(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

oo o
1 rld Intellectual Property Organization 2 ey
(19) World Intellectual Property Organization /gy I) IM)F 0V 00 10000 00 A
International Bureau W U
3\ 10) International Publication Number
(43) International Publication Date \'{_5___,/ (10)
27 October 2011 (27.10.2011) PCT WO 2011/130869 Al
(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 9/44 (2006.01) kind of national protection available). AE, AG, AL, AM,
. .. AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(21) International Application Number: CA. CH. CL. CN. CO. CR. CU. CZ. DE. DK. DM. DO
PCT/CN2010/000524 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
19 April 2010 (19.04.2010) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
.) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(26) Publication Language: English SE, 8G, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant (for all designated States except US): . .
HEWLETT-PACKARD DEVELOPMENT COMPA- (84) DeSIgnateq States (unle.‘ss O[he.}"WZSQ lndlcated, fO}" every
NY, L.P. [US/US]; 11445 Compaq Center Drive W., kind of regional protection available): ARIPO (BW, GH,
Houston, Texas 77070 (US). GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
(72) Inventor; and TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
(75) Inventor/Applicant (for US only): WU, Zhaoming [CN/ ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
CN]; No. 56 dongsihuan Zhong Road, Tower A, Ocean MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
International Center, Beijing 100025 (CN). TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
(74) Agent: CHINA PATENT AGENT (H.K.) LTD.; 22/F, ML, MR, NE, SN, TD, TG).

Great FEagle Centre, 23 Harbour Road, Wanchai, Hong
Kong Special Administrative Region (CN).

Published:
with international search report (Art. 21(3))

300

(54) Title: OBJECT LINKING BASED ON DETERMINED LINKER ORDER

Determine linker order for objects included
in first version of executable file

Generate scatter loading file for
all objects using the linker order

Link first version of executable file
and distribute to client base

Determine linker order for objects included
in second version of executable file

Generate scatter loading file for
all objects using the linker order

l

| Link second version of executable file

Generate update package based on differences
between first and second versions

l

| Distribute update package to client base

380

385
G 3

2011/130869 A1 |1 00 O O 01 00 OO0 0

<

W

(57) Abstract: Example embodiments relate to a mechanism for linking objects to obtain an executable file. In particular, example
embodiments include a mechanism that determines a linker order for a plurality of objects included in a version of an executable
file and a mechanism that generates a scatter loading file for the version of the executable file, the scatter loading file ordering the
plurality of objects using the linker order. Example embodiments also include a mechanism that links the plurality of objects using
the scatter loading file to create the version of the executable file.

WO 2011/130869 PCT/CN2010/000524

OBJECT LINKING BASED ON DETERMINED LINKER ORDER

BACKGROUND

[0001] Computer programs, which may be implemented in the form of software
or firmware executable on a computing device, are susceptible to errors or faults that
cause incorrect or unexpected results during execution. Such errors or faults are
more commonly known as “bugs.” In situations where a bug will affect performance,
render a product unstable, or affect the usability of the product, the developer may
find it advisable to release a software or firmware update to correct the problem. A
developer may also release an update to add additional features or improve
performance of the product. In general, the update includes a number of instructions
used to transform the existing version stored on the user device to the updated
version.

[0002) In a typical implementation, a developer transmits the software or
firmware update package to the user over a wired or wireless network. For example,
when the user device is a mobile phone, portable reading device, or other portable
device, the user may receive the update over a cellular or other wireless network.
Similarly, when the user device is a desktop or laptop computer, the user may receive
the update over a wired network.

[0003] Regardless of the transmission medium used to transmit the update to
the user, it is desirable to minimize the size of the update package. By making the
update package as small as possible, the developer may reduce the amount of time
required to transmit the update to the user and to install the update on the user's
device, thereby resulting in an increase in the user's satisfaction. Similarly,
minimizing the size of the update package reduces bandwidth usage, thereby
reducing costs to both the user and the network provider. Existing solutions employ a

1
CONFIRMATION COPY

WO 2011/130869 PCT/CN2010/000524

number of techniques in an attempt to generate an update package of minimal size,
but, ultimately, could be improved to further decrease download time, bandwidth

usage, and installation time.

BRIEF DESCRIPTION OF THE DRAWINGS
[0004] In the accompanying drawings, like numerals refer to like components or
blocks. The following detailed description references the drawings, wherein:
[0005] FIG. 1 is a block diagram of an example computing device including a
machine-readable storage medium encoded with instructions for linking a plurality of
objects using a scatter loading file generated based on a determined linker order;
[0006] FIG. 2 is a block diagram of an example system including a computing
device for generating an update package and a client device for receiving and
installing the update package;
[0007] FIG. 3 is a flowchart of an example method for generating an update
package based on two versions of-an executable, where each version of the
executable is linked using a scatter loading file generated based on a determined
linker order;
[0008] FIG. 4 is a flowchart of an example method for determining a linker order
for a plurality of objects to be included in an executable file;
[0009] FIG. 5 is a flowchart of an example method for generating a scatter
loading file using a linker order; and
[0010] FIG. 6 is a block diagram of an example operation flow for generating an
update package based on two versions of an executable file, where each version is
linked using a scatter loading file generated based on a determined linker order.

DETAILED DESCRIPTION
[0011] As detailed above, existing solutions for generating an update package
could be improved to further decrease the size of the resulting update package.

Thus, as described below, various example embodiments relate to a process for

WO 2011/130869 PCT/CN2010/000524

linking executable files in a manner that reduces the size of a subsequently-
generated update package.

[0012] In particular, in some embodiments, a linker order may first be
determined for a plurality of objects to be included in a version of an executable file.
This linker order may identify the ordering of the plurality of objects if they were to be
placed in a single execution region of the file. A scatter loading file may then be
generated using the determined ordering of the plurality of objects. Finally, a linked
executable file may be obtained by linking the objects using the scatter loading file.
By applying this procedure to each version of the executable file, the size of update
packages for updating from one version of the executable to the next may be
minimized. In particular, since each executable file will follow a similar object
ordering, the changes required in the update package will be minimized, thereby
reducing the size of the package and the installation time. Additional embodiments
and applications of such embodiments will be apparent to those of skill in the art upon
reading and 'understanding the following description.

