06/062887 A1 IR 0 O R)0 IO 0

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ([o
International Bureau ;

(43) International Publication Date
15 June 2006 (15.06.2006)

)
) I 0000

(10) International Publication Number

WO 2006/062887 Al

(51) International Patent Classification:

HO4L 12/24 (2006.01) HO4L 12/56 (2006.01)
(21) International Application Number:
PCT/US2005/043892

(22) International Filing Date:
1 December 2005 (01.12.2005)

English
English

(25) Filing Language:

(26) Publication Language:

(30) Priority Data:
11/008,372 9 December 2004 (09.12.2004) US

(71) Applicant (for all designated States except US): THE

BOEING COMPANY [US/US]; 100 N. Riverside Plaza,
Chicago, Illinois 60606 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MEIER, John, L.
[US/US]; 4 Oak Forest Court, St. Charles, Missouri 63303
(US). ENGLISH, Kent, L. [US/US]; 150 Hunters Pointe
Drive, St. Charles, Missouri 63304 (US). AYYAGARI,
Arun [US/US]; 4912 NE 88th Street, Seattle, Washington
98115 (US). WANG, Guijun [US/US]; 3184 NE Logan
Street, Issaquah, Washington 98029 (US).

Agents: RAD, Fariba, K. et al.; The Boeing Company,
15460 Laguna Canyon Road, MC 1650-7006, Irvine, Cali-
fornia 92618 (US).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

[Continued on next page]

(54) Title: NETWORK CENTRIC QUALITY OF SERVICE USING ACTIVE NETWORK TECHNOLOGY

100
x

110
%
RESOURCE ALLOCATION
T T ol
14~ 16~
APPL. Q0 AWARE
00 MGMT. APPLS. MIDDLE-
124 WARE
P Y
poLICY
BASED 120
MANAGEMENT -
l DIFFSERY
005 MGHT.
e IEEE 802.1p
i 4 18 _L

150
1

1301 PERFORMANCE MGMT.
125 -5
N appLICATION
127
N PRESENTATION
[15_6
129 ¢
SESSION TRAFFIC
ENGINEERING
123
TRANSPORT 152
121 4
N Nerwork MPLS
119 f T
N um 1545
CONSTRAINT-
PHYSICAL BASED RTNG.

(57) Abstract: Systems and methods for improving network centric quality of service using active network technology are disclosed.
& In one embodiment, a method includes controlling how a packet is passed over at least one of the interfaces using a differentiated
services portion of a network management architecture, monitoring a request for a Quality of Service (QoS) level from at least one
QoS-aware application, and adjusting at least one service rate of packet travel controlled by the differentiated services portion based
on at least one of the requested QoS level and an available bandwidth. In an alternate embodiment, the controlling of how a packet
is passed over at least one of the interfaces includes using at least one of a queuing discipline, a class, and a filter.

WO 2006/062887 A1 1IN0 N1VYH) AT Y000 010000 AR

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 2006/062887 PCT/US2005/043892

NETWORK CENTRIC QUALITY OF SERVICE USING ACTIVE NETWORK
TECHNOLOGY

INVENTORS
John L. Meier
Kent L. English
Arun Ayyagari
Guijun Wang

CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This patent application is related to co-pending, commonly-owned U.S. Patent
Application No. (to be determined) entitled “Methods and Systems for Intelligent Network
Management” filed under Attorney Docket No. BING-1-1144 on December 9th, 2004, which

application is incorporated herein by reference.

FIELD OF THE INVENTION
[0002] This invention relates to computer networks, and more specifically, to

improving network centric quality of service using active network technology.

BACKGROUND OF THE INVENTION
[0003] Quality of service (QoS) is desired by most customers operating in a network
centric organization (NCO). Traditional networks are based on destination-based routing and
typically do not actively manage network resources (e.g., bandwidth (BW), routers, etc.) in
determining resource allocation. Over-provisioning of the network to satisfy end-to-end user and
application QoS requirements is not feasible for technical and economical reasons. Thus, there is
a need for network management systems that better account for the dynamic link state and

bandwidth characteristics in dynamic mobile environments.

SUMMARY OF THE INVENTION
[0004] The present invention is directed to methods and systems for improving network

centric quality of service using active network technology. Embodiments of methods and

10

15

20

25

30

WO 2006/062887 PCT/US2005/043892

systems in accordance with the present invention may better account for the dynamic link state
and bandwidth characteristics in dynamic mobile environments.

[0005] In one embodiment, a method of managing a network having a plurality of
interfaces includes controlling how a packet is passed over at least one of the interfaces using a
differentiated services portion of a network management architecture, monitoring a request for a
Quality of Service (QoS) lével from at least one QoS-aware application, and adjusting at least
one service rate of packet travel controlled by the differentiated services portion based on at least
one of the requested QoS level and an available bandwidth. In an alternate embodiment, the
controlling of how a packet is passed over at least one of the interfaces includes using at least
one of a queuing discipline, a class, and a filter. In another embodiment, the adjusting of at least
one service rate of packet travel includes notifying a kernel portion of a variation in the available
bandwidth, and effecting a change in control of the packet rate of travel by the differentiated

services portion.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Preferred and alternate embodiments of the present invention are described in
detail below with reference to the following drawings.

[0007] FIGURE 1 is a schematic view of a plurality of QoS technologies that may be
used to achieve an end-to-end QoS provisioning in accordance with an embodiment of the
invention;

[0008] FIGURE?2 is a scheniatic view of a network QoS management architecture in
accordance with an embodiment of the invention; and

[0009] FIGURE 3 is a scheduler in accordance with another embodiment of the

invention.

DETAILED DESCRIPTION
[0010] The present invention relates to methods and systems for improving network
centric quality of service using active network technology. Many specific details of certain
embodiments of the invention are set forth in the following description and in FIGURES 1-3 to

provide a thorough understanding of such embodiments. One skilled in the art, however, will

2

10

15

20

25

30

WO 2006/062887 PCT/US2005/043892

understand that the present invention may have additional embodiments, or that the present
invention may be practiced without several of the details described in the following description.

[0011] Generally speaking, embodiments of the present invention use end-to-end
resource allocation to help to ensure that QoS requirements of various traffic flows are at least
partially satisfied. FIGURE 1 is a schematic view of a plurality of QoS technologies 100 that
may be used to achieve an end-to-end QoS provisioning in vaccordance with embodiments of the
present invention. The QoS technologies 100 that enable performance assurance and service
differentiation in a network stack 130, such as the Internet, can be broadly classified into two
categories: resource allocation 110 and performance management 150. FIGURE 1 illustrates
resource allocation technologies 110 and performance management QoS technologies 150 and
their scope of applicability within the network stack 130.

[0012] As shown in FIGURE 1, the architectural components of resource allocation
110 may include network QoS management 112, application QoS management 114, and policy
based management 116. Network QoS management 112 may include a set of industry standards
118 (e.g., IEEE 802.1p) at a link layer 119, and integrated services 120 and differentiated
services 122 at a network layer 121 and a transport layer 123. Application QoS management 114
may include middleware 124 and QoS-aware applications 126 at the application layer 125,
presentation layer 127, and session layer 129 of the network stack 130. Finally, policy based
management 128 is applicable to all layers of the network stack 130.

[0013] One possible objective of performance management 150 is to determine and
establish a path that each traffic flow should take in order to maximize the number of end-to-end
user application sessions whose QoS requirements have been satisfied while maximizing the
overall network utilization. Traditional networks are based on destination-based routing.
However, in order to achieve the performance management objectives, the network may
preferably have the ability to establish alternate paths for traffic flows between
source/destination pairs through efficient provisioning of resources and greater control of the
network flows. Thus, as shown in FIGURE 1, architectural components of performance
management 150 may include Multi-Protocol Label Switching (MPLS) 152 and constraint-based
routing 154 at the network layer 121 and traffic engineering 156 that is applicable to all layers of
the network stack 130.

[0014] FIGURE 2 is a schematic view of a network QoS management architecture 200

in accordance with an embodiment of the invention. In this embodiment, a user mode 210 of the

3

10

15

20

25

30

WO 2006/062887 PCT/US2005/043892

architecture 200 includes a legacy application portion 212 and a QoS-aware application portion
214 coupled to a socket Application Programming Interface (API) 216. Similarly, a kernel
portion includes an AF_INET portion 252 and a NETLINK portion 254 also coupled to the
socket API 216. A QoS service provider 230 mediates the interactions between the QoS-aware
applications 214 and the socket API 216. The QoS service provider 230 offers significant
advantages to the QoS-aware applications 214 and the entire system. Those advantages to the
QoS-aware applications 214 include an abstract QoS API from any complexity and variations of
the Kernel 250, session management for concurrency and synchronization, and common services
like monitoring changes to the available bandwidth. Those advantages to the entire system
include admission control, adaptation, and resource management for concurrent applications.
The functionality and benefits of the QoS service provider 230 are elaborated further in the
description below.

