(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
19 August 2004 (19.08.2004)

s,
VAT
ﬁﬂjA TN

¥

@ipo)

(10) International Publication Number

WO 2004/070527 A2

GO6F

(51) International Patent Classification’:

(21) International Application Number:
PCT/US2004/001544

(22) International Filing Date: 21 January 2004 (21.01.2004)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
10/355,253 31 January 2003 (31.01.2003) US
(71) Applicant (for all designated States except US):
HANDYSOFT CORPORATION [US/US]; 1952

Gallows Road, Suite 200, Vienna, VA 22182 (US).

(72) Inventors: KIM, Yeong-Ho; 2561 Cormelia Road,
Apt.#400, Herndon, VA 20171 (US). LEE, Misuk;
502-303 Hyundai Apt.,, Seoul, 158-073 (KR).

(74) Agent: PARK, Hae-Chan; McGuireWoods LLP, 1750
Tysons Boulevard, McLean, VA 22102 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-
pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

THE DISCLOSURE

(57) Abstract: A method of executing and controlling a workflow

470705277 A2 IO 0 OO0 OO

(54) Title: SYSTEM AND METHOD OF EXECUTING AND CONTROLLING WORKFLOW PROCESSES ABSTRACT OF

process includes a request-response control process for coordi-

nating activities between a plurality of entities, whereby an entity creates and sends a message requesting execution of an activity
and another entity receives, parses and responds to the request. The message includes activity-specific data and activity status data.
The activity status data signifies, for example, whether a corresponding activity has been successfully performed (i.e., completed) or
failed. Process information, including control logic for the workflow process, is specified in an at least one uncompiled document,

& which may include an extensible stylesheet and an extensible markup language document. A document type definition defines the
& structure of the document. The control logic may include serial, AND-parallel, OR-parallel, XOR-parallel, CON-parallel and iter-
ative instructions and a definition of successful completion and/or failure for an activity according to the control logic. The control

logic also specifies a forward transition for a completed activity an
the message according to the control logic for the workflow process
and database are not required.

=

d a backward transition for a failed activity. A parser processes
and the document type definition. A compiled workflow engine

10

15

20

25

WO 2004/070527 PCT/US2004/001544

SYSTEM AND METHOD OF EXECUTING AND CONTROLLING WORKFLOW
"~ PROCESSES
DESCRIPTION
BACKGROUND OF THE INVENTION
Field of the Invention

The present invention generally relates to workflow processes. More particularly, the
present invention relates to a system and method for executing and controlling workflow
processes without dependence upon a conventional workflow engine.

Background Description

The prosperity of e-commerce has magnified the need for integrating business
processes. While many workflow management systems (WFMS) exist for managing
business processes within an enterprise, they are not well suited for efficiently managing
business processes across multiple enterprises. In particular, automation of inter-
organizational business processes (IBPs), i.e., business processes that span across a
plurality of organizations, typically requires participating companies to either use the same
cumbersome and expensive workflow management system or adhere to an open standard,
neither of which are practical solutions in a world of businesses With diVerse interests,
preferences, needs and resources. Consequently, there is a need for a system and
methodology to facilitate automation of business processes, which may include inter-
organizational business processes, without dependence upon a conventional workflow
management system comprised of a workflow engine and database.

The present invention is directed to overcoming one or more of the problems as

set forth above.

10

15

20

25

WO 2004/070527 PCT/US2004/001544

SUMMARY OF THE INVENTION

It is an object of ;the‘ present invention to provide a system and method of executing
and controlling workflow processes.

It is another object of the present invention to provide a system and method of
executing and controlling workflow processes, including inter-organizational business
processes.

It is still another object of the present invention to provide a system and method of
executing and controlling workflow processes without dependence upon a conventional
workflow management system comprised of a workflow engine and database.

It is a further object of the present invention to provide a system and method of
executing and controlling workflow processes using messages, variables and process rules
defined in documents that do not require compilation or processing by a workflow engine.

It is yet a further object of the present invention to provide a methodology for
defining a process control logic and a process model for a workflow process.

According to an exemplary implementation of the invention, a method of executing
and controlling a workflow process includes a request-response control process for
coordinating activities between a plurality of entities, whereby an entity creates and sends
a message requesting execution of an activity and another entity receives, parses and
responds to the request. A message includes activity-specific data and activity status data.
The activity status data signifies whether a corresponding activity has been successfully
performed (i.e., completed) or failed. Process information including control logic for the
workflow process is specified in an at least one uncompiled document, which may include
an extensible stylesheet and an extensible markup language document. A documenttype
definition defines the structure of the document. The control logic may include serial, AND-

parallel, OR-parallel, XOR-parallel, CON-parallel and iterative instructions and a definition

10

15

20

25

WO 2004/070527 PCT/US2004/001544

of successful completion and/or failure for an activity according to the control logic. The
control logic also specifies a forward transition for a completed activity and a backward
transition for a failed activity. A parser processes the message according to the control
logic for the workflow process and the document type definition. A compiled workflow

engine is not required.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects, and advantages will be better understood
from the following detailed description of a preferred embodiment of the invention with
reference to the drawings, in which:

Figure 1 conceptually shows an exemplary computing and network environment in
which a system and methodology in accordance with the present invention may be
implemented;

Figure 2 conceptually illustrates a business process carried out over three
companies;

Figure 3 conceptually illustrates an external process model for an exemplary
business process carried out over three companies;

Figure 4 conceptually illustrates a forward transition mechanism for a completed
message in accordance with an exemplary implementation of the present invention;

Figure 5 conceptually illustrates a backward transition mechanism for a failed
message in accordance with an exemplary implementation of the present invention;

Figure 6 conceptually illustrates an exchange of XML messages for implementing an
inter-organizational business process using a request-response methodology in
accordance with an exemplary implementation of the present invention;

Figure 7 is a table of exemplary blocks and process control logic descriptions;

10

15

20

25

WO 2004/070527 PCT/US2004/001544

Figure 8 conceptually illustrates an exemplary process model and corresponding
blocks, i.e., specifications of the behavioral pattern of process flows;

Figure 9 conceptually illustrates an exemplary tree model used in transforming an
inter-organizational business process into an XML representation, i.e., an X-IBP;

Figure 10 is an exemplary Document Type Definition (DTD) which defines a
document structure of an XML document in accordance with an implementation of the
present invention;

Figure 11 is an exemplary X-IBP document representing a block tree as illustrated in
Figure 9;

Figure 12 is a flowchart illustrating process control logic in accordance with an
exemplary implementation of the present invention; and

Figure 13 conceptually illustrates types of forward transitions for process modeling
and process control logic development in accordