK or
RED form after it has been created and the initial BLACK copy was
returned to the application.

The newly generated RKEK is left in the specified key cache
register, destkey, in the RED form.

The Generate RKEK command only generates Triple-DES
secret keys. Once an RKEK is created, the secure Kernel only
recognizes the RKEK as an internal key. Furthermore, the newly
generated RKEK can only be used to cover/uncover application secret
keys and public keys. Moreover, when an uncover operation is invoked
to load an RKEK, the application is not allowed to specify any
algorithm; the secure Kernel assumes triple DES in CBC mode. Also,
the application is not allowed to provide a IV;, the secure Kernel
provides it. This holds true for keys that are covered under an RKEK

as well.

Command Interfaces:

/*generate an RKEK */
cgx_gen_rkek(kernelblock *kb,
token no_data *t,
KCR ker
publickey *dhpk
publickey *dhkek
secretkey *rkek)
Arguments:

(kb)->cb->cmd = CGX_GEN_RKEK; \
(kb)->cb->argument[0].addr.dp = (UINT16)((kb)->dp); \
(kb)->cb->argument[0].ptr = (VPTR)(t); \
(kb)->cb->argument[1].ptr = (VPTR)(ker); \
(kb)->cb->argument[2].addr.dp = (UINT16)((kb)->dp); \
(kb)->cb->argument[2].ptr = (VPTR)(dhpk); \
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(kb)->cb->argument[3].addr.dp = (UINT16)((kb)->dp); \
(kb)->cb->argument[3].ptr = (VPTR)(dhkek); \
(kb)->cb->argument{4].addr.dp = (UINT16)((kb)->dp); \
(kb)->cb->argument[4].ptr = (VPTR)(rkek); \

Status:
kb->sb->status = CGX_SUCCESS _S,
CGX_FAILED_RKEK S,
CGX_FAILED_GEN_RKEK S.

See Also: CGX_UNCOVER_KEY and CGX_SAVE_KEY

SAVE KEY (Save a Key Under an RKEK)
Command Name: = CGX_SAVE KEY

Command Description:
The save key operation is a special operation used exclusively
by an
RKEK. The save key operation uncovers a secret key under its

context, then covers it under the RKEK.

Command Interfaces:

/*Save a key under an RKEK*/
cgx_save key( kernelblock *kb,
secretkey *bk_uncover,
crypto_cntxt *bkek,
secretkey *bk_returned,
crypto_cntxt *rkek)
Arguments:

(kb)->cb->cmd = CGX_SAVE_KEY; \
(kb)->cb->argument[0].addr.dp = (UINT16)((kb)->dp); \
(kb)->cb->argument[0].ptr = (VPTR)(bk_uncovered); \
(kb)->cb->argument[1].addr.dp = (UINT16)((kb)->dp); \
(kb)->cb->argument[1].ptr = (VPTR)(bkek); \
(kb)->cb->argument[2].addr.dp = (UINT16)((kb)->dp); \
(kb)->cb->argument[2].ptr = (VPTR)(bk_returned); \
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(kb)->cb->argument[3].addr.dp = (UINT16)((kb)->dp); \
(kb)->cb->argument[3].ptr = (VPTR)(rkek); \

Status:
kb->sb->status = CGX_SUCCESS_S,
CGX_FAILED_SAVE KEY S.

See Also: CGX_UNCOVER_KEY and CGX_GEN_RKEK

GEN KEY (Generate A Secret Key)

Command Name: CGX_GEN_KEY

Command Description:

The Generate Key command allows the application to generate
a user secret key. The secret key is generated using random numbers;
then transformed into the secret key form as directed by the type of
secret key specified (i.e. key_type) in the argument interface. The
generated secret key can only be covered by an internal generated KEK
(ie. a GKEK) or via another user secret key (i.e. KKEK [if the
generated key is an encryption key] or KEK), not the LSV.

Besides generating a secret key, this command places a copy of
the key in its RED form in a KCR location and returns a BLACK copy
of it all at one time; thus it is an ‘intrinsic key’ function. By returning a
BLACK copy of the secret key immediately, another application is
prevented from obtaining the secret key before the application

responsible for its creation does so.

The application must also provide a key usage definition. This
is passed in via the argument ‘use’ and is provided to announce the use

of the newly generated secret key. Currently, the application has three
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options: KKEK (CGX_KCR_KKEK) , KEK (CGX_KCR _KEK) or K
(CGX_KCR K). Defining it as KEK or KKEK directs the secure
Kernel to only recognize this secret key as a KEK. Furthermore, when
defined as a KKEK, the key cannot be used to cover anything other
than data keys (type K). KEKSs can only be used in key management
operations (e.g. CGX UNCOVER _KEY, etc.). Defining it as K
directs the secure Kernel to only recognize it as a session key for traffic

or message encryption operations (e.g. CGX_ENCRYPT, etc.).

A trust level must be given to a newly generated secret key.
The user can force the secret key to be recognized as an untrusted
secret key by or-ing in CGX KCR UNTRUSTED with the ‘use’
argument. This directs the secure Kernel to automatically mark the
secret key as untrusted. This is useful if the application has plans to
eventually export the secret key via the CGX_EXPORT KEY
command. Although, an untrusted secret key covered under a trusted
KEK (i.e. GKEK, LSV, or a trusted KEK or KKEK) can not be
exported; it is a securely protected key of the CryptIC device.

Moreover, if the application does not apply the un-trusted
attribute to the ‘use’ argument, the secure Kernel will determine the
trust level for the generated secret key. If the secret key is covered
under a trusted KEK it will become a trusted key. If the secret key is
covered under an untrusted KEK or KKEK it becomes an untrusted

secret key. In other words, it inherits its parents trust attribute.

The newly generated secret key is left in the specified key cache
register, destkey, in the RED form. A BLACK copy is returned if the
application provides storage for a secretkey object and crypto_cntxt

object. If either of these objects are NULL then no BLACK secret key
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is returned. This is otherwise known as a dangling key. A dangling
key is dynamic (one time or session oriented) because once the power is
lost the secret key is lost as well. Furthermore, the key can not be
exported because it has no covering KEK; this is required as

authentication for exporting a secret key.

If storage for a BLACK secret key is provided then the newly
generated secret key is covered by a KEK or KKEK specified in the
crypto_cntxt object. The KCR location referenced in the crypto_cntxt
object must point to a KCR that contains a KEK or KKEK or the
operation fails. If the referenced KCR contains a KEK or KKEK the

newly generated secret key is covered and returned to the application.

The Generate Key command only allows the generation of keys
between 32bits and 168bits depending on the secret key type and if the
state of the device (i.e. domestic or export). The application can
choose between that range in increments of 8-bit units. Furthermore,
the newly created wuser secret key can be wused as an
encryption/decryption key or as a user key encryption key (i.e. KEK) to

cover other user secret keys.

Command Interfaces:

/*generate a secret key or KEK */

cgx_gen_key( kernelblock  *kb,
ker destkey,
unsigned short key_type,
unsigned short length,
unsigned short use,
secretkey  *bk,
crypto_cntxt *kek cc)

Arguments:
kb->cb->cmd = CGX_GEN_KEY;

/* KCR ID number to place newly generated user secret key */
kb->cb->argument[0] = (VPTR)destkey;
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/* type of secret key to generate, use one of the following:
* CGX_DES_A, and CGX_TRIPLE DES A.
*/
kb->cb->argument[1] = (VPTR)key_type;
/* length of user secret key to generate, 40 to 192 bits */
/* specified in units of bytes, in 8bit units */
kb->cb->argument|2] = (VPTR)length;
/* specify the key usage: CGX_KCR_K, CGX_KCR_KKEK or CGX_KCR_KEK */
kb->cb->argument([3] = (VPTR)use;
/* storage for a BLACK secret key */
kb->cb->argument[4] = (VPTR)bk;
/* the KCR KEK location to cover the RED key into a BLACK key */
kb->cb->argument[5] = (VPTR)kek_cc;

Status:
kb->sb->status = CGX_SUCCESS_S,
CGX_INVALID REG S,
CGX_INVALID KEY_LEN_S, or
CGX_HARDWARE_FAJLURE_S /* RNG hardware failure */

See Also: CGX_EXPORT_KEY, and CGX_UNCOVER_KEY

LOAD KEY (Import A RED User Secret Key)
Command Name: CGX_LOAD _KEY

Command Description:
The Load Key command is used to load a user secret key into a
specified key cache register. The secret key to be imported is in the
RED form, depending on the value of use, the key can be used as either
a KEK or as an encryption key. This key is known as a user key to the
secure Kernel and can never be covered by the LSV, the secure Kernel

does not allow it.

After the secret key is loaded, if the user requested the black
copy of the key (i.e., bk is non-NULL), the key is covered using the key
encryption key specified in kek_cc. This is the only opportunity for the
application to receive the black version of the key; the cover command

no longer exists.
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The secret key is to be loaded by using the secretkey data
structure. The length field of the secretkey structure must be set by the
application to indicate the length of the imported secret key. Salt is not
required to be added to the key, it is in the RED form.

Command Interface:
/* import an application secret key */

cgx_load_key( kernelblock *kb,
ker key,
secretkey *sk,
UINT16 use,
secretkey *bk,
crypto_cntxt *kek_cc)
Arguments:

kb->cb->emd = CGX_LOAD_KEY;

/* key cache register ID to load key into */
kb->cb->argument[0] = (VPTR)key;
/* secretkey data structure pointer for key to be loaded */
kb->cb->argument(1] = (VPTR)sk;
/* ket type to be used for loaded key (e.g. CGX_KEK_K) */
kb->cb->argument[2] = (VPTR)use;
/* pointer to buffer for storing BLACK key (NULL=>ignore) */
kb->cb->argument[3] = (VPTR)bk;

" /* crypto context for the key encryption key */
kb->cb->argument{4] = (VPTR)kek_cc;

Status:
kb->sb->status = CGX_SUCCESS_S,
CGX FAIL S, or
CGX_INVALID_REG_S

See Also: CGX_UNCOVER_KEY

DERIVE KEY (Derive A Secret Key From a Pass Phrase)
Command Name: CGX_DERIVE KEY

Command Description:
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The Derive Key command allows a user secret key to be
created from an application’s pass-phrase. The secret key is derived by
taking the one-way HASH of the application’s pass phrase and using
the message digest for it as the secret key bits; then transformed into
the secret key form as directed by the type of secret key specified (i.e.
key_type) in the argument interface. Furthermore, the derived secret
key can only be covered by an internal generated KEK (i.e. a GKEK) or
via another user secret key (i.e. KEK or KKEK, if the newly generated
key is not a KEK), not the LSV.

The application can choose the HASH algorithm to be used via
the argument, hash alg. Furthermore, the algorithm for choosing
which bits to use is outlined in Microsoft’s CryptoAPI document, this
command is implemented to their specification. Also, the algorithm
only supports key bit lengths between 32 bits and 112 bits when
creating DES or Triple DES keys, 32 bits through 160 bits when
creating HMAC keys, and 32 bits through 128 bits when creating RCS
keys.

Besides deriving a secret key this command places a copy of the
RED form in a KCR location and returns a BLACK copy of it all at one
time; thus an intrinsic key function. By returning a BLACK copy of the
secret key immediately another application is prevented from grabbing
the secret key before the application responsible for its creation does

SO.

The application must also provide a key usage definition. This
is passed in via the argument, use, and is provided to announce the use
of the newly derived secret key. Currently, the application has three
options: KEK (CGX_KCR_KEK), KKEK (CGX_KCR_KKEK) or K
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(CGX_KCR_K). Defining it as KEK directs the secure Kernel to only
recognize this secret key as a KEK. Defining the key as a KKEK
restricts the use of the key to only covering other keys of type K
(CGX_KCR_K). Therefore, these keys can only be used in key
management operations (e.g. CGX_UNCOVER_KEY, etc.). Defining
it as K directs the secure Kernel to only recognize it as a session key for

traffic or message encryption operations (e.g. CGX_ENCRYPT, etc.).

Furthermore, a trust level must be given to a newly derived
secret key. The user can force the secret key to be recognized as an
untrusted secret key by or-ing in CGX_KCR_UNTRUSTED with the
use argument. This directs the secure Kernel to automatically mark the
secret key as untrusted. This is useful if the application has plans to
eventually export the secret key via the CGX_EXPORT KEY
command. Although, an untrusted secret key covered under a trusted
KEK (i.e. GKEK, LSV, or a trusted KEK or KKEK) can not be
exported; it’s a securely protected key of the CryptIC device.

Moreover, if the application does not apply the un-trust
attribute to the use argument the secure Kernel will determine the trust
level for the derived secret key. Unlike the secret keys generated via the
CGX_GEN_KEY command all secret keys derived with this command

are set as untrusted by the secure Kernel.

The newly derived secret key is left in the specified key cache
register, destkey, in the RED form. A BLACK copy is returned if the
application provides storage for a secretkey object and crypto_cntxt
object. If either of these objects are NULL then no BLACK secret key
is returned. This is otherwise known as a dangling key. A dangling key

is dynamic (one time or session oriented) because once the power is
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lost the secret key is as well. Furthermore, the key can not be
exported because it has no covering KEK, this is required as

authentication for exporting a secret key.

If storage for a BLACK secret key is provided then the newly
derived secret key is covered by a KEK specified in the crypto_cntxt
object. The KCR location referenced in the crypto_cntxt object must
point to a KCR that contains a KEK or the operation fails. If the
referenced KCR contains a KEK the newly derived secret key is

covered and returned to the application.

The Derive Key command only allows the generation of keys
between 32-bits and 112-bits depending on the secret key type and if
the state of the device (i.e. domestic or export). The application can
choose between that range in increments of 8bit units. Furthermore, the
newly created user secret key can be used as an encryption/decryption
key or as a user key encryption key (i.e. KEK) to cover other user

secret keys.

Command Interfaces:

/*derive a secret key */

cgx_gen_key( kernelblock  *kb,
unsigned short pswd_pg,
unsigned short *pswd,
unsigned short pswd_len,
unsigned short hash_alg,
ker destkey,
unsigned short key_type,
unsigned short length,
unsigned short use,
secretkey *bk,
crypto_cntxt *kek_cc)

Arguments:
kb->cb->cmd = CGX_DERIVE_KEY:
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/* the application’s pass phrase string */
kb->cb->argument[0] = (VPTR)pswd;
/* the length of the application’s pass phrase string in bytes */
kb->cb->argument([1] = (VPTR)pswd_len;
/* the HASH alg to use: CGX_SHS_A, or CGX MD5_A */
kb->cb->argument[2] = (VPTR)hash_alg;
/* KCR ID number to place newly generated user secret key */
kb->cb->argument{3] = (VPTR)destkey;
I* type of secret key to generate, use one of the following:

* CGX_DES_A, and CGX_TRIPLE DES_A.

*/
kb->cb->argument[4] = (VPTR)key_type;
/* length of user secret key to generate, 40 to 192 bits */
/* specified in units of bytes, in 8bit units */
kb->cb->argument{5] = (VPTR)length;

/* specify the key usage: CGX_KCR K, CGX _KCR_KKEK, or CGX_KCR_KEK */

kb->cb->argument(6] = (VPTR)use;

/* storage for a BLACK secret key */

kb->cb->argument[7] = (VPTR)bk;

/* the KCR KEK location to cover the RED key into a BLACK key */
kb->cb->argument[8] = (VPTR)kek_cc;

/* For the ADI target only, the data page where the pswd resides */
kb->cb->argument[9] = (VPTR)pswd_pg;

kb->sb->status = CGX_SUCCESS_S,
CGX _INVALID_REG S,
CGX_INVALID KEY LEN S, or

CGX_HARDWARE_FAILURE,_S /* RNG hardware failure */

See Also: CGX_EXPORT KEY, and CGX_UNCOVER_KEY

TRANSFORM KEY (Transform A Secret Key Using IPsec)

Command Name: CGX_TRANSFORM_KEY
Command Description:

The Transform Key command allows the application to perform one of
the IPsec secret key transforms on an existing secret key. The transform
command allows the application to create the HMAC, CBC DES, or CBC
Triple DES keys. Furthermore, it can be used to create the IV and replay
counters and beyond that it can be used to create the HMAC inner and outer

pre-computed digests to speed up the AH processing.
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There are several variants of this command. This section describes the
common function that supports them all. The Command Interface subsections
describe macros that invoke the common function to achieve a specific
variation of the command. Users are urged to employ the specific macros to

invoke the command variants.

Any untrusted or trusted secret key, K, can be transformed. At no time
can a trusted or untrusted KEK, KKEK, GKEK, or LSV be used as the root
secret key to be transformed. The result can be returned as a new covered
BLACK secret key or as a clear pre-computation of a secret key. However, in

either case, the root secret key remains intact - it is read-only.

Besides transforming a secret key, this command places a copy of the
key in its RED form (if an HMAC or CBC DES key is to be generated) in a
KCR location and returns a BLACK copy of it all at one time; thus it is an
intrinsic key function. By returning a BLACK copy of the secret key
immediately, another application is prevented from grabbing the secret key

before the application responsible for its creation does so.

In the case of generating another secret key the key usage definition of
the root secret key is inherited. Therefore, the newly generated secret key will
inherit the trust level (i.e. trusted or untrusted) and key usage (i.e. K).
However, the application can change the key type to any valid supported key
(i.e. DES, triple DES, or RCS5) via the argument, ktype. Furthermore, it can

generate any key length it desires via the argument, klen.

The newly transformed secret key is left in the specified key cache
register (kcr), destkey, in the RED form. A BLACK copy is returned if the

application provides storage for a secretkey object, tk. It is covered under the
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root secret key’s KEK which is passed in as the crypto_cntxt object argument,
bkek. If the secretkey object argument, tk, is passed in as a NULL pointer, the
operation will return a message digest via the hash_context object argument,
hc. This returned hash context may be red or black (covered.) If the caller
wishes the returned hash context to be black, the user must specify a crypto
context, hkek, which the command will use to cover the returned hash context,
he. If the user supplies a NULL parameter for hkek, he will be returned in the

red (uncovered.)

In order to support the current IPsec transform, the application must
pass-in the patterns and operation data as arguments. The ‘patterns’ are the
data patterns to be applied (ie. XORed) to a root secret key and then HASHed.
Although the IPsec patterns are currently fixed to a single byte that is repeated
64 times, this command forces the application to pass in the full 64-byte
patterns required to create a transformed secret key. This allows for the

possibility of future changes.

The application must pass in as many 64-byte patterns (i.e. as one large
array) as they will generate key bits or as long as specified by the argument,
klen. If the key to transform is to be a DES key and klen is less then or equal
to 7 bytes, then 64 bytes of pattern are required, if the klen is less than or equal
to 14 bytes then 128 bytes - or two 64 byte patterns - in one array are required,
and if klen is less than or equal to 21 bytes then 192 bytes - or three 64 byte
patterns - in one array are required. If the key to transform is an RC5 key, then

the application is only required to pass-in one 64 byte pattern.

The operation argument, oper, is used to specify the operation which
will ‘combine’ the root secret key and the data patterns. Currently, the

command supports three operations: exclusive-or (ie. CGX_XOR_O), pattern
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append (ie. CGX_APPEND_O), and pattern pre-pend (i.e.
CGX_PREPEND O).

Command Interfaces:
/*transform a root secret key into a DES or HMAC key */

/* Common interface. Caller must select proper combination of parameters to achieve desired
functionality. */
/* This interface is not recommended for user applications; instead user should use one of the
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subsequently described variants */
cgx_transform_key common( kernelblock  *kb,

secretkey *bk,

crypto_cntxt *bkek,

secretkey *tk,

unsigned short ktype,

unsigned short klen,

unsigned short *patterns,

unsigned short oper,

unsigned short halg,

hash_cntxt *he,

crypto_cntxt *hkek);
Arguments:

kb->cb->cmd = CGX_TRANSFORM_KEY;

/* the BLACK root secret key */
kb->cb->argument{0] = (VPTR)bk;
/* the KCR KEK location to uncover the root BLACK key */
kb->cb->argument[1] = (VPTR)bkek;
/* storage for a new BLACK transformed secret key */
kb->cb->argument([2] = (VPTR)tk; /* see text above */
/* KCR ID number to place newly generated transformed secret key */
kb->cb->argument[3] = (VPTR)destkey;
/* type of secret key to generate, use one of the following;
* CGX_RC5_A, CGX_DES_A, and CGX_TRIPLE _DES_A
*/
kb->cb->argument[4] = (VPTR)ktype;
/* length of user secret key to generate, 40 to 168 bits */
/* specified in units of bytes, in 8-bit units (5 - 21) */
kb->cb->argument[5] = (VPTR)klen;
/* transform 64 byte data patterns */
kb->cb->argument[6] = (VPTR)patterns;
/* the data pattern transform operation, XOR, APPEND, PREPEND */
kb->cb->argument[7] = (VPTR)oper;
/* the HASH alg to use: CGX_SHS_A, or CGX_MDS5_A */
kb->cb->argument(8] = (VPTR)hash_alg;
/* the hash_cntxt to return the pre-comp of HMAC key */
kb->cb->argument{9] = (VPTR)khc;
kb->cb->argument[10] = (VPTR)hkek; /* see text above */
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Status:
kb->sb->status = CGX_SUCCESS _S,
CGX_FAIL S, and
CGX_INVALID _REG S

/* This variant is preserved only for backward compatibility. One of the next three variants to be
described is recommended for new development. This variant supplies a NULL hkek parameter to the
common function, thus requesting that any returned hash context (in hc) will be red */

cgx_transform_key( kernelblock *kb,

secretkey *bk,
crypto_cntxt *bkek,
secretkey *tk,
unsigned short ktype,
unsigned short klen,
unsigned short *patterns,
unsigned short oper,
unsigned short halg,
hash_cntxt *he)

This variant is defined as;

cgx_transform_key_common( (kb), (bk), (bkek), (tk), (ktype), (klen),
(patterns), (oper), (hash_alg), (hc), NULL)

/* variant: Transform a root secret key into a pre-computed HMAC hash context returned in the red*/
cgx_transform_precompute_key( kernelblock  *kb,
secretkey *bk,
crypto_cntxt *bkek,
unsigned short final, /* close has context if final == TRUE */
unsigned short  *patterns,
unsigned short oper,
unsigned short hash_alg,
hash_cntxt *hc)

This variant is defined as;

cgx_transform_key common( (kb), (bk), (bkek), NULL, NULL,
(final), (patterns), (oper), (hash_alg), (hc), NULL)
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/* variant: Transform a root secret key into a black key. */
cgx_transform_gen key( kernelblock *kb,
secretkey *bk,
crypto_cntxt *bkek,
secretkey *tk,
unsigned short ktype,
unsigned short klen,
unsigned short *patterns,
unsigned short oper,
unsigned short hash_alg)

This variant is defined as:

cgx_transform_key common( (kb), (bk), (bkek), (tk), (ktype), (klen),
(patterns), (oper), (hash_alg), NULL, NULL)

/* variant: Transform a root secret key into a pre-computed HMAC hash context returned in the black*/
cgx_transform_precomputed_bkey( kernelblock *kb,
secretkey *bk,
crypto_cntxt *bkek,
unsigned short final,
unsigned short *patterns,
unsigned short oper,
unsigned short hash alg,
hash_cntxt  *hc,
crypto_cntxt *hkek);

This variant is defined as:

cgx_transform key common( (kb), (bk), (bkek), NULL, NULL,
(final), (patterns), (oper), (hash_alg), hc, hkek)

See Also: CGX_HASH_ENCRYPT or CGX_HASH_DECRYPT
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EXPORT KEY (Export An IRE Secret Key)

Command Name: CGX_EXPORT_KEY

Command Description:

The Export Key command allows the application to move an
IRE secret key form into an external secret key form. The external
secret form must be covered either with a secret key or public key, this

is specified by the application via the command arguments.

The application must present a BLACK copy of the IRE secret
key to export along with the crypto_cntxt object to reference the KEK
or KKEK to uncover it. Also, the application must provide a buffer
(i.e. ebk) to copy the external secret key into that is converted from the
BLACK IRE secret key along with a crypto_cntxt object referencing a

KEK to cover it or a publickey object to cover it with.

The IRE secret key to export must be an untrusted key, KKEK
or KEK. Furthermore, it must not reside (or covered by) under a
parent KEK that is trusted (i.e. LSV, GKEK, or trusted KEK or
KKEK). Moreover, the secure attributes stored in each of the IRE
BLACK secret keys are removed before the secret key is exported.
These bits are not used or would not be understood in other vendor’s
crypto equipment. Therefore, the main purpose of this command is to
provide some sort of key interoperability between an IRE crypto device

and some other vendor’s crypto equipment (software or hardware

based).

As part of the command the application is allowed to program
salt bits that will be prepended to the secret key bits of the external

secret key. When exporting a secret key under another secret key the
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application has the choice of providing salt bits in multiples of 2 bytes,
requesting the secure Kernel generate salt bits in multiples of 2 bytes, or
not storing any salt bits. However, the total of salt bytes, data bytes,
and the key bytes must be a multiple of 8 bytes. When covering under a
public key it can request salt in multiples of 2 bytes and the total of salt,
data, and secret key only has to be a multiple of 2 bytes and less than

the modulus length; at least make sure its most significant bit is not set.

Also, the command allows the application to program data bits
thé.t will be appended to the secret key bits of the external secret key.
When exporting a secret key under another secret key the application
has the choice of providing data bits in multiples of 2 bytes, requesting
the secure Kernel generate data bits in multiples of 2 bytes, or not
storing any data bits. However, the total of sait bytes, data bytes, and
the key bytes must be a multiple of 8 bytes. When covering under a
public key it can request data in multiples of 2 bytes and the total of
salt, data, and secret key only has to be a multiple of 2 bytes.

The command does not store all keys in multiples of 8 bytes.
For example the HMAC and RCS5 keys may not be exported out in an 8
byte multiple if its size is not of 8 byte multiples. However, DES and
Triple DES keys will always be exported in multiplies of 8 bytes.
Furthermore the secret key is flipped when exported, it is put into big

endian order.

All DES and Triple DES keys follow these storage rules. If the
key is less than or equal to 7 bytes in length then it is exported as 8
bytes, if the key is less than or equal to 14 bytes in length then it is
exported as 16 bytes, and if the key is less than or equal to 21 bytes in
length it is exported as 24 bytes. The expansion in key size is due to
the DES parity bits.
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AllRCS5 keys follow these storage rules. If the key is odd size
in length an extra byte is added to make it a multiple of 2; the extra byte
is a 0. Otherwise, the RCS5 key is exported out as is, its programmed
length. The zero is appended to key so that the O can be used by
Microsoft CAPI CSPs as a key delimiter.

All HMAC keys follow these storage rules. If the key is odd
size in length an extra byte is added to make it a multiple of 2; the extra
byte is a 0. Otherwise, the HMAC key is exported out as is, its
programmed length. The zero is appended to key so that the O can be
used by Microsoft CAPI CSPs as a key delimiter.

If the argument, salt_len, is set to O the application requests that
no salt bits be prepended. If the argument, salt, is NULL it requests
that the secure Kernel generate salt_len bytes; otherwise the application

is providing salt_len bytes of salt.

If the argument, data len, is set to O the application requests
that no data bits be prepended. If the argument, data, is NULL it
requests that the secure Kernel generate data_len bytes; otherwise the

application is providing data_len bytes of data.

If the publickey argument, pk, is NULL then the secret key to
export is covered with the KEK, ekek_cc. If pk is not NULL then the
secret key to export is covered with the public key pk object.

Command Interfaces:

/*export an IRE secret key under another untrusted secret key */

cgx_export_key( kernelblock *kb,
secretkey *bk,
crypto_cntxt *bkek_cc,
unsigned short *ebk,
crypto_cntxt *ekek cc,

unsigned short *salt,
unsigned short salt_len,
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unsigned short *data,
unsigned short data_len)

Arguments:

kb->cb->cmd = CGX_EXPORT_KEY;,

/* the BLACK IRE secret key to export */

kb->cb->argument[0] = (VPTR)bk;

/* the KCR KEK location to uncover the BLACK IRE secret key */
kb->cb->argument[1] = (VPTR)bkek_cc;

/* the buffer to house the external secret key */
kb->cb->argument(2] = (VPTR)ebk;

/* the KCR KEK location to cover the RED exported IRE secret key */
kb->cb->argument[3] = (VPTR)ekek_cc;

[*salt bits to prepend to key bits */

kb->cb->argument[4] = (VPTR)salt;

/* the number of salt bits to prepend to the key bits */

/* this must be in units of 2bytes */

kb->cb->argument{5] = (VPTR)salt_len;

/*data bits to prepend to key bits */

kb->cb->argument{6] = (VPTR)data;

/* the number of data bits to prepend to the key bits */

/* this must be in units of 2bytes */

kb->cb->argument[7] = (VPTR)data_len;

/* pubkey key to cover with */

kb->cb->argument{8} = (VPTR)NULL;

/*export an IRE secret key under a public key */
cgx_export_key( kernelblock *kb,

secretkey *bk,

crypto_cntxt *bkek_cc,
unsigned short *ebk,
publickey  *pk,
unsigned short *salt,
unsigned short salt_len,
unsigned short *data,
unsigned short data_len)

Arguments:

kb->cb->cmd = CGX_EXPORT KEY;

/* the BLACK IRE secret key to export */

kb->cb->argument[0] = (VPTR)bk;

/* the KCR KEK location to uncover the BLACK IRE secret key */
kb->cb->argument[1] = (VPTR)bkek_cc;

/* the buffer to house the external secret key */

kb->cb->argument{2] = (VPTR)ebk;

/* the KCR KEK location to cover the RED exported IRE secret key */
kb->cb->argument[3] = (VPTR)NULL,;
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/*salt bits to prepend to key bits */
kb->cb->argument[4] = (VPTR)salt;
/* the number of salt bits to prepend to the key bits */
/* this must be in units of 2bytes */
kb->cb->argument(5] = (VPTR)salt_len;
/*data bits to prepend to key bits */
kb->cb->argument{6] = (VPTR)data;
/* the number of data bits to prepend to the key bits */
/* this must be in units of 2bytes */
kb->cb->argument[7] = (VPTR)data_len;
/* pubkey key to cover with */
kb->cb->argument{8] = (VPTR)pk;

Status:
kb->sb->status = CGX_SUCCESS_S, or
CGX_INVALID_REG_S

See Also: CGX_GEN_KEY, CGX_DERIVE_KEY, CGX_LOAD KEY, and
CGX_IMPORT_KEY

IMPORT KEY (Import An IRE Secret Key)
Command Name: CGX_IMPORT_KEY

Command Description:
The Import Key command allows the application to load an

IRE secret key form in external secret key form into the secure kernel.

This command allows the application to import a key into the
specified key cache register. The application must present the external
form of the key to be imported, ibk, and specify the length of the salit
prepended to the key through the salt_len parameter. The salt length is
assumed to be a multiple of 2 bytes, and can be O bytes. The
crypto_cntxt, ikek_cc, will be used to decrypt the salt (if present), key
and any additional padding.

The application controls the algorithm type, key_type, and
length of the key being imported. The application also specifies how
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the key is to be used, e.g. encryption key or key encryption key.
However, the kernel makes no assumptions about the security of the
key being imported. Therefore, upon completion of the command, the

newly imported key is treated as an untrusted key.

The bk parameter can be used to request a covered version of
the key once it has been successfully imported. If bk is non-NULL, and
the import succeeds, the key will be covered under the crypto_cntxt

pointed to by kek_cc and stored at the location specified by bk.

Command Interfaces:

/*import an IRE secret key */

cgx_import_key( kernelblock *kb,
secretkey *ibk,
UINT16 salt_len,
crypto_cntxt *ikek cc,
ker dest_ker,
UINT16 key_type,
UINT16 length,
UINT16 use,
secretkey *bk,
crypto_cntxt *kek cc)

Arguments:
Kb->cb->cmd = CGX_IMPORT KEY;

/* the secret key blob to import */

kb->cb->argument[0] = (VPTR)ibk;
/* the length of the salt before the key material */
kb->cb->argument[1] = (VPTR)salt_len;

/* the KCR KEK location used to uncover the imported secret key */
kb->cb->argument(2] = (VPTR)ikek_cc;

/* the destination KCR location for storing the imported key */
kb->cb->argument(3] = (VPTR)dest_kcr;

/* the algorithm type of key being imported */
kb->cb->argument[4] = (VPTR)key_type;

/* the KCR KEK location to cover the imported IRE secret key */
kb->cb->argument[5] = (VPTR)length;

/* how the imported key will be used in the key hierarchy

*(e.g. CGX_KCR_K)

*/

kb->cb->argument[6] = (VPTR)use;

/* location to store resulting covered secretkey (NULL=>ignore) */
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kb->cb->argument[7] = (VPTR)bk;
/* the KCR KEK location to cover the imported IRE secret key */
kb->cb->argument{8] = (VPTR)kek_cc;

Status:
kb->sb->status = CGX_SUCCESS_S,
CGX_INVALID _REG_S,
CGX EMPTY_REG_S,
CGX_INVALID_LEN_S, or
CGX_FAIL_S

See Also: CGX_GEN_KEY, CGX_DERIVE_KEY, CGX_LOAD _KEY, and
CGX_EXPORT KEY

DESTROY KEY (Remove Secret Key From KCR)
Command Name: CGX_DESTROY_KEY

Command Description:
The Destroy Key command is used to remove a secret key from

one the specified key cache register.

Access to the secret keys is via key cache register IDs. The key
cache register IDs are numbered from O to N, there are N secret key
regiéters available to the application. Key cache register O is reserved
for the LSV and, therefore, cannot be destroyed. Therefore, the key

cache register available to the application range are from 1 to N.

If the KCR is already empty, the command will repoft back as
though it successfully removed the secret key from the KCR.
Command Interface:

/* destroy a secret key in either the FLASH or volatile KCR areas */
cgx_destrov_kev( kernelblock *kb, ker key )

Arguments:
kb->cb->cmd = CGX_DESTROY_KEY;,
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/* the KCR ID to remove */
kb->cb->argument[0] = (VPTR) key;

Status:
kb->sb->status = CGX_SUCCESS_S, or
CGX_INVALID REG_S /* KCR invalid id */

See Also: CGX_LOAD_KEY

LOAD KG (Load Secret Key Into HW/SW KG)
Command Name: CGX LOAD KG

Command Description:

The Load KG command is used to load DES/Triple DES secret
keys into the hardware key generator and RCS keys into the RCS
software key generator. The typical use of this command is to fully
optimize secret key traffic. For example, loading the KG once and
using the static kernel block approach will speed the encryption process

because of fewer secret key context switches.

Prior to invoking the Load KG command, it is preferred if the
application sets up the crypto_cntxt block. The application is
responsible for setting the mode, setting the appropriate secret key
KCR ID, and for priming the iv buffer with an initial random number (if
this is the first time the crypto_cntxt is loaded).  After this the
application need not modify the crypto_cntxt block unless something
changes (i.e., secret key KCR ID location, and/or the iv to cause a

resynchronization).

The iv buffer of the crypto_cntxt block must be read- and write-
able; the iv buffer is used to maintain the feed-back register for the

CBC, CFB, and OFB modes. In the ECB mode the iv buffer is ignored.
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The secret key to be loaded as referenced via the crypto_cntxt

must have the key usage setting of CGX_KCR_K. This command only

_ allows traffic or data keys to be loaded or it will fail. The key usage
information is programmed by the application at the time a secret key
has been loaded, generated, derived, or negotiated and is maintained

securely by the secure Kernel. This means an LSV, GKEK, or KEK

type of secret key can not be loaded by this command.

If a KKEK (i.e. DES or Triple DES only) is loaded it is loaded
into the special hardware KKEK register to be used to externally

uncover application BLACK secret keys.

Command Interface:

/* load a single secret key into the SW/HW KG */
cgx_load_kg( kernelblock  *kb,

crypto_cntxt *cb,

unsigned short direction)

/* load multiple secret keys for triple DES into the HW KG */

_Arguments:
kb->cb->cmd =CGX_LOAD KG;

/* pointer to the crypto_cntxt to load into the HW/SW KG */
kb->cb->argument[0] = (VPTR)cb;

/I direction is used to specify the use of the KG,

/1 encrypt or decrypt. To specify the encrypt operation direction
// must be set to non-0, for decrypt then direction must be set
//t0 0

kb->cb->argument{1] = (VPTR)direction;

Status:
kb->sb->status = CGX_SUCCESS S,
CGX_WEAK KEY S,
CGX _EMPTY REG S, or
CGX _INVALID REG S
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See Also: CGX_ENCRYPT, CGX_DECRYPT, CGX_HASH_ENCRYPT,

CGX HASH_DECRYPT, or CGX_STREAM

ENCRYPT (Encrypt Data)

Command Name: CGX_ENCRYPT

Command Description:

The Encrypt command is used to perform symmetrical
encryption. The encrypt operation supports many secret key algorithms
(i.e., DES, Triple DES, and RCS5) in any of the modes (i.e., ECB, CFB,
OFB, and CBC).

The Encrypt command only supports block encryption, a block
must be 64 bits long. The Encrypt command can handle as many
blocks as the application chooses to encrypt at one time. Furthermore,
an encrypted data session can extend beyond one call to the encryption
command; this is accomplished via a crypto_cntxt block (described
below).

The data buffers, datain (plain-text) and dataout (cipher-text),
can share the same address. Moreover, the chip currently only supports
cipher-block symmetrical algorithms but the encrypt interface provides
for the addition of a stream interface. It does this by defining datain
and dataout as unsigned char pointers and the data length of datain to
be in bytes. Allowing the byte count makes the interface portable for
the later addition of stream based algorithms. However, if the
algorithm to be used in the encrypt operation is cipher-block based the
byte count must be evenly divisible by 8, any fragments are ignored by

the operation.
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Prior to invoking the encryption command the application must
setup the crypto_cntxt block. The application is responsible for setting
the mode, masking in one of the special key load options (described
below), setting the appropriate secret key KCR ID, and for priming the
iv buffer with an initial random number (only for the first call). After
this the application need not modify the crypto_cntxt block unless
something changes (i.e., secret key KCR ID location, algorithm, and/or

the iv to cause a resynchronization).

The KCR key specified in the crypto_cntxt contains the
algorithm to use as part of the secret key object stored in the specified
KCR location. This secret key type specifies the secret key algorithm

to use.

The iv buffer of the crypto_cntxt block must be read and
writeable; the iv buffer is used to maintain the feed-back register for the
CBC, CFB, and OFB modes. In the ECB mode the iv buffer is ignored.

- The Encrypt command allows the application to mask in one of
the special algorithm and mode control bits defined in section 0, into
the algorithm field of the crypto_cntxt block. The control bits are used
by the secure Kernel to determine how to load secret keys before the
actual encryption of the plain-text takes place. The control bits allow
the application to request one of these options: auto-load, force-load,
or no-load. Auto-load allows the secure Kernel to check which key is
currently loaded into the KG, if it's the same as the key specified for the
encryption command it is not loaded; otherwise the key is loaded.
Force-load tells the secure Kernel to always load the key. No-load tells

the secure Kernel to not load the key; more than likely the application
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has already loaded the key (maybe via the CGX_LOAD KG

command). By default, auto-load is assumed.

The secret key to be loaded as referenced via the crypto_cntxt
must have the key usage setting of CGX_KCR_K. This command only
allows traffic or data keys to be loaded or it will fail. The key usage
information is programmed by the application at the time a secret key
has been loaded, generated, derived, or negotiated and is maintained
securely by the secure Kernel. This means an LSV, GKEK, or KEK

type of secret key can not be loaded by this command.

When using the CFB or OFB modes the application can signal
the start of secure traffic or resynchronize it by  setting the
CGX_RESYNC_C control bit. This will signal the CGX_ENCRYPT
command to first encrypt the application’s IV before encrypting the
input data. This command does not clear the bit so upon return the
application should clear the CGX_RESYNC_C bit before invoking the

command again or the IV resynchronization will occur again.

Command Interface:

cgx_encrypt( kernelblock  *kb,
unsigned short datain_page,
unsigned char *datain,
unsigned short dataout_page,
unsigned char *dataout,
unsigned byte_cnt,
crypto_cntxt *cb)

Arguments:
kb->cb->cmd = CGX_ENCRYPT;
/* mode selection,
* mask one of the special algorithm
* control bits with the mode here via the crypto_cntxt block
*/

kb->cb->argument{0] = (VPTR)cb;
/* data block(s) to be encrypted data page, only needed */
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/* for the ADI 2181 platform, all other platform ignore it */
kb->cb->argument(1] = (VPTR)datain_page;
/* data block(s) to be encrypted */

kb->cb->argument{2] = (VPTR)datain;

/* specified in units of bytes, in the current case all the */

/* algorithms use 64 bit blocks so the value of byte_cnt must */
/* be evenly divisible by 8, any fragments are ignored */
kb->cb->argument(3] = (VPTR)byte_cnt;

/* data block(s) to be encrypted data page, only needed */

/* for the ADI 2181 platform, all other platform ignore it */
kb->cb->argument(4] = (VPTR)dataout_page;

/* output the encrypted data blocks */

kb->cb->argument[5] = (VPTR)dataout;

Status:
kb->sb->status = CGX_SUCCESS S,
CGX_WEAK KEY §,
CGX_EMPTY _REG S, or
CGX_INVALID REG S

See Also: CGX_LOAD_KG and CGX_DECRYPT
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DECRYPT (Decrypt Data)

Command Name: CGX_DECRYPT

Command Description:

The Decrypt command is used to perform symmetrical
decryption. The decrypt operation supports many secret key algorithms
(i.e., DES, Triple DES, and RCS5) in any of the modes (i.e., ECB, CFB,
OFB, and CBC).

The Decrypt command only supports block decryption, a block
must be 64 bits long. The Decrypt command can handle as many
blocks as the application chooses to decrypt at one time. Furthermore, a
decrypted data session can extend beyond one call to the decryption
command; this is accomplished via a crypto_cntxt block (described

below).

The data buffers, datain (plain-text) and dataout (cipher-text),
can share the same address. Moreover, the chip currently only supports
cipher-block symmetrical algorithms but the decrypt interface provides
for the addition of a stream interface. It does this by defining datain
and dataout as unsigned char pointers and the data length of datain to
be in bytes. Allowing the byte count makes the interface portable for
the later addition of stream based algorithms. However, if the
algorithm to be used in the decrypt operation is cipher-block based the
byte count must be evenly divisible by 8, any fragments are ignored by

the operation.

Prior to invoking the Decrypt command the application must
setup the crypto_cntxt block. The application is responsible for setting .
the mode, masking in one of the special key load options (described

below), setting the appropriate secret key KCR ID, and for priming the
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iv buffer with an initial random number (only for the first call). After
this the application need not modify the crypto_cntxt block unless
something changes (i.e., secret key KCR ID location, algorithm, and/or

the v to cause a resynchronization).

The KCR key specified in the crypto_cntxt contains the algorithm to
use as part of the secret key object stored in the specified KCR
location. This secret key type specifies the secret key algorithm to use.

The iv buffer of the crypto_cntxt block must be read and
writeable; the iv buffer is used to maintain the feed-back register for the

CBC, CFB, and OFB modes. In the ECB mode the iv buffer is ignored.

The Decrypt command allows the application to mask in one of
the special algorithm and mode control bits defined in section 0, into
the algorithm field of the crypto_cntxt block. The control bits are used
by the secure Kernel to determine how to load secret keys before the
actual encryption of the plain-text takes place. The control bits allow
the application to request one of these options: auto-load, force-load,
or no-load. Auto-load allows the secure Kernel to check which key is
currently loaded into the KG, if its the same as the key specified for the
encryption command it is not loaded; otherwise the key is loaded.
Force-load tells the secure Kernel to always load the key. No-load tells
the secure Kernel to not load the key; more than likely the application
has already loaded the key (maybe via the CGX LOAD KG

command). By default, auto-load is assumed.

The secret key to be loaded as referenced via the crypto_cntxt
must have the key usage setting of CGX_KCR_K. This command only
allows traffic or data keys to be loaded or it will fail. The key usage

information is programmed by the application at the time a secret key
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has been loaded, generated, derived, or negotiated and is maintained
securely by the secure Kernel. This means an LSV, GKEK, or KEK

type of secret key can not be loaded by this command.

When using the CFB or OFB modes the application can signal
the start of secure traffic or resynchronize it by setting the
CGX_RESYNC_C control bit. This will signal the CGX_DECRYPT
command to first encrypt the application’s IV before decrypting the
input data. This command does not clear the bit so upon return the
application should clear the CGX_RESYNC_C bit before invoking the

command again or the IV resynchronization will occur again.

Command Interface:
cgx_decrypt( kernelblock  *kb,

unsigned short datain_page,
unsigned short *datain,
unsigned short dataout_page,
unsigned short *dataout,
unsigned byte cnt,
crypto_cntxt *cb)

Arguments:
kb->cb->cmd = CGX _DECRYPT;
/* mode selection,
* mask one of the special algorithm
* control bits with the mode here via the crypto_cntxt block
*/

kb->cb->argument[0] = (VPTR)cb;

/* data block(s) to be decrypted data page, only needed */

/* for the ADI 2181 platform, all other platform ignore it */
kb->cb->argument[1] = (VPTR)datain_page;

/* data block(s) to be decrypted */

kb->cb->argument{2] = (VPTR)datain;

/* specified in units of blocks, in the current case all the */

/* algorithms use 64 bit blocks so the value of byte_cnt must */
/* be evenly divisible by 8, any fragments are ignored */

kb->cb->argument[3] = (VPTR)byte_len;

/* data block(s) to be decrypted data page, only needed */
/* for the ADI 2181 platform, all other platform ignore it */
kb->cb->argument{4] = (VPTR)dataout_page;
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/* output the decrypted data blocks */
kb->cb->argument{5] = (VPTR)dataout;

Status:

kb->sb->status = CGX_SUCCESS_S,
CGX_WEAK_KEY S,
CGX_EMPTY REG S, or
CGX_INVALID REG S

See Also: CGX_LOAD_KG and CGX_ENCRYPT

Public Key Commands

GEN PUBKEY (Generate a Public Keyset)

Command Name: CGX_GEN_PUBKEY

Command Description:

This operation will generate an entire public keyset comprised
of the modulus, private, and public blocks. This operation can create
public keysets for several public key algorithms. It currently supports:
Diffie-Hellman, RSA, and DSA public keys. The returned keyset will

consist of data stored in little endian order.

The newly generated public keyset is returned to the application
via the publickey parameter. The modulus and public key are returned
in the RED form while the private key is returned in the BLACK form
covered by the specified secret key. The crypto_cntxt parameter is
used for this purpose. The application can invoke other public key
commands operating on the newly created public key by passing it as a

parameter to the desired operation.

All public keysets are returned to the application in a packed

form. Packed keys are defined as key structures in which the least
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significant byte of the next public key structure member abuts the most
significant byte of the current member. In this way, fragmentation
within data structures is minimized and portability of data is enhanced.

Depending on the type of key being generated, some specific key
generation parameters may be required. The sixth element of the kernel

block’s parameter area is used for this purpose:

e For DSA keys, the application may specify a seed key to be used for
prime number generation. The seed key consists of a 16-bit counter
and a 160-bit seed value. If no seed is specified (i.e., NULL is
passed as this parameter), then the kernel will generate its own seed
key. If a seed key is presented, the operation may fail if it cannot
generate a prime from the seed. If so, the application should
continue re-seeding the seed value and retrying until the operation

succeeds. Upon success, the kernel will set the 16-bit counter.

This command is responsible for generating the random numbers
and prime numbers to create the vectors for the public keyset.
Furthermore, the command is responsible for executing the primality
test specified by Rabin-Miller to accept/reject prime numbers. In all
cases, the application is responsible for specifying the number of Rabin-
Miller tests to perform. This allows the application to trade the
strength of the generated prime numbers against the amount of time

required to generate the primes.

The method parameter is a bit-mask controlling: 1) the type of
prime numbers to generate, either weak or strong, and 2) how to search
for prime numbers, either randomly (i.e. choosing a new random
number for each prime number candidate) or sequentially from a
random base (i.e. choose a random base and continue sequentially for -

each prime number candidate).
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This command can be preempted by any command with the

exception of the other public key commands.

Command Interface:
/* generate a Diffie

-Hellman Public Keyset */

cgx_gen dh_pubkey(kernelblock  *kb,

/* generate a RSA

unsigned short modulus_len,
unsigned short tests,
unsigned short method,
publickey *pk,
crypto_cntxt *cc)

Public Keyset */

cgx_gen_rsa_pubkey(kernelblock  *kb,

/* generate a DSA

unsigned short modulus_len,
unsigned short base,
unsigned short tests,
unsigned short method,
publickey  *pk,
crypto_cntxt  *cc)

Public Keyset */

cgx_gen_dsa_pubkey(kernelblock  *kb,

Arguments:
kb->cb->cmd

unsigned short modulus_len,
unsigned short tests,
unsigned short method,
seedkey *sk,

publickey  *pk,
crypto_cntxt  *cc)

= CGX_GEN_PUBKEY;

cgx_gen_dh pubkey(k, modulus_len, tests, method, pk, cc)
/* a pointer to the public key to work with */
kb->cb->argument[0] = (VPTR)pk;
/* a pointer to the public key’s crypto_cntxt (for private

* portion)
*/

kb->cb->argument{1] = (VPTR)cc;

/* specify the public keyset to generate */

kb->cb->argument[2] = (VPTR)CGX_DH_A;

/* the length of the modulus key to generate, between 512 and
* 2048 bits in increments of 64 bits, specify in units of bits

*/
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kb->cb->argument[3] = (VPTR) modulus_len;
/* the number of Rabin-Miller Primality Tests to perform */
kb->cb->argument[4] = (VPTR)tests;
/* the methods for generating prime numbers */
kb->cb->argument[5] = (VPTR)method;

cgx_gen_rsa_pubkey(k, modulus_len, base, tests, method, pk, cc)
/* a pointer to the public key to work with */
kb->cb->argument{0] = (VPTR)pk;
/* a pointer to the public key’s crypto_cntxt (for private
* portion)
*/
kb->cb->argument[1] = (VPTR)cc;
/* specify the public keyset to generate */
kb->cb->argument{2] = (VPTR)CGX _RSA M;
/* the length of the modulus key to generate, between 512 and
* 2048 bits in increments of 64 bits, specify in units of bits
*/
kb->cb->argument{3] = (VPTR) modulus_len;
/* the number of Rabin-Miller Primality Tests to perform */
kb->cb->argument(4] = (VPTR)tests;
/* the methods for generating prime numbers */
kb->cb->argument[5] = (VPTR)method;
/* the sixth parameter holds the starting point for the public
* exponent search.
*/
kb->cb->argument{6] = (VPTR) base;

cgx_gen_dsa_pubkey(k, modulus_len, tests, method, sk, pk, cc)

/* a pointer to the public key to work with */
kb->cb->argument{0] = (VPTR)pk;
/* a pointer to the public key’s crypto_cntxt (for private
* portion)
*/
kb->cb->argument[1] = (VPTR)c;
/* specify the public keyset to generate */
kb->cb->argument[2] = (VPTR)CGX_DSA_M:
/* the length of the moduius key to generate, between 512 and
* 2048 bits in increments of 64 bits, specify in units of bits
*/
kb->cb->argument{3] = (VPTR) modulus_len;
/* the number of Rabin-Miller Primality Tests to perform */
kb->cb->argument{4] = (VPTR)tests;
/* the methods for generating prime numbers */
kb->cb->argument(5] = (VPTR)method;
/* a pointer to the seed key */
kb->cb->argument[6] = (VPTR) NULL;

Status:
kb->sb->status = CGX_SUCCESS_S,
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CGX_BAD_MODE_S, /*invalid type requested */
CGX_INVALID_LEN_S, or /* invalid modulus or private
* length used
*/
CGX_FAIL_S /* failure during specific key
* generation operation
*/

See Also: CGX_GEN_NEWPUBKEY, CGX_PUBKEY ENCRYPT,
CGX_PUBKEY DECRYPT

GEN NEWPUBKEY (Generate Part of A Public Keyset)
Command Name: CGX_GEN _NEWPUBKEY

Command Description:
The Generate New public key operation is used to generate new
public and private blocks for a Diffie-Hellman or DSA public keyset.
This command is only valid for Diffie-Hellman or DSA public keysets.

The command allows the flexibility to import a modulus block
from the application and use it to generate the new private and public
blocks. Furthermore, the application has control over which parts to
generate and return via the two control constants CGX_X V (i.e. the
private part) and CGX_Y _V (i.e. the public part). Using combinations
of these control masks allows the application with a flexible key
generation interface. The following uses of the masks are permissible:

e CGX XV

generates and returns a new private part, no public part
is returned.

e CGX YV
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generates and returns a new public part, no public part
is returned. A private member must be passed in to
create the new public part.

e CGX X V|CGX Y.V
generates and returns a new private/public part, both
parts are returned.

Once generated, the public key is returned to the application for
use with subsequent public key commands. The modulus and public
portions of the key are returned in the RED while the private portion of
the key is returned in the BLACK, reflecting the sensitivity of the
private data. As with all public key commands, this operation will
generate key components which are stored in little endian order and are

stored “packed”.

For Diffie-Hellman keys, this operation provides the application
with the ability to substitute its own value for the generator, eg. When a

Diffie-Hellman key is generated, the value 2 is used for the generator.

Typically, this command is used to generate new public and
private keys reusing the publicly shared modulus vectors so that a new
secret keys can be derived. For Diffie-Hellman keys, the application
can follow this command with the CGX_GEN_NEGKEY to generate

the derived secret key from the receiver’s public key.
For DSA keys, this operation can be followed by the

CGX_SIGN and CGX_VERIFY operations using the newly generated
DSA keyset.
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This command can be preempted by any command which is not

a public key command.

Command Interface:
/* modify the public and private vectors of a Diffie-Hellman or DSA Public Keyset */
cgx_gen newpubkey(kemelblock  *kb,

publickey *modulus,
crypto_cntxt *cc,
unsigned short key gen)

Arguments:

Status:

kb->cb->cmd = CGX_GEN_NEWPUBKEY;

/* modulus must point to either a Diffie-Heliman or DSA keyset. */
/* the kernel will load the modulus portion of the key and use */

/* it to create the new private and public portions of the ~ */

/* keyset. For Diffie-Hellman keys, the length member of the */
/* private portion of the key will be used when generating the */

/* private portion of the key. */
kb->cb->argument[0] = (VPTR) modulus;

/* the crypto_cntxt to use when covering the newly generated */
/* private portion of the keyset. */

kb->cb->argument{1] = (VPTR) cc;

I* specifies which key parts to return: CGX_X_V and/or CGX_Y_V ¥/
kb->cb->argument{2] = (VPTR) key_gen,

kb->sb->status = CGX_SUCCESS S,
CGX _BAD _KEYSET S, /* keyset contains NULL data */
CGX _INVALID LEN_S, /* invalid mod/priv len used */
CGX _FAIL _S,or /* invalid keyset type (RSA) or
* error during key generation */
CGX_BAD_MODE_S, /* unrecognized keyset type */

See Also: CGX_GEN_PUBKEY, CGX_GEN_NEGKEY, CGX_SIGN, and
CGX_VERIFY

GEN NEGKEY (Generate the DH Derived Secret Key)

Command Name: CGX_GEN_NEGKEY

GEN NEGKEY_GXY



10

15

20

25

WO 99/14881

PCT/US98/19316

(Cover and return the DH Derived Secret Key, (g°x)"y)

Command Name: CGX_GEN_NEGKEY GXY

Command Descriptions:

These operations will complete the Diffie-Hellman exchange by
deriving the shared secret key from the receiver’s public key. The
CryptIC supports dynamically negotiated keys as specified in the X9.42
Standard. Currently, the MQV 1 and 2 protocols are not supported.
This command is only used for Diffie-Hellman public keysets.

To calculate the derived secret key the application must import
the receiver’s public key vector using the publickey definition. For the
received public key, the application only needs to populate the public
key field and algorithm type of the publickey. For the local private key,
both the modulus and private keys are required. Because the private
portion of the locally stored key is used, the crypto_cntxt which was
used to cover the key must be presented as a parameter also. The
secure kernel uses the imported public key to derive g™ .

The commands CGX_GEN_NEGKEY and
CGX_GEN_NEGKEY_GXY differ in what they do with the derived
Diffie-Hellman shared secret key, g* .

The command CGX_GEN _NEGKEY truncates the shared
secret key into a secret key of the desired length. The imported public
key is discarded after the command completes. If for some reason the
application needs to regenerate the derived secret key, it must reload
the other parties’ public key.

The application calling command CGX_GEN_NEGKEY must

provide a destination key cache register to receive the derived secret
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key and a destination black secret key and a KEKcc (a crypto context.)
Furthermore, the application must specify the size of the derived secret
key. The size can be specified as: 32-168 bits in length, specified in
units of bytes (8 bits). The secret key will be created from the least
significant bits of the shared secret. By definition, secret keys created
via this command are untrusted keys. The secret key can be either a
key encryption key (KEK or KKEK) or a data encryption key (K). The
KEKcc designates a kcr holding an encryption key and also supplies an
initialization vector, which, using the kcr, is used to cover the derived
private key. The covered (black) key is then returned to the calling
application via the argument supplied.

The command CGX _GEN_NEGKEY GXY returns a covered
(black) version of the shared secret key. The application calling
command CGX_GEN_NEGKEY_GXY must provide a destination
public key and a KEKcc (a crypto context.) The KEKcc must
designate a key cache register ID (kcr) to cover the shared key. The
KEKcc supplies the initialization vector, which, using the kcr, is used to
cover the shared secret key, g . The covered key is then returned to
the calling application via the argument supplied. Only the privatekey
member of the destination public key is populated; the calling
application must ensure that the privatekey member of the destination
public key has sufficient memory to receive the covered private key,
viz., local public key’s modulus size plus 8 bytes. The returned covered
key may be wused subsequently as input to the command
CGX_PRF_GXY or other CGX commands which facilitate IPSec
operations.

Both commands can be preempted by any command which is

not a public key command.
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Command Interface:
/* derive a secret key using the Diffie-Hellman algorithm and public keyset */
cgx_negkey(kernelblock  *kb,

publickey *localpk,
crypto_cntxt *lkek cc,
publickey *remotepk,

ker destker,
UINT16 type,
UINT16 len,
UINT16 use,

secretkey *bk,
crypto_cntxt  *bkek_cc)

Arguments:

Status:

kb->cb->cmd = CGX_GEN_NEGKEY;

/* a pointer to the publickey used to house the local public */

/* key. The modulus and private key ficlds are used to derive */
/* the shared secret. */

kb->cb->argument[0] = (VPTR)localpk;

/* a pointer to the crypto_cntxt which will be used to uncover */
/* the private portion of the local public key. */
kb->cb->argument([1] = (VPTR)lkek_cc;

/* a pointer to the publickey where the receiver’s public key */
/* is stored. The receiver’s public key is used to derive */

/* a secret key. All other fields except the pubkey member of */
/* the publickey are ignored. */

kb->cb->argument[2] = (VPTR)remotepk;

/* destination KCR ID for newly derived secret key */
kb->cb->argument[3] = (VPTR)destker;

/* the algorithm type of the secret key which will be derived */
kb->cb->argument[4] = (VPTR)type;

/* the length of the secret key which will be derived. The */

/* length indicates how many bits to use for the secret key, */

/* ranging from 32-168 bits (expressed in units of bytes). */
kb->cb->argument(5] = (VPTR)len;

/* how this key will be used. By definition, the key willbe */
/* untrusted, but the application must identify this as either */
/* akey encryption key (KEK) or a data encryption key (K). */
kb->cb->argument[6] = (VPTR)use;

/* pointer to storage for the black version of the generated */
/* key. A NULL vatue for this parameter will cause a “dangling” */
/* key to be generated in a kcr within the key hierarchy. */
kb->cb->argument[7] = (VPTR)bk;

/* the crypto_cntxt used to cover the black version of the key. */
kb->cb->argument[8] = (VPTR)bkek_cc;
kb->cb->argument[9] = (VPTR)NULL;
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kb->sb->status = CGX_SUCCESS_S,

CGX_BAD_KEYSET S, /* either local or remote  */

/* publickey is not a DH key */
CGX_INVALID_KEY_LEN_S, /* invalid secret key len */
CGX_WEAK KEY_S, /* remote public key was +/-1 */
CGX _FAIL S, or /* use or type not provided */
CGX_INVALID_REG_S, /* invalid destkcr or bkek_cc */

/* ker */

Command Interface:
/* derive a secret key using the Diffie-Hellman algorithm and public keyset */
cgx_negkey gxy(kernelblock *kb,

publickey  *localpk,
crypto_cntxt *lkek cc,
publickey  *remotepk,
publickey  *gxy,
crypto_cntxt *gyx_kek cc)

Arguments:

Status:

kb->cb->cmd = CGX_GEN_NEGKEY;

/* a pointer to the publickey used to house the local public */
/* key. The modulus and private key fields are used to derive */
/* the shared secret. */

kb->cb->argument[0] = (VPTR)localpk;

/* a pointer to the crypto_cntxt which will be used to uncover */
/* the private portion of the local public key. */
kb->cb->argument[1] = (VPTR)lkek_cc;

/* a pointer to the publickey where the receiver’s public key */
/* is stored. The receiver’s public key is used to derive */

/* a secret key. All other fields except the pubkey member of */
/* the publickey are ignored. */

kb->cb->argument[2] = (VPTR)remotepk;
kb->cb->argument[7] = (VPTR)NULL;

/* ptr to returned covered public key structure */

/* the crypto_cntxt used to cover the black version of the key. */
kb->cb->argument[8] = (VPTR)gxy_kek_cc;
kb->cb->argument[9] = (VPTR)gxy;

kb->sb->status = CGX_SUCCESS_S,
CGX_BAD_KEYSET _S, /* either local or remote  */
/* publickey is not a DH key */
CGX_INVALID_KEY_LEN_S, /* invalid secret key len */
CGX_WEAK KEY_S, /* remote public key was +/-1 */
CGX_FAIL S, or /* use or type not provided */
CGX_INVALID_REG_S, /* invalid destkcr or bkek_cc */
/* ker */
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See Also: CGX_PRF_GXY, CGX_GEN_PUBKEY and
CGX._GEN_+NEWPUBKEY

PUBKEY ENCRYPT (Encrypt Data Using RSA Public Key)

Command Name: CGX_PUBKEY_ENCRYPT

Command Description:

The Public Key Encrypt command is used to encrypt the
application’s data using the RSA encryption algorithm. This operation
implements encryption or the RSA signature operation using the
pubkey member of a publickey structure. Control over which operation
is performed lies with the application. If the private key member if
NULL, RSA encryption occurs. If the public key is NULL, an RSA
signature is generated. The public keyset member of the RSA
publickey structure must be present for either of these operations to

occur.

The input data buffer, datain, must be a multiple of the length of
public keyset’s modulus. Also, the value of the message must not
exceed the value of the modulus. (The message to be encrypted, like the
public keyset components, is stored in little endian order.)
Furthermore, the output buffer, dataout, must be at least as large as the
input buffer. Data from the datain buffer will be encrypted in blocks
equal to the size of the modulus and stored at the same relative offset in
the dataout buffer. This implies that the encryption algorithm will break
the input message into chunks of modulus length size and process each

chunk until the input is consumed.
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If the output buffer isn’t the same size as the input buffer, the

application takes the chance of the operation failing if the result of the

encryption can overflow the size of the output data buffer.

Command Interface:
/*encrypt the application’s data using the RSA public keyset */
cgx_pubkey_encrypt(kernelblock *kb,

publickey  *pk,
crypto_cntxt *pkek_cc,
UINT16 dataoutpg,
BYTE *dataout,
UINT16 datainpg,
BYTE *datain,
UINT16 len)
Arguments:
kb->cb->cmd = CGX_PUBKEY_ENCRYPT;

Status:

/* a pointer to the public keyset to use for the encryption */

/* operation. If the pkek_cc is NULL, the public portion of */

/* the keyset will be used for this operation. If the pkek_cc

/* is not NULL, the private exponent will be used for encryption */
bk->cb->argument[0] = (VPTR)(pk);

/* a pointer to the crypto context used to cover the private */

/* portion of the public keyset */

bk->cb->argument({1] = (VPTR)(pkek_cc);

/* data page of output data buffer store the cipher-text */
bk->cb->argument[2] = (VPTR)(dpg);

/* output data buffer to store cipher-text of the message */
bk->cb->argument{3] = (VPTR)(dp);

/* data page of input data buffer to be encrypted */
bk->cb->argument{4] = (VPTR)(sdp);

/* input data buffer to be encrypted */

bk->cb->argument[5] = (VPTR)(sp); :
/* the length of the data to encrypt. The buffer length must be */
/* a multiple of the modulus size. In addition, the output */

/* buffer length should be at least as large as the input buffer */
bk->cb->argument[6] = (VPTR)(len);

kb->sb->status = CGX_SUCCESS_S,
CGX_BAD_KEYSET_S, /* both privkey and pubkey

* present

*/

CGX_INVALID_LEN_S, /*invalid length specified */

CGX_BAD_KEYSET S, /* keyset not an RSA keyset */

CGX_BAD_MODULUS_S, or /* message > modulus */
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CGX FAIL S /* zero modulus */

See Also: CGX_GEN_PUBKEY, CGX_PUBKEY_DECRYPT

PUBKEY DECRYPT (Decrypt Data Using RSA Public Key)

Command Name: CGX_PUBKEY_DECRYPT

Command Description:

The Public Key Decrypt command is used to decrypt the
application’s data using the RSA decryption algorithm, or to verify an
RSA signature. Control over which operation is performed lies with
the application. If the public key member of the key is NULL, an RSA
decryption will be performed. If the private key member of the structure
is NULL, a signature verification will be performed. The public keyset
must be provided by the application and contain the private key portion

of the keyset in order for this command to complete.

The size of the input data buffer, datain, must be a multiple of
the public keyset’s modulus size. Furthermore, the output buffer,
dataout, must have a length greater than or equal to the size of the
input buffer. The input buffer will be decrypted in chunks equal to the
size of the modulus, until the input buffer is consumed. The output
message will be written into the dataout buffer at the same relative

offset as the input buffer.

If the output buffer size isn’t at least as large as the input buffer,
the application takes the chance of the operation failing if the result of

the decryption can overflow the size of the output data buffer.

Command Interface:

/*decrypt the application’s data using the RSA public keyset */
cgx_pubkey_decrypt(kernelblock *kb,

publickey  *pk,

crypto_cntxt *pkek_cc,
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UINT16 dataoutpg,
BYTE *dataout,
UINT16 datainpg,
BYTE *datain,

UINT16 len)
Arguments:
kb->cb->cmd = CGX_PUBKEY_DECRYPT,

Status:

/* a pointer to the public keyset to use for the decryption */

/* operation. If the pkek_cc is NULL, the public portion of */

/* the keyset will be used for this operation. If the pkek_cc

/* is not NULL, the private exponent will be used for decryption */
bk->cb->argument[0] = (VPTR)(pk);

/* a pointer to the crypto context used to cover the private */

/* portion of the public keyset */

bk->cb->argument{1] = (VPTR)(pkek_cc);

/* data page of output data buffer store the plain-text */
bk->cb->argument([2] = (VPTR)(dpg);

/* output data buffer to store plain-text of the message */
bk->cb->argument[3] = (VPTR)(dp);

/* data page of input data buffer to be decrypted */
bk->cb->argument[4] = (VPTR)(sdp);

/* input data buffer to be decrypted */

bk->cb->argument[5] = (VPTR)(sp);

/* the length of the data to decrypt. The buffer length must be */
/* a multiple of the modulus size. In addition, the output */

/* buffer length should be at least as large as the input buffer */
bk->cb->argument{6] = (VPTR)(len);

kb->sb->status = CGX_SUCCESS _S,
CGX_BAD_OUTPUT, /* output buffer too small */
CGX_BAD_INPUT, or /* input buffer too large */
CGX BAD_KEYSET_S /* empty key RAM */

See Also: CGX_GEN_PUBKEY and CGX_ENCRYPT PUBKEY
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EXPORT PUBKEY (Export An IRE Public Key)

Command Name: CGX_EXPORT PUBKEY

Command Description:

The Export Pubkey command allows the application to move an
IRE public key form into an external public key form. The external
public form must be covered with a secret key, this is specified by the

application via the command arguments.

The appﬁéation must present a BLACK copy of the IRE public
key to export along with the crypto_cntxt object to reference the KEK
to uncover it. Also, the application must provide a buffer (i.e. ebk) to
copy the external public key into that is converted from the BLACK
IRE public key along with the publickey object. Furthermore, the
exported public key can be covered by an untrusted key (i.e. K) or a
KEK.

The IRE public key to export must not reside (or covered by)
under a parent KEK that is trusted (i.e. LSV, GKEK, or trusted KEK).
The main purpose of this command is to provide some sort of key
interoperability between an IRE crypto device and some other vendor’s

crypto equipment (software or hardware based).

The public key to export is passed in via the argument, pk, the
publickey object. The privkey, type and length members must be
present in order to export the public key. Therefore, the private key is
the only portion of the public keyset that is exported. The application

can move the public and modulus portion itself.

As part of the command the application is allowed to program
salt bits that will be prepended to the private key bits of the external
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public key. When exporting a private key under a secret key the
application has the choice of providing salt bits in multiples of 2 bytes,
requesting the secure Kernel generate salt bits in multiples of 2 bytes, or
not storing any salt bits. However, the total of salt bytes, data bytes,
and the private key bytes must be a multiple of 8 bytes.

Also, the command allows the application to program data bits
that will be appended to the private key bits of the external secret key.
When exporting a private key under a secret key the application has the
choice of providing data bits in multiples of 2 bytes, requesting the
secure Kernel generate data bits in multiples of 2 bytes, or not storing
any data bits. However, the total of salt bytes, data bytes, and the key
bytes must be a multiple of 8 bytes.

If the argument, salt_len, is set to O the application requests that
no salt bits be prepended. If the argument, salt, is NULL it requests
that the secure Kernel generate salt_len bytes; otherwise the application

is providing salt_len bytes of salt.

If the argument, data len, is set to O the application requests
that no data bits be prepended. If the argument, data, is NULL it
requests that the secure Kernel generate data_len bytes; otherwise the

application is providing data_len bytes of data.

Command Interfaces:

/*export an IRE private key under an untrusted secret key KEK. */

- cgx_export_pubkey( kernelblock *kb,

publickey  *pk,
crypto_cntxt *pkek cc,
unsigned short *ebk,
crypto_cntxt *ekek cc,
unsigned short *salt,
unsigned short salt_len,
unsigned short *data,
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unsigned short data_len)

Arguments:
Kb->cb->cmd = CGX_EXPORT_PUBKEY;

/* the BLACK IRE private key to export */
kb->cb->argument[0] = (VPTR)pk;
/* the KCR KEK location to uncover the BLACK IRE private key */

kb->cb->argument{1] = (VPTR)pkek cc;

/* the buffer to house the external private key */
kb->cb->argument[2] = (VPTR)ebk;

/* the KCR K or KEK location to cover the IRE private key */
kb->cb->argument[3] = (VPTR)ekek _cc;

/*salt bits to prepend to key bits */
kb->cb->argument[4] = (VPTR)salt;

/* the number of salt bits to prepend to the key bits */
/* this must be in units of 2bytes */
kb->cb->argument[5] = (VPTR)salt_len;

/*data bits to prepend to key bits */
kb->cb->argument[6] = (VPTR)data;

/* the number of data bits to prepend to the key bits */
/* this must be in units of 2bytes */
kb->cb->argument[7] = (VPTR)data_len;

Status:
kb->sb->status = CGX_SUCCESS_S, or
CGX_INVALID_REG_S

See Also: CGX_GEN_PUBKEY, CGX_GEN_NEWPUBKEY, and
CGX_IMPORT_PUBKEY

IMPORT PUBKEY (Import An IRE Public Key)
Command Name: CGX_IMPORT_PUBKEY

Command Description:

The Import Pubkey command allows the application to move an
external public key form into an IRE internal form. The external public
form must be covered with a secret key, this is specified by the
application via the command arguments. The main purpose of this

command is to provide some sort of key interoperability between an
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IRE crypto device and some other vendor’s crypto equipment

(software or hardware based).

The application must present a BLACK copy of the external
public key via the ibuf argument to import along with the crypto_cntxt
object to reference the untrusted K or KEK to uncover it, an untrusted
secret key. Also, the application must provide a public key object (i.e.
pk) to convert the external public key buffer, ibuf, into an internal IRE
public key form.

The external public key to import can not reside (or covered by)
under a parent KEK that is trusted (i.e. LSV, GKEK, or trusted KEK).
When it was exported it must have been under an untrusted secret key
KEK only. If an attempt to uncover the imported key under anything
but the correct untrusted KEK the operation will fail. However, the
KEK to cover the converted public key with (the newly converted IRE
public key) can be a trusted or untrusted secret key KEK.

The public key to imported is eventually copied into the
argument, pk, the publickey object. The privkey, type and length
members must be present in order to import the public key. Therefore,
the private key is the only portion of the public keyset that is imported.

The application can move the public and modulus portion itself

As part of the command the application must indicate the
number of salt bits that will be skipped before it can extract the private
key bits. This is accomplished via the argument, skip len, and it must

be in multiples of 2 bytes.

Command Interfaces:

/*import an external private key under an untrusted secret key KEK */
cgx_import_pubkey( kernelblock  *kb,
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unsigned short *ibuf,
crypto_cntxt *ikek,
unsigned short skip _len,
publickey  *pk,
crypto_cntxt *pkek)

Arguments:
kb->cb->cmd = CGX_IMPORT_PUBKEY:;

/* the BLACK IRE private key to import into */
kb->cb->argument[0] = (VPTR)pk;

/* the KCR K or KEK Iocation to uncover the external private key */
kb->cb->argument[1] = (VPTR)ikek;

/* the buffer that houses the external private key */
kb->cb->argument([2] = (VPTR)ibuf;

/* the KCR KEK location to cover the IRE private key */
kb->cb->argument[3] = (VPTR)pkek;

/*salt bits to skip */

kb->cb->argument[5] = (VPTR)skip_len;

Status:
kb->sb->status = CGX_SUCCESS _S, or
CGX_INVALID REG S

See Also: CGX_GEN_PUBKEY, CGX_GEN_NEWPUBKEY, and
CGX_EXPORT PUBKEY

Digital Signature Commands

SIGN (Digitally Sign A Message)

Command Name: CGX_SIGN
Command Description:
The digital signature sign command is used to sign the
application’s message using the DSA digital signature algorithm.

The application can pass in a covered(i.e. BLACK) DSA public
key or an uncovered (i.e. RED) public key. If the color of the public
key is determined by the argument, kek. If it is NULL then the public .
key is assumed to be in the RED form. If the argument is non-NULL
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then the public key is in the BLACK form and must be uncovered with
the kek.

To digitally sign a message a one-way hash result is processed

| by the digital signature algorithm. The result of the sign command is

placed into the signblock.

The resuit is returned in the signblock, it’s the data in this block
that must be used by the CGX_VERIFY command to verify the

message’s signature.

Also, the application is allowed to pass in K, of the DSA
vectors. Remember K is typically a random vector that should be
considered secret. If K is known by anyone they can forge the
signature. Therefore, using this feature must be used only in extreme
cases; otherwise pass in a NULL pointer and let the secure Kernel

generate K.

Prior to using this command the application must calculate the
one-way hash value of the message to sign. The result of the one-way
hash value is stored in the hash_cntxt block object. This block must be

passed in as an argument to the command.

Command Interface:

/*DSA sign the application’s message */
cgx_sign( kernelblock  *kb,
publickey  *pk,
crypto_cntxt  *kek,
signblock  *sb,
hash_cntxt  *hc,
unsigned short *K)

Arguments:
kb->cb->cmd = CGX_SIGN;
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/* the DSA public keyset */
kb->cb->argument{0] = (VPTR)pk;
/* signature block, contains result of signature (input/output) */
kb->cb->argument[1] = (VPTR)sb;
/* one-way hash value of message to sign */
kb->cb->argument({2] = (VPTR)hc;
/* The KEK to uncover the DSA private part, NULL private is RED */
kb->cb->argument[3] = (VPTR)kek;
/* vector K, NULL Kernel generates K, highly risky to use */
kb->cb->argument{4] = (VPTR)K;
/* a non-zero value requests the sign be verified */
kb~>cb->argument[5] = (VPTR)recheck;

kb->sb->status = CGX_SUCCESS _S,
CGX_FAILL S5,
CGX_BAD_KEYSET_S /* empty key RAM or wrong alg */

See Also: CGX_VERIFY, CGX_INIT_HASH, and CGX_HASH DATA

VERIFY (Verify A Digital Signature)

Command Name: CGX_VERIFY

Command Description:

The digital signature verify command is used to verify the

signature of the application’s message using the DSA public key
algorithm.

To verify a digital signature a one-way hash is calculated over

the message and its result is processed by the digital signature algorithm
for verification. The result of the verify command is compared to the

result already in the signblock.

The result of the calculation is compared to the signature result

already stored in the signblock, if the results compare then the signature
is valid; otherwise the signature fails and is not valid.

The application need only pass in the modulus and public parts

of the DSA public keyset, the private part is ignored.
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Prior to using this command the application must calculate the
one-way hash value of the message to verify. The result of the one-way
hash value is stored in the hash_cntxt block object. This block must be

passed in as an argument to the command.

Command Interface:
/*DSA verify the application’s signed message */
cgx_verify( kernelblock  *kb,
publickey  *pk,
signblock  *sb,
hash cntxt  *hc)

Arguments:
kb->cb->cmd = CGX_VERIFY;

/* the DSA public keyset */

kb->cb->argument[0] = (VPTR)pk;

/* signature block, contains result of signature (input/output) */
kb->cb->argument[1] = (VPTR)sb;

/* one-way hash value of message to sign */
kb->cb->argument[2] = (VPTR)hg;

Status:
kb->sb->status = CGX_SUCCESS_S,
CGX_INVALID_SIGNATURE_S, or /* sig not valid */
CGX_BAD _KEYSET S /* empty key RAM or wrong alg */

See Also: CGX_SIGN, CGX INIT_HASH, and CGX_HASH_DATA

Extended Algorithm Commands

LOAD EXTENDED (Load/Enable Extended Algorithm Block)
Command Name: CGX_LOAD_EXTENDED

Command Description:
The load extended algorithm command allows up to 8 kilo-
words of expansioﬁ for secure kernel program memory. This block can
be used to augment the secure kernel with algorithms (e.g., IDEA or

Blowfish) or features which are not contained in the standard kernel.
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Because this command will cause the kernel to accept the application
code as legitimate, the application must be signed by IRE. When

invoking the load extended command, the application must present the

- signature provided by IRE. The signature will be authenticated by the

secure kernel before enabling the extended algorithm block. If the
signature is not successfully authenticated, the secure kernel will not
transfer the application code to the extended algorithm block and
hardware protection for the extended algorithm block will not be

enabled.

The extended algorithm block must be bound beginning at
location xxxx. When the signature over the algorithm block has been
verified, the kernel will transfer the application from program memory
into the extended algorithm block and enable kernel protection over the
block.

Once the extended algorithm block has been authenticated and
loaded, the application can invoke operations in the extended algorithm
block via the CGX EXEC _EXTENDED command. When the
application no longer needs the extended algorithm block, the block
may be disabled via the CGX_CLEAR_EXTENDED command.

If the application does not to use the extended algorithm block

to expand the secure kernel, it may still be used for application code.

Command Interface:

/* load the extended algorithm block and enable hardware protection */
cgx_load_extended(kernelblock  *kb,

unsigned char pm *prog,

UINTI16 len,

signblock *sb)

Arguments:
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kb->cb->emd = CGX_LOAD EXTENDED:

/* the address of the extended algorithm block */
kb->cb->argument[0] = (VPTR)prog;

/* the length of the block in 24-bit words */
kb->cb->argument{1] = (VPTR)len;

/* the signature for the extended algorithm block */
kb->cb->argument[2] = (VPTR)sb;

Status:
kb->sb->status = CGX_SUCCESS_S,
CGX_ACCESS_DENIED, /* Extended algorithms not
* permitted.
*/
or CGX_INVALID_SIGNATURE_S.

See Also: CGX_EXEC_EXTENDED and CGX_CLEAR_EXTENDED

EXECUTE EXTENDED (Execute Extended Algorithm Block)

Command Name: CGX_EXEC_EXTENDED

Command Description:

The execute exfended algorithm command allows the
application to invoke operations contained in the extended algorithm
block. Operations are permitted a maximum of 10 parameters stored in
the argument member of the cmdblock structure. In order for a request
to execute from the extended algorithm block to be honored, the
algorithm  must already have been loaded via the
CGX_LOAD_EXTENDED command. .

Before invoking the extended algorithm block, the secure kernel
will verify that the block is active (i.e., has a valid algorithm loaded). If
so, control is transferred to the extended algorithm block via the
block’s entry point (the specific location is yet to be determined). It is
the algorithm block’s responsibility to handle branching to the
appropriate handler operation. In other words, once control is
transferred to the extended algorithm block’s entry point, the

application is responsible for handling the command.
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Upon completion of command processing, the extended
algorithm can return a UINT16 value indicating the completion status
of the command. This value will be available to the application in the

. Status field of the kernel block.

Command Interface:
/* execute from the extended algorithm block */
cgx_execute_extended(kernelblock *kb)

Arguments:
kb->cb->cmd = CGX_EXEC_EXTENDED;

/* arguments can be passed by the application via the argument
* array. This data will be available to the algorithm block.
*/

Status:
kb->sb->status = CGX_ACCESS_DENIED_S, /* extended algorithms not
* permitted.
*/
CGX_FAIL S, /*extended algorithm block not
* initialized.
*/

result from extended algorithm.

See Also: CGX_LOAD_EXTENDED and CGX_CLEAR_EXTENDED

Hash Commands

HASH INIT (Initialize The HASH Operator)
Command Name: CGX_HASH_INIT

Command Description:

The Initialize Hash command is used to initialize a Hash context
block, hash_cntxt, and prepare it for the start of a Hash calculation. The
application must invoke the initialize Hash operation prior to starting a
new Hash calculation; if not the hash_cntxt is not initialized and the
Hash calculation will be incorrect. Having the Iinitialize Hash

command allows the application to run simultaneous Hash calculations,
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interleaving the calls to CGX_HASH_DATA. This is facilitated due
to the Hash context management.

The Hash operations support SHS-1 and MD5 one way Hash
algorithms. Both Hash algorithms have a limit of 2% bits message
length and both process units of words.

The application must setup the hash cntxt with an algorithm
mode (i.e,, CGX_SHS_A or CGX MDS5_A) prior to the execution of
the initialize Hash command. Upon completion of this operation, the
hash context will contain a NULL value in the digest member of the
hash_cntxt. When the hash is closed, the digest member will be a valid
pointer to the hash digest.

Command Interface:

/* initialize HASH context, prepare to HASH */
cgx_hash_init(kernelblock *kb,
hash_cntxt  *hb)

Arguments:
kb->cb->cmd = CGX_INIT_HASH,;

/* the hash context block to initialize */
kb->cb->argument[0] = (VPTR)hb;

Status:
kb->sb->status = CGX_SUCCESS _S, or
CGX_BAD_MODE_S /* only SHS-1 or MD5 available */

See Also: CGX_HASH _DATA

HASH DATA (HASH Customer Data)
Command Name: CGX_HASH_DATA

Command Description:
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The Hash Data command is used to calculate a Hash value of
the application’s data. The hash may include a data key either
prepended to the data, appended to the data, or both (the keys need not
be the same). The key may not be inserted into the middle of the data
due to security concerns [in this context, “data” encompasses the entire
data stream to be hashed - in other words, keys can only be hashed at
the very beginning or end of the data]. Neither the key, nor its parent in
the key hierarchy (i.e., its KEK) may be trusted. Any attempt to hash a
trusted key will result in a failure. The hash_cntxt block allows the
application to run simultaneous Hash calculations interieaving the calls
to CGX_HASH _DATA.

The HASH operations support SHS-1 and MDS5 one-way Hash
algorithms. Both Hash algorithms have a message length limit of 2%
bits and operate on units of bytes.

The application must set up the hash_cntxt with an algorithm
mode (i.e., CGX_SHS M or CGX_MD5_M) prior to the execution of
the HASH data command. The application must set the context block
up and invoke the CGX_INIT HASH command first.