[0013] In the description that follows, reference is made to the term, “machine-
readable storage medium.” As used herein, the term “machine-readable storage
medium” refers to any electronic, magnetic, optical, or other physical storage device
that contains or stores executable instructions or other data (e.g., a hard disk drive,
flash memory, etc.).

[0014] Referring now to the drawings, FIG. 1 is a block diagram of an example
computing device 100 including a machine-readable storage medium 120 encoded
with instructions for linking aplurality of objects using a scatter loading file generated
based on a determined linker order. Computing device 100 may be, for example, a
desktop computer, a laptop computer, a server, a workstation, or the like. In the
embodiment of FIG. 1, computing device 100 includes a processor 110 and a
machine-readable storage medium 120.

[0015] Processor 110 may be a central processing unit (CPU), a semiconductor-
based microprocessor, or any other hardware device suitable for retrieval and
execution of instructions stored in machine-readable storage medium 120. Machine-

WO 2011/130869 PCT/CN2010/000524

readable storage medium 120 may be encoded with executable instructions for
determining a linker order, generating a scatter I'oading file based on the
determined linker order, and linking the objects using the generated scatter loading
file. Thus, processor 110 may fetch, decode, and execute the instructions 122,
124, 126 encoded on machine-readable storage medium 120 to implement the
functionality described in detail below.

[0016] In particular, machine-readable storage medium 120 may include linker
order determining instructions 122, which may determine a linker order for a plurality
of objects to be included in a particular version of an executable file. Linker order
determining instructions 122 may determine the ordering of the objects if the objects
were linked by a particular linker and, more specifically, the ordering of the objects
when the linker is required to make a decision on its own regarding the order in which
objects should be placed. As described below, this object ordering may then be
provided as input to scatter loading file generation instructions 124.

[0017] Each object processed by linker order determining instructions 122 may
be a file comprising a number of executable instructions, which may be, for example,
in machine code format. The objects (sometimes referred to as “binaries”) may be
obtained by, for example, compiling or assembling a source code file using a compiler
or assembler suitable for the particular programming language used by a developer.
As a specific example, when the linker to be used is the Advanced Reduced
Instruction Set Machine (ARM) linker, the objects may be in Executable and Linkable
Format (ELF). Other suitable objects will be apparent to those of skill in the art
depending on the specific linker to be employed.

[0018] Furthermore, each object may include external references to one or more
libraries, which may each include one or more objects for implementing commonly-
utilized routines. For example, a particular object may reference a standard library
used to implement a custom data type or provide some other preconfigured
functionality. When the linker to be used is the ARM linker, the object libraries may
be in ELF format or, alternatively, provided in an archive file containing a collection of

ELF files. Other suitable libraries referenced by the object files and file formats for

WO 2011/130869 PCT/CN2010/000524

those libraries will be apparent to those of skill in the art depending on the particular
compiler or assembler used in generation of the objects.

[0019] In operation, linker order determining instructions 122 may read the
plurality of objects and run a series of instructions to determine the ordering assigned
to the objects by a patrticular linker. This ordering may correspond to, for example,
the ordering of the objects if the objects were to be placed in a single execution
region (also known as an inner link ordering). In other words, linker order determining
instructions 122 may determine the ordering assigned by the linker when the linker is
required to make an ordering decision between two or more objects located in the
same execution region.

[0020] In some embodiments, instructions 122 may run a simulation to
determine the ordering in which the objects would be placed by the particular linker if
they were provided to the linker as input. For example, instructions 122 may first
identify the objects to be included in a particular linked executable and then identify
any library objects referenced by the objects. Linker order determining instructions
122 may then determine the ordering of each of the objects and referenced library
objects within a linked executable.

[0021] In executing such a simulation, linker order determining instructions 122
may determine the ordering of the objects using object ordering properties of the
applicable linker. These object ordering properties may identify an order in which
objects are placed in a executable linked by the particular linker when the linker is
required to make an ordering decision between two objects. For example, when the
linker is an ARM linker, linker order determining instructions 122 may be aware that
the ordering for objects within a particular region is based on, in order: (1) attributes of
each object; (2) object names in alphanumeric order; and (3) positioning in the input
list. Furthermore, in an ARM linker, objects included in referenced libraries are
generally placed after the objects provided as input to the linker. Other suitable
factors used in ordering objects within a linked executable will be apparent to those of
skill in the art depending on the particular linker.

WO 2011/130869 PCT/CN2010/000524

[0022] As an alternative to a simulation, linker order determining instructions 122
may determine the ordering by launching the linker one or more times using the
objects to be included in the linked executable. For example, linker order determining
instructions 122 may launch the linker using two objects until an ordering is
determined for every pair of objects. In particular, linker order determining
instructions 122 may provide two objects as input to the linker, specifying that both
objects should be placed in the same execution region (e.g., by using a simple scatter
loading file).

[0023] As a specific example, when there are three objects to be ordered, A, B,
and C, linker order determining instructions 122 may launch the executable using the
following combinations: (1) AB; (2) AC; and (3) BC. Linker order determining
instructions 122 may then determine the order assigned to each of the objects in
each of the resulting executables. In this manner, linker order determining
instructions 122 may generate an ordered list of objects based on the ordering of
each pair. This procedure may be used for any group of n objects by launching the
linker using a number of distinct pairs equal to n! divided by (2*(n-2)!).

[0024] Regardless of the method used to determine the linker order, after linker
order determining instructions 122 obtain the linker order, the order may be provided
to scatter loading file generating instructions 124. Using the provided linker order,
scatter loading file generating instructions 124 may generate a scatter loading file to
be used in linking the executable file in the order determined by linker order
determining instructions 122. It should be noted that, although commonly used in
connection with an ARM linker, the term “scatter loading file” is not limited to ARM
linkers as described herein. Rather, as used herein, a scatter loading file may include
any set of parameters provided as input to a particular linker to specify an ordering of
objects in the linked executable.