[0015] As further shown in FIGURE 2, the network QoS management architecture 200
also includes components within the user mode 210 and kernel mode 250 portions of the
operating system. QoS-aware Applications 214 interact with QoS Service Provider 230 and
Socket API 216. QoS-aware Applications 214 establish the session with peer application via QoS
Service Provider 230. QoS Service Provider 230 performs session admission control and
appropriately performs QoS provisioning for the requested session. Once QoS Service Provider
230 accepts a session connection request from QoS-aware Applications 214, it then establishes
socket level session via Socket API 216. Following the establishment of the session between the
QoS-aware Applications 214 and the peer application, QoS-aware Applications 214 transmit and
receive data via Socket API 216. Legacy applications 212 interact with peer applications by
setting up sessions via Sockets API 216. They also transmit and receive data via Socket API 216.
Socket API 216 interact with AF_INET 252 and NETLINK 254. Socket level session
communication with peer entity is directed to and from AF_INET 252. QoS Service Provider
230 uses the NETLINK 254 to configure and monitor underlying Traffic Control (TC)
components 256 such as a scheduler. In one embodiment, the scheduler may be a Differentiated
Services (DiffServ) scheduler. In addition, QoS Service Provider 230 also interacts with
NETLINK 254 which in turn interacts with the underlying Device Driver 258 via the Emulated
Filter Driver 260 to query and obtain Link State Events 262.

[0016] In one particular embodiment, the network QoS management architecture 200

includes a standard Differentiated Services (DiffServ) portion. Various Differentiated Services

4

10

15

20

25

30

WO 2006/062887 PCT/US2005/043892

architectures are known and may be suitable for this purpose, including, for example, those
architectures generally disclosed in An Architecture for Differentiated Services by S. Blake et al.,
The Internet Society, RFC 2475, December 1998, incorporated herein by reference. Generally,
the standard DiffServ portion assumes a stable link bandwidth capacity and interconnectivity
state in QoS provisioning, but this is generally not valid within a dynamic ad hoc mobile
heterogeneous network environment. Thus, embodiments of the present invention include an
extension portion to account for the dynamic link state and bandwidth characteristics in such a
dynamic mobile environment, thereby dynamically updating the packet transmit scheduler as
link states change.

[0017] FIGURE 3 is a representative scheduler 300 in accordance with an embodiment
of the invention. In this embodiment, a standard DiffServ portion may be implemented in Linux
using the traffic control (TC) elements of queuing disciplines (qdiscs) 302, classes 304, and
filters 306. Each network interface 308 may have a qdisc 302 associated with it, which will
control how packets are sent over that interface. Some qdiscs 302 are classful and may have
multiple classes 304. In order for a qdisc 302 to assign a packet to a particular class 304, filters
306 may be used to classify packets and assign them to the appropriate class 304. In general, a
class 304 may have a qdisc 302 attached to it so that elaborate combinations of TC elements can
be constructed. A filter 306 may have a policer 310 attached to it that will meter the flow
through that policer 310 and produce an action if the flow exceeds a specified rate.

[0018] In one particular embodiment, the QoS Service Provider 230 may be adapted to
look at local statistics acquired through queries to rtnetlink socket connections. The QoS Service
Provider 230 may also request statistics locally or from another host on the network through
some mechanism such as an SNMP subagent that implements a DiffServ. Management
Information Base (MIB). In further embodiments, the QoS Service Provider 230 may provide
two main services. A first service is a QoS API function through which QoS-aware applications
may request certain levels of QoS for network connections. A second service is a mechanism for
the underlying DiffServ implementation to adjust the service rates of its classes based on the
available bandwidth as reported by the network device. ,

[0019] The QoS Service Provider 230 may also be implemented as a user-level daemon
that listens on a UNIX address family socket (i.e. local socket) for requests from the QoS API
and also listens on a netlink address family socket for reported changes to the available

bandwidth of the network device. The QoS API function may be implemented as a library of C

5

10

15

20

25

30

WO 2006/062887 PCT/US2005/043892

functions that send the QoS requests from the application to the QoS Service Provider 230
through the local socket. The QoS Service Provider 230 may attempt to map a QoS request to a
DiffServ class that will be able to provide the requested level of QoS. If successful, the QoS
Service Provider 230 will create a classifier to map the packets of that network connection to the
appropriate DiffServ class. The QoS API will then just use the native socket functionality of the
operating system to create the actual network connection.

[0020] In one embodiment, the QoS Service Provider 230 manages the DiffServ
implementation on only one network interface and does not check that the QoS API connection
actually goes through the monitored interface. In alternate embodiments, the QoS Service
Provider 230 is adapted to manage multiple network interfaces. The QoS Service Provider 230
may be adapted to process Transmission Control Protocol (TCP) connections, User Datagram
Protocol (UDP) connections, or any other suitable protocols and connections.

[0021] As noted above, embodiments of the present invention include an extension
portion to account for the dynamic link state and bandwidth characteristics in a dynamic mobile
environment, thereby dynamically updating the packet transmit scheduler as link states change.
The extension portion is adapted to modify the service rates of its classes based on the bandwidth
available to the network device. This is especially important for wireless devices. The problem
can be divided into two parts. The first part is how the device notifies the kernel mode 250 of
the new bandwidth. The second part is how the kernel mode 250 effects changes in the standard
DiffServ portion based on the new bandwidth. Device notification to the kernel mode 250 of the
new bandwidth may be accomplished by the specific device driver associated with the given
interface.