Because it illegal to request hashing of the LSV, a value of non-
0 for the key indicates that a keyed hash is being requested. When
keyed hashing is requested, the position of the key in the data must be
identified as either CGX PREPEND O, CGX_APPEND O, or both.
The position parameter is a bit field.

Setting the final argument to 1 signals the end of the message.
This causes the secure kernel to prepare the message digest. If the final
operation is not performed, the message digest is incorrect. If the
application has no message to Hash and has set fina/ to 1 then it must

set message_len to 0. When message_len is set to 0 the message buffer
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is ignored. However, if there are still more messages to Hash, the

application must set final to 0.

Command Interface:

/* calculate HASH of message */

cgx_hash_data(kernelblock *kb,
unsigned short message pg,
unsigned short *message,
unsigned long length,
unsigned short final,
ker key,
unsigned short position,
hash_cntxt  *hb)

Arguments:
kb->cb->cmd = CGX_HASH DATA;
/* the hash context block */

kb->cb->argument[0] = (VPTR)hb;

/* the data page of the message. If necessary, the underlying

* software will up temporarily switch pages in order to access

* the message data.

*/

kb->cb->argument[1] = (VPTR)message_pg;

/* pointer to length bytes of memory to HASH, a message can be
* variable length. The application can make as many calls to

* calculate the HASH message digest. This is because of the

* hash_cntxt block. If final operation and no message set to NULL.
*/

kb->cb->argument[2] = (VPTR)message;

/* length, set to 0 if no more data to hash. The data length is 4

* bytes long, broken into two arguments. Length represents the
* number of bytes to hash, up to a total of 2% bits (26

* bytes) to hash.

*/

kb->cb->argument[3] = (VPTR)((length >> 16) & OxftfY);
kb->cb->argument[4] = (VPTR)(length & OxfHY);

/* if no more message data to hash, set final to 1 */

/* otherwise there is more data to come or at least another */
/* call to CGX_HASH_DATA so set final to a 0 */
kb->cb->argument[5] = (VPTR)final;

/* identify the KCR containing the key to be hashed into the */
/* data. The key (and its KEK) cannot be trusted keys or the*/
/* operation will fail */

kb->cb->argument([6] = (VPTR)key;

/* specify where the key is to be added relative to the data */
/* this parameter is a bit-field; so, prepending and appending */
/* of the key is permitted using arithmetic OR */
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kb->cb->argument[7] = (VPTR)position;

Status:
kb->sb->status = CGX_SUCCESS _S,
CGX_FAIL S, /*length=0 and final=0*/ or
CGX_BAD_MODE_S /* only SHS-1 or MDS5 available %/

See Also: CGX_INIT HASH

HASH ENCRYPT (Hash and Encrypt User Data)

Command Name: CGX_HASH_ENCRYPT

Command Description:

The Hash and Encrypt command is used to perform a hash
calculation and symmetrical encryption of the customer’s data. Having
a hash cntxt and crypto_cntxt block allows the application to run
simultaneous hash calculations interleaving the calls with
CGX_HASH_DATA and CGX_HASH_DECRYPT commands; this is
because of the context management objects, hash cntxt and
crypto_cntxt.

The hash algorithms supported are SHS-1 and MD5 one-way
hash algorithms. For any invocation of hash_encrypt, the algorithms
have a limit of 2'° bytes. Due to requirements imposed by the
encryption operations, the length must be evenly divisible by 8 (the
encryption/decryption operations operate on blocks of 8 bytes). A
message not evenly divisible by 8 must be padded by the application.
The message or block may be padded with any pattern the application
wishes.

The encrypt algorithms supported are: DES, Triple DES, and
RCS, in several modes: ECB, CFB, OFB, and CBC. The encryption
algorithms only support block encryption, a block must be divisible by
64 bits long (to be performed by the application). A encrypted data
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session can extend beyond one call to the encryption command; this is
accomplished via a crypto_cntxt block (described below).
The data buffers, datain (plain-text) and dataout (cipher-text),

can share the same address.

Prior to invoking the hash and encrypt command the application
must setup the crypto_cntxt block. The application is responsible for
setting the configuration, masking in one of the special key load options
(described below), setting the appropriate secret key KCR ID, and for
priming the iv buffer with an initial random number (only for the first
call). After this, the application need not modify the crypto_cntxt block
unless something changes (i.e., secret key KCR ID location, and/or the

iv to cause a resynchronization).

The iv buffer of the crypto_cntxt block must be read- and write-
able; the iv buffer is used to maintain the feed-back register for the
CBC, CFB, and OFB modes. In the ECB mode the iv buffer is ignored.

The hash and encryption command allows the application to
mask in one of the special mode control bits defined in section 0, into
the config field of the crypto_cntxt block. The control bits are used by
the secure kernel to determine how to load secret keys before the actual
encryption of the plain-text takes place. The control bits allow the
application to request one of these options: auto-load, force-load, or
no-load. Auto-load allows the secure kernel to check which key is
currently loaded into the KG, if it’s the same as the key specified for the
encryption command it is not loaded; otherwise the key is loaded.
Force-load tells the secure kernel to always load the key. No-load tells
the secure kernel to not load the key; more than likely the application
has already loaded the key (maybe via the CGX_LOAD KG

command). By default auto-load is assumed.
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The application must also set up the hash cntxt with an
algorithm (i.e., CGX_SHS_M or CGX_MD5_M) prior to the execution
of the hash_data command. The application must set-up the context
block and invoke the CGX_INIT HASH command first.

Setting the final argument to 1 instructs the secure kernel to
prepare the hash value for return to the application. If the final
operation is not performed the message digest is incorrect. If the
application has no message to hash and has set final to 1 then it must set
length to 0. When length is 0, the datain buffer is ignored. If there are
still more messages to hash the application must set final to 0.

The order parameter allows the application to specify the hash
and encrypt order. The value CGX_HASH_CRYPT O indicates hash
before encrypt and CGX_CRYPT_HASH O implies encrypt before
hash.

The offset parameter indicates the number of bytes to process
according to the value of order before applying the other operation.
That is, if offser == 4 and order == CGX_HASH_CRYPT O, then 4
bytes of data will be hashed, and then the remaining length-4 bytes will
be hashed and encrypted. The value of offsef must be even (i.e., align
on a word boundary).

The secret key to be loaded as referenced via the crypto_cntxt
must have the key usage setting of CGX_KCR_K. This command only
allows traffic or data keys to be loaded or it will fail. The key usage
information is programmed by the application at the time a secret key
has been loaded, generated, derived, or negotiated and is maintained
securely by the secure Kernel. This means an LSV, GKEK, or KEK

type of secret key can not be loaded by this command.

Command Interface:
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/* calculate HASH and encrypt the message */
cgx_hash_encrypt( kernelblock  *kb,
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UINT16 datain_pg,
UINT16 *datain,
UINT16 dataout_pg,
UINT16 *dataout,
UINT16 length,
UINT16 order,
UINT16 offset,
UINT16 final,
crypto_cntxt *cb
hash_cntxt  *hb)

Arguments:

kb->cb->cmd = CGX_HASH_ENCRYPT,

/* mode selection, mask the special mode and configuration

* control bits with the mode here via the crypto_cntxt block

*/

kb->cb->argument[0] = (VPTR)cb;

/* the hash context block to initialize */

kb->cb->argument[1] = (VPTR)hb;

/* input message to be encrypted and hashed (data page, offset) */
kb->cb->argument[2] = (VPTR)datain_pg;

kb->cb->argument[3] = (VPTR)datain;

/* number of bytes (byte = 8 bits) to encrypt */
kb->cb->argument[4] = (VPTR)length;

/* if no more message data, set final toa 1 */

/* otherwise there are more messages to come or at least another */
/* call to CGX_HASH_DATA so set final to a 0 */
kb->cb->argument[5] = (VPTR)final;

/* if hash before encrypt set order to a CGX_HASH_CRYPT O */
/* if encrypt before hash set order to a CGX_CRYPT_HASH_O */
kb->cb->argument{6] = (VPTR)order;

/* output the encrypted data blocks (data page, offset) */
kb->cb->argument[7] = (VPTR)dataout;

kb->cb->argument[8] = (VPTR)dataout_pg;

/* hash/decrypt offset */

kb->cb->argument[9] = (VPTR)offset;

kb->sb->status = CGX_SUCCESS_S,
CGX_WEAK _KEY S,
CGX_BAD_MODE S,
CGX_EMPTY _REG S, or
CGX_INVALID REG_S

See Also: CGX_INIT_HASH, CGX_ENCRYPT, and CGX_HASH DATA
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HASH DECRYPT (Hash and Decrypt User Data)

Command Name: CGX_HASH DECRYPT

Command Description:

The hash and decrypt command is used to perform a hash
calculation and symmetrical decryption of the customer’s data. Having
a hash cntxt and crypto_cntxt blocks allows the application to run
simultaneous hash calculations interleaving the calls with
CGX_HASH_DATA and CGX_HASH_ENCRYPT commands; this is
because of the context management objects, hash_cntxt and
crypto_cntxt.

The one-way hash algorithms supported are: SHS-1 and MDS5.
For any invocation of hash_decrypt, the algorithms have a limit of 2
bytes. Due to requirements of the encryption algorithms, message
lengths must be evenly divisible by 8. Any message or block not evenly
divisible by 8 bytes must be padded by the application. The message

may be padded with any pattern which the application chooses.

The decrypt algorithms supported are: DES, Triple DES, and
RCS, in several modes: ECB, CFB, OFB, and CBC. The decryption
algorithms only support block decryption, a block must be 64 bits long.
The decryption command can handle up to 2" bytes at one time.
Furthermore, an encrypted data session can extend beyond one call to
the decryption command, this is accomplished via a crypto_cntxt block
(described below).

The data buffers, datain (plain-text) and dataout (cipher-text),

can share the same address.
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Prior to invoking the hash and decrypt command the
application must setup the crypto_cntxt block. The application is
responsible for setting the configuration, masking in one of the special
key load options (described below), setting the appropriate secret key
KCR ID, and for priming the iv buffer with an initial random number
(only for the first call). After this, the application need not modify the
crypto_cntxt block unless something changes (i.e., secret key KCR ID

location, algorithm, and/or the iv to cause a resynchronization).

The iv buffer of the crypto_cntxt block must be read- and write-
able; the iv buffer is used to maintain the feed-back register for the
CBC, CFB, and OFB modes. In the ECB mode, the iv buffer is

ignored.

The hash and decrypt command allows the application to mask
one of the special mode control bits, defined in section 0, into the
algorithm field of the crypto_cntxt block. The control bits are used by
the secure kernel to determine how to load secret keys before the actual
encryption of the plain-text takes place. The control bits allow the
application to request one of these options: auto-load, force-load, or
no-load. Auto-load allows the secure kernel to check which key is
currently loaded into the KG, if its the same as the key specified for the
decryption command it is not loaded; otherwise the key is loaded.
Force-load tells the secure kernel to always load the key. No-load tells
the secure kernel to not load the key; more than likely the application
has already loaded the key (maybe via the CGX_LOAD KG

command). By default auto-ioad is assumed.

The application must also set up the hash cntxt with an
algorithm mode (i.e., CGX_SHS_M or CGX_MD5 M) prior to the
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execution of the hash_data command. The application must setup the
context block and invoke the CGX_INIT HASH command first.

Setting the final argument to 1 signals the secure kernel to
prepare the message digest for the application. This is important to
correctly calculating the message digest. If the final operation is not
performed the message digest is incorrect. If the application has no
message to hash and has set final to 1. When nblocks is set to O the
datain buffer is ignored. However, if there are still more messages to

hash the application must set final to 0.

The parameter order allows the application to specify the hash
and decrypt order. The value CGX_HASH CRYPT O indicates hash
before decrypt and CGX_CRYPT _HASH_O implies decrypt before
hash. The offset parameter indicates the number of bytes to process
according to the value of order before applying the other operation.
That is, if offset = 4 and order == CGX_HASH_CRYPT_O, then 4
bytes of data will be hashed, and then the remaining length-4 bytes will
be hashed and decrypted. The value of offser must be even (i.e., align
on a word boundary).

The secret key to be loaded as referenced via the crypto_cntxt
must have the key usage setting of CGX_KCR K. This command only
allows traffic or data keys to be loaded or it will fail. The key usage
information is programmed by the application at the time a secret key
has been loaded, generated, derived, or negotiated and is maintained
securely by the secure Kernel. This means an LSV, GKEK, or KEK

type of secret key can not be loaded by this command.

Command Interface:
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/* calculate HASH and encrypt the message */
cgx_hash_decrypt( kernelblock *kb,

UINT16 datain_pg,
UINT16 *datain,
UINT16 dataout_pg,
UINT16 *dataout,
UINT16 length,
UINT16 order,
UINT16 offset,
UINT16 final,
crypto_cntxt *cb
hash_cntxt  *hb)

Arguments:

Status:

kb->cb->cmd = CGX_HASH_DECRYPT;

/* algorithm and mode selection,

* mask one of the special algorithm

* control bits with the mode here via the crypto_cntxt block

*/

kb->cb->argument[0] = (VPTR)cb;

/* the hash context block to initialize */

kb->cb->argument[1] = (VPTR)hb;

/* data to be decrypted and hashed, data page and offset */
kb->cb->argumentf2] = (VPTR)datain_pg;

kb->cb->argument[3] = (VPTR)datain;

/* number of bytes to hash/decrypt */

kb->cb->argument{4] = (VPTR)nblocks;

/* if no more data, set final to 1 */

/* otherwise there is more data to come or at least another */

/* call to CGX_HASH_DATA so set final to a 0 */
kb->cb->argument[5] = (VPTR)final;

/* if hash before decrypt set order to a CGX_HASH_CRYPT_O */
/* if decrypt before hash set order to a CGX_CRYPT_HASH_O */
kb->cb->argument[6] = (VPTR)order; ’
/* output the decrypted data blocks, data page and offset */
kb->cb->argument[7] = (VPTR)dataout_pg;
kb->cb->argument[8] = (VPTR)dataout;

/* hash/decrypt offset */

kb->cb->argument[9] = (VPTR)offset;

kb->sb->status = CGX_SUCCESS _S,
CGX_WEAK KEY S,
CGX_BAD_MODE S8,
CGX_EMPTY_REG_S, or
CGX_INVALID_REG S

249



10

15

20

25

30

WO 99/14881 PCT/US98/19316

See Also: CGX_INIT_HASH, CGX_DECRYPT, and CGX_HASH_DATA

Math Commands

MATH (Math Utilities)
Command Name: CGX_MATH

Command Description:

The Math utilities expose multiple primitive Math functions
which are accelerated by the Public Key engine. Primitive functions
include: 64-bit vector Add, 64-bit vector Subtract, 64-bit vector
Multiply, 64-bit vector Exponentiate, and 64-bit vector Reduction.

More information to follow in next revision.

Command Interface:

/* Information Coming */
cgx_math( kernelblock  *kb,
)

Arguments:
kb->cb->cmd = CGX_MATH;

Status:
kb->sb->status = CGX_SUCCESS _S,

PRF Commands
The commands in this section allow an application to perform manipulations on
keys and other secret data required to perform certain IPSec transforms. (“PRF” is an

abbreviation of pseudo-random function.)

MERGE KEY
Command Name: CGX_MERGE _KEY
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Command Description:
The CGX_MERGE _KEY command takes key material from
two secret keys and combines the material to form a third secret key.
The key material in two input keys, keyl and key2, is combined in a
caller specified way.

The input keys are presented to the function in the black; crypto
contexts for each must be supplied to uncover them internally. The
resulting output key will be returned in the black so a crypto context for

it must also be supplied as a function argument.

The output key pointer, bk, may point to the same memory as
an input key pointer, in which case the output will overwrite the input.
Also, any of the kek pointers supplied may be equal, in which case the
same covering key will be used to cover or uncover parameters, as

appropriate.

The possible combine operations are concatenate, exclusive-or,

and hash. The resulting material (or the leading bytes of the resulting
material, if the resulting material is more than needed to create the new

key) becomes the key material for a new key.

For the concatenate operation, key2’s key material is appended
to that of keyl, resulting in material whose length is the sum of the
lengths of key1 and key2.

For the exclusive-or operation, key2’s key material is bitwise
exclusive-ored with that of keyl, resulting in material whose length is
the greater of the lengths of keyl and key2. (The shorter key is zero

padded for purposes of the exclusive-or.)
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For the hash operation, key2’s key material is appended to that
of keyl, resulting in intermediate material whose length is the sum of
the lengths of keyl and key2. Then the resulting material is hashed by
the specified hash algorithm and the resulting hash digest is used as the
new key’s material. The length of the material in this case is the hash
digest length.

For operations concatenate and hash, the order of input keys is
significant, especially when one is attempting to perform operations
according to an external specification. Another way to state which

input order results in which intermediate key material order is that, for

operations concatenate and hash, key2 becomes the most significant
and keyl becomes the least significant part of the intermediate key

material after concatenation.

The new key’s length and type are specified as arguments. The
supplied length must be in the allowed range for secret keys and the key
material generated by combining the input keys must be sufficient to

produce a key of the specified length.

The use of the new key may be KEK or K (encryption key.)
The two input keys must either both be KEKs or neither be a KEK.

The astute reader will note that three or more input keys may be
combined by merging the output of one merge key operation with yet

another input key, and repeating this step as often as necessary.

Command Interface:

/* merge two keys and create a third from the combined key material*/
cgx_merge_key( kernelblock  *kb,
secretkey  *keyl,
crypto_cntxt *kekl,
secretkey  *key2,
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crypto_cntxt *kek2,
UINT16 operation,
UINT16 type,
UINT16 length,
UINT16 use,
secretkey  *bk,
crypto_cntxt *bk_kek)

Arguments:

Status:

kb->cb->cmd = CGX_MERGE _KEY,
kb->cb->argument{0] = (VPTR)keyl;
/* the first input key to be merged */

kb->cb->argument[1] = (VPTR)kekl,
/* crypto context used to uncover keyl*/

kb->argument{2] = (VPTR)key2;
/* the second input key to be merged */

kb->cb->argument[3] = (VPTR)kek2;
/* crypto context used to uncover key2*/

kb->cb->argument[4] = (VPTR)operation;

/* CGX_CONCAT_O, CGX_XOR_0, CGX HASH O] CGX SHS_A,
CGX_HASH_O | CGX_MD5_A, or CGX_HASH_O | <other_hash_alg_type> */

kb->cb->argument([5] = (VPTR)type;
/* key type of result key to be produced */
/* CGX_DES_A or CGX_TRIPLE_DES_A or other key type */

kb->cb->argument[6] = (VPTR)length;
/* desired length in bytes of result key to be created */

kb->cb->argument[7] = (VPTR)use;
/* intended use of result key: key type and trust attribute */

kb->cb->argument[8] = (VPTR)bk;
/* pointer to result key to be returned */

kb->cb->argument[9] = (VPTR)bk_kek;
/* crypto context used to cover bk */

kb->status =
CGX_SUCCESS_S,
CGX BAD KEK S,
CGX NULL_PTR_S,
CGX FAIL S
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MERGE LONG KEY
- Command Name: CGX_MERGE_LONG _KEY

Command Description:

The CGX_MERGE_LONG_KEY command is quite similar to
the CGX_MERGE_KEY command. The essential difference is that the
output key created by CGX_MERGE_LONG _KEY is not a data
encryption key; rather it is merely a container for key material that can
be used subsequently (for example by command
CGX_EXTRACT_LONG) to create encryption keys. The output data
type of CGX_MERGE_LONG_KEY is a container, not a true key; it is
perhaps misnamed as a longkey data type. A variable of this type can
hold up to 64 bytes of key information. Such a data type provides
intermediate storage, for example, for the 48 bytes resulting from
concatenating two 24 byte keys, which then can be used (by
CGX_EXTRACT_LONG) to produce an encryption key from the
middle 24 bytes of the concatenation.

The CGX_MERGE_LONG_KEY command takes key material
from two keys and combines the material to form a new long key. The
first input key, keyl, may be either an ordinary encryption key (type
secretkey) or a longkey. The second input key, key2, must be an
ordinary encryption key. The key material in two input keys, keyl and

key2, is combined in a caller specified way.

The input keys are presented to the function in the black; crypto
contexts for each must be supplied to uncover them internally. The
resulting long output key will be returned in the black so a crypto

context for it must also be supplied as a function argument.

The output key pointer, [k, may point to the same memory as an

input key pointer, (provided the allocated memory is sufficient to hold a
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longkey type datum) in which case the output will overwrite the input.
Also, any of the kek pointers supplied may be equal, in which case the
same covering key will be used to cover or uncover parameters, as

appropriate.

The possible combine operations are concatenate, exclusive-or,
or hash. The resulting material becomes the key material for the new

key.

For the concatenate operation, key2’s key material is appended
to that of keyl, resulting in material whose length is the sum of the
lengths of key1 and key2.

For the exclusive-or operation, key2’s key material bitwise
exclusive-ored with that of keyl1, resulting in material whose length is
the greater of the lengths of key! and key2. (The shorter key is zero
padded for purposes of the xor.)

For the hash operation, key2’s key material is appended to that
of keyl, resulting in material whose length is the sum of the lengths of
keyl and key2. Then the resulting material is hashed by the specified
hash algorithm and the resulting hash digest is used as the new key’s
material. The length of the material in this case is the hash digest length.

For operations concatenate and hash, the order of input keys is
significant, especially when one is attempting to perform operations
according to an external specification. Another way to state which

input order results in which intermediate key material order is that, for

operations concatenate and hash, key2 becomes the most significant
and keyl becomes the least significant part of the intermediate key

material after concatenation.
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The second input key may be a data encryption key or a KEK

and must be untrusted.

The astute reader will note that three or more input keys may be
combined by merging the output of one merge_long_key operation with
yet another input key. One caveat to be observed is that when the
concatenate operation is requested, the user must unsure that the sum
of the two lengths of the input keys does not exceed the 64 byte

maximum length of a long key.

Command Interface:

/* merge two keys and create a long key from the combined key material */
cgx_merge_long key( kernelblock  *kb,
longblob  *keyl, /* either secretkey or longkey type */
crypto_cntxt *kekl,
secretkey  *key2,
crypto_cntxt *kek2,
UINT16 operation,

longkey  *lk,
crypto_cntxt *bk_kek)

Arguments:
kb->cb->cmd = CGX_MERGE_LONG _KEY;
kb->cb->argument[0] = (VPTR)keyl;
/* the first input key to be merged (long key type or encryption key */

kb->cb->argument{1] = (VPTR)kekl;
/* crypto context used to uncover keyl*/

kb->cb->argument[2] = (VPTR)key2;
/* the second input key to be merged */

kb->cb->argument[3] = (VPTR)kek2;
/* crypto context used to uncover key2*/

kb->cb->argument[4] = (VPTR)operation;
/* CGX_CONCAT_O, CGX_XOR 0O, CGX HASH_O|CGX_SHS_A,
CGX_HASH O | CGX_MD5_A, or CGX_HASH_O | <other_hash _alg_type> */

kb->cb->argument[8] = (VPTR)Lk;
/* pointer to result long key to be returned */

kb->cb->argument{9] = (VPTR)bk_kek;
/* crypto context used to cover bk */

256



WO 99/14881 PCT/US98/19316

Status:
kb->status =
CGX_SUCCESS_S,
5 CGX_BAD _KEK S,
CGX_NULL_PTR S,
CGX FAIL S

EXTRACT(secret key from) LONG KEY
10 Command Name: CGX_EXTRACT _LONG KEY

Command Description:
The CGX_EXTRACT_LONG_KEY command creates a secret
key from key material supplied within a longkey.
The input longkey is presented to the function in the black; a
15 crypto context for it must be supplied to uncover it internally. The
resulting output secret key will be returned in the black so a crypto

context for it must also be supplied as a function argument.

The material used to create the secret key consists of length

bytes taken from the input long key starting at position offset. (Length

20 and offset are parameters of the function call.) Naturally, the operation
will fail if the input long key does not contain length+offset bytes.

The type and use of the result key are also specified as

parameters.

Command Interface:

25 /* extract key material from long key and create secret key from it */
cgx_extract long( kernelblock  *kb,
longkey *keyl,
crypto_cntxt *kekl,
UINT16 type,
30 UINT16 length,
: UINT16 use,
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UINT16 offset,
secretkey  *bk,
crypto_cntxt *bk_kek)

Arguments:
kb->cb->cmd = CGX_LONG_KEY_EXTRACT,
kb->cb->argument[0] = (VPTR)keyl;
/* the longkey container from which key info. will be extracted */

kb->cb->argument[1] = (VPTR)kekl;
/* crypto context used to uncover key1*/

kb->cb->argument{2] = (VPTR)type;
/* key type of result key to be produced */
/* CGX_DES_A or CGX_TRIPLE DES_A or other key type */

kb->cb->argument[3] = (VPTR)length;
/* desired length in bytes of result key to be created */

kb->cb->argument[4] = (VPTR)usg;
/* attributes of key being created */

kb->cb->argument{5] = (VPTR)offset;
/* byte offset within key1 of first byte to extract */

kb->cb->argument[6] = (VPTR)bk;
/* pointer to result long key to be returned */

kb->cb->argument[7] = (VPTR)bk_kek;
/* crypto context used to cover bk */

Status:
kb->status =
CGX_SUCCESS_S,
CGX_BAD _KEK S,
CGX_NULL_PTR_S,
CGX FAIL_S
CGX PRF DATA

Command Name: = CGX_PRF_DATA
Command Description:
The intended use of this command is to add data to the open

inner hash context in an IPSec HMAC generation.
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The CGX_PRF_DATA command hashes one, two or three
data items, of different types, into the inner hash of
an HMAC being generated: the items (in the order they are
processed) are
- a secret key (specified by argument secretkey *bk)
- a g"xy DH shared key specified in argument publickey
*gxypk (previously produced in the BLACK by
cgx_negkey gxy() for example.)
- RED data (specified in argument (VPTR)*dptr of a
specified number of bytes (bytecount.)

If bk, gxypk, and/or dptr are NULL, the corresponding data are not

processed.

If the secret key bk is not NULL, argument crpto_cntxt *bkek
must specify the kek to uncover it. Also bk must be an untrusted key; it
can be a data encryption key (K) or a KEK, etc.

If gxypk is non NULL, argument gxykek must specify the key
to uncover the g"xy key (presumably the same context used to cover
gxypk in the first place.) Only the private key member (which holds the
shared DH key) of gxypk and the modulus length of the public key are
used in this operation. The other members of the public key need not be
populated.

Argument hash_cntxt *ihci specifies the previously initialized
and still open source (input) hash context into which the data items will
be hashed. (ihci MUST be supplied.) ihci can be RED or BLACK; if
argument crypto_cntxt *ikek is non NULL, ikek  will be used to
uncover ihci. if ikek is NULL ihci is assumed to be RED.
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Argument hash_cntxt *ihco specifies the destination context
into which the result will be placed. (ihco may equal ihci, if desired)
ithco can be returned RED or BLACK, if argument crypto_cntxt *okek
is non NULL, okek will be used to cover ihco. if okek is NULL ihco
will be returned in the RED.
okek, if specified, must be an untrusted key.

The resulting output hash context is not closed by this function.
Repeated calls can be made to this function to add more data to the
hash context by supplying the output hash context of one command
invocation as the input hash context of a subsequent invocation.

Several variants of this command are provided. The first,
cgx_prf_secretkey gxy data(), is the generic command decribed above
in this section. The other variants merely provide convenient special

case commands.