[0025] As an example, scatter loading file generating instructions 124 may first
read the order received from linker order determining instructions 122. Scatter
loading file generating instructions 124 may then generate an output file to be used to
instruct the linker to place the objects in the executable in the specified order. For

WO 2011/130869 PCT/CN2010/000524

example, when the linker is an ARM linker, scatter loading file generating instructions
124 may create a scatter loading file including a plurality of execution regions. The
ordering of the objects within and between each of the execution regions may be the
same as the ordering received from linker order determining instructions 122.

[0026] Thus, as an example, when the linker to be used is an ARM linker, a
particular scatter loading file may include execution regions ordered first based on the
attribute (e.g., read-only code, then read-only data, then read-write code, then zero-
initialized data, etc.). Within sets of objects including the same attribute, the objects
may be ordered in alphanumeric order based on the ASCIl character sequence.
Finally, when two or more objects have the same attribute and name, the objects may
be ordered in the scatter loading file based on a position to be used in the input list
provided to the linker.

[0027] Scatter loading file generating instructions 124 may provide the
generated scatter loading file to linking instructions 126, which may launch the linker
program using the objects and the scatter loading file as input. For example, when
the linker is an ARM linker, linking instructions 126 may launch the “armlink”
command, providing each of the objects as input and identifying the scatter loading
file using the “-scatter” input parameter. Linking instructions 126 may then obtain the
outputted linked executable, which may contain an object ordering corresponding to
the ordering determined by linker order determining instructions 122.

[0028] By applying linker order determining instructions 122, scatter loading file
generating instructions 124, and linking instructions 126 to each version of an
executable file (e.g., a first version including a first plurality of objects and a second
version including a second plurality of objects), each version may be based on the
linker ordering for the objects. In particular, because the ordering within the scatter
loading file reflects the actual linker inner order, the ordering within execution regions
of the linked executable may be identical to the ordering in the scatter loading file.
For example, when using a typical scatter loading file with the ARM Iinkér, the
ordering of objects within a particular execution region may be different from the
ordering contained in the scatter loading file, as the ARM linker applies an inner

WO 2011/130869 PCT/CN2010/000524

section ordering to each execution region. By mapping the ordering of the scatter
loading file to the inner ordering, embodiments disclosed herein ensure that the
ordering in the scatter loading file is the same as the ordering in the linked
executable. By applying this process to each version of the executable, the
differences between each version of the executable may be minimized, thereby
decreasing the size of the update package.

[0029] FIG. 2 is a block diagram of an example system including a computing
device 200 for generating an update package and a client device 260 for receiving
and installing the update package. As illustrated, the system may include a
computing device 200, a network 250, and a client device 260. As described in detail
below, reference is made to an ARM Linker and related file types. It should be
apparent, however, that the embodiment of FIG. 2 may be adapted to any linker type
that allows for user specification of an ordering of objects.

[0030] As with computing device 100 of FIG. 1, computing device 200 may be,
for example, a desktop computer, a laptop computer, a server, a workstation, or the
like. Computing device 200 may include a processor (not shown) for executing
instructions 210, 220, 230, 240. Instructions 210, 220, 230, 240 may be encoded on
a machine-readable storage medium (not shown) for retrieval and execution by the
processor.

[0031] Linker order determining instructions 210 may include an Executable and
Linkable Format (ELF) parser 211, an archive (AR) parser 212, a linker simulator 213,
and an object order collector 214. Each of these components may be implemented in
the form of executable instructions encoded on a machine-readable storage medium
of computing device 200.

[0032] ELF parser 211 may receive a plurality of objects 215 as input and, in
response, determine an identity of each object (e.g., a file name or other identifier). In
addition, ELF parser 211 may identify the attributes of each area within an object. For
example, a particular object may include read-only code, read-only based data, read-
only data, read-write code, based data, other initialized data, and/or zero-initialized
data.

WO 2011/130869 PCT/CN2010/000524

[0033] ELF parser 211 may then parse the plurality of objects 215 to identify any
object libraries referenced by the plurality of objects 215. In particular, ELF parser
may read through the contents of each object 215 to identify any unresolved
references to external objects. For example, a particular object of the plurality of
objects 215 may reference a functionality provided by one or more user-specified
libraries 216 or standard libraries 217. As described below, AR parser 212 may
provide a listing of each of the objects contained in user-specified libraries 216 and
standard library 217. In response to receipt of this listing, ELF parser 211 may
determine a list of library objects referenced by each of the objects 215 received as
input. For example, if a.o is included as an input object 215 and references d.o and
e.o in Alib, ELF parser 211 may identify a.0, d.o, and e.o as the objects to be
included in the linked executable. After compiling a listing of each of the objects
included in and referenced by the plurality of objects 215, ELF parser 211 may
forward the listing to linker simulator 213, described in further detail below.

[0034] AR parser 212 may receive user-specified libraries 216 and standard
libraries 217 as input and, in response, identify any objects included in each library.
AR parser 212 may then transmit each of the identified libraries to ELF parser 211,
which, as described above, may identify any objects in the libraries 216, 217
referenced by the plurality of objects 215.

[0035] Linker simulator 213 may receive, as input, the objects identified by ELF
parser 211 and any libraries referenced by those objects as parsed by AR parser
212. In response to receipt of this listing of objects to be included in the executable,
linker simulator 213 may determine a linker ordering of the objects. As an example,
linker simulator 213 may use object ordering properties of the particular linker to
determine an order in which the linker would arrange the objects. In some
embodiments, each of the objects 215 may be placed first, followed by any objects in
the libraries 216, 217 in the order that they are referenced in the objects 215.

[0036] As an example, when the linker is an ARM linker, linker simulator 213
may first determine a grouping of the objects based on their attributes (e.g., read-

only, read-write, zero-initialized, etc.). Linker simulator 213 may then determine an

WO 2011/130869 PCT/CN2010/000524

ordering to be applied within each attribute group. For example, linker simulator 213
may first order all objects 215 based, for example, on an alphanumeric ordering of the
objects, then order any objects in libraries 216, 217 in the order they are referenced
by the objects. Finally, when two objects of a particular attribute type have the same
name, linker simulator 213 may order the objects based on the position in which the
objects will be located in the linker input order.