[0022] Regarding the second part of the problem, how the kernel mode 250 effects
changes in the standard DiffServ portion based on emulated new bandwidth updates, a
hierarchical token bucket (HTB) gdisc may be used as a scheduler with a plurality of classes.
The plurality of classes may include a separate HTB class for each DiffServ class of expedited
forwarding (EF), the four classes of assured forwarding (AF1, AF2, AF3, AF4), and best effort
(BE). Each class may be assigned a guaranteed rate and a maximum rate. In addition, the filters
that classify packets into the various classes can have policers attached to them that meter the
flows going into particular classes in order to perform such actions as dropping or marking.
Each policer has a specified rate. The specified rates may be specified as absolute values. In a

static environment the network administrator can simply divide up the available bandwidth, as

6

10

15

20

25

30

WO 2006/062887 PCT/US2005/043892

per local policy. However, in a dynamic environment, the sum of the rates of the service classes
may be unequal to the bandwidth actually available to the network device at least some of the
time.

[0023] In one embodiment, the HTB class for EF is a class of the HTB qdisc, while all
the other classes are subclasses of another class of the HTB qdisc at the same level of the EF
class. This may be done to isolate the EF class from the other classes, while allowing the other
classes to borrow bandwidth from each other if they are not being used. In preferred
embodiments, the EF class has the highest priority, the AF classes have the next highest priority
and the BE class has the lowest priority. Thus, the AF classes get the first use of any unused
bandwidth and the BE class gets to borrow any extra bandwidth only if the AF classes are not
using it.

[0024] The architecture 200 may be adapted to perform a notification of a user-level
daemon program by the kernel mode (or kernel portion) 250 that the available bandwidth has
changed, and may be further adapted to perform a calculation of new rates for the HTB classes
and the policers based on the new bandwidth and the update of the corresponding TC elements in
the kernel mode 250 by way of rtnetlink sockets. In one embodiment, the notification of the
user-level daemon of the change in bandwidth is performed using the NETLINK_ROUTE family
of the AF_NETLINK socket protocol, a socket protocol generally known in the relevant art. The
AF_NETLINK protocol may be used to transfer information between kernel modules and user
space processes. The AF_NETLINK protocol also has a broadcast capability. More specifically,
the daemon process may open a NETLINK_ROUTE socket and, when binding to that socket,
may specify that it wishes to receive broadcast information on an RTMGRP_LINK group. The
kernel mode 250 may then send a broadcast message to the RTMGRP_LINK group whenever
the link status has changed on a network device. A bandwidth component may be added to the
broadcast message.

[0025] In the event that it is desirable to emulate a change in link status as if it was
reported by the network device through the device driver, a file in a /proc file system may be
used. In one embodiment, files in the /proc file system are simply linked to functions in the
kernel mode 250 that are executed whenever any user-level process reads from one of the /proc
files. The functions in the kernel mode 250 may return data from the kernel mode 250 as if the
data were in the files. In one particular embodiment, a file /proc/net/bw-ethl may be

implemented with a function that will change the reported bandwidth value periodically as well

7

10

15

20

25

30

WO 2006/062887 PCT/US2005/043892

as call the netlink function that initiates the broadcasts to the RTMGRP_LINK group. In
alternate embodiments, the /proc file system based mechanism may be implemented to emulate
dynamic changes in link state, or alternately, the device driver 258 (FIGURE 2) will monitor the
actual links state 262 and report updates.

[0026] In operation, a user-level daemon may initially read a configuration file that
specifies the percentages of available bandwidth that are to be allocated to each DiffServ class,
the DiffServ class to HTB class mapping, a list of policers and their percentages, and a list of
which filters are using which policers. - The daemon may then request to be notified of
RTMGRP_LINK group messages. When the daemon receives notification of a bandwidth
change through the netlink socket, it may recalculate all of the rates, and may make changes to
the appropriate qdiscs and filters in the kernel mode 250 by way of rtnetlink sockets. The
daemon may also notify any application that has requested to be notified of any change in the
link status as described more fully below.

[0027] In one embodiment, the architecture 200 includes a link state change
notification capability. As mentioned above, the AF_NETLINK socket protocol has a broadcast
capability. A broadcast function in /usr/src/linux/net/core/rtnetlink.c that performs a broadcast
for the RTMGRP_LINK group is, in one embodiment, designated as rtmsg_ifinfo. The
broadcast function first calls a rtnetlink_fill_ifinfo function and then calls a netlink_broadcast
function to send the message to all processes listening to the RTMGRP_LINK group. The
rtnetlink_fill_ifinfo function retrieves data from the netdevice data structure and fills in the
socket message buffer. It also uses the message tags IFLA_*, such as IFLA_ADDRESS,
IFLA_MTU, etc., to indicate what data is being returned in the socket message buffer. These
tags are defined in a folder, such as /usr/src/linux/include/linux/rtnetlink.h. A flag tag
IFLA_UNSPEC may be used to return the new bandwidth value. The new bandwidth value may
be stored in the netdevice data structure, or alternately, it may be stored in a new global variable,
such as a global variable called bandwidth_for_our_test. This variable may, for example, be set
by the function tied to the /proc/net/bw-ethl file. Another function, designated as bw_get_info,
may return the value of bandwidth_for_our_test whenever /proc/net/bw-ethl is read. It may also
have a counter that causes it to toggle the value of bandwidth_for_our_test. In one particular
embddiment, for example, the bw_get_info function may toggle between 10Mbps and 100Mbps
every twenty reads. Whenever the bw_get_info function changes the value of