Command Interface:

/* hash additional data into open hash context */
cgx_prf secretkey gxy data(

kernelblock  *kb,
hash cntxt  *ihei,
crypto_cntxt  *ikek,
hash_cntxt  *ihco,
crypto_cntxt  *okek,
secretkey *bk,
crypto_cntxt  *bkek,
publickey *gxypk,
crypto_cntxt  *gxykek,
void *dptr,
UINT16 bytecount)

Arguments:

kb->cb->cmd = CGX_PRF_DATA,;
kb->cb->argument[0].ptr = (VPTR)(ihci);
kb->cb->argument{1].ptr = (VPTR)(ikek); /* NULL allowed */
kb->cb->argument[2].ptr = (VPTR)(ihco);
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kb->cb->argument([3].ptr = (VPTR)(okek);
kb->cb->argument{4].ptr = (VPTR)(bk);
kb->cb->argument{5].ptr = (VPTR)(bkek);
kb->cb->argument[6].ptr = (VPTR)(gxypk);
kb->cb->argument{7].ptr = (VPTR)(gxykek);
kb->cb->argument(8].ptr = (VPTR)(dptr);
kb->cb->argument([9].ptr = (VPTR)(bytecount);

Status:
kb->status =
CGX_SUCCESS S,
CGX_BAD KEK S,
CGX NULL PTR S,
CGX_FAIL S

/* macros that invoke particular, less general, cases of cgx_prf_secretkey_gxy data */

/* hash a secret key into an open hash context */
#define cgx_prf_secretkey(kb, ihci, ikek, ihco, okek, bk, bkek)

cgx_prf_secretkey gxy_data(kb, ihci, ikek, ihco, okek, bk, bkek, NULL, NULL, NULL,
NULL)

/* hash a shared DH private key into an open hash context */
#define cgx_prf_gxy(kb, ihci, ikek, ihco, okek, gxypk, gxykek)
cgx_prf_secretkey_gxy_data(kb, ihci, ikek, ihco, okek, NULL, NULL, gxypk, gxykek, NULL, NULL)

/* hash bytecount-many bytes of uncovered data into an open hash context */
/* If final = 0, this operation closes the hash context before returning it. */
#define cgx_prf_data(kb, ihci, ikek, ihco, okek, dptr, bytecount, final)
cgx_prf_secretkey_gxy data(kb, ihci, ikek, ihco, okek, NULL, final, NULL, NULL, dptr, bytecount)

/* hash a secret key and a shared DH private key into an open hash context */
#define cgx_prf_secretkey_gxy(kb, ihci, ikek, ihco, okek, bk, bkek, gxypk, gxykek)
cgx_prf_secretkey_gxy_data(kb, ihci, ikek, ihco, okek, bk, bkek, gxypk, gxykek, NULL, NULL)

CGX PRF KEY

Command Name: = CGX_PRF _KEY
Command Description:

Command CGX_PRF_KEY can be used to complete the IPSec
HMAC. Command arguments supply two open hash contexts known as the

inner hash context and the outer hash context, both of which are covered.
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(Additional arguments supply the crypto contexts needed to uncover the hash
contexts.) The command closes the inner hash context (its internal copy of the
inner hash context — the caller’s copy is not affected.) Then it hashes the digest
of the inner hash context into the outer hash context. Then it closes the outer
ha.sh context (its copy of the outer hash context) and creates a secretkey of
type specified by the caller from the outer hash digest and returns the key,
covered, to the caller. It also leaves the created key in a specified key cache
register, ready to use for encryption.

A second variant of this command does not create a secret key from the
outer hash digest but rather returns the outer hash digest, still open, in the red,
to the caller.

Command Interface:

/* Complete the IPSec HMAC - create a secret key from resulting hash digest */

cgx_prf_key(

kernelblock  *kb,

hash_cntxt  *jhci,

crypto_cntxt  *ikek,

hash_cntxt  *ohcntxt_in,

crypto_cntxt  *okek,

destkcr,

UINT16 type,

UINT16 length,

UINT16 use,

secretkey *bk,

crypto_cntxt  *bkek)

Arguments:

kb->cb->cmd =CGX_PRF_KEY;,
kb->cb->argument[0].ptr = (VPTR)(ihci);
kb->cb->argument[1].ptr = (VPTR)(ikek);
kb->cb->argument[2].ptr = (VPTR)(chcntxt_in);
kb->cb->argument[3].ptr = (VPTR)(okek);
kb->cb->argument[4].ptr = (VPTR)(destker);
kb->cb->argument[5].ptr = (VPTR)(type);
kb->cb->argument[6].ptr = (VPTR)(len);
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kb->cb->argument[7].ptr = (VPTR)(use);
kb->cb->argument[8].ptr = (VPTR)(bk);
kb->cb->argument[9].ptr = (VPTR)(bkkek);

kb->status =
CGX_SUCCESS_S,
CGX_BAD KEK S,
CGX _NULL _PTR S,
CGX FAIL S

/* Second Variant: Complete the IPSec HMAC - return resulting outer hash context,
still open, in the red. Do not create a secret key from resulting hash digest */

cgx_prf_hash(

kernelblock  *kb,.

hash _cntxt  *ihci,
crypto_cntxt  *ikek,

hash cntxt  *ohentxt_in,
crypto_cntxt  *okek,
crypto_cntxt  *ohco_red)

Arguments:

Status;

kb->cb->cmd = CGX_PRF_KEY;,
kb->cb->argument[0].ptr = (VPTR)(ihci),
kb->cb->argument[1].ptr = (VPTR)(ikek);
kb->cb->argument[2].ptr = (VPTR)(ohcntxt_in),
kb->cb->argument[3].ptr = (VPTR)(okek);
kb->cb->argument[4].ptr = (VPTR)(NULL),
kb->cb->argument{5].ptr = (VPTR)(NULL);
kb->cb->argument[6].ptr = (VPTR)(NULL);
kb->cb->argument(7].ptr = (VPTR)(NULL),
kb->cb->argument[8].ptr = (VPTR)(NULL);
kb->cb->argument[9].ptr = (VPTR)(ohco_red);

kb->status =
CGX_SUCCESS_S,
CGX BAD KEK 8§,
CGX _NULL_PTR S,
CGX FAIL S
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ACRONYMS/TERMS
ACRONYMS
The following table is a list of acronyms used with the description of the co-
processor.
Acronvm Meaning
ASIC Application-Specific Integrated Circuit
CBC Cipher Block Chaining (a block cipher mode)
CFB Cipher FeedBack (a block cipher mode)
CGX CryptoGraphic eXtensions (IRE’s crypto library)
CT Cipher Text
DEK Data Encryption Key
DES Data Encryption Standard
D-H Diffie-Hellman
DMA Direct Memory Access
DSA Digital Signature Algorithm
ECB FElectronic Code Book (a block cipher mode)
FIFO First-In, First-Out
HMAC Hash Message Authentication Code
vV Initialization Vector
KCR Key Cache Register (an internal key storage location)
KEK Key Encryption Key
LSV Local Storage Variable
MAC Message Authentication Code
OFB OQutput FeedBack (a block cipher mode)
PCDB Program Control Data Bits
PIN Personal Identification Number
PT Plain Text
SHA Secure Hash Algorithm
SHS Secure Hash Standard
TERMS

The following table is a list of terms used with the description of the co-

processor.
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Term Meaning
Black Key A secret/private key that is encrypted or covered by a KEK, it
can be securely given to another party.

Covered Key A secret key that has been encrypted, via a KEK, to protect
. the key from being seen by an untrusted party. Same as a
Black key or a Wrapped key.

Export In the CryptIC, exporting a key refers to the process of
covering the key with a KEK and then providing it to an
external application in the ‘Interoperable External Form’,

Import In the CryptIC, importing a key refers to the process of
uncovering the key from its ‘Interoperable External Form’
and storing it in an internal Key Cache Register.

Key Cache Register (KCR) A working storage area for secret keys, addressable via a
register ID between 0 and 14.

Key RAM (KRAM) A volatile public key work area. The public key will be lost
during a power-down or reset.

Local Storage Variable A non-volatile Laser-programmed secret key that can be used

Lrsvy by the application as its own unique private key. FEach
CryptIC has a unique LSV programmed into it at the factory.

Off-Load In the CryptlC, off-loading a key refers to the process of

covering the key with a KEK and then providing it to an
external application in the ‘IRE External Form’.
Program Control Data Bits ~ Programmable control bits to customize the CGX Kernel

(PCDB) Jeatures (such as allowing Red key exportation/importation,
LSV changes, exportable chip, etc.).

Public Keyset Specifies the related key pair (Public and Private) which make
up a ‘public key’

Red Key A secret/private key that is not encrypted or covered by

_ another KEK. 1t is in its raw unprotected form.

Salt Random data which precedes a message in order to randomize
its

Symmetric Key A key which is used in a ciphering algorithm where the
encrypting key and the decrypting key are the same (eg. DES)

Wrapped Key A secret key that has been encrypted, via a KEK, to protect

the key from being seen by an untrusted party. Same as a
Black key or a Covered key.

Although illustrative embodiments of the present invention have been described
herein with reference to the accompanying drawing, it is to be understood that the
invention is not limited to those precise embodiments, and that various other changes
and modifications may be effected by one skilled in the art without departing from the

scope or spirit of the invention.
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Section 1. Extending Cryptographic Services to the Kernel Space of a Computer

Operating System

Background of the Invention

Field Of The Invention

This invention relates to computer operating systems for a personal computer
or the like, and more particularly relates to computer operating systems which provide

cryptographic services.

Description Of The Prior Art

There is currently on the market software for personal computers which
provide cryptographic services. In particular, Microsoft Corporation provides its
CryptoAPI (TM) software for its Windows (TM) operating system. The cryptoAPI
(TM) software is a modular way to provide cryptographic (e.g., encryption) services
to applications. For example, an E-mail encryption package on one’s personal
computer running in Windows (TM) will most likely be using the services CryptoAPI

(TM) to perform the encryption processes.

CryptoAPI (TM) software is designed to be modular in that it includes a
generic layer plus a replaceable library of encryption algorithms, referred to as a
cryptographic service provider (CSP) module. The CSP module is software which is
implemented in the form of a dynamic linked library (DLL) residing in the application
space of the operating system. The CSP module contains many encryption
algorithms, such as DES, triple DES, hashing algorithms, digital signature algorithms,
etc. Since algorithms may change, and the rules of cryptography may change, the

CSP module may be replaced with an updated version having new encryption
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algorithms. The new CSP module is designed to be compatible with the generic layer
of the CryptoAPI (TM) program.

CryptoAPI (TM) software operates only in the application space of the
operating system of the personal computer (PC). Therefore, it can only be called upon

by an application, such as E-mail, MicroSoft Word (TM), Excel (TM), or the like.

The CryptoAPI (TM) software cannot work in the kernel space of the
operating system. The kernel space is that layer of the operating system which is
essentially non-visible to the user, in other words, at the driver level of the PC, for
example, where IP (Internet Protocol) packets are processed, where the disc drive

controller software resides, where the PC’s printer drivers are located, etc.

Kernel space routines cannot cross the line into application space very
efficiently and use the services of CryptoAPI (TM) software in the application space.
Therefore, if one wants to encrypt data or instructions coming in or out of the hard
drive, the CryptoAPI (TM) software would not be usable, as it resides in the
application space and not in the kernel space. Similarly, the IP packets would also not
be able to be encrypted using the CryptoAPI (TM) software, as the IP packets are

processed in the kernel space.

Objects And Summary of The Invention

It is an object of the present invention to define an implementation of

cryptographic services in the kernel space of a computer operating system.
It is another object of the present invention to define the implementation of

cryptographic services in the kernel space of a computer operating system which is

linked to similar cryptographic services provided in the application space.
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It is still another object of the present invention to provide an implementation
of cryptographic services for an operating system usable in a personal computer which
is capable of encrypting hard drive data and IP packets at the driver level of the

personal computer.

In accordance with one form of the present invention, a cryptographic service
software is embodied in at least one of a hard disc, a floppy disc or a read-only
memory (ROM). The cryptographic service software electronically communicates
and is compatible with a standard operating system of a computer, such as MicroSoft
Windows (TM). The operating system includes an application space and a kernel
space. The cryptographic service software performs cryptographic services at the
kernel space of the operating system. The cryptographic service software includes a
generic layer having a kernel space level program interface, and a cryptographic
service module having a library of encryption algorithms. This module may be
replaced with a different module having updated or at least different encryption

algorithms.

In another form of the present invention, cryptographic service software is
situated in each of the application space and kernel space of a standard operating
system for a computer. The separate application space and kernel space software are
linked together to exchange cryptographic functions, such as algorithms, digital
signatures and hash functions and secretkey material. Each of the application space
and kernel space cryptographic software includes a generic layer having a program
interface, and a cryptographic service module having a library of encryption
algorithms, which module electronically communicates with the program interface.

Each module is preferably replaceable, as mentioned previously.
These and other objects, features and advantages of the present invention will

become apparent from the following detailed description of illustrative embodiments

thereof, which is to be read in connection with the accompanying drawings.
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Brief Description of The Drawings

Figure 36 is a block diagram illustrating the implementation of a cryptographic

service software in accordance with the present invention.

Detailed Description of The Preferred Embodiments

In accordance with one form of the present invention, cryptographic service
software similar in operation and structure to the CryptoAPI (TM) software sold by
MicroSoft Corporation is preferably embodied in either a hard disc 3, floppy disc 2 or
a read-only memory (ROM) 4. The ROM 4 or hard disc 3 may be situated in a
personal computer 6 or other piece of electronic equipment, and the floppy disc 2 may

be received and read by a disc drive of the computer 6 or other equipment.

The cryptographic service software is compatible and communicates with a
standard operating system of a computer, such as the Windows (TM) operating
system. Unlike the CryptoAPI (TM) software, the cryptographic service software of
the present invention is situated in the kernel space of the operating system, at the
driver level of the computer. The cryptographic service software performs
cryptographic services using encryption algorithms and the like at the kernel space of

the operating system.

The cryptographic service software is structured similarly to that of the
CryptoAPI (TM) software. It includes a generic layer having a kernel space level
program interface 8, which functions and operates in a manner similar to the
application program interface of the CryptoAPI (TM) software. It further includes a
cryptographic service module 10 which may be embodied in a similar manner to that
of the CryptoAPI (TM) software. The cryptographic service module 10 preferably
includes a library of encryption algorithms. The module electronically communicates

and cooperates with the kernel application programming interface 8. This module
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may be replaced with a different module having new or different encryption

algorithms.

The cryptographic service software allows one to write code at the driver level
of the computer in a manner similar to the way the CryptoAPI (TM) software does at
the higher, application level. Now, encryption algorithms may be used to encrypt
signals at the driver level, such as at the Ethernet port or at the modem port, video
card or disk drive, etc., that is, at a level where the conventional CryptoAPI (TM)
software cannot reach. The cryptographic service software at the driver level is still
accessible by application software 12 through secured drivers (engines) 14 situated at
the driver level. Also, advantageously, during software development the

cryptographic software code at the kernel level may be debugged at the application

level.

Preferably, and as shown in the figure, a cryptographic service software is
situated at each of the application space and the kernel space, and the two are linked
together. Each cryptographic service software may be loaded from a floppy disc 2
onto a computer 6 or may be embodied in a read only memory (ROM) 4. The
application space software includes an application program interface 16 and a
cryptographic service module 18 electronically communicating with the application
programming interface 16. The kernel space cryptographic software includes a kernel
space level program interface 8 and a cryptographic service module 10 electronically
communicating with the application programming interface 8. Each of the
cryptographic service modules 10, 18 preferably includes a library of encryption
algorithms and the like. Preferably, the modules are linked together to exchange
algorithms, for example, or share secret key material between the two. This link
facilitates the operation of the computer 6 and the exchange of encrypted material
from one computer to another because the application level cryptographic software
may wish to use the same pre-arranged keys in its application level communications

as are used at the kernel level such as for encrypting and decrypting IP packets.
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In another form of the present invention, it is envisioned that there are a
plurality of security enabled kernel engines 14 situated in the kernel space. These
security enabled kernel engines 14 communicate with and drive various components,
such as a disk drive 20, hard drive 22 and internet port 24 of the computer. Each
security enabled kernel engine 14 electronically communicates with preferably the
same kernel space program interface 8 of the kernel cryptographic service software.
The advantage in this arrangement is that the cryptographic service software and
module thereof may be shared by many different kernel engines 14 as opposed
incorporating in each kernel engine an encryption algorithm. Of course, there may be
unsecured engines 26 situated in the kernel space communicating with and driving
other components 28 for which cryptographic services are not required. Nevertheless,
each of the security enabled kernel engines 14 and unsecured engines 26 communicate

with the application software 12.

Preferably, the kernel space cryptographic service software and, in particular,
the kernel space program interface 8 thereof, electronically communicates with other
hardware crypto devices, such as the cryptographic co-processor 30 disclosed in the
patent application entitled “Cryptographic Co-Processor” filed concurrently herewith,
the disclosure of which is incorporated herein by reference. The cryptographic co-
processor 30 has mask-programmed in a memory 32 thereof a library of encryption
algorithms and the like. Accordingly, the cryptographic service software situated at
the kernel space is linked not only to the cryptographic service software situated at the
application level, but also to a hardware cryptographic device, such as the co-
processor 30 mentioned previously. Therefore, the application software may utilize
the cryptographic library in the kernel space, which is preferably pure software, or the

cryptographic library in the co-processor 30, which is essentially hardware.
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Although illustrative embodiments of the present invention have been
described herein with reference to the accompanying drawing, it is to be understood
that the invention is not limited to those precise embodiments, and that various other
changes and modifications may be effected therein by one skilled in the art without

departing from the scope or spirit of the invention.

Abstract of the Disclosure

Cryptographic service software embodied on a hard disc or a floppy disc
electronically communicates with a standard operating system of a personal computer.
The operating system has an application space and a kernel space. The cryptographic
service software performs cryptographic services at the kernel space of the operating
system. The cryptographic service software includes a kernel space level application
programming interface and a cryptographic service module having a library of

encryption algorithms.
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tion II. Method of Communicating Securely Between an Application Program

and a Secure Kernel

Background of the Invention

Field Of The Invention

The present invention relates generally to a method of communicating securely
between an application program and a secure kernel, and more particularly relates to
a method of passing command requests and arguments between an application
program and a secure kernel so that security intensive and real time intensive

applications can coexist without a security breach.

Description Of The Prior Art

Passing software structures such as data and commands between subroutines
within a program is known in the art. Software is typically created in 2 modular form
where each module communicates with each other by passing information back and
forth. Software pointers and hardware registers to locate data within a program are
also commonly used. Calling subroutines and jumping from one software module to
another module are also known in the art. These software techniques are applied to all
types of application programs including secure communication programs. However,
these application programs do not have distinct boundaries between the software
modules and the security software modules. An application program be permitted to
enter a secure program area. There are software techniques to implement this process
in a secure manner. However, it can never be truly secure because once an
application program command structure or data structure is permitted to enter a secure
program module, the application program module is free to do whatever a

programmer instructs it to do, such as retrieve secret cryptographic keys.
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Objects and Summary of the Invention
It is an object of the present invention to provide a method of communicating

securely between an application program and a secure kernel.

A method of securely communicating between an application program and a
secure kernel that contains cryptographic algorithms includes the step of creating a
memory storage area for storing and reading command requests, command data and
status data. The address of the memory storage area is passed to the secure kernel.
The secure kernel proceeds to bring in only the information within the memory
storage area that it deems is necessary and the application program is not permitted to
enter the secure kernel. The secure kernel processes the information retrieved, using
cryptographic algorithms located within the secure kernel and transfers results back to

the kernel block where the application program can retrieve them.

Since all data transfers across the boundary between the application program
and the secure kernel are initiated by the kernel, a high degree of protection is
afforded against attacks such as: trojan horse, illicit commands, virus, etc. The kernel

is always fully in control of the commands and data it processes.

These and other objects, features and advantages of the present invention will
become apparent from the following detailed description of illustrative embodiments

thereof, which is to be read in connection with the accompanying drawings.

Brief Description of the Drawings

Figure 37 is a block diagram of portions of an integrated circuit having secure
and unprotected memory areas used for securely communicating between an
application program and a secure kernel in the integrated circuit in accordance with

the present invention.
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Figure 38 is a flowchart of the method of passing command requests and
arguments between an application program and a secure kernel in accordance with the

present invention.

Detailed Description of the Preferred Embodiments

In accordance with one form of the present invention, and as shown in Figure
1, an integrated circuit, preferably a cryptographic co-processor such as that disclosed
in U.S. Patent Application entitled "Cryptographic Co-Processor", the disclosure of
which is incorporated herein by reference, includes a kernel block memory structure
2, a command block memory structure 4 and a register 6 which together provide a
boundary between an application program 8 and a secure kernel 10, which includes
cryptographic algorithms and commands. All communications between the
application program 8 and the secure kernel 10 are through the kernel block memory 2
and the command block memory structure 4. The kernel block 2 and the command
block 4 are used by the application program and the secure kernel to transfer
command communications between the application program and the secure kernel.
The kernel block 2 and command block 4 store command codes, arguments, and
status and pointer information. Together, the kernel and command blocks occupy a
pre-formatted shared block of random access memory (RAM) located in either an

internal data memory or an external data memory.

The application program 8 stores the required cryptographic commands and
arguments in the command block memory 4. They are stored in this separate area of
memory because the application program is not permitted to directly enter the secure
kernel 10. The commands are tools which allow the application software to control
and manipulate the cryptographic algorithms located within the secure kernel 10. The
arguments are the data which is passed between the application program 8 and the
cryptographic algorithms. The command block memory structure 4 is used as a data
transfer area between the application program 8 and the secure kernel 10 for servicing

cryptographic commands.
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Preferably, the kernel block 2 includes a status block field 12. The status
block field 12 provides the application program 8 with the means to track the status of
the secure kernel 10 (e.g. active or idle) and a means to determine the result of a
requested cryptographic service. As shown in the flowchart of Figure 2, the
application program first sets up the kernel block 2 and command block 4, preferably
allocating 21 16 bit words of RAM for the command block 4 and 4 16 bit words of
RAM for the kernel block 2 (Block 2).

The register 6 stores the starting address location of the kernel block 2 so that
the secure kernel 10 can locate the kernel block memory 2 at a later time. The
command block memory 4 and the kernel block memory 2 can be located anywhere
within the processor’s data memory. However, the starting address of the kernel

block memory 2 should be stored in the register 6.

The command block memory 4 and kernel block memory 2 may be populated
with the desired command and data (Block 4). The starting address of the kernel
block 2 is stored in the register 6. To execute a cryptographic service, the application
program 8 must explicitly invoke the secure kernel 10. Invoking the secure kernel 10

is achieved by executing a secure kernel transfer vector (e.g., call 0x2000 instruction).

Using the call (i.e., command) instruction (e.g., call 0x2000), the application
program 8 relinquishes processor control to the secure kernel’s read only meinory
(ROM) encoded program (Block 6). Address 0x2000 is preferably the only entry
point of the secure kernel 10. The starting address of the kernel block memory 2 is
located in the register 6 which is passed into the secure kernel 10 (Block 8). The
secure kernel 10 uses the address to locate and then retrieve the kernel block memory
information. The kernel block memory information contains a pointer to a command
address where the command block is stored. The secure kernel 10 proceeds to save
the caller’s context (application program context) in a memory stack (Block 10). This
preferably involves saving the caller’s program counter (PC) return address, stack

pointer, and frame pointer. Once the context has been saved, the secure kernel 10
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points to the data memory address where the kernel block memory 2 is stored and
proceeds by retrieving the commands and arguments stored within the kernel block 2
and command block 4 (Block 12). The secure kernel 10 processes the commands and
data using the cryptographic algorithms and commands (Block 14). It then transfers
the processed information back to specified locations in data memory and updates the
status field in the kernel block 2, at which point the application program 8 can now

access the processed information.

Although illustrative embodiments of the present invention have been
described with reference to the accompanying drawings, it is to be understood that the
invention is not limited to those precise embodiments, and that various other changes
and modifications may be effected therein by one skilled in the art without departing

from the scope or spirit of the invention.

Abstract of the Disclosure

A method of communicating securely between an application program and a
secure kernel is performed by passing command requests and arguments between the
application program and the secure kernel through a kernel block memory and a
command block memory so that security intensive and real time intensive applications
can co-exist without a security breach. The secure kernel retrieves the command
requests and the arguments from an application program data memory and processes
the information within the secure kernel. The secure kernel returns the processed data
to the application program. All data transfers are under control of the secure kernel

software, and thus numerous ‘active attacks’ against the security of the system are

defeated.
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Background of the Invention

Field Of The Invention

The present invention relates generally to a secure memory area, and more
particularly relates to a secure area of memory with multiple communication buses

having hardware that prevents unauthorized access to each communication bus.

Description Of The Prior Art

Application programs and data stored within a memory circuit are typically
protected by an operating system software, if protected at all. The software allocates
memory to an application program and prevents the application program from
executing instructions outside the allocated memory space. Preventing application
programs from exiting the designated memory space indirectly creates a secure

environment within the memory circuit.

Software memory protection is not entirely secure because there is no
hardware to physically block access to a particular area of memory. With software
memory protection, it is possible have private data or encryption algorithms sharing a
memory device with public information. Even though software protection isolates
memory space between two application programs, it remains physically possible to

access the private information.

Objects and Summary of the Invention
It is an object of the present invention to provide a secure memory area for

storage of cryptographic keys, algorithms and data having security hardware that

prevents unauthorized access to each storage area.
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A secure memory area constructed in accordance with one form of the present
invention includes a main communication bus circuit and one or more separate
secondary memory bus circuits. The main communication bus circuit and secondary
bus circuits, and any related memory circuits, are preferably formed on a single
monolithic integrated circuit (chip). The secondary memory bus circuits preferably
include a key bus circuit. The key bus circuit is provided for isolating a secret key
storage area from the external world (i.e., anything outside the chip, for example,
commands from an unauthorized accessor). This eliminates the possibility of
accidentally leaking secret key material to the outside world. Another preferred
secondary bus circuit is a cryptographic algorithm bus circuit. The cryptographic
algorithm bus circuit is provided to eliminate the risk of an outside source from
accessing cryptographic algorithms stored in a memory circuit coupled to the
cryptographic algorithm bus circuit such as via an external memory bus circuit. A
third preferred secondary bus circuit is the external memory bus circuit which has
coupled to it one or more external memories (for storage of application programs, for
example). Bus transceivers are coupled between each individual secondary
communication bus and the main communication bus. Security is established by
providing separate secondary communication buses for public and private

information.
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Brief Description of the Drawings

Figure 39 is a block diagram of a secure cryptographic memory area formed in

accordance with the present invention.

Detailed Description of the Preferred Embodiments

A block diagram of the secure cryptographic memory area formed in
accordance with the present invention is illustrated in Figure 1. The secure memory
area preferably has three sections: key memory 2, external memory 4, and internal

memory 6.

A first bus transceiver 8 is coupled to a key bus circuit 30. The first bus
transceiver 8 controls access between the key bus circuit 30 and a main bus circuit 42.
The key bus circuit 30 is coupled to a key random access memory (RAM) 12, a key
cache memory 10, and a factory laser bit storage memory 14. The factory laser bit
storage memory 14 stores a unique factory set variable used to encrypt keys. The first
bus transceiver 8 is coupled between the main bus circuit 42 and the key bus circuit
30. This isolates the key bus circuit 30, and all memories and sections connected
thereto, from the main bus circuit 42. A separate bus circuit ensures that when
encryption services are operating on memory circuits coupled to the key bus circuit
30, data (e.g. a secret key) cannot be leaked to the external memory 4. This is
prevented by having the external memory 4 on a separate external memory bus circuit
32. Access to the external memory bus circuit 32 is controlled by a second bus
transceiver 18, which cannot be activated at the same time that the first bus transceiver

8 is activated.
The key RAM 12 provides a public key volatile storage area. The key RAM

12 has enough space to accommodate the private portion of at least one active public

key operation. The key RAM 12 can not be read by an external application because,
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while the external memory 4 is being accessed, the first bus transceiver 8 blocks

access to the key RAM 12.

The key cache memory 10 allows the application to access preferably up to 15
volatile secret key cache memory locations in which are stored various encryption
keys. Each key cache location is preferably 30 words in length. The external
application can not directly read the key cache memory 10 because of the bus

isolation provided by the first bus transceiver 8.

The external memory bus circuit 32 couples an external RAM 20 and an
external read only memory (ROM) 22 to the main bus 42 through the second bus
transceiver 18. The second bus transceiver 18 controls access to the external memory
bus circuit 32 from the main bus circuit 42. Having a separate external memory bus
circuit 32 is important because, while the outside world is accessing the main bus
circuit 42, the first bus transceiver 8 prevents access to the key bus circuit 30 and the

secure key data stored in memory.

A third bus transceiver 24 controls access between the main bus circuit 42 and
a cryptographic algorithm bus circuit 40. The cryptographic algorithm bus circuit 40
couples a scratch RAM 26 and an internal ROM 28 to the third bus transceiver 24. A
separate bus is provided to prevent secure data and algorithms from being accessed by
an external source via the external bus circuit 32. An external application can not read
the internal ROM 28 because the third bus transceiver 24 is deactivated when the
second bus transceiver 18 is activated. The third bus transceiver 24 is also deactivated

when the first bus transceiver 8 is activated.