[0037] In this manner, linker simulator 213 may determine a linker order that
corresponds to the linker inner ordering that would be assigned to the objects if the
linker was launched using the group of objects. More specifically, the linker inner
ordering of a linker may correspond to the ordering of objects within a linked
executable and linker simulator 213 may determine this ordering by analyzing the
input objects 215 and libraries 216, 217. In some embodiments, the ordering
determined by linker simulator 213 may also correspond to the order of the objects
215 under the assumption that the objects were placed in a single execution region.
In other words, the linker order may identify the ordering of the objects that would be
applied by the linker to resolve object placement conflicts in the linked executable.
[0038] Object order collector 214 may receive the object ordering information
determined by linker simulator 213 and compile this information into a linker order
listing. The linker order listing may be a sorted list identifying the position of each
object included in objects 215 or included in libraries 216, 217 and referenced by one
of the objects 215. After compiling the linker order information, object order collector
214 may then output the determined linker order to scatter loading file generating
instructions 220.

[0039] In response to receipt of linker order information, scatter loading file
generating instructions 220 may be configured to generate a scatter loading file used
to link the objects 215, 216, 217 in the determined linker order. In particular, scatter
loading file generating instructions 220 may first determine a size of each object 222
of the plurality of objects 215 and of any referenced library objects 216, 217. Scatter

loading file generating instructions 220 may also determine a maximum execution

10

WO 2011/130869 PCT/CN2010/000524

region size 224 by, for example, accessing stored information regarding the linker to
be used.

[0040] Scatter loading file generating instructions 220 may then organize the
plurality of objects into a number of execution regions using the size of each object
222 and the maximum region size 224. More specifically, scatter loading file
generating instructions 220 may sequentially traverse the linker order information,
placing each identified object in an execution region until reaching a maximum size of
the execution region, at which point instructions 220 may create a new execution
region and continue with the process. In some embodiments, at the end of the
process, the resulting scatter loading file may explicitly list every object 215 and all
library objects 216, 217 referenced by the objects 215. Such embodiments are
advantageous, as they ensure that all objects 215, 216, 217 are placed in the linked
executable in the order specified in the generated scatter loading file.

[0041] The generated scatter loading file may then be provided to linking
instructions 230. Linking instructions 230 may, in response, trigger a linking
procedure using the appropriate linker. The linker may receive, as input, the scatter
loading file and objects and libraries 232, which may be the same as the objects 215
and libraries 216, 217 provided to linker order determining instructions 210. The
linker may then generate a linked executable using the ordering specified in the
scatter loading file. Because the ordering within execution regions of the scatter
loading file is the same as the Iir_1ker inner ordering, the objects in the resulting linked
executable may be in the same order as the scatter loading file.

[0042] In response to receipt of the linked executable from linking instructions
230, update package generating instructions 240 may generate an update package
to update a previous executable file 242 to the new version. In particular, update
package generating instructions 240 may generate an executable file containing
instructions for creating the new version of the executable file using the previous
executable file 242. For example, the update package may contain a series of copy
commands indicating sections of the new version that are identical to previous

executable file 242 and a series of set commands indicating data to be used for non-

11

WO 2011/130869 PCT/CN2010/000524

matching sections of previous executable file 242. Other suitable methods for
generating the update package will be apparent to those of skill in the art.
[0043] Because previous executable file 242 may have been generated using
instructions 210, 220, 230, the similarity in the ordering of objects contained in the
new and previous executable files may be maximized. As a result, the number of
commands required to transform the previous executable file 242 to the new version
will be minimized, thereby reducing the total size of the resulting update package and
minimizing the installation time on the client device 260.
[0044] For example, when the new executable file only removes a particular
object from previous executable file 242, the linker order determined by linker order
determining instructions 210 will be the same, with the exception of the removal of the
particular object. As another example, when the new executable file only adds a
particular object to previous executable file 242, the determined linker order will be
the same, with the exception of the addition of the particular object. As yet another
example, when the objects included in the new executable file and previous
executable file 242 are the same, the determined linker order will be identical. As a
result, in each of these examples, the scatter loading file will be very similar and the
linked executables will therefore also be very similar. As a result, changes reflected
in the update package will be minimal.
[0045] After generation of the update package, computing device 200 may
prepare the update package for distribution to the client base. For example, the two
versions of the executable file may be software or firmware included in a set of client
devices, which may include a particular client device 260. Thus, client device 260
may be notified of the availability of an update package and initiate a download of the
update package from computing device 200 via network 250, which may be any
packet-switched or circuit-switched network (e.g., the Internet).
| [0046] Client device 260 may be any computing device suitable for execution of
software and firmware. For example, client device 260 may be a desktop or laptop
computer, a mobile phone, a portable reading device, or the like. Client device 260
may include software or firmware 264 to be updated and an update installer 262 for

12

WO 2011/130869 PCT/CN2010/000524

installing a received update package. Upon receipt of an update package, client
device 260 may execute update installer 262 to process the update package and
modify the previous version of the softwareffirmware 264 using the instructions
contained therein.

[0047] FIG. 3 is a flowchart of an example method 300 for generating an update
package based on two versions of an executable, each linked using a scatter loading
file generated based on a determined linker order. Although execution of method 300
‘is described below with reference to the components of computing device 200, other
suitable components for execution of method 300 will be apparent to those of skill in
the art. Method 300 may be implemented in the form of executable instructions
stored on a machine-readable storage medium, such as a machine-readable storage
medium included in computing device 200. |

[0048] Method 300 may start in block 305 and proceed to block 310, where
computing device 200 may determine a linker order for objects included in a first
version of an executable file. In particular, computing device 200 may read the
plurality of objects and execute a series of instructions to determine the inner object
ordering imposed on the objects by a particular linker. As an example, computing
device 200 may run a simulation to determine the ordering in which the objects would
be placed by the particular linker if they were provided to the linker as input. In
running this simulation, computing device 200 may utilize known object ordering
properties of the particular linker. Alternatively, computing device 200 may launch the
linker one or more times to determine how the linker would order two or more objects
when required to make an ordering decision between the objects. Additional
implementation details for some embodiments are provided above in connection with
linker order determining instructions 122, 210.