bandwidth_for_our_test, it may also call another function designated rtmsg_ifinfo in order to

8

10

15

20

25

30

WO 2006/062887 PCT/US2005/043892

initiate an RTMGRP_LINK group broadcast message. A perl script may be adapted to
periodically drive the changes, for example, at 1 second intervals.

[0028] The architecture 200 may be adapted to perform a traffic control function. In
one embodiment, when the user-level daemon program starts, the Linux Traffic Control (TC)
elements may have no concept of the different DiffServ classes, so the architecture 200 must be
told which HTB classes represent which DiffServ classes. The architecture 200 may also need to
be told what percentage of available bandwidth is to be allocated to the different DiffServ
classes, as well as what percentages to use for the different policers and which filters use which
policers. The information about filters may be necessary since the parameters of the policers
may not be changeable. In one embodiment, rates may be changed by changing the filters and
attaching a new policer to the new filters with the newly calculated rates, effectively discarding
the old policers.

[0029] After reading in the configuration information, the daemon may open a socket
connection with the AF_NETLINK socket protocol and then may bind to that socket after setting
the nl_groups field in the sockaddr_nl data structure to RTMGRP_LINK group. The daemon
may then listen to the socket, using select, and may wait for any broadcast message. After
receiving a link-change message, the program may retrieve the new bandwidth value from the
netlink message buffer and may recalculate the rates for the HTB classes and policers based on
the percentages defined in the configuration file. All the necessary information may then be put
into netlink message buffers and sent to the TC elements in the kernel mode 250 by way of a
netlink socket.

[0030] The architecture 200 may be further adapted to allow QoS-aware applications to

‘call a set of QoS enhanced Socket functions for QoS provisioning, which may, in turn, use the

standard BSD Socket functions for the actual network connection. Based on the information in a
QoS request from the QoS-aware application, the QoS Service Provider 230 will map the
connection to the appropriate QoS provisioning mechanism. For example, if the underlying QoS
mechanism is DiffServ, the QoS Service Provider 230 may set up TC configurations in order to
route packets from that connection into the assigned DiffServ class, and may perform DSCP
marking based on the configuration associated with a given tuple space. The QoS Service
Provider 230 may also be adapted to provide notification to remote applications when network

resource conditions change.

10

15

20

25

30

WO 2006/062887 PCT/US2005/043892

[0031] The QoS Service Provider 230 may be further adapted to use the QoS API
functions to send strings to and from a server, in order to illustrate the use of the API and verify
that the QoS API functions are performing correctly. In one particular embodiment, for
example, an FTP client in the generally-known netkit-ftp-0.17 may be modified to call the QoS
API functions.

'[0032] As described above, the QoS Service Provider 230 may listen on an AF_UNIX
socket, waiting on messages from applications using the QoS API Upon receiving a request, the
QoS Service Provider 230 may attempt to satisfy the request and then return success or failure.
The QoS Service Provider 230 may also be adapted to map a request to a DiffServ class in the
underlying DiffServ implementation. It could be enhanced to use IntServ as well, using some
runtime option to decide which mechanism to use. The QoS-aware application would be
unaware which QoS provisioning mechanism was being used.

[0033] In one aspect, a QSocket function creates an endpoint for communication and
returns a file descriptor on success, or -1 if an error occurred. The QSocket function may open a
standard socket and send a réquest message to the QoS Service Provider 230, which may include
the file descriptor of the socket, the process id of the application, and the parameters in the
gos_info structure. The QoS Service Provider 230 may use the file descriptor of the socket and
the process id of the application as the unique index for this connection. Since the socket call
does not specify an endpoint, the QoS Service Provider 230 cannot map this connection to a
DiffServ class yet, so it merely creates a soft state for this connection and saves the parameters in
the qos_info structure.