External RAM 20 is used to store application software for use by a processor.
Encryption algorithms are stored in the internal ROM 28. Commands are passed back
and forth between ROM 28 (encryption kernel) and the application via the external
RAM 20. When the processor is accessing the external memory bus circuit 32, it is

not possible to access the internal ROM 28 because it is isolated by the third bus
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transceiver 24. This prevents an external device, such as an emulator, from accessing

the internal ROM 28 and reading the secure algorithms.

A small scratch RAM 26 exists for the encryption kernel and the cryptographic
services to use as a storage device for intermediate calculations. The scratch RAM 26

is isolated from the external applications by the third bus transceiver 24.

The main communication bus 42 is coupled to a digital signal processor (DSP)
16, which internally includes a microprocessor. The microprocessor of the DSP 16
preferably communicates with and controls the activation and deactivation of the bus
transceivers 8, 18, 24 by sending control signals to each transceiver. The DSP 16

ensures that only one transceiver will be active at any given time.

Hardware protection eliminates the possibility of compromising private
algorithms or data. Isolating memory circuits and external devices with separate
communication buses increases security and lowers the risk of accidentally releasing
private information. Structuring memory around separate communication buses and
permitting only one communication bus to be accessed at a time provides hardware

security that exceeds that provided by software.

Although illustrative embodiments of the present invention have been
described with reference to the accompanying drawing, it is to be understood that the
invention is not limited to those precise embodiments, and that various other changes
and modifications may be effected by one skilled in the art without departing from the

scope or spirit of the invention.

Abstract of the Disclosure

A hardware secure memory area includes one or more secondary
communication buses connected to a main communication bus. The secondary

communication buses are coupled to the main communication bus by separate bus
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transceivers. The bus transceivers provide isolation between the communication
buses and between unaccessed secondary buses and the main communication buses.
Various external devices, such as memories, may be coupled to the communication
buses. Only one bus transceiver may be activated at a time, thus making it

impossible for two secondary communication buses to be linked.

Section IV. Method of Expanding Protected Memory in an Integrated Circuit

Copyright Notice

A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent disclosure, as it appears in the Patent and
Trademark Office patent files or records, but otherwise reserves all copyrights

whatsoever.

Background of the Invention

Field Of The Invention

The present invention relates generally to a method of expanding protected
memory, and more particularly relates to a method of expanding memory protection
into an unprotected memory area while providing protection to the newly acquired

memory area.

Description Of The Prior Art

Typical operating systems have memory protection systems. They provide an
application program with a designated memory area and prevent the application
program from executing instructions outside the area. When an application program

is launched, the operating system allocates sufficient memory for the application to
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run. The operating system prevents the application program from going outside the
allocated memory area. If the application tries to execute an instruction outside the
allocated memory area, the operating system shuts down the application. A secure
memory environment is created by preventing each application program from exiting
its own designated memory area. This prevents applications from entering other
application memory space, thus creating a secure environment. This approach is
good if one wants to prevent applications within the system from entering other
application memory space. However, it also prevents an application program from
executing instructions outside of its allocated memory area and does not provide any

flexibility to the amount of memory allocated for the application program.

Objects and Summary of the Invention

It is an object of the present invention to provide a method of expanding a
protected memory area into an unprotected memory area, while providing protection

to the newly acquired memory.

It is another object of the present invention to provide a method of expanding
protected memory in increments and allowing an application to execute instructions

outside the protected memory area.

It is another object of the present invention to provide a method of permitting

an application program to enter and exit a protected memory area.

A method of expanding memory protection into an unprotected memory area
in accordance with one form of the present invention includes the step of requesting
initialization of a secure kernel (which includes an operating program in a secure
memory area) by an application program. The step of specifying a starting block
address and number of blocks to be protected provides maximum flexibility to the
application program using the integrated circuit having protected (secure) and

unprotected memories. The memory is partitioned into blocks, thus providing the
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OEM with the flexibility to expand the protected memory in increments. The starting
block address and the number of blocks are stored in a hardware register. The ability
to store this information in register provides the application with the ability to jump in

and out of the new protected memory.

The application can relinquish the newly acquired protected memory by
requesting the secure kernel to reinitialize itself. This involves clearing the memory
that contains the starting block address and the number of blocks so that on power up
the secure kernel is in a default setting. It also results in the expanded protected
memory being overwritten with a random pattern. This destroys the protected

information that was previously stored in the memory.
These and other objects, features and advantages of the present invention will
become apparent from the following detailed description of illustrative embodiments

thereof, which is to be read in connection with the accompanying drawing.

Brief Description of the Drawing

Figure 40 is a flowchart of the method of expanding protected memory into

unprotected memory.
Figure 41 is a block diagram illustrating various memories used in an

integrated circuit formed in accordance with the present invention.

Detailed Description of the Preferred Embodiments
A flowchart of the method of expanding protected memory into an unprotected

memory formed in accordance with the present invention is illustrated in Figure 1.

The method provides a mechanism for expanding a secure key cache memory space
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into an unprotected memory space, while extending security protection to the new

memory space.

A secure kernel program is mask-programmed into preferably a 32K word
(word = 16 bits) read only memory (ROM) located within a general purpose processor
of an integrated circuit (IC). A volatile random access memory (RAM) is also
preferably provided for the storage of encryption keys. The secure kernel allots
memory space in the volatile key RAM for at least one public key and a plurality
(preferably 15) of secret keys. To accommodate additional encryption keys and key
data, an OEM in whose end product (e.g. modem, router, cellular phone, etc.) the IC
is used may expand the size of the key cache memory by expanding into the internal
processor data memory space, which would have otherwise been used by an
application program. The data memory is partitioned into preferably 1K word (word

= 16 bits) blocks comprising the address range which can be protected.

As shown in the flowchart of Figure 40, the request to expand the secure key
cache memory space into the unprotected data memory space requires that the
application program include an application program interface (API) call (e.g. CGX
INIT command) to initialize the secure kernel (Block 2). The initializing step is
similar in many respects to when one “boots up” a computer. A self-test is preferably
performed by the chip, various housekeeping chores are attended to, stack pointers are
reset, certain memories are erased and memory that was previously locked ih as being
allocated as protected memory is released and the contents erased. This command
causes the arguments attached to the command to be vectored into the secure kernel
where the secure kernel reads the arguments. The arguments include pointer data and
the number of new protected memory blocks requested. The pointer data contains the
starting memory address of the requested new protected memory (i.e. expanded key
cache). The secure kernel receives the command and reads the arguments (Block 4).
The secure kernel then goes to the starting memory address and locks in the number
of 1K word memory blocks requested (Block 6). The memory is locked in, for

example, by writing a “1” into a data memory reserve register located in the
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protected kernel space (Block 8). For every 1K word block of memory requested, a
“1” is preferably written into the data memory register. The data memory reserve
register is preferably 16 bits long, as there are preferably 16 1K word blocks of

memory which may be designated as protected.

Figure 41 shows the various memories and reserve registers used in an
integrated circuit (IC) formed in accordance with the present invention, and illustrates
the technique for expanding the protected memory in the IC. The invention has
particular application to a cryptographic co-processor, such as described in U.S.
Patent Application entitled "Cryptographic Co-Processor" filed concurrently herewith,

the disclosure of which is incorporated herein by reference.

Figure 41 illustrates the data memory 2 and its associated reserve register,
referred to herein as the DM reserve register 4. As can be seen from Figure 2, and as
described previously, when a 1K word (word = 16 bits) block of memory is reserved
for being protected, a "1" is written into thé associated data memory register at a bit

place in the register corresponding to the particular block (page) of memory reserved.

The program memory 6 and the key memory 8 of the integrated circuit, and
more particularly, the cryptographic co-processor mentioned above, may also be used
for expansion of the secure kernel in a manner similar to that described with respect to
the data memory 2. In other words, the program memory 6 has associated therewith a
reserve register, referred to as a PM reserve register 10, and the key memory 8 has

associated therewith a reserve register, referred to as the KM reserve register 12.

Each of the PM reserve register 10 and the KM reserve register 12 is also
preferably 16 bits long, and each bit in the register corresponds to a particular page or

block of memory in the program memory 6 and key memory 8, respectively.

With respect to the program memory, there are 16 1K word (word = 24 bits)

blocks of memory which may be reserved as protected. With respect to the key

287



10

15

20

WO 99/14881 PCT/US98/19316

memory 8, there are 16 256-byte blocks of memory which may be reserved as
protected. Preferably, the memory locking registers are only available (read/write)

when in the kernel (protected) mode.

Memory blocks designated as protected by the application remain protected
until memory or chip power is removed, a chip or system reset occurs, or a command
to restore the protected memory to a default setting (i.e., memory allocation prior to

the expansion) is generated.

A computer program showing the method of re-configuring an integrated
circuit in accordance with the present invention is provided herewith and is

incorporated herein as part of the disclosure of the invention.

Although illustrative embodiments of the present invention have been
described herein with reference to the accompanying flowchart, it is to be understood
that the invention is not limited to those precise embodiments, and that various other
changes and modifications may be effected therein by one skilled in the art without

departing from the scope or spirit of the invention.

Abstract of the Disclosure

A method of expanding memory protection into an unprotected memory area
includes the step of setting an address within the unprotected memory where the new
protection will be provided. The original equipment manufacturer (OEM) selects the
starting memory block address and the number of memory blocks required for the
expanded memory location. The information is stored in a memory and read by a
secure kernel during initialization. After initialization the secure kernel adjusts its

memory boundaries according to the request of the OEM.
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Section IV. Method for Expanding Secure Kernel Program Memory

Copyright Notice

A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent disclosure, as it appears in the Patent and
Trademark Office patent files or records, but otherwise reserves all copyright rights

whatsoever.

Background of the Invention

Field Of The Invention

The present invention relates generally to a method of expanding a secure
kernel memory area, and more particularly relates to a method of expanding a secure
kernel memory area into an unprotected memory area while testing for validation and

providing protection to the newly acquired memory area.

Description Of The Prior Art

Software developers attach a digital signature to their software code to protect
users from code that has been modified. The modification may occur during or after
the manufacturing process. Digital signatures are attached to each software package
during the final stages of the manufacturing process. Each signature has a data item
which accompanies a digitally encoded message and is used to determine if the code
has been modified. Before the user is permitted to load the entire software package
on to a computer, the digital signature must be checked for authenticity. This is
accomplished by comparing the digital signature within the code to a digital signature

provided by the user. If the software code has been tampered with or a computer virus
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has attacked the code, the digital signature within the code will be altered. A
difference between the two digital signatures indicates that data integrity has been

breached and the software is prevented from being loaded into the computer.

Objects and Summary of the Invention

It is an object of the present invention to provide a method of expanding a
secure kernel memory area into an unprotected memory location while testing for

validation and providing protection to the newly acquired memory area.

It is an object of the present invention to provide a method for adding new
authorized encryption algorithms to a secure kernel while providing the new

algorithms with the same security as mask-programmed cryptographic algorithms.

It is another object of the present invention to provide flexible memory
protection that can only be accessed by a super user, for example, the manufacturer of

the integrated circuit having the protected and unprotected memories.

It is an object of the present invention to provide a manufacturer with

flexibility and control over the addition of code to an existing system.

A method of expanding a secure kernel memory area formed in accordance
with the present invention includes the step of signing an application program or
encryption algorithm with a digital signature. This is required so that the
manufacturer of an integrated circuit (IC) containing a secure kernel memory can
control code that is added to the secure kernel memory. It also prevents unauthorized
access to the secure memory area. The IC manufacturer generates a digital signature
using its private key. The digital signature is verified by the secure kernel in the end
product (e.g., router, modem, cellular phone) in which the IC is being used using a

public key, which is stored in a read only memory (ROM) within the IC. The secure

290



WO 99/14881 PCT/US98/19316

kernel verifies the digital signature and if it is valid, the secure kernel locks the
expanded memory into protected mode and loads the new code. If the signature is

invalid, the request is denied.

Brief Description of the Drawing

Figure 42 is a flowchart of a method of expanding a secure kernel program

memory space.

Detailed Description of the Invention

A flowchart of the method of expanding a secure kernel memory area into an
unprotected memory area formed in accordance with the present invention is
illustrated in Figure 42. The method provides a mechanism for expanding a secure
kernel memory area into an unprotected mémory area, while providing security to the

newly acquired memory and validation of new kernel code.

A secure kernel program is mask programmed into preferably a 32K word
(word = 24 bits) read only memory (ROM) located within a general purpose
processor. The processor has preferably 16K words (word = 16 bits) of data random
access memory (RAM) and 16K word (word = 24 bits) of program RAM available for
applications. The kernel ROM is protected by hardware that prevents direct access to
the kernel by an application. The hardware provides a shared memory area where
commands and arguments can be passed between the application and the secure
kernel. To accommodate an additional cryptographic algorithm or other kernel
extension, the IC manufacturer or an original equipment manufacturer (OEM) of
whose product the IC is a component (such as in a router, modem, cellular phone,
etc.) may expand the size of the secure kernel memory space. This is accomplished
by expanding into the internal processor program memory space and/or data memory

space, which would otherwise have been used for an application program. The data
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memory and the program memory are preferably partitioned into 1K word (word = 16
bits) blocks.

An additional cryptographic algorithm or other kernel extension (i.e., extended
code) is required to be signed by a trusted authority before it can be down loaded into
the newly acquired memory. This method employs a digital signature to authenticate
the kernel extension by embedding the signature in a token which is presented along
with the new code. Each integrated circuit having the secure kernel memory and
unsecured memory is identified by a unique factory programmed identification code,
making it possible to single out a specific integrated circuit. The creation of the
kernel extensions is controlled to prevent the down loading of illegal or untrusted

cryptographic algorithms into the integrated circuit (IC).

Referring to Figure 42, to down load the new cryptographic algorithm, or
other kernel extension, the application software first requests the serial number of the
IC using a command provided within the IC, as shown in Block 2. The preferred
serial number is a hash of a local storage variable (LSV). The LSV is a unique
variable that is set by burning fuses within the IC during the manufacturing process.
Once the OEM retrieves the serial number, the OEM sends the serial number and the
extended code to the manufacturer of the IC, as indicated in Block 4. In Blocks 6 and
8, if the manufacturer approves of the extended code, a token is generated and sent to
the OEM. The token includes the serial number, digital signature of the extended
code created by the IC manufacturer. Having the serial number of the IC in the
returned token is preferred so that only the IC requested to be extended in secure
memory will be permitted by the IC manufacturer to do so, and not a different IC. If
the IC manufacturer does not include the serial number in the return token, this
preferably means that it approves a secure memory expansion for all ICs. In Block
10, the OEM application program loads the extended code and the token into an

internal program random access memory (RAM) located within the IC.
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The application program, in Block 10, executes a command (e.g., CGX _
LOAD _ EXTENDED) which transfers the extended code into the secure kernel. All
interrupts are disabled to maintain the integrity of the process and to prevent someone
from accessing the secure kernel and obtaining secure code. The secure kernel takes
control of the process and fetches the token and the serial number (Block 12) . A
pointer to where the extended code is located in memory is passed into the secure
kernel. The amount of memory requested and the token are also passed into the
secure kernel with this command. In Block 14, the token is separated and the serial
number field is extracted from the token. If a serial number is present, it is compared
to the serial number within the IC, as shown in Blocks 16 and 18. If the serial
numbers do not match, then the token was not directed to this IC and the process is
aborted. This feature allows the IC manufacturer to target the extended code to
selected ICs. Preferably, as shown in Block 16, if there is no serial number found
when the token is parsed, it means that the extended code is approved to be
downloaded into any or all ICs made by the IC manufacturer. If the serial numbers

match, or there is no serial number, then the signature verification phase may begin.

The signature verification phase is a standard process which may be achieved
in several different ways. In the preferred method, the kernel hashes the extended
code together with the serial number and computes a Digital Signature Algorithm
(DSA) digital signature of the hash, as indicated in Blocks 20 and 22. In Block 24,
the computed signature block is verified against the signature passed in with the
token. If they do not match, the process is aborted, as shown in Block 26. If they do
match, then the code is considered to be valid and the secure kernel locks in the
approved number of program memory pages, as indicated in Block 28. This is
preferably achieved by setting a bit in the program memory reserve register to 1, for
every 1 K word block of program memory space used for the extended code. In Block
30, the secure kernel marks the extended code as valid and the code is ready to

execute.
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A computer program illustrating one form of the method of the present
invention is provided herewith and is incorporated herein as part of the disclosure of

the invention.

Although illustrative embodiments of the present invention have been
described herein with reference to the accompanying drawing, it is to be understood
that the invention is not limited to those precise embodiments, and that various other
changes and modifications may be effected therein by one skilled in the art without

departing from the scope or spirit of the invention.

Abstract of the Disclosure

A method of expanding a secure kernel memory area to accommodate
additional software code includes the step of digitally signing the additional code by a
trusted authority. The code has a digital signature to authenticate the source of the
code and to control what code can be added to the secure kernel. The new code is
copied into an unprotected memory where the digital signature is verified. The digital
signature includes a unique integrated circuit (IC) identification number, which
provides the IC manufacturer with the ability to control the secure kernel memory
expansion of all or each of the ICs. If the code is authenticated via the digital
signature, then those memory blocks are locked-in as protected memory and thus

given “secure kernel” privileges.
Section VI. Method of Reconfiguring the Functionality of an Integrated Circuit

Copyright Notice

A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the

facsimile reproduction by anyone of the patent disclosure, as it appears in the Patent
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and Trademark Office patent files or records, but otherwise reserves all copyrights whatsoever.

Background of the Invention

Field Of The Invention

The present invention relates generally to a method of enabling features of an
integrated circuit, and more particularly relates to a method of controlling
configuration settings and program upgrades to an integrated circuit contained in a

product released to the field.

Description Of The Prior Art

Products that are developed having multiple features or configurations are
typically set manually by a manufacturer or a product user. This usually requires
setting an internal dual in-line package (DiP) switch. This approach may be
convenient and require limited support hardware; however, it does not provide the
manufacturer with control over what features or configurations the user selects.
Another technique used by manufacturers to vary their product features is to provide
different programmable read only memory (ROM) circuits for every product
variation. This approach prevents users from changing the product configuration, but

it also eliminates the flexibility of changing the configuration of the product in the
field.

Objects and Summary of the Invention

It is an object of the present invention to provide a method of changing

configuration settings and program upgrades in an integrated circuit from a remote

location only by an authorized person.
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A method of enabling features within an integrated circuit (IC) in an
authenticated manner formed in accordance with the present invention includes the
step of retrieving a unique serial number stored in memory within the IC. The
original equipment manufacturer (OEM) in whose end product (e.g., modem, router,
cellular phone, etc.) the IC is used requests a token (i.e., authorization signal) from an
IC manufacturer to upgrade features within the IC. If the IC manufacturer decides to
permit the OEM to upgrade the features of the IC, the token will be sent to the OEM
with new configuration bits, the serial number and a digital signature to authenticate
the source of the data. The returned serial number is verified in the IC to confirm that
the IC receiving the upgrade approval is the IC which made the request. The digital
signature is also verified to confirm that it is the manufacturer of the IC who is
approving the upgrade. If the serial number is verified and the digital signature is
verified, then a kernel (i.e. operating system) stores the new configuration bits in a
memory, and the IC is reconfigured as requested by the OEM and authorized by the

IC manufacturer.
These and other objects, features and advantages of the present invention will

become apparent from the following detailed description of illustrative embodiments

thereof, which is to be read in connection with the accompanying drawing.
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Brief Description of the Drawing

Figure 43 is a flowchart of the method of the present invention for controlling

and setting different features within an integrated circuit.

Detailed Description of the Preferred Embodiments

The features of the invention described herein are suitable for use in many
different integrated circuits, but are particularly applicable for use in a cryptographic
co-processor, such as that disclosed in the U.S. patent application entitled
“Cryptographic Co-Processor” filed concurrently herewith, the disclosure of which is
incorporated herein by reference. A number of terms used herein are defined in the
aforementioned patent application, and reference should be made to such application

for a more detailed explanation of such terms.

An integrated circuit (IC) is manufactured with preferably 256 programmable
fuses which are programmed by a laser during the manufacturing process. Of the 256
fuses, 48 make up program control data bits (PCDBs) which enable and disable
various IC features and configure the IC. The configuration in which the fuses are
programmed determine what security features are activated within the IC (e.g., key
lengths, red KEK loading, public key vector size and algorithm enable). Preferably,
these security features are already present in the chip, and only some may have been
activated. None of the PCDB features have to be enabled during the manufacturing
process; however, in this case the original equipment manufacturer (OEM) would
have to request a feature-enable token from the IC manufacturer to enable the
cryptographic functions. There is a unique IC serial number embedded within every

IC that is used to identify the IC.

The functionality and features of the IC can only be modified with approval

from the IC manufacturer. This is to prevent unauthorized use of encryption
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algorithms in the preferred use of this method in a cryptographic co-processor. Each
integrated circuit is designed and manufactured with numerous encryption features
(e.g., DES, 3DES, etc.) However, not every encryption feature may be activated
when the IC is shipped to the OEM. Activation may depend upon the OEM’s
requirements or the OEM’s geographic location. A particular integrated circuit may
be manufactured to provide only a limited level of security to meet United States
Government export laws. If the laws change or the product incorporating the IC is
moved inside the United States, the IC may be enabled in the field to operate at a

greater level of security.

Referring to Figure 43, to request an encryption upgrade or enable new
features of the IC, the OEM application software executes a command that retrieves
the serial number from the IC (e.g., CGX_GET_CHIPINFO) (Block 2). Once the
serial number is retrieved, it can be communicated to the IC manufacturer, along with
the PCDB settings needed to reconfigure the IC, as a token request signal (Block 4).
If the IC manufacturer approves of the OEM’s request to upgrade the cryptographic
functions (Block 6), then the IC manufacturer will create a return token signal to
enable the requested upgrades (Block 8). The token is created by the IC manufacturer
and contains the new PCDBs. A digital signature of the IC manufacturer is attached
to the return token and communicated to the OEM with the unique IC serial number
(Blocks 8 and 10). The serial number is included in the return token so that only the
designated IC can be upgraded. The digital signature is generated by the IC
manufacturer using a private key which is only known to the IC manufacturer. The
OEM application program receives the return token which includes the digital
signature and serial number, and submits them to a secure kernel in the IC (Block 12
and 14). The secure kernel includes cryptographic algorithms and digital signature
algorithms. The kernel parses the token to separate the serial number and the digital
signature, and compares the parsed serial number to the serial number embedded
within the chip (Blocks 16 and 18). If they do not match, the process is aborted. If
they do match, the kernel enters a signature verification phase to verify that the parsed

digital signature is from the IC manufacturer (Block 20). This process preferably uses
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a standard SHA-DSA algorithm using a public key stored within an IC non-volatile
memory. If the digital signature does not verify correctly, the process is aborted. If
the signatures match, the kernel stores the new PCDBs in a memory (Block 22). On
power up or IC reset, the kernel will read the new PCDBs and disregard the old,
burned-in PCDBs and re-configure the IC to the appropriate settings. With the
example of a cryptographic co-processor, the OEM manufacturer may now use the IC

with the authorized encryption algorithms or hash functions.

A computer program showing the method of re-configuring an integrated
circuit in accordance with the present invention is provided herewith and is

incorporated herein as part of the disclosure of the invention.

Although illustrative embodiments of the present invention have been
described herein with reference to the accompanying drawing, it is to be understood
that the invention is not limited to those precise embodiments, and that various other
changes and modifications may be effected therein by one skilled in the art without

departing from the scope or spirit of the invention.

Abstract of the Disclosure

A method of reconfiguring the functionality of an integrated circuit (IC)
includes the step of retrieving a serial number embedded in the IC and transmitting a
token request signal to an authorizing party. The token request signal includes the
serial number and a reconfiguration code to be used for reconfiguring the IC. The
authorizing party transmits a return token signal to the IC which includes the serial
number, the reconfiguration code and a digital signature of the authorizing party. The
return token signal is parsed by the IC to extract the serial number, reconfiguration
code and digital signature of the authorizing party. The parsed serial number and
signature are verified by the IC as being correct, and the reconfiguration code is stored
in a memory of the IC. The IC then reconfigures itself in accordance with the

reconfiguration code.
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Section VII. Method of Implementing a Key Recovery System
Copyright Notice

A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent disclosure, as it appears in the Patent and
Trademark Office patent files or records, but otherwise reserves all copyright rights

whatsoever.

Background of the Invention

Field of the Invention
The present invention relates generally to a method of encryption key recovery
on an integrated circuit, and more particularly relates to a method of establishing a

trusted key relationship with an authorized party which allows a user to recover an

encryption key in a secure manner.

Description of the Prior Art

Key recovery is typically used to retrieve a copy of a private key when the key
is lost, or is unknown to an employer, or when a court order has granted a government
agency the right to monitor communication traffic. A lost key results in lost data
because without the key, the encrypted data cannot be decrypted. A disk holding the
key may be lost or a hardware failure may result in a lost key. A user needs to have
the ability to recover a lost key. An employer may need to recover private keys
generated by former or disgruntled employees to retrieve corporate information. A
government authority may need a private key to observe an encrypted data
transmission when there is a suspicion of criminal activity. The typical method of key
recovery includes sending a wrapped copy of the private key with each transmission.

Then under the appropriate circumstances, this key may be unwrapped with a

recovery key.
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Objects and Summary of the Invention

It is an object of the present invention to provide a method of creating a

recovery key encryption key (RKEK) in a secure manner so that only an authorized

party can own the RKEK.

It is another object of the present invention to create an RKEK for wrapping
keys used in an encryption process, and for recovering the encryption key and

decrypting data at a later date.

In accordance with one form of the present invention, a method of generating a
recovery key encryption key (RKEK) in a secure manner by an integrated circuit (IC)
and a key recovery escrow agent includes the steps of generating by the IC a first
number having a private component and a public component, and generating by the
escrow agent a second number having a private component and a public component.
The method further includes the steps of providing the public component of the first
number to the escrow agent, and providing the public component of the second

number to the IC.

Then, a Diffie-Hellman modulo-exponentiation mathematical operation is
performed by the IC using the private component of the first number, and the public
component of the second number to create the RKEK. Also, the escrow agent
performs a similar operation, that is, a Diffie-Hellman modulo-exponentiation
mathematical operation using the private component of the second number, and the

public component of the first number to create the RKEK at its end.
These and other objects, features and advantages of the present invention will

become apparent from the following detailed description of illustrative embodiments

thereof, which is to be read in connection with the accompanying drawing.
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Brief Description of the Drawing

Figure 44 is a flowchart of a method in accordance with the present invention

for creating a secure recovery key encryption key.

Detailed Description of The Preferred Embodiments

The following technique describes an approach for encryption key recovery
that meets the needs of both the government and users. It provides a way for an
application program to establish a trusted key relationship (a secure protocol) with a
third party, such as an integrated circuit (IC) manufacturer or a certifying/escrow
agency, so that a recovery key encryption key (RKEK) can be created. This provides

the escrow agency with the means to get at any key created/protected by the IC.

In accordance with one form of the present invention, a random number is
burned into a read only memory (ROM) on the integrated circuit (IC) by the
manufacturer of the chip. This random number is a unique serial number which is

used to identify the chip.

With respect to key recovery, the purpose is to have the recovery key
encryption key (RKEK) embedded in the IC and used as part of the normal encryption
routines performed by the chip. The RKEK is used to wrap or encrypt other keys
used in the encryption process. One always wants to ultimately protect the keys used
in encryption, and would never want to let keys be exported outside the chip, except

keys will be allowed to leave the chip if they are protected by the RKEK.

The RKEK will be embedded in the chip, but also the idea is to have someone
else have a copy of the RKEK, i.e., the escrow agent or the “key recovery agent”.
This will allow someone else (other than the chip, or more precisely, the OEM
manufacturer in whose end product (e.g., router, modem, cellular phone, etc) the chip

is found) to decrypt the data or recover the key used in the encryption process.
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First, the RKEK must be generated and it is preferably stored on the chip in a
key cache register. The RKEK is a key that is in the IC which is used to “wrap” other
keys used in the encryption process. Once one has created an RKEK in the chip, one

wants to create a carbon copy of it for the escrow agent to hold.