[0049] After determining the linker order, method 300 may then proceed to block
320, where computing device 200 may generate a scatter loading file for the objects
to be included in the first version of the executable file using the linker order
determined in block 310. In particular, computing device 200 may organize the
objects to be included in the executable into a number of execution regions in an

13

WO 2011/130869 PCT/CN2010/000524

order corresponding to the determined linker order. Additional implementation details
for some embodiments are provided above in connection with scatter loading file
generating instructions 124, 220.

[0050] Method 300 may then proceed to block 330, where computing device
200 may link the objects using the first scatter loading file to create the first version of
the executable file. In particular, computing device 200 may launch the particular
linker providing, as input, the scatter loading file and each of the objects considered in
blocks 310 and 320. A

[0051] After creating the first version of the executable file, the executable may
be distributed to a client base. For example, the first executable may be firmware or
software that is pre-installed on client devices during a manufacturing or
customization stage of the device. Alternatively, the first executable may be installed
on the client device by a user upon obtaining the executable online or in a brick-and-
mortar store.

[0052] Method 300 may then proceed to block 340, where computing device
200 may determine the linker order for objects to be included in a second version of
an executable file. The second version of the executable file may be, for example, a
software update, a firmware upgrade, or any other modification of the first version of
the executable file. In block 340, computing device 200 may perform processing
similar to that of block 310. In particular, computing device 200 may determine an
inner ordering imposed by the linker of the objects included in the second version by
simulating the linking process or by launching the linker.

[00563] After determining the linker order, method 300 may proceed to block 350,
where computing device 200 may generate a scatter loading file for the objects to be
included in the second executable using the link order determined in block 340. The
processing performed by computing device 200 in block 350 may be similar to the
processing of block 320. Thus, computing device 200 may organize the objects to be
included in the second version of the executable into a number of execution regions

in an order corresponding to the linker order determined in block 340.

14

WO 2011/130869 PCT/CN2010/000524

[0054] Method 300 may then proceed to block 360, where computing device
200 may link the second plurality of objects using the second scatter loading file to
create the second version of the executable file. After the second executable file is
obtained through the linking process, method 300 may proceed to block 370, where
computing device 200 may generate an update package based on the differences
between the first and second versions of the executable. In particular, the update
package may contain instructions to generate the second version of the executable
file using the first version of the executable file.

[0055] Method 300 may then proceed to block 380, where computing device
200 may distribute the update package to the client base. For example, computing
device 200 may transmit the update package to client devices 260 via a network 250,
such as the Internet. Upon receipt of the update package, each client device 260
may run the update package to upgrade the software or firmware. Method 300 may
then proceed to block 385, where method 300 may stop.

[0056] FIG. 4 is a flowchart of an example method 400 for determining a linker
order for a plurality of objects to be included in an executable file. Method 400 may
be, for example, a specific implementation of blocks 310 and 340 of FIG. 3. Although
execution of method 400 is described below with reference to the components of
computing device 200, other suitable components for execution of method 400 will be
apparent to those of skill in the art. Method 400 may be implemented in the form of
executable instructions stored on a machine-readable storage medium, such as a
machine-readable storage medium included in computing device 200.

[0057] Method 400 may start in block 405 and proceed to block 410, where
computing device 200 may parse the input objects to identify object libraries
referenced by the plurality of objects. For example, computing device 200 may
identify each object of the plurality of objects that references one or more user-
specified or standard libraries and, for each such object, identify the referenced
libraries.

[0058] Method 400 may then proceed to block 420, where computing device
200 may parse the identified object lIibraries to identify the library objects to be

15

WO 2011/130869 PCT/CN2010/000524

included in the executable. More specifically, computing device 200 may extract the
constituent objects from each library and compare the extracted libraries to the object
libraries identified in block 410. In this manner, computing device 200 may compile a
listing of all objects to be included in the executable file. This listing of objects may
include the input objects, referenced objects in user-specified libraries, and
referenced objects in standard libraries.

[0059] Method 400 may then proceed to block 430, where computing device
200 may determine the ordering of the input objects and library objects. In some
embodiments, computing device 200 may determine the ordering of the objects
based on properties of the particular linker to be used. For example, when the linker
is an ARM linker, computing device 200 may first determine a group of the objects
based on their attributes (e.g., read-only, read-write, zero-initialized, etc.). Computing
device 200 may then determine an ordering to be applied within each attribute group
based on an ASCII ordering of the objects. Thus, in some embodiments, the linker
order may be determined based on an assumption that all objects are to be included
in a single execution region. Stated differently, computing device 200 may determine
an order applied by the particular linker for all objects when the linker makes ordering
decisions on its own (rather than making the decision based on user instructions).
The resulting list may be a list of objects in an order to be identified in the scatter
loading file.

[0060] After determining the object order in block 430, method 400 may proceed
to block 440, where computing device 200 may output the linker order information for
use in generating a scatter loading file. Finally, method 400 may proceed to block
445, where method 400 may stop.

[0061] FIG. 5 is a flowchart of an example method 500 for generating a scatter
loading file using a linker order. Method 500 may be, for example, a specific
implementation of blocks 320 and 350 of FIG. 3. Although execution of method 500
is described below with reference to the components of computing device 200, other
suitable components for execution of method 500 will be apparent to those of skill in
the art. Method 500 may be implemented in the form of executable instructions

16

WO 2011/130869 PCT/CN2010/000524

stored on a machine-readable storage medium, such as a machine-readable storage
medium included in computing device 200.

[0062] Method 500 may start in block 505 and proceed to block 510, where
computing device 200 may receive the link order information. In particular, as
described in detail above, the link order information may identify the ordering of input
objects and library objects to be included in the executable file. Method 500 may then
proceed to block 520, where computing device 200 may determine the size of each
object to be included in the executable file. For example, computing device 200 may
determine a total number of bytes included in each input object and library object
included in the link order information.

[0063] After determining the size of each of the objects, method 500 may
proceed to block 530, where computing device 200 may select the next object
identified in the linker order information. Method 500 may then proceed to block 540,
where computing device 200 may determine whether sufficient space remains in the
current execution region for inclusion of the object selected in block 530. When there
is enough space in the execution region, method 500 may skip to block 560,
described in detail below. Alternatively, when it is determined that there is insufficient
space in the current execution region to include the currently-selected object, method
500 may proceed to block 550.