[0034] In one particular embodiment, a QConnect function cbnnects to a specific host
and port combination and returns a zero on success, or —1 if an error occurred. The QConnect
function may call the standard connect function which may assign a local address and port
number. The QConnect function may then call getsockname to retrieve the assigned local
address and port number. The destination address and port number are retrieved from the
sockaddr structure. The QConnect function may finally send a setup message to the QoS Service
Provider 230, which consists of the file descriptor of the socket, the process id of the application,
the local address and port, and the destination address and port. The QoS Service Provider 230
may then analyze the DiffServ status on the network interface for this connection. The QoS
Service Provider 230 may first consider the value of the qosmech field in the qos_info structure

that was stored in the call to QSocket, which may have the value of QOS_ANY,

10

10

15

20

25

30

WO 2006/062887 PCT/US2005/043892

QOS_DIFFSERYV, or QOS_INTSERV. If the qosmech field has the value of QOS_ANY, the
QoS Service Provider 230 may consult two parameters in the flow_spec substructure of the
qos_info structure. If there is a latency requirement, the QoS Service Provider 230 attempts to
map this connection to the EF class. The QoS Service Provider 230 compares the rate
requirement to what is available for that class (allocated rate minus current usage). If there is not
a latency requirement, the QoS Service Provider 230 attempts to map this connection to an AF
class in the same way as for the EF class. If the qosmech field has the value of
QOS_DIFFSERYV, the QoS Service Provider 230 will attempt to map this connection to the
DiffServ class as specified in the diffservclassrequest field of the qos_info structure in the same
manner as described above. In one particular embodiment, the QOS_INTSERV mechanism may
be treated in the same manner as QOS_ANY. If the request is successfully mapped to a DiffServ
class, the QoS Service Provider 230 may then create a TC filter to map packets for this
connection to the HTB class that represents the selected DiffServ class and return success to the
QConnect function. If the QoS Service Provider 230 is unsuccessful, it returns failure to the
QConnect function, which will close the socket and return an error.

[0035] A QChange function updates the QoS information associated with an existing
file descriptor and returns a zero on success, or -1 if an error occurred. The QChange function
may attempt to map the request to a DiffServ class as described in the QConnect function. If
successful, the QChange function may have been mapped to the same class or a different class.
If unsuccessful, the QChange function will retain the current mapping.

[0036] A QClose function closes the associated file descriptor created via a QSocket
function and returns a zero on success, or -1 if an error occurred. The QClose function will close
the standard socket and send a clear request to the QoS Service Provider 230, which includes the
file descriptor of the socket and the process id of the application. The QoS Service Provider 230
may free all memory associated with this connection, delete the TC filter for it, and, if the
application had requested any notifications, may remove the message queue to that application
and any pending event notifications.

[0037] A QAttach function may associate an existing socket file descriptor with QoS
information and may return a zero on success, or -1 if an error occurred. A QSendto function
may send a message over an existing QSocket to a peer and returns the number of bytes sent on

success, or -1 if an error occurred. A QSend function sends a message over an existing QSocket

11

10

15

20

25

WO 2006/062887 PCT/US2005/043892

in connected state to a peer and returns the number of bytes sent on success, or -1 if an error
occurred. The QSend function will directly call the standard Send function.

[0038] A QStateUpdateNotification function sets a callback function and returns a zero
on success, or a —1 if an error occurred. The QStateUpdateNotification function will send a
callback message to the QoS Service Provider 230, which may include a file descriptor of the
socket, a process id of the application, and an event type from the notification_type structure.
The QoS Service Provider 230 will add this request to the pending event list. The
QStateUpdateNotification function may add the file descriptor, event type, context block, and
callback function to its pending event list. When there is an event of that type, the QoS Service
Provider 230 may remove the notification from the pending event list, create a message queue
for the application process and put a message on the queue. In one particular embodiment, every
function in the QoS API immediately checks to see if there are any messages on its message
queue. If there are, then the function reads each message, matches it up with the appropriate
entry in it pending event list, removes that entry, and calls the designated callback function.

[0039] A QStatus function retrieves status information associated with an existing file
descriptor and returns a zero on success, or -1 if an error occurred. The QStatus function will
send a status messagé to the QoS Service Provider 230, which may include the file descriptor of
the socket and the process id of the application. The QoS Service Provider 230 may retrieve the
current statistics from the DiffServ implementation and may return the data to the QStatus
function, which fills in values of the qos_status structure.

[0040] While preferred and alternate embodiments of the invention have been
illustrated and described, as noted above, many changes can be made without departing from the
spirit and scope of the invention. Accordingly, the scope of the invention is not limited by the
disclosure of these preferred and alternate embodiments. Instead, the invention should be

determined entirely by reference to the claims that follow.

12

10

15

20

25

WO 2006/062887 PCT/US2005/043892

What is claimed is:

1. A method of managing a network having a plurality of interfaces, comprising:
controlling how a packet is passed over at least one of the interfaces using a
differentiated services portion of a network management architecture;
monitoring a request for a Quality of Service (QoS) level from at least one QoS-
aware application; and
adjusting at least one service rate of packet travel controlled by the differentiated

services portion based on at least one of the requested QoS level and an available bandwidth.