The OEM product manufacturer, who manufacturers a device, such as a router
or modem in which the encryption chip is used, usually has an agreement with an
escrow agent. The escrow agent and the OEM manufacturer agree on the modulus
and generator used by the chip. The modulus and generator are public elements (i.e.,
numbers) used in public key cryptography. If two parties want to take part in a public
key operation, including creating the RKEK, than the parties must agree on the
modulus and generator so that the two parties will be, in effect, communicating in the
same language. Once the OEM product manufacturer and the escrow agent have
decided on the modulus and generator used in the chip, the application software uses a
command, such as CGX_GEN_NEWPUBKEY, to begin the process of generating a
public key. |

In generating a public key, the chip preferably uses a Diffie-Hellman (D-H)
public key process, although one can use RSA, elliptic curve and other well-known
public key algorithm techniques. The following explanation of the RKEK process
will be described using the Diffie-Hellman (D-H) public key method. The D-H public
key method is preferred over elliptic curve and RSA for generating the RKEK because
each party contributes equally to the generation of the RKEK and no one party has an

advantage over the other.

With the D-H public key method, each party to the communication will end up
having a key (i.e., a relatively long number) which will be the same. Each party starts
out with its own number that it chooses. The number has a private component and a
public component. Each party exchanges (reveals to the other) its public component.
In the case of generating the RKEK, one party is the OEM product manufacturer in

whose product the encryption chip is used, and the other party is the escrow agent.
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After the exchange, each party ends up having its own private part, its own public part
and the other party’s public part.

In accordance with the D-H method, a mathematical operation (modulo-
exponentiation arithmetic) is performed by each party, using an exponential formula
(g¥ mod n). By using this mathematical operation on the private components and the
known public components, each party can derive the same number (key). An outsider
(eavesdropper) to the communication has only access to the two public parts and

neither private part and, therefore, is denied access to the key.

With the command, CGX_GEN_NEWPUBKEY, the IC will create a number
having a private part and a public part. The escrow agent does the same. The private
part stays protected on the chip; it never leaves the chip. The escrow agent’s number
also has a private part and a public part (the escrow agent carefully holds in
confidence the private part). The numbers are generated by both parties using the D-

H modulus and generator.

Now, the IC generates a request token (i.e., message) to generate an RKEK. In
the token is preferably repeated the unique serial number of the chip and the public
part of the D-H key set (and optionally a hash of this data for integrity purposes).

This request token is preferably sent to the chip manufacturer (i.e., a trusted third
party), which acts as a middleman between the OEM part manufacturer (whose

product uses the IC) and the key escrow agent.

Thus, the manufacturer of the IC has the public component of the IC’s key,
and the serial number. The manufacturer recognizes the chip from the serial number
and may verify with the escrow agent that a key recovery process has been agreed to
between the OEM product manufacturer and the agent. The IC manufacturer then

authorizes the creation of the RKEK.
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Preferably, the chip will not be able to create the RKEK without the chip
manufacturer’s authorization. Using the chip manufacturer as the middleman to give
approval to create the RKEK adds an extra measure of security to further preclude an
unauthorized adversary from creating an RKEK that may be used to decrypt data and

uncover the encryption key.

The chip manufacturer “signs” the request token by adding its digital signature
using a private key. The signed token, which preferably comprises the serial number
(of the chip), the public component (referred to as “g* mod n”) of the ICs recently
generated public keyset and the IC manufacturer’s digital signature (which hashes all

of the other data in the token) is forwarded to the IC as well as to the escrow agent.

The application software of the IC uses a new command, for example,
CGX_GEN_RKEK, to pass into the chip the signed token as an argument to the
command. An additional argument is the public key component from the escrow

agent.

The public key component from the escrow agent may be delivered directly

from the escrow agent to the IC or may be routed through the trusted third party.

The chip checks the token’s digital signature using a public key burned into
the IC during manufacturing to verify the signature of the IC manufacturer, and
further checks the serial number in the returned signed token to see if it matches that
which has been burned into the chip during manufacturing. If both portions check

out, then the token has been validated.

The RKEK is created by the chip from the escrow agent’s public key
component (which the chip now has) and the chip’s private key component (which it
has been holding onto). The same RKEK is also created by the escrow agent from its
private key component, and the chip’s public key component which it received from

the chip either directly or through the chip manufacturer.
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The uitimate RKEK which is created is the D-H shared secret, i.e., a modulo-
exponentiation operation is performed using the other party’s public key and the first
party’s private key (x or y). The resuit of this operation is a number that both parties

will have, but which an eavesdropper cannot generate. This number becomes the

RKEK.

As a result of this exchange of information, the chip now has the RKEK,
which is stored in its key cache register, the escrow agent has the same RKEK which
it saves, and the chip manufacturer or trusted third party has no RKEK because it was

not privy to the private key components of the two other parties.

Alternatively, the escrow agent may choose to not generate the RKEK
immediately, but rather to store the IC’s public key so that it can generate the RKEK
in the future should it be necessary.

The preferred integrated circuit uses many different keys, such as KEK’s (key
encryption keys), RKEK’s, DEK’s (data encryption keys), LSV’s (local storage
variables), and others. Each one of these keys has an attribute which identifies what
type key it is and whether it is a trusted or untrusted key. The key management
software of the IC reads these attributes and, therefore, recognizes the various keys,
including the RKEK, and knows that it can use the RKEK as a key encryptioh key to
encrypt other types of keys and allow them to be exported out of the chip.

The RKEK is used to "wrap" other keys which are used for data encryption,
and the wrapped key may be exported with the encrypted data. Therefore, for
exported encrypted data, if a receiver of the data cannot find the original encryption
key, the key was exported with the data, and therefore, all the receiver needs is the
RKEK. Accordingly, the RKEK may be used to encrypt data (by wrapping the
encryption key) but also for decrypting data (by recovering the encryption key).
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The preferred method of generating a recovery key encryption key (RKEK), in
accordance with the present invention, is shown in the flow chart of Figure 44 and
will now be described in detail. The integrated circuit (IC) is referred to in the flow
chart by the trademark CryptIC, and the term “IRE” refers to the assignee and owner
of the invention, Information Resource Engineering, Inc. IRE is the manufacturer of

the integrated circuit and is the trusted third party in the operation of generating an

RKEK.

In accordance with the preferred method, the first step in the process is to have
the integrated circuit and the recovery agency generate a public key set. Preferably, as
mentioned previously, a Diffie-Hellman (D-H) public key set is used. The steps
involved in generating the D-H public key set are shown in the flow chart and labeled
as Blocks 2-10.

First, the application software on the integrated circuit requests the serial
number from the integrated circuit (Block 2). This is done with a command, such as
CGX_GET_CHIPINFO. The next step is for the application software associated with
the integrated circuit to transmit the serial number to the recovery agency (Block 4).

This is done with a message, which is referred to as a “request” or “token”.

Both the integrated circuit (perhaps under control of, the OEM manufacturer)
and the recovery agency agree on a particular modulus “m” and generator “g”, and the
recovery agency returns its modulus and generator to the application software of the
integrated circuit (Block 6). The recovery agency also generates a new D-H public
key set (Block 8). Similarly, the integrated circuit uses the modulus “m” and the

generator “g” to generate a D-H public key set (Block 10). This is usually done
through a command by the application software, such as CGX_GEN_NEWPUBKEY.

The application software for the integrated circuit then constructs a key-
recovery request token message and sends this message to the trusted third party

(Block 12). The request token preferably includes the integrated circuit serial number,
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which is the unique number which is programmed into the integrated circuit, and the
D-H public key of the integrated circuit. The trusted third party (for example, IRE,
the manufacturer of the integrated circuit) signs the request token with its private
signature key (i.e., a digital signature) and returns the token as a message to the
integrated circuit (Block 16). This return token preferably includes the integrated
circuit serial number, the D-H public key (of the integrated circuit) and the trusted

third party’s digital signature.

The recovery agency sends its public key to the integrated circuit application
software (Block 14). Now, the integrated circuit has all that it needs to generate the

RKEK.

The application software commands the integrated circuit to generate the
RKEK (Block 18). It may do this with a command, such as CGX_GEN_RKEK. The
CGX kernel (secure portion of the integrated circuit) parses the recovery token sent
from the trusted third party (IRE) so that the trusted third party’s digital signature and
the serial number may be verified (Block 20). The integrated circuit then compares
the serial number in the recovery token from the third party with its own serial
number programmed in the chip to see if there is a match (Block 22). If the two serial
numbers do not match, then the routine is aborted and the request to generate an
RKEK is rejected (Block 24). If the serial numbers match, then the integrated circuit
verifies whether the digital signature from the trusted third party is authentic by using
a trusted public key which the integrated circuit has stored in memory (Block 26). If
the digital signature is not authentic, then the routine is aborted and the request to
generate an RKEK is rejected (Block 28). If the digital signatures match, then the
integrated circuit will calculate an RKEK using the D-H algorithm (Block 30).

Similarly, the recovery agency calculates its copy of the same RKEK (Block
32). The recovery agency was sent the public key of the integrated circuit (Block 16)
and, from this public key, and its private and public key, the recovery agency uses the

Diffie-Heliman algorithm to generate the same RKEK at its end. The recovery
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agency then stores its RKEK along with the integrated circuit’s serial number in

escrow (Block 34).

A computer program showing the operation of the integrated circuit in
generating the RKEK in accordance with the present invention is provided herewith

and is incorporated herein as part of the disclosure of the invention.

Although illustrative embodiments of the present invention have been
described herein with reference to the accompanying drawing, it is to be understood
that the invention is not limited to those precise embodiments, and that various other
changes and modifications may be effected therein by one skilled in the art without

departing from the scope or spirit of the invention.

Abstract of the Disclosure

A method of generating a recovery key encryption key (RKEK) in a secure
manner by an integrated circuit (IC) and a key recovery escrow agent includes the
steps of generating by the IC a first number having a private component and a public
component, and generating by the escrow agent a second number having a private
component and a public component. The public component of the first number is
provided to the escrow agent, and the public component of the second number is
provided to the integrated circuit. A Diffie-Hellman modulo-exponentiation
mathematical operation is performed by the integrated circuit using the private
component of the first number, the public component of the first number and the
public component of the second number to create the RKEK. A similar operation is
performed by the escrow agent using the private component of the second number, the
public number of the second number and the public component of the first number to

create the RKEK at its end.
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Section IIX. Kernel Mode Protection

Background of the Invention

The present invention relates generally to kernel mode protection, and more
particularly relates to an apparatus and method that enforces a security perimeter

around cryptographic functions.

Description of the Prior Art

The concept of privileged separation of software processes is known in the art.
Having one software process work in a privileged/secure environment and another
software process working in an unprivileged/non-secure environment is typically
controlled by the hardware within a processor. The hardware that supports privileged
separation is fundamentally integrated throughout the processor mask. Integrating the
hardware throughout the processor is expensive and increases the size of the
processor. Smaller processors, such as digital signal processors (DSPs), do not
include privileged separation hardware features. The hardware is not included in the

processors to keep the size and cost of the processors down.

Brief Description of The Drawings

Figure 45 is a drawing of the kernel mode protection circuit.

Figure 46 is a flow chart of a method of kernel mode protection.

Objects And Summary of The Invention

It is an object of the present invention to provide an apparatus and method that
enforces a security perimeter around cryptographic functions.

The kernel mode protection circuit constructed in accordance with one form of
the present invention includes a processor, a program counter, a kernel fetch

supervisor circuit, a kernel data fetch supervisor circuit, a program memory, a data
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memory, a flip-flop circuit and two AND circuits. The kernel mode protection circuit
may operate either in a user mode or a kernel mode. The kernel program fetch
supervisor circuit monitors the address within the program counter and compares the
address to a predetermined address stored within the kernel program fetch supervisor.
If the addresses are equal the kernel program supervisor circuit activates a flip-flop
which switches between a user mode output signal and a kernel mode output signal.
The kernel data fetch supervisor circuit compares the processor data address to a
predetermined protected memory address range. If the processor is in user mode and
attempts to fetch data within the protected memory address range, then the kernel data
fetch supervisor circuit in conjunction with the flip-flop circuit generates a processor
reset signal at the AND circuit output. If the processor attempts to access a kernel
memory address other than the predetermined address stored in the kernel program
fetch supervisor circuit, then the kernel program fetch supervisor circuit in

conjunction with the flip-flop will generate a processor reset signal at the AND circuit

output.

Detailed Description of the Preferred Embodiments

The kernel mode protection circuit, Figure 45, is responsible for enforcing a
hardware security perimeter around cryptographic functions. The circuit may either
be operating in user mode (kernel space is not accessible) or kernel mode (kernel
space is accessible) at a given time. When in the kernel mode the kernel random
access memory (RAM) and certain protected registers and functions (kernel space) are
accessible only to the secure kernel firmware. The kernel executes host requested
macro level functions and then returns control to the calling application. The kernel
mode control hardware subsystem will reset the processor should any security
violation occur, such as attempting to access a protected memory location while in
user mode. Any attempt by a user mode application program running on the
processor to access a kernel space address other than 0x2000 will result in an
immediate processor reset and all sensitive registers and memory locations will be

erased. Kernel mode may only be entered via a call, jump or increment to address
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0x2000. However, while in kernel mode, the processor 4 may access all program/data

memory and registers.

The kernel mode protection circuit, Figure 45, includes the following: a
processor 4, a program counter circuit 6, a kernel program fetch supervisor circuit 8, a
flip-flop circuit 10, an AND circuit 12, a program memory 14, a kernel data fetch
supervisor circuit 20, a data memory 22 and an AND circuit 30. The program
memory 14 includes a user memory 16, a kernel read only memory (ROM) 18 and a
user memory 20. The data memory 22 includes a user memory 28, protected registers

and random access memory (RAM) 24 and a user memory 26.

The program counter (PC) 6 is coupled to the kernel program fetch supervisor
circuit 8 and the program memory 14. The program counter 6 contains the address of
the current program fetch instruction. The kernel program fetch supervisor circuit 8
contains a basic comparator used to determine whether the PC 6 is set to address
0x2000 or another address range. The kernel program fetch supervisor circuit 8 is
coupled to the flip-flop circuit 10 by an access user output 50 connected to the flip-
flop circuit 10 set input, and an access kernel 0x2000 output 60 is coupled to the flip-
flop circuit 10 clear input. The flip-flop circuit 10 has 2 outputs, a user mode output
52 and a kernel mode output 54. The kernel program fetch supervisor circuit 8 also
has an access kernel not = 0x2000 output 62. This output and the user mode output
52 are coupled to a standard AND circuit 30. The kernel program fetch supervisor
circuit 8 operates in three states. The first state occurs when the processor 4 is in the
user mode and a program fetch is from a user program men;ory 14. The second state
occurs when the processor 4 is in the user mode and enters the kernel at address
0x2000. The third state occurs when the processor 4 is in the user mode and an

application program tries to access the kernel using ROM 18, an address other than

0x2000.

The kernel data fetch supervisor circuit 20 is coupled to a data memory

address bus 64 and the data memory 22. An access kernel data output signal 66
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couples the kernel data fetch supervisor circuit 20 to the AND circuit 12. The kernel
data fetch supervisor circuit 20 compares the data memory address fetch to the address
range of the protected registers and RAM 24. The address range is preferably 0000
through 17FF. If the data address fetched is within the address range 0000 through
17FF, the kernel data fetch supervisor circuit 20 asserts a logic “1” signal. In
addition, if the processor 4 is in user mode (a logic “1” signal at user mode output 52),

4(1’7

a logic signal is generated from the AND circuit 12. This signal resets processor

4 since fetching data from protected memory, while in user mode, is not permitted.

The first state occurs when the processor 4 is in user mode and a program fetch
is from a user program memory. The kernel program fetch supervisor circuit 8
compares the program counter 6 address to address 0x2000. If the addresses are
equal, then the access user output 50 sets flip-flop 10 to kernel mode. If the addresses
are not equal then the kernel program fetch supervisor circuit 8 does nothing and the

processor stays in user mode.

The second state occurs when the processor 4 is in user mode and the
processor 4 tries to access the kernel at address 0x2000. The kernel program fetch
supervisor circuit 8, compares the address stored in the program counter 6 to address
0x2000. If they are equal, the kernel protection fetch supervisor circuit 8 activates the
kernel output 60 and clears the flip-flop 10 resulting in the processor 4 switching to

kernel mode.

The third state occurs when the processor 4 is in user mode and an application
program tries to access the kernel at an address other than 0x2000. The kernel
program fetch supervisor circuit 8 compares the address stored in the program counter
6 to the kernel address not equal 0x2000. If the address is within the kernal space but
is not equal to 0x2000, then the output 62 is set to a logic “1” the flip-flop 10 to user

mode.
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The kernel data fetch supervisor circuit 20, compares a data address fetch to
the address range of the protected registers and RAM 24. This region of memory is
preferably from address 0000 through to address 17FF. If the data address is within
this range, the kernel data fetch supervisor circuit 20 sets an output logic “1” signal on

the access kernel data output 66.

User mode output 52 is coupled to the AND circuit 12 input and the AND
circuit 30 input. The access kernel not = 2000 output 62 is coupled to the AND -

circuit 30. The access kernel data output 66 is also coupled to the AND circuit 12.

When the processor 4 is in user mode, the kernel program fetch supervisor
circuit 8 is in the access user state. This state sets the user mode output 52 to a logic
“1” signal. If the processor 4 attempts to access an address other than 0x2000, the
kernel program fetch supervisor circuit 8 generates an output logic “1” signal on the
access kernel not = 2000 output 62. Jumping from user mode to kernel mode, using
an address other than 0x2000, is an illegal operation (violation of the security
features). These signals, when applied to the AND circuit 30, result in a logic “1”

signal at the AND circuit 30 output which resets the processor.

If the processor 4 is in the user mode and is then put into kernel mode at
address 0x2000, the kernel program fetch supervisor circuit 8 clears the flip-flop 10
and applies a logic “1” signal to the access kernel output 60. The flip-flop 10 also
applies a logic “0” signal to the user mode output 52, which disables the AND circuits
12 and 30. These circuits are disabled to prevent the reset signal from being generated,

because accessing the kernel at address 0x2000 from user mode is permitted.

Access kernel data output 66 and user mode output 52 are coupled to the AND
circuit 12 inputs. If the processor 4 is in the user mode, the user mode output 52 is a
logic “1” signal. If the processor 4 tries to access data within the protected data
memory range, then a logic “1” signal is generated on the access kernel data output 66

and the AND circuit 12 generates a reset signal which resets the processor 4. The
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processor 4 is reset because fetching data from protected registers and RAM 24, while
in user mode, is an illegal operation. However, while the processor 4 is in kernel
mode, the data fetch is permitted to be from anywhere within the data memory 22. A
logic “0” signal is generated on the user mode output 52. This disables the AND

circuit 12, which prevents the processor from being reset.

A flowchart of a method of kernel mode protection is shown in Figure 46. The
method starts with the processor operating in user mode (Block 2). An application
program operating outside of the kernel is considered to be operating in the user
mode. While in user mode, the application program fetches program opcodes (Block
4). The number of opcodes fetched depend upon the particular application program
that is running. Each opcode fetch is checked whether it was fetched from kernel
memory or application memory (Block 6). If the opcode fetch is from the kernel
memory, this is a violation and the processor is reset. If the opcode fetch is from user
memory, the process continues. Each data operand fetch is monitored by the secure
kernel (Block 8). If the data operand fetch ‘is from kernel memory then the processor
4 is reset (Block 10). If it is from user memory the process continues. When the
processor code makes a call to address 0x2000 it enters the secure kernel and switches
to kernel mode (Block 12 & 14). While in kernel mode, all program fetch opcodes are
also monitored (Block 16). If the opcode fetch is from kernel memory, block 16, then
the data operand may also be fetched from either kernel or user data memory (Block
18 & 20). This process continues until the application is complete or if an opcode
fetch is from user memory (Block 16 & 18). If the opcode fetch is from user memory

the processor switches back to user mode (Block 2).
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Abstract of The Disclosure

A kernel mode protection circuit includes a processor, a program counter, a
kernel program fetch supervisor circuit, a kernel data fetch supervisor circuit, a
program memory, a data memory, a flip-flop circuit and two AND circuits. The data
memory includes two user memories, protected registers and random access memory
(RAM). The program memory includes two user memories and a kernel read only
memory (ROM). The circuit may operate in either a user mode (kernel ROM is not
accessible) or a kernel mode (kernel ROM is accessible). When in the kernel mode
the kernel RAM and certain protected registers are accessible only by a secure kernel.
The kernel mode control circuit will reset the processor should a security violation
occur, such as attempting to access the kernel RAM while in the user mode. The
kernel program fetch supervisor circuit monitors and compares an address within the
program counter to a predetermined address, stored within the kernel program fetch
supervisor circuit, to determine if a security violation has occurred. The kernel data
fetch supervisor circuit monitors and compares the data address to addresses defining
a protected memory area. A security violation will occur if the data address is within
the protected memory address range and the processor will be reset. A method of
kernel mode protection includes the step of fetching a program opcode. If the
program opcode is from the kernel memory, the processor is reset. If the program
opcode is from a user memory, then the processor may fetch the data operand. If the
data operand is fetched from the kernel memory, the processor is reset. If the data
operand is fetched from a user memory, the processor is permitted to enter the kernel
memory. If a program opcodes is fetched from the kernel memory the processor may
continue to fetch operands from either the kernel memory or the data memory. The
processor remains in kernel mode and continues to fetch program opcodes until all of
the opcodes have been fetched, or until an opcode fetched is from the user memory. If

an opcode fetched is from the user memory, the processor switches back to user mode.
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Section IX Cryptographic Key Management Scheme

Copyright Notice

A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent disclosure, as it appears in the Patent and
Trademark Office patent files or records, but otherwise reserves all copyright rights

whatsoever.

Background of the Invention

Field Of The Invention
The present invention relates generally to a cryptographic key management
scheme, and more particularly relates to a method of creating and manipulating

encryption keys without risking the security of the key.

Description Of The Prior Art

All cryptographic techniques, whether used for encryption or digital signatures
depend upon cryptographic keys. Cryptographic key management systems are a
crucial aspect of providing security. Typical key management systems include key
generation policies, key distribution policies and key termination policies.
Cryptographic key management schemes are built on commonly used lower leQel
concepts, such as key wrapping techniques. These techniques vary with the type of
cryptographic algorithm used and are vast in numbers. However, key management
systems are unique to the developer and vary substantially depending on the type of

key used and level of security required.

The key management scheme allows for efficient access to all keys so that the

cryptographic algorithms can run as fast as possible and be as compact as possible,

with little secure tradeoffs as possible.

317



10

15

20

25

WO 99/14881

Object and Summary of the Invention
It is an object of the present invention to provide a comprehensive powerful

and secure encryption key management scheme.

It is another object of the present invention to provide the user with a set of
encryption key management rules and commands for various encryption key

algorithms.

It is a further object of the present invention to provide a method of managing

the use of keys in a cryptographic co-processor.

It is still another object of the present invention to provide the user with a set

of encryption key management rules that prevent the user from generating risky keys.

In accordance with one form of the present invention, a method of managing
the use of keys in a cryptographic co-processor includes the steps of selecting a key
type from one of a symmetrical key type and an asymmetrical key type. Then, the key
bit length is selected. The key is then generated and, lastly, the key is represented in

either an external form or an internal form.

The key management method allows for many different key types to be
selected. Also, several key lengths may be chosen. The key may be generated in
various ways to meet industry standards, and the key may be represented preferably in
either an inter-operable external form or internal or external forms set up by the

cryptographic co-processor manufacturer.
The key management scheme allows for a wide range of key management

implementations. It is only concerned with supplying primitive key management

utilities. This allows the application using the encryption key management to create
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either a simple flat key management structure, or a highly layered and complex
military grade key management system.

Brief Description of the Drawings

Figure 47 is a flowchart of the method for creating and manipulating

encryption keys.

Detailed Description of the Preferred Embodiments
Section [ of the Detailed Description

The features of the invention described herein are particularly applicable for
use in a cryptographic co-processor, such as that disclosed in the U.S. patent
application entitled “Cryptographic Co-Processor” filed concurrently herewith, the
disclosure of which is incorporated herein by reference. A number of terms used
herein are defined in the aforementioned patent application, and reference should be

made to such application for a more detailed explanation of such terms.

Referring to Figure 47, it will be seen that the key management method
described in accordance with one form of the present invention includes the steps of:

selecting a key type, selecting a key bit length, generating a key, and representing a

key.

The key management method requires the user to first select between several
different key types. The key management method supports algorithms and key sizes
for symmetrical (secret keys) and asymmetrical (public key) cryptographic
operations. The symmetrical encryption algorithms supported are DES, Triple DES
(two key), and Triple DES (three key). The key sizes are 40-56 bits for DES, 40-112
bits for Triple DES (two key), and 40-192 bits for Triple DES (three key). It also
supports asymmetric encryption such as Diffie-Hellman and RSA. The key size for
each is preferably between about 512 and about 2048 bits. Digital signatures such as

DSA and RSA are also supported and have key lengths of preferably between about
512 and about 2048 bits.
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The first step (Block 2) requires the user to select either a symmetrical type of
key or an asymmetric type of key. If the user selects a symmetrical type of key, there
are four types of symmetrical keys for the user to choose from: data keys, key
encryption keys, program keys, and message authentication code keys. The step of

key access is preferably automatically selected with the choice of key type.

Data Encryption Keys (DEKs) allow a message, communications channel and
files to be encrypted using one of the block algorithms (i.e. DES, Triple DES, etc.)
supported by the user’s system. All DEKs are stored and retrieved from volatile key
cache registers. By default, a DEK is not permitted to be exported (i.e. read by the
application) unless it is covered by a key encryption key. However, the DEK must be

uncovered in the user’s system to be used as a traffic key while it is active.

A key encryption key (KEK) allows keys to be exported for storage (as in key
escrow) to allow key distribution, or for the secure exchange of traffic keys. The key
management scheme preferably supports three types of KEKs: an internally generated
storage variable (GKEK); a local storage variable (LSV); and a user application

generated KEK (KEK).

The application KEK is a KEK that is not preserved across resets and its
storage requirements must be implemented by the application; thus, KEKs may be
exported. To export a KEK, the KEK must should be covered by another KEK. This
is achieved by using the GKEKSs or KEKSs for KEKs, and the GKEK using LSV.

Selection of symmetrical key length is the second step (Block 4). The key
management method supports several key lengths depending on the symmetrical
block algorithm. The key length can be adjusted between the preferred range of about
40 bits and about 192 bits, depending on the PCDB programming. For a standard
DES and Triple DES, keys can preferably have about a 40 bit to a about 192 bit key

length, programmable in 8-bit increments by the application. This allows for variable
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key lengths other than the typical 40, 56, 112, and 192 bit key lengths found on the
market.

The third step (Block 6) of symmetrical key generation can preferably be
performed six ways: 1) sample the output of a random number generator to assemble
the desired length DEK; 2) sample the output of the random number generator to
assemble the desired length KEK; 3) perform Diffie-Hellman g* exponential in order
to arrive at a shared secret value, such as based on ANSI X9.42; 4) derive a
symmetrical secret key by hashing an application supplied password or passphrase; 5)
transform a key using a combination of hashing, mixing with fixed data and re-

hashing, XORing, etc.; or 6) import a RED key provided by the application.

The fourth step (Block 8) involves representing the secret key in one of
preferably three ways: 1) inter-operable external form; 2) IRE (the encryption chip
manufacturer) external form; or 3) IRE internal form. Numbers 2 and 3 are used to
enforce the security policy, and Number 1 is used to allow shared key material with

any other vendor’s implementations.

The symmetrical key inter-operable external representation step should be
used when an application chooses to exchange the chip manufacturer’s secret key with
another crypto vendor. The secret key should be converted from the chip
manufacturer’s storage format into one that is more easily extractable so that it can

inter-operate with other crypto vendors.

If the user chooses to export a secret key, the key should be put back into an
external form. The external form includes all the original random key bits, salt bits,
attributes, and SHA-1 message digest. The entire external form is encrypted,
including the SHA-1 message digest. The salt bits and attributes are preferably pre-
pended to the key bits to provide randomness to skew the external key once it is

encrypted in CBC mode.
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The user can choose to represent the symmetrical key in the chip
manufacturer’s internal representation. When a secret key is loaded into the user’s
system, it must be put into an internal form. The internal form consists of all of the
original random key bits. However, if the secret key is not a standard 56 or 192 bit

key (for example, a 168 bit key), then the extracted random key bits are weakened.