[0064] In block 550, computing device 200 may create a new execution region in
the scatter loading file. In particular, computing device 200 may create an execution
region in a current load region to specify a memory region for storage of one or more
objects during execution of the linked executable. In creating the execution region,
computing device 200 may identify a name of the region and a base address or
address offset from a previous execution region. In some embodiments, in addition
to creating a new execution region, computing device 200 may also create a new
load region that contains one or more execution regions (including the execution
region just created). A load region may be used to specify a region of memory for

use by one or more objects prior to execution of the linked executable.

17

WO 2011/130869 PCT/CN2010/000524

[0065] Method 500 may then proceed to block 560, where computing device
200 may insert the currently-selected object as the last entry in the current execution
region. In particular, computing device 200 may place the currently-selected object
into an input section, including an area description identifying the name of the object
and area attributes of the particular object. For example, in listing an object A with a
read-only attribute, computing device 200 may insert an entry, “A.o (+RO).” Similarly,
in listing an object B with a read-write attribute, computing device 200 may insert an
entry, “B.o (+RW).” Other suitable execution region entries will be apparent to those
of skill in the art depending on the particular linker.

[0066] Method 500 may then proceed to block 570, where computing device
200 may determine whether there are additional objects to be placed in the scatter
loading file. When it is determined that there are additional objects, method 500 may
return to block 530 for processing of the next object in the linker order information.
Alternatively, when there are no additional objects to be included in the scatter
loading file, method 500 may proceed to block 575, where method 500 may stop.
[0067] FIG. 6 is a block diagram of an example operation flow 600 for
generating an update package based on two versions of an executable file, each
linked using a scatter loading file generated based on a determined linker order.
Although operation flow 600 is described below with reference to the components of
computing device 200, other suitable components for implementation of operation
flow 600 will be apparent to those of skill in the art.

[0068] As illustrated in operation flow 600, computing device 200 may initially
receive a first plurality of input objects 610 with instructions to determine a linker order
of the objects. As illustrated, input objects 610 may include an object, a.o., which
references two objects in libraries, b.o and e.o. Similarly, input objects 610 may aiso
include an object c.o, which references an object in a library, d.o.

[0069] In block 1 of operation flow 600, computing device 200 may execute
linker order determining instructions 210 to determine linker order information 620 for
the plurality of input objects. In particular, linker order determining instructions 210
may first parse the user-provided objects, a.0 and c.o, to identify any object libraries

18

WO 2011/130869 PCT/CN2010/000524

referenced by these objects. Linker order determining instructions 210 may then
parse the identified object libraries to identify any library objects referenced by the
user-provided objects and thereby identify. b.o, d.o, and e.o. Finally, linker order
determining instructions 210 may determine the linker order by first placing any user-
provided objects 215 and then placing any referenced objects that are contained in
libraries. Thus, in this example, the resulting linker order information 620 may first list
all read-only code arranged in the order, a.o, c.0, b.o, d.o, and e.o. The linker order
information 620 may then list all read-write code arranged in the order, a.o, c.o, b.o,
d.o, and e.o.

[0070] In block 2 of operation flow, computing device 200 may execute scatter
loading file generating instructions 220 to populate a scatter loading file 630 using the
linker order information 620. In particular, as illustrated, scatter loading file generating
instructions 220 may first create an execution region, EXEC1, including read-only
code for a.0, c.0, and b.o. Scatter loading file generating instructions 220 may then
create a second execution region, EXEC2, including read-only code for d.o and e.o.
Next, scatter loading file generating instructions 220 may create a third execution
region, EXEC3, and populate it with a reference to the read-write code of a.o and c.o.
Finally, scatter loading file generating instructions 220 may create a fourth execution
region, EXEC4, and include a reference to the read-write code of b.o, d.o, and e.o.
As illustrated each of the four execution regions may be placed in the same load
region using a relative addressing scheme (i.e., each execution region is offset placed
relative to the previous region using the parameter “+0").

[0071] In block 3 of operation flow 600, computing device 200 may execute
linking instructions 230 to link the objects 610 using the scatter loading file 630. In
particular, linking instructions 230 may launch the particular linker, providing the
objects 610 and the scatter loading file 630 as input. Thus, as illustrated, the resulting
linked executable 640 may be ordered identically to the order of scatter loading file
630.

[0072] At some point after the generation of the first linked execution 640, a
developer may determine that a software or firmware update is advisable.

19

WO 2011/130869 PCT/CN2010/000524

Accordingly, the developer may generate a new set of objects 650 that contain one or
more modified objects. In particular, as illustrated, the new set of objects 650 may
remove d.o, while adding a new object, f.0o. Accordingly, in block 4 of operation flow
600, computing device 200 may again execute linker order determining instructions
210 to determine linker order information 660 for the objects 650. As illustrated, linker
order determining instructions 210 may output linker order information 660, which will
be arranged identically to order information 620, but for the insertion of f.o after c.o
and the deletion of d.o.

[0073] In block 5 of operation flow 600, computing device 200 may execute
scatter loading file generating instructions 220 to populate a scatter loading file 670
using the linker order information 660. As illustrated, the order of scatter loading file
670 is similar to that of scatter loading file 630, except for the insertion of f.o in
execution regions EXEC1 and EXEC4, and the deletion of d.o from execution regions
EXEC 2 and EXECA4.

[0074] In block 6 of operation flow 600, computing device 200 may link the
executable using the objects 650 and the scatter loading file 670. In particular,
computing device 200 may launch the particular linker, providing objects 650 and
scatter loading file 670 as input. The resulting executable file 680 for the second
version may reflect the ordering of scatter loading file 670.

[0075] After generation of the second version of the executable file 680,
computing device 200 may be ready to generate an update package to create the
second version 680 from the first version 640. Thus, in block 7 of operation flow 600,
computing device 200 may execute update package generating instructions 240 to
generate an executable file that uses first version 640 as a baseline for generating
second version 680. An abstraction of such an update package is illustrated as
update package 690. In particular, update package 690 may contain instructions to
remove d.o and insert f.o after c.o. Again, because the ordering of scatter loading
files 630, 670 is based on the linker inner order, executables 640, 680 may both be
arranged in a similar manner. Accordingly, update package 690 minimizes the need

20

WO 2011/130869 PCT/CN2010/000524

to shift the location of objects when updating from first version 640 to second version
680, thereby minimizing the update package size and reducing installation time.