2. The method of Claim 1, wherein controlling how a packet is passed over at least one of

the interfaces includes using at least one of a queuing discipline, a class, and a filter.

3. The method of Claim 1, wherein adjusting at least one service rate of packet travel
includes notifying a kernel portion of a variation in the available bandwidth, and effecting a

change in control of the packet rate of travel by the differentiated services portion.

4. The method of Claim 1, wherein adjusting at least one service rate of packet travel

includes scheduling a plurality of service rates using a queuing discipline.

5. The method of Claim 4, wherein scheduling a plurality of service rates includes
scheduling an expedited forwarding (EF) class for each differentiated services class of expedited
forwarding, scheduling a plurality of assured forwarding (AF) classes, and scheduling a best

effort (BE) class.

6. The method of Claim 5, wherein the EF classes have a highest priority, the AF classes

have an intermediate priority, and the BE class has a lower priority.

7. The method of Claim 4, wherein scheduling a plurality of service rates includes

scheduling a guaranteed rate and a maximum rate for each class of a plurality of classes.

8. The method of Claim 1, further comprising notifying a user-level daemon program of a

variation in the available bandwidth.

9. The method of Claim 8, further comprising changing at least one of a service rate, a

queuing discipline, and a filter by the user-level daemon program.

13

10

15

20

25

WO 2006/062887 PCT/US2005/043892

10. The method of Claim 1, further comprising providing a notification of a link state

change.

11. The method of Claim 1, wherein adjusting at least one service rate of packet travel
controlled by the differentiated services portion includes calling at least one QoS enhanced

socket function for QoS provisioning.

12. The method of Claim 1, wherein adjusting at least one service rate of packet travel
controlled by the differentiated services portion includes mapping a connection to an appropriate

QoS provisioning mechanism.

13. The method of Claim 12, wherein mapping a connection to an appropriate QoS
provisioning mechanism includes mapping a connection using a QSocket function adapted to

create an endpoint for communication.

14. The method of Claim 12, wherein mapping a connection to an appropriate QoS
provisioning mechanism includes mapping a connection using a QConnect function adapted to

connect to a specific host and port combination.

15. The method of Claim 12, wherein mapping a connection to an appropriate QoS
provisioning mechanism includes mapping a connection using a QChange function adapted to

update a QoS information associated with an existing file descriptor.

16. The method of Claim 12, wherein mapping a connection to an appropriate QoS
provisioning mechanism includes mapping a connection using a QClose function adapted to

close an associated file descriptor.

17. The method of Claim 12, wherein mapping a connection to an appropriate QoS
provisioning mechanism includes mapping a connection using a QAttach function adapted to

associate an existing socket file descriptor with QoS information.

18. The method of Claim 12, wherein mapping a connection to an appropriate QoS
provisioning mechanism includes mapping a connection using a QStatepdateNotification

function adapted to set a callback function.

14

10

15

20

25

WO 2006/062887 PCT/US2005/043892

19. The method of Claim 12, wherein mapping a connection to an appropriate QoS
provisioning mechanism includes mapping a connection using a QStatus function adapted to

retrieve a status information associated with an existing file descriptor.

20. A network management architecture for a network having a plurality of interfaces,
comprising:
a first portion adapted to control how a packet is passed over at least one of the
interfaces;
a second portion adapted to monitor a request for a Quality of Service (QoS) level
from at least one QoS-aware application; and
a third portion adapted to adjust at least one service rate of packet travel controlled by

the first portion based on at least one of the requested QoS level and an available bandwidth.

21. The network management architecture of Claim 20, wherein the first portion is adapted
to controlling how a packet is passed over at least one of the interfaces using at least one of a

queuing discipline, a class, and a filter.

22. The network management architecture of Claim 20, wherein the third portion is adapted
to adjust at least one service rate of packet travel by notifying a kernel portion of a variation in
the available bandwidth, and effecting a change in control of the packet rate of travel by the first

portion.

23. The network management architecture of Claim 20, wherein the third portion is adapted
to adjust at least one service rate of packet travel by scheduling a plurality of service rates using

a queuing discipline.

24. The network management architecture of Claim 20, further comprising a fourth portion

adapted to notify a user-level daemon program of a variation in the available bandwidth.

25. The network management architecture of Claim 20, wherein the third portion is further
adapted to map a connection to an appropriate QoS provisioning mechanism using at least one of
a QSocket function adapted to create an endpoint for communication, a QConnect function
adapted to connect to a specific host and port combination, a QChange function adapted to

update a QoS information associated with an existing file descriptor, using a QClose function

15

WO 2006/062887 PCT/US2005/043892

adapted to close an associated file descriptor, a QAttach function adapted to associate an existing
socket file descriptor with QoS information, a QStatepdateNotification function adapted to set a
callback function, and a QStatus function adapted to retrieve a status information associated with

an existing file descriptor.