If the user selects an asymmetric type of key, there are preferably three types
of symmetrical keys supported: 1) Diffie-Hellman public keys for generation of a
negotiated key based on a previously generated modulus base; 2) RSA public keys
for both encryption and digital signatures; and 3) DSA public keys for digital
signatures only. The step of key access is automatically selected with the choice of

key type.

As in all public key schemes, Diffie-Hellman uses a pair of keys, public and
private. However, Diffie-Hellman is unique in that it does not perform
encryption/decryption or signatures as do the other public key systems. It implements
a means to generate a shared secret or a negotiated DEK (i.e. traffic key or session
key). The modulus, public key and private keys can be exported/imported to and from
the key management scheme. The DEK can be exported, but it should be covered by
one of the key maintenance KEKs (LSV, GKEKs, or an application generated KEK).

RSA uses a pair of keys, public and private, to encrypt/decrypt and implement
digital signatures. However, unlike Diffie-Hellman, the modulus cannot be fixed, and
a new modulus must be generated for each new public key pair. The key pair can be
exported from the key maintenance scheme. The private key is returned covered by

one of the key maintenance fixed KEKSs or an application generated KEK.
The DSA scheme uses a pair of keys, public and private, to implement digital

signatures only. Unlike RSA, the DSA fixed moduli (p and q) and generator g may be

shared among a community of users. The DSA key pair can be exported from the key

322

PCT/US98/19316



10

15

20

25

WO 99/14881 PCT/US98/19316

maintenance. The private key is returned covered by one of the key maintenance

fixed KEKs or an application generated KEK.

Selection of asymmetric key lengths is the next step (Block 4). The key
management method supports several public key algorithms, each of which has a
different requirement. The method supports keys and moduli in the preferred range of

about 512 bits to about 2048 bits in multiples of 64 bits.

The third step (Block 6), asymmetric key generation, preferably uses the
Rabin-Miller algorithm. This step generates random numbers that have a high
probability of being prime. Furthermore, the method will never reuse the same
modulus for an RSA or DSA new public key. The user can chose from DSA key

generation, RSA key generation, and Diffie-Hellman key generation.

The application program has several ways to generate the public keyset for
DSA operations. It can generate the p and q of the modulus in a safe or weak manner.
The safe method is based on Appendix A of the X9.30 specification. It preferably
goes through a formal method of creating p and q from a 160 bit seed and 16 bit
counter. In this method, the application is insured of not using a cooked modulus. In
the weak method, the p and q of the modulus are generated in a simple method of
finding q a prime factor of p-1. This does not provide for a seed and counter but
generates p and q faster.

The RSA key generation option requires that the RSA moduli, p and q, are
generated by first finding a prime number p and then another prime number q that is

close in value to p.

The application has several ways to generate the public keyset for Diffie-
Hellman operations. It can generate the modulus p in a safe or weak manner. The
safe method finds a safe prime, one of 2q+1. In the weak method, the modulus p is
generated as a random number. In this case, the modulus is weak but will be

generated relatively quickly. Furthermore, the modulus p is not tested for primality.
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All three of the public key generation methods described above preferably
require that in either case, p and q are tested to determine if they are prime. They are
tested using the Rabin-Miller primality test, and the application can specify the
number of times it wants to run the test. The more times it runs, the better the
probability that the number is prime. However, the more times one runs the test, the
longer it takes to generate p and q. Also, as part of the primality test the prime

number to be tested goes through a small divisor test of primes between 1 and 257.

The fourth step (Block 8) in the process involves representing the private key
of a public key pair. The private key may be represented in one of preferably two

forms: 1) inter-operable external form; and 2) IRE (the chip manufacturer) internal

form.

The asymmetric key inter-operable external representation step is preferred to
be used when an application chooses to exchange a chip manufacturer’s private key
with another crypto vendor. In this step, one must move the private key from the chip
manufacturer’s storage format into one that is more easily extractable so that it can
inter-operate with other crypto vendors.

The user can also choose to represent the asymmetric key in the chip
manufacturer’s internal representation. When an application chooses to create the

chip manufacturer’s private key for local storage, this format is preferably used.

Section II of the Detailed Description

The key management scheme of the present invention is particularly suited for
use in the cryptographic co-processor mentioned previously. This co-processor is also
referred to herein by the trademark CryptIC. Also used here is the term “IRE”, which
stands for Information Resource Engineering, Inc., the cryptographic co-processor

manufacturer and owner and assignee of the present invention and the co-processor.
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The CryptIC chip provides a unique key management scheme that allows
generation of several types of keys, key usage policy, and unlimited off-chip secure

storage for both symmetrical and asymmetrical keys.

The user of the CryptIC chip is presented with many key generation options.
For symmetrical keys the user is provided with a means to create keys using the chip’s
randomizer, pass-phrases from the user, results from a Diffe-Hellman key exchange,
importation of foreign keys (i.e. simple blobs from other Microsoft CryptoAPI™
cryptographic service provides (CSPs)), and specially created IRE Hash Message
Authentication Code (HMAC) keys. The unique point with symmetrical keys is the
support for key generation lengths preferably between about 32 and about 192 bits, in

increments of 8 bits.

For asymmetrical keys, the chip can create keys for DSA, Diffie-Hellman, and
RSA using a prime number generator based on the Rabin-Miller and lowest prime
divisor methods. Also, it supports some unique DSA prime generation by further
extending the X9.30 method. It allows the user to pass in a random seed and a means
to pre-set the seed counter to something other than 0. Furthermore, asymmetrical
keys can have lengths preferably between about 512 and about 2048 bits, with

increments of 64 bits.

Each type of key, asymmetrical and symmetrical, includes a set of
programmable attributes that provide the user with a unique set of security policies.
The security policies are enforced by the secure kernel embedded within the chip.

The security policies allow the user to specify the type of key, the key’s usage, and the
key’s trust level. More importantly, the key usage and key trust level are embedded
as part of the secure storage of the key using a unique mix of symmetrical encryption
and one-way HASH authentication. This will be described later. Therefore, these key
attributes are securely stored and are tamper proof, thus providing a means for secure

policy decisions.
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The type of key specifies what algorithm the key can be used in. Therefore, a
key of type DES can not be used as triple DES or RLS keys. This means a stronger

key could not be used in a weaker manner, thus enforcing export law.

The key usage attribute is used to specify how a key can be used. Again, the
secure kernel enforces these policy decisions; therefore, the user can not affect the
policy without changing the attributes. To change the attributes, it would require the
user to present the KEK the key is covered under, thus authenticating it as the owner.

In any event, the key usage bits allow a user to indicate the key is a LSV, GKEK,
KEK, K or KKEK.

The LSV is provided as the root key for providing off-chip secure key storage.
The LSV can not be exported from the chip in RED or BLACK form. It can only be
used to cover GKEKs. The GKEKs are used to provide safe secure storage of user
keys; it is a key encryption key and it, too, can not be exported in the RED.
Conventional KEKSs are key encryption keys that the user can use to make their own
secure storage hierarchy if need be or to implement older key management protocols
like X9.17. The K type is used to indicate a conventional traffic encryption key. Ks
can only be used in encrypting data, not other keys. KEKs can only be used to cover

other keys not data encryption. These powerful policies are enforced by the secure

kernel embedded in the chip.

A KKEK is a key encryption key used to uncover BLACK Ks loaded through
the external high-speed interface. To use the KKEK, the application loads the KKEK
into the special hardware (HW) KEK register of the encryption block. Once the
KKEK is loaded into the HW register, the applicant can load BLACK keys into the
encryption block through the external high-speed interface. Thus allowing the

external high-speed interface to be used for encryption without ever exposing keys in
the RED.
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The key trust levels are provided to specify what types of keys can be stored
under a particular KEK and the rules of exporting a particular key. There are
preferably only two trust levels, trusted or untrusted. A trusted KEK can store both
trusted and untrusted keys and KEKs under it. However, once a key or KEK is stored
under a trusted KEK, it can no longer be moved from this KEK to another KEK. In
other words, no other KEK can take ownership of the key or KEK. Any untrusted K
or KEK can be stored under an untrusted KEK. Any untrusted K or KEK under the
untrusted KEK can be moved under another trusted or untrusted KEK. This is
because an untrusted key was created in some untrusted manner, so it is possible some
outsider knows or can determine the key, so storage of the key is untrusted. Untrusted

key trees can allow for greater flexibility because of the key movement that is allowed

with it.

For example, the user can build applications like key escrow or key back up
schemes very easily using an untrusted key tree, whereas keys under a trusted key tree
are highly secured. The trusted KEK was created internally by the secure kernel and
can not be reproduced or determined by the user; in fact, it will never leave the chip
in the RED form. Therefore, the trusted key tree is more rigid and constrained than
the untrusted tree but at the same time provides highly secure storage. As one can see,
the trust levels are a powerful concept that allows the user lots of flexibility at the risk

of less secure storage or a more constrained tree with increased security storage.

Further making the CryptIiC’s key management scheme unique is its ability for
the user to store unlimited keys off-chip in any medium the user desires. To do this
the chip must prepare the key in a form to allow for secure storage of it. Not only
does the key need to be put in a secure form to prevent the disclosure of RED
material, but it also must protect the secure attributes used to specify the key’s secure
policy requirements. The secure storage form must prevent these attributes from
being attacked. Once these are programmed, they must not change. To do all of this,

the chip provides data confidentiality and integrity.
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To support data confidentiality and intégrity, a special key form or IRE key
blob object has been created. The IRE key blob object provides storage for a

symmetrical key and consists of the following bits in this order:

SALT: 64 bits
ATTRIBUTES: 32 bits
KEY: 256 bits
MD: 160 bits
512 bits or 64 bytes

The SALT bits are just 64 bits of random data used to help provide better
encryption. This random data allows the keys to be covered more securely in Cypher

Block Chaining (CBC) mode with a fixed initialization vector (IV).

The ATTRIBUTE bits are the type, use, and trust levels (i.e. GKEK, KEK,

etc) that were described earlier.

The KEY bits are the RED key material.

The MD bits make up the one-way HASH message digest, an SHA digest.

To provide confidentiality, the chip encrypts the entire 512 bits using a TDES
KEK in CBC mode. To provide integrity it runs a SHA one-way HASH over the
SALT, ATTRIBUTES, and KEY bits and places the message digest (MD) at the end
before it is encrypted with a KEK in TDES. Then this BLACK key is given to the

user to store or transfer as it desires.

When a BLACK key is loaded into the device, the chip first decrypts the IRE
key blob and then runs the SHA one-way HASH over the SALT, ATTRIBUTES, and
KEY bits. If the message digest matches the one in the IRE key blob, then the key is
accepted along with its ATTRIBUTES.
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As discussed earlier, the device supports trusted or untrusted key storage. In
the trusted key storage the IRE key blobs are stored under a GKEK root key.
Therefore, the GKEKs must be exported. They are exported under the chip’s unique
storage variable or KEK, the LSV. The LSV is used as the KEK covering the GKEK
and the GKEKs are used to cover the application’s keys. Therefore, both the GKEK
and LSV can not be determined so the application’s keys can not be uncovered and

one has trusted storage.

Furthermore, the GKEKs are provided as another layer of security in that they
protect the LSV from being attacked with known plaintext or chosen plaintext.
Therefore, if the LSV was broken, all keys could be found. Now, with this layering,
only the key tree under the GKEK could be broken and exposed, not the other key

trees.

In summary, the crytographic co-processor provides a flexible yet powerfully
secure key management scheme that allows for a user controlled key policy manager
and more importantly, unlimited off-chip secure store of symmetrical and
asymmetrical key material, CGX command. However, if some sort of severe error or
hardware failure occurred, the CGX kernel will reset the processor, thus transitioning

to the reset state.

Section III of the Detailed Description

A detailed description of the key management scheme of the present invention
taken from a programmer’s guide prepared by the assignee and owner of the
invention, Information Resources Engineering, Inc. (IRE) has been previously

described, and reference should be made to such section for greater details.

A computer program showing the key management scheme of the present

invention is provided herewith and is incorporated herein as part of the disclosure of

the invention.
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Although illustrative embodiments of the present invention have been
described with reference to the accompanying drawings, it is to be understood that the
invention is not limited to those precise embodiments, and that various other changes
and modifications may be effected by one skilled in the art without departing from the

scope or spirit of the invention.

Abstract of the Disclosure

A key management scheme for managing encryption keys in a cryptographic
co-processor includes the first step of selecting a key from one of a symmetrical key
type and an asymmetrical key type. Then, the key bit length is selected. The key is
then generated and, lastly, the key is represented in either an external form or an

internal form.
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WHAT IS CLAIMED IS:

1. A cryptographic co-processor comprising:

a processing unit for processing data,

a read only memory electronically linked to the processing unit and
including a masked programmed cryptographic library of encryption algorithms;
and

an encryption processor for encrypting data, the encryption

processor and the processing unit being situated on the same platform.

2. A cryptographic co-processor comprising:
a digital signal processor having a memory associated therewith;
a cryptographic library having user selectable encryption algorithms
masked programmed into the memory; and

security hardware embedded within the digital signal processor.

3. A cryptographic co-processor as defined by Claim 2, wherein the
security hardware includes an encryption circuit, the encryption circuit
electronically linked to the digital signal processor and performing encryption and

decryption functions.

4. A cryptographic co-processor as defined by Claim 2, wherein the
security hardware includes a HASH circuit, the HASH circuit being electronically
linked to the digital signal processor and performing HASH functions.

5. A cryptographic co-processor as defined by Claim 2, wherein the
security hardware includes a public key accelerator circuit, the public key
accelerator circuit being electronically linked to the digital signal processor and

performing arithmetic functions.

6. A cryptographic co-processor as defined by Claim 2, wherein the

security hardware includes a random number generator, the random number
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generator being electronically linked to the digital signal processor and generating

random numbers used for encryption purposes.

7. A cryptographic co-processor as defined by Claim 1, which further
comprises:
a laser trimmed memory, the laser trimmed memory being
electronically linked to the processing unit and having stored therein a master key
used by the cryptographic co-processor, the master key being programmed into the

memory by laser trimming.
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8. A cryptographic service software embodied in at least one of a hard
disc, a floppy disc and a read-only memory (ROM), the cryptographic service
software electronically communicating and being compatible with a standard
operating system of a computer, the operating system having an application space and
a kernel space, the cryptographic service software performing cryptographic services
at the kernel space of the operating system, which comprises:

a generic layer including a kernel space level program interface; and
a cryptographic service module having a library of encryption
algorithms, the module electronically communicating and cooperating with the

program interface.

9. In combination, a first cryptographic service software embodied in at
least one of a floppy disc and a read only memory (ROM), the first cryptographic
service software electronically communicating and being compatible with a standard
operating system of a computer, the operating system having an application space and
a kernel space, the cryptographic service software performing cryptographic services
at the application space of the operating system, the cryptographic service software
comprising an application program interface, and a first cryptographic service module,
the first cryptographic service module having a library of encryption algorithms, the
first cryptographic service module electronically communicating and cooperating with
the application program interface; and

a second cryptographic service software embodied in at least one of a
floppy disc and a read only memory (ROM), the second cryptographic service
software electronically communicating and being compatible with the operating
system of the computer, the second cryptographic service software performing
cryptographic services at the kernel space of the operating system, the second
cryptographic service software including a kernel space level program interface, and a
second cryptographic service module, the second cryptographic service module
having a library of encryption algorithms, the second cryptographic service module
electronically communicating and cooperating with the kernel space level program

interface.
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10. A computer having an operating system, the operating system

including an application space and a kernel space, which comprises:

at least one security enabled kernel engine situated in the kernel space
of the operating system;

cryptographic service software, the cryptographic service software
being situated at least in the kernel space of the operating system, the cryptographic
service software including at least one program interface electronically
communicating with the at least security enabled kernel engine, and at least one
cryptographic service module electronically communicating with the at least one
program interface, the at least one cryptographic service module including a library of

encryption algorithms.

11. A computer as defined by Claim 10, which further comprises:
a cryptographic co-processor, the cryptographic co-processor including
a memory and a second library of encryption algorithms mask-programmed into the
memory, the co-processor electronically communicating with the at least one program

interface of the cryptographic service software.

12. A method of securely communicating between an application program
and a secure kernel of an integrated circuit, the secure kernel having stored therein
cryptographic algorithms, the integrated circuit further having a register, a command
block memory and a kernel block memory, which comprises the steps of:

storing in the register of the integrated circuit the address of the
kernel block memory;

transferring the kernel block memory address stored in the register to
the secure kernel;

reading by the secure kernel the contents of the kernel block memory at
the transferred address, the contents of the kernel block memory at the

transferred address containing at least one pointer address corresponding to a

memory location in the command block memory; and
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fetching by the secure kernel the contents of the memory location of
the command block memory corresponding to the at least one pointer address,
the contents of the memory location including at least one of a command and

an argument.

13. A hardware secure memory area, which comprises:

a main communication bus;

a plurality of secondary communication buses;

a plurality of bus transceivers coupling the plurality of secondary
communication buses to the main communication bus; and

a plurality of memory circuits coupled to the plurality of
communication buses, each bus transceiver selectively isolating a secondary
communication bus to which the bus transceiver is associated from the main
communication bus and sele::tively causing communication between the associated

secondary communication bus and the main communication bus.

14. A hardware secure memory area, which comprises:

a main communication bus;

a first bus transceiver coupled to the main communication bus;

a second bus transceiver coupled to the main communication bus;

a third bus transceiver coupled to the main communication bus;

a key communication bus coupled to the first bus transceiver;

a key cache coupled to the key communication bus for writing and
reading keys;

a key random access memory coupled to the key communication bus
for writing and reading cryptographic operations and keys;

a processor memory for writing and reading cryptographic algorithms,
operations and keys;

an external memory communication bus coupled to the second bus

transceiver;
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an external memory coupled to the external memory communication
bus for writing and reading application programs and commands;

a cryptographic algorithm communication bus coupled to the third bus
transceiver;

a scratch memory coupled to the cryptographic algorithm
communication bus for writing and reading cryptographic calculations; and

a memory coupled to the cryptographic algorithm communication bus

for storing cryptographic algorithms.

15. A hardware secure memory area, which comprises:
a main communication bus;
a plurality of bus transceivers coupled to the main communication bus
for controlling access to and from the main communication bus;
a plurality of secondary communication buses coupled to the bus

transceivers; and

a plurality of memory circuits coupled to the plurality of secondary

communication buses.

16. A method of expanding a protected memory area of a secure kernel
into an unprotected memory area in an integrated circuit, which comprises the steps
of:

initializing the secure kernel including the step of sending thereto a
command signal having a starting memory block address and the number of memory
blocks to be protected;

reading the command signal by the secure kernel;

writing the starting memory block address and the number of memory
blocks into a memory of the secure kernel; and

allocating the starting memory block address and the number of

memory blocks as protected memory.
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17. A method of expanding a protected memory area of a secure kernel
into an unprotected memory area in an integrated circuit, which comprises the steps
of:

initializing the secure kernel by a command generated by an
application program, the command causing arguments attached to the command to be
vectored into the secure kernel, the arguments including pointer data and the number
of protected memory blocks requested, the pointer data containing the starting
memory address of the protected memory requested,

reading the arguments by the secure kernel;

writing into a data memory reserve register a code corresponding to the
number of memory blocks to be protected; and

allocating the number of memory blocks requested to be protected as

protected memory starting at the starting memory block address contained in the

pointer data.

18. A method of expanding a secured memory into an unprotected memory
to define an additional secured memory area, the secured memory being expanded to
accommodate storage of an extended code, the extended code being initially stored in
the unprotected memory in a location which will become the additional secured
memory area, the secured memory and the unprotected memory forming parts of an
integrated circuit, the integrated circuit having a serial number stored in 2 memory
thereof, which comprises the steps of:

retrieving by an authorizing party the serial number stored in the
memory of the integrated circuit and the extended code proposed to be stored in the
requested expanded secured memory;

verifying by the authorizing party whether the extended code is
acceptable to be stored in the expanded secured memory of the integrated circuit;

generating a token signal by the authorizing party and communicating
the token signal to the integrated circuit, the token signal including at least the digital

signature of the extended code, as computed by the authorizing party,
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receiving the token signal by the integrated circuit and parsing the
token signal to separate the digital signature of the authorizing party;

verifying by the integrated circuit the digital signature of the
authorizing party parsed from the token signal which, if verified, indicates that the
authorizing party authorizes the expansion of the secured memory by the integrated
circuit; and

invoking by the integrated circuit a command to expand the secured
memory so that the additional secured memory area now encompasses the location of

the unprotected memory where the extended code is stored.

19. A method of expanding a secured memory as defined by Claim 18,
wherein the token signal further includes the serial number of the integrated circuit;

and wherein the method further comprises the steps of:

parsing by the integrated circuit from the token signal returned by the
authorizing party the serial number of the integrated circuit; and

verifying by the integrated circuit the serial number parsed by the
token signal by comparing the parsed serial number with the serial number stored in

the non-volatile memory of the integrated circuit.

20. A method of expanding a secure kernel memory area into an
unprotected memory, while providing security to the unprotected memory area and
validating an extended code, the secure kernel memory and the unprotected memory
forming part of an integrated circuit, comprising the steps of:

| reading an integrated circuit serial number;
communicating the serial number to a manufacturer;
loading code into a memory;
loading a token into a memory, the token includes the ICs serial
number;
digitally signing the extended code by a trusted authority;

copying the extended code into the ICs unprotected memory;
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invoking a command to add an extension to the secure kernel memory;

specifying which memory blocks are to be acquired from the
unprotected memory area;

disabling further program access to the unprotected memory area;

verifying the digital signature computed over the extended code is
authentic;

locking the extended code into the protected memory area; and

permitting the secure kernel to make calls to the protected memory

area.

21. A method of reconfiguring the functionality of an integrated circuit, the
integrated circuit having a serial number stored in a memory thereof, which comprises
the steps of:

retrieving the serial number from the integrated circuit;

transmitting a token request signal by the integrated circuit to an
authorizing party, the token request signal including at least the serial number of the
integrated circuit;

transmitting a return token signal from the authorizing party to the
integrated circuit, the return token signal including at least the serial number of the
integrated circuit, a reconfiguration code to be used for reconfiguring the integrated
circuit and a digital signature of the authorizing party;

parsing the return token signal by the integrated circuit to extract the
serial number, reconfiguration code and digital signature;

verifying the serial number by the integrated circuit by comparing the
parsed serial number from the return token signal with the serial number stored in the
memory of the integrated circuit;

verifying the digital signature of the authorizing party by the integrated
circuit using a public key stored in the memory of the integrated circuit;

storing the parsed reconfiguration code from the return token signal in

a memory of the integrated circuit; and
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reconfiguring the integrated circuit in accordance with the

reconfiguration code.

22. A method of reconfiguring the functionality of an integrated circuit, the
integrated circuit having a serial number stored in a memory thereof, which comprises
the steps of:

retrieving the serial number from the integrated circuit;

transmitting by the integrated circuit a token request signal to an
authorizing party, the token request signal including the serial number and a
reconfiguration code;

transmitting a return token signal from the authorizing party to the
integrated circuit, the return token signal including the serial number of the integrated
circuit, the reconfiguration code and a digital signature of the authorizing party;

parsing the return token signal by the integrated circuit to extract the
serial number, reconfiguration code and digital signature;

verifying the serial number by the integrated circuit by comparing the
parsed serial number from the return token signal with the serial number stored in the
memory of the integrated circuit;

verifying the digital signature of the authorizing party by the integrated
circuit using a public key stored in a memory of the integrated circuit;

storing the reconfiguration code in a memory of the integrated circuit;
and

reconfiguring the integrated circuit in accordance with the

reconfiguration code.

23. A method of generating a recovery key encryption key (RKEK) in a
secure manner by an integrated circuit and a key recovery escrow agent, which

comprises the steps of:

generating by the integrated circuit a first number having a private

component and a public component;
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generating by the escrow agent a second number having a private

component and a public component;

providing the public component of the first number to the escrow
agent;

providing the public component of the second number to the integrated
circuit;

conducting a mathematical operation by the integrated circuit using the
private component of the first number, and the public component of the second
number to create the RKEK; and

conducting a mathematical operation by the escrow agent using the
private component of the second number, and the public component of the first

number to create the RKEK.

24. A method of generating a rec\overy key encryption key (RKEK) in a
secure manner by an integrated circuit and a key recovery escrow agent, the integrated
circuit having a unique serial number stored in a memory of the integrated circuit,
which comprises the steps of:

generating by the integrated circuit a first number having a private
component and a public component;

generating by the escrow agent a second number having a private
component and a public component;

retrieving by a third party the serial number of the integrated circuit
and comparing the serial number with a serial number stored in a memory of the third
party to verify the identity of the integrated circuit;

generating by the third party a message contlaining at least a digital
signature of the third party authorizing the generation of the RKEK and
communicating the message to the integrated circuit;

providing the public component of the second number to the integrated

circuit; and
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conducting a Diffie-Hellman modulo-exponentiation mathematical
operation by the integrated circuit using the private component of the first number,

and the public component of the second number to create the RKEK.

25. A method of generating a recovery key encryption key (RKEK) as
defined by Claim 24, wherein the message generated by the third party and
communicated to the integrated circuit further includes the serial number of the
integrated circuit, and wherein the method further comprises the step of:

verifying by the integrated circuit the accuracy of the serial number
included in the message by comparing the serial number of the message with the serial

number stored in the memory of the integrated circuit.

26. A method of generating a recovery key encryption key (RKEK) as
defined by Claim 25, which further comprises the step of:
verifying by the integrated circuit the accuracy of the digital signature
of the third party contained in the method..

27. A method of generating a recovery key encryption key (RKEK) as
defined by Claim 26, which further comprises the steps of:
providing the public component of the first number to the escrow
agent; and
conducting a Diffie-Hellman modulo-exponentiation mathematical
operation by the escrow agent using the private component of the second number, and

the public component of the first number to create the RKEK.

28. A controller circuit for switching between a user mode and a kernel
mode in a processor comprising;
a processor;
a program counter electrically connected to the processor for

monitoring program fetch addresses;
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a kernel program fetch supervisor circuit having a predetermined
address value stored within, electrically connected to the program counter for
comparing the address in the program counter to the predetermined address value
stored within;

a program memory electrically connected to the program counter;

a flip-flop circuit electrically connected to the kernel program fetch
supervisor circuit for switching between setting a user mode bit and a kernel mode bit;

a kernel data fetch supervisor circuit electrically connected to the
processor for comparing a data fetch address to a predetermined memory address
range;

a data memory electrically connected to a processor data interface for
storing data;

a first AND circuit coupled to the flip-flop and the kernel data fetch
supervisor circuit for activating and deactivating a violation reset;

and a second AND circuit coupled to the first AND circuit and the

kernel program fetch supervisor circuit for activating and deactivating the violation

reset bit.

29. A method of monitoring and controlling program fetch addresses and
data fetch addresses from a processor to control access to a protected memory
comprising the steps of:

fetching a program opcode;

reading a program opcode address;

determining whether the program opcode address is fetched from one
of a protected program memory address and an unprotected program memory address;

resetting the processor when the program opcode is fetched from the
protected program memory address;

fetching a data operand when the program opcode address is fetched
from the unprotected program memory address;

fetching a data operand and reading the data operand address;
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determining whether the data operand address is fetched from one of a
protected data memory address and an unprotected data memory address;

resetting the processor when the data operand is fetched from the
protected data memory address; '

calling a starting address of the protected program memory when the
data operand address is fetched from the unprotected data memory;

fetching a second program opcode;

reading the second program opcode address;

determining whether the second program opcode address is fetched
from one of a protected program memory address and an unprotected program
memory address;

fetching a third program opcode when the second program opcode
address is fetched from the unprotected memory address; and

fetching a second data operand when the second program opcode

address is fetched from the protected memory address.

30. A method of managing the use of keys in cryptographic co-processor,
which comprises the steps of:
selecting a key from one of a symmetrical key type and asymmetrical
key type;
selecting a bit length from the selected key;
generating the key; and

representing the key in one of an external form and an internal form.
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