[0076] According to the foregoing, various embodiments relate to generating
and using a scatter loading file to link objects in an order that remains consistent
between versions of an executable file. In this manner, differences between
subsequent versions of the executable file may be minimized,.thereby allowing for an
update package of significantly reduced size. Accordingly, software or firmware
maintained on a client device may be updated by transmitting the update package to
the client and applying the update package to the current executable maintained on
the client device in a manner that minimizes transmission length, bandwidth usage,

and installation time.

21

WO 2011/130869 PCT/CN2010/000524

CLAIMS

We claim:
1. A machine-readable storage medium encoded with instructions executable
by a processor of a computing device, the machine-readable storage medium
comprising:

instructions for determining a first linker order for a first plurality of objects
included in a first version of an executable file, the first linker order indicating an
order of the first plurality of objects if placed in a single execution region;

instructions for generating a first scatter loading file for the first version of the
executable file, the first scatter loading file ordering the first plurality of objects
using the first linker order; and

instructions for linking the first plurality of objects using the first scatter
loading file to create the first version of the executable file.

2. The machine-readable storage medium of claim 1, further comprising:

instructions for determining a second linker order for a second plurality of
objects included in a second version of the executable file, the second linker order
indicating an order of the second plurality of objects if placed in a single execution
region;

instructions for generating a second scatter loading file for the second
version of the executable file, the second scatter loading file ordering the second
plurality of objects using the second linker order;

instructions for linking the second plurality of objects using the second
scatter loading file to create the second version of the executable file; and

instructions for generating an update package, the update package
containing instructions to generate the second version of the executable file using

the first version of the executable file.

22

WO 2011/130869 PCT/CN2010/000524

3. The machine-readable storage medium of claim 2, wherein the fifst version
of the executable file and the second version of the executable file each

correspond to a respective firmware version of a client device.

4. The machine-readable storage medium of claim 1, wherein the instructions
for determining the first linker order comprise:

instructions for parsing each of the first plurality of objects to identify any
object libraries referenced by the first plurality of objects;

instructions for parsing each of the referenced object libraries to identify any
library objects referenced by the first plurality of objects; and

instructions for outputting the first linker order based on a determined
ordering of the first plurality of objects and the library objects referenced by the first
plurality of objects.

5. The machine-readable storage medium of claim 4, wherein the instructions
for outputting the first linker order determine the ordering based on object ordering
properties of a particular linker to be used by the instructions for linking the first
plurality of objects.

6. The machine-readable storage medium of claim 1, wherein the instructions
for generating the first scatter loading file comprise:

instructions for determining a size of each object of the plurality of objects;
and |

instructions for organizing the plurality of objects into execution regions
based on a maximum execution region size and the size of each object, wherein

each execution region orders objects according to the first linker order.
7. The machine-readable storage medium of claim 1, wherein the first scatter

loading file explicitly lists every object included in or referenced by the first plurality
of objects using the first linker order.

23

WO 2011/130869 PCT/CN2010/000524

8. A computing device comprising:
a processor; and
a machine-readable storage medium encoded with instructions executable
by the processor, the machine-readable storage medium comprising:
instructions for determining a respective linker order for each version
of a plurality of versions of an executable file, each respective linker order
specifying a linker inner ordering of a corresponding plurality of objects
included in a particular version of the executable file,
instructions for generating a respective scatter loading file for each
version of the executable file, the respective scatter loading file ordering
objects using.an order specified in the respective linker order,
instructions for linking the corresponding plurality of objects for each
version using the respective scatter loading file to create each version of the
executable file, and
instructions for generating an update package, the update package
containing instructions to generate a subsequent version of the executable

file using a previous version of the executable file.

9. The computing device of claim 8, wherein:

when the subsequent version of the executable file removes a particular
object from the previous version of the executable file, the respective linker order
for the subsequent version is the same as the respective linker order for the

previous version with the particular object removed.

10. The computing device of claim 8, wherein:

when the subsequent version of the executable file adds a particular object
to the previous version of the executable file, the respective linker order for the
subsequent version is the same as the respective linker order for the previous

version with the particular object inserted.

24

WO 2011/130869 PCT/CN2010/000524

11. The computing device of claim 8, wherein:

when the objects included in the subsequent version of the executable file
and the previous version of the executable file are the same, the respective linker
order is identical for both versions.

12. A method for linking executable files to minimize update package size, the
method comprising:

determining a first linker order for a first plurality of objects included in a first
version of an executable file, the first linker order indicating an inner ordering
imposed by a linker on the first plurality of objects;

generating a first scatter loading file for the first version of the executable
file, the first scatter loading file grouping the first plurality of objects into a plurality
of execution regions using the first linker order; _

linking the first plurality of objects using the first scatter loading file to create
the first version of the executable file; '

determining a second linker order for a second plurality of objects included
in a second version of the executable file, the second linker order indicating an
inner ordering imposed by the linker on the second plurality of objects;

generating a second scatter loading file for the second version of the
executable file, the second scatter loading file grouping the second plurality of
objects into a plurality of execution regions using the second linker order,

linking the second plurality of objects using the second scatter loading file to
create the second version of the executable file; and

generating an update package, the update package containing instructions
to generate the second version of the executable file using the first version of the

executable file.

13. The method of claim 12, wherein determining the first and second linker
orders comprises, for each respective plurality of objects:

25

WO 2011/130869 PCT/CN2010/000524

identifying any object libraries referenced by the respective plurality of
objects;

parsing the identified object libraries to identify any library objects
referenced by the respective plurality of objects; and

determining a respective linker order of the respective plurality of objects
and the referenced library objects based on object ordering properties of a

particular linker used for linking the first and second plurality of objects.

14. The method of claim 12, wherein determining the first and second linker
order is based on an assumption that all objects are to be included in a single

execution region.

15. The method of claim 12, wherein generating the first and second scatter
loading files comprises, for each respective executable file:

organizing the objects to be included in the respective executable file into a
plurality of execution regions, wherein an ordering between and within the

execution regions follows the determined linker order.