16

PCT/US2005/043892

WO 2006/062887

1/3

; .
"ONLY q3SYe TVIISAHd
-INIVYISNOD
_ pS1

INIT
4 P N\—611
STA YHOMIAN
4\ 4.I N\—121
5\« JYOdSNVYL
N\—gz1
ONIYFINIONT
JAAVEL NOISSTS
g 671
#I NOILVINASTYd
-zl
NOLLYIITddVY
N N—sz1
TWOW AONVAEOIYAd .FE

HemN

J_,I S T T
dree8 331 g
_ "IWOW SO0
A
AYASTAIT
4 AuEmEar INTHIOYNVI
_ Lozr aisve
RN 1ortod
Yy
T |ﬂ 1 Lerr
TWVH Lpel
ATAAN S1ddV IWOW SO0
TAVHY-500 TddY
~_ #IT
_ Lgzr _
i
NOILVOOTTV 304N0STY
HQ: ‘
Jl§

PCT/US2005/043892

WO 2006/062887

2/3

C 9ld

YIANA DIATA
@?r -85
‘957 INTAT DYUNTTLANLY/AIOV/LAN/ _.m.m_mm. mmlhmﬂ
AT AVISINIT == DSSTTTUIM/TAON/LAN/ <= T k== MG/ LIN/IOH L/
HO¥1/01 HO¥1/0L D ATWITIONLIN/ L2 5- J
T
! !
571 JINITIAN Eﬁ ¥ Nz
* 05T
e [———— t—— _ _ TN¥IY
1V L4008 Jasn
917 .\ X] Y
| 4V L3008 ~—
| L——-]
RELZRLE stmmglm 14V 179008
S ¥
114 1dv 500 |
kIIIIFJ 3
“.“1 %mEE.% | || sworzvortady /sa
A TuvMvso DT o
pir—- b — — o o (4

PCT/US2005/043892

WO 2006/062887

3/3

NYVWSA 0°1 DSIA0 LOOY

4IH 0°Z OSId0

: <7 | 19 -6
anano Od14d 6T ISIAD | ST [+t eyt
s Lors XAANDL
U FoIs i
o [x| PV 650
74 @N&% b
EE@»:%:.._.. PeX0 |\ xqaNDL
XAANIDI 70X T
|~z 90¢° oI
ez K g | &V R1a0]
srxg ISVH 81%)
SLATHS-81%0 YSVH XANDL
X4AND1 71X) x
| ~z0s 9067 0IE
o7 [AV -6
il LN NM ISVH 01X
EEE@ESA._v] P \ xaanNIDL
XIQNDL 71%0 ;
| ~ze 903 oI
‘ 7 [apxn 1 14V 60
e] v 0
EEEEEE.._l 0| ‘yaannL
XIANDI 79%)
905~
&t 47650 {LIIHS
XSVI 7] [« 2P0 ISVIW
04I4d | I'7 |+ xganDL XAGNIDL

INTERNATIONAL SEARCH REPORT

International application No

/US2005/043892

A. CLASSIFICATION OF SUBJECT MATTER
HO4L12/24 HO4L12/56

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

HO4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

15 July 2004 (2004-07-15)
figures 1-3,13,18,23,29
page 1, paragraph 5-7
page 4, paragraph 49

page 5, paragraph 61

page 8, paragraph 101
page 12, paragraph 130
page 17, paragraph 191
page 19, paragraph 210
page 21, paragraph 226

X US 2004/136379 Al (LIAO RAYMOND R ET AL) 1-25

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

A document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

*L' document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

0 document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in confiict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the ar.

*&" document member of the same patent family

Date of the actual completion of the international search

3 April 2006

Date of mailing of the intemational search repont

07/04/2006

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Mircescu, A

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

| :rnational application No

/US2005/043892

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 2002/057651 A1 (ROBERTS LAWRENCE G)
16 May 2002 (2002-05-16)

figures 2,4-8

page 1, paragraphs 7,8

page 2, paragraph 15

page 3, paragraphs 20,21,23-25

page 4, paragraph 43

page 5, paragraphs 45,50

US 6 744 767 B1 (CHIU ANGELA L ET AL)
1 June 2004 (2004-06-01)

figures 2-5

column 2, lines 20-55

column 3, lines 25-52

column 6, lines 40-65

column 7, Tines 7-45

column 13, Tines 24-67

column 14, lines 1-11

1-25

1-25

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT Ipdaernational application No

Information on patent family members

= 1/US2005/043892
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2004136379 Al 15-07-2004 NONE
US 2002057651 Al 16-05-2002 US 2002080786 Al 27-06-2002
US 2002057699 Al 16-05-2002
us 7012919 B1 14-03-2006
UsS 6744767 B1 01-06-2004 US 6973033 Bl 06-12-2005

Fom PCT/ISA/210 (patent family annex) (April 2005)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