26

WO 2011/130869

100A\

PCT/CN2010/000524

1/6

120

N

110 —

\

Machine-Readable
Storage Medium

Linker Order

Processor

Determining Instructions

] Scatter Loading File
Generating Instructions

|

Linking Instructions

| §— 122
—1— 124
L —1— 126

FIG. 1

PCT/CN2010/000524

WO 2011/130869

alemuili4
ale 0
b mm.\\ / z._r,lt S
IEEE
9)epd
N@N.\\ lepdn
aoI1Ae (g JUaIID
09z—"

¢ OIA

0S¢

abexyoed
aepdn
pa ove

[AX4

0ec

02¢

N

\

_ suononyisuj Buessuag
suogonusu) Bunury ajgeynosx3y afiexoed aiepdn
paxur
3|4 Buipeon
Ia)eoss Jesied |,
b=)4
—
az1S 29
uoibay 9zIS B;_Hm h_oo Jojejnuiis - 71z
; 109090 PIO 1
Japlo Jayun . 19sied
e \zez iz -
suononJisu| buneisuan ele
3|14 Buipeo sa5e08 suononsu| buluiwislag - L2
1ap1Q JavuI

]

a4
3|genoaxy
snoinald

00¢ \

OPN\

9/

N~ [A44

LiZ

174

e
194

WO 2011/130869

[
o

3/6

(Start)/_ 305

PCT/CN2010/000524

Determine linker order for objects included
in first version of executable file

Generate scatter loading file for
all objects using the linker order

Link first version of executable file

330

and distribute to client base

Determine linker order for objects included
in second version of executable file

Generate scatter loading file for
all objects using the linker order

Link second version of executable file

Generate update package based on differences
between first and second versions

Distribute update package to client base

385
Co

FIG. 3

WO 2011/130869

4/6

400 405
(Start)/_

PCT/CN2010/000524

Parse objects to identify object
libraries referenced by the objects

Parse referenced libraries to identify
library objects to be included in executable

Determine ordering of the objects and library
objects based on properties of the linker

Output linker order information

445
(s)

FIG. 4

WO 2011/130869 PCT/CN2010/000524
5/6
500
505
(Start Y
Receive linker order information d 510
Determine size of each object 6 520
Select next object in linker order information
540
Enough
Y pace remaining i
execution
region?
,— 550

Create new execution region in scatter loading file

Insert object as last entry in current execution region

570

More objects

to place in scatter
loading file?

WO 2011/130869

@@@

6/6

PCT/CN2010/000524

RO

RW

Load 0Ox0

EXEC1l 0x0
a.o
c.o
f.o
b.o
}
5{:xnc2 +0

e.o

}

?XEC3 +0
a.o
c.0o

}
?XEC4 +0

o U
000

+RO
+R
+
+Ri

RO}
3
(+RO)

+RW
+RW

+RW)
+RW

!

/‘ 680

a.o (+RO)
c.0 (+RO)

f.o (+RO)

b.o (+RO)
e.0 (+RO)

a.o (+RW)
c.0 (+tRW)
f.o (+RW)
b.o (+RW)
e.0 (tRW)

/— 690

Remove d.o

Insert f.0 after c.o

Input
Objects
/"-620
Linker RO | a.0f c.0 b.o d.ole.o
Order
Information |RW/|a.ol c.olb.o}d.ole.o
<:2£:1» //’—'630
Load 0Ox0
¢ EXEC1 0x0
{ a.o $+RO
c.0 (+RO
) b.o (+RO)
EXEC2 +0
Scatter { d.0 (+RO)
Loading) e.o (+RO)
Files EXEC3 +0
{ +RW
+RW
}
EXEC4 +0
¢ b.o £+RW
d.o (+RW
e.o (+RW
} }
] /—640
a.0 (+RO)|[a.0 (+RW)
Linked ¢.0 (+RO)| c.o (+RW)
Executables |b.o (+RO)| b.o (+RW)| |
d.o (+R0O)| d.o (+RW)
e.0 (+RO)| e.o (+RW)
Update
Package

FIG. 6

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2010/000524

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 9/44 (2006.01)i
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI, EPODOC, IEEE, CNKI, CNPAT, GOOGLE: LINK, ORDER, UPDATE, UPGRADE, VERSION, SCATTER

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

[0073] in the description, figures 1-7

X IUS 2007/0079306 A1 (QUMEL Iyad) 05 Apr. 2007 (05.04.2007) abstract, paragraphs [0023]-

X US 7689982 B1 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P.) 30 Mar. 2010
(30.03.2010) abstract, columns 3-11 in the description, figures 1-6

A IUS 2009/0328024 A1 (LI, Weiliang et al.) 31 Dec. 2009 (31.12.2009) the whole document

[Further documents are listed in the continuation of Box C.

X See patent family annex.

* Special categories of cited documents:
“A” document defining the general state of the art which is not

considered to be of particular relevance

“E” earlier application or patent but published on or after the
international filing date

“L” document which may throw doubts on priority claim (S) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or
other means

“P” document published prior to the international filing date

but later than the priority date claimed

“T> later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

“X” document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to involve
an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such
documents, such combination being obvious to a person

skilled in the art

“& “document member of the same patent family

Date of the actual completion of the international search
05 Jan. 2011 (05.01.2011)

Date of mailing of the international search report

20 Jan. 2011 (20.01.2011)

IName and mailing address of the ISA/CN

The State Intellectual Property Office, the PR.China

6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China
100088

[Facsimile No. 86-10-62019451

Authorized officer
WANG Jiaxin
Telephone No. (86-10)82245138

Form PCT/ISA /210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.
Information on patent family members

PCT/CN2010/000524
Patent Documents referred Publication Date Patent Family Publication Date
in the Report
US 2007/0079306 Al 05.04.2007 US 7739679 B2 15.06.2010
US 2007050762 A1l 01.03.2007
US 7694291 B2 06.04.2010
EP 1691282 Al 16.08.2006
US 7689982 B1 30.03.2010 NONE
US 2009/0328024 Al 31.12.2009 NONE

Form PCT/ISA /210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - wo-search-report
	Page 35 - wo-search-report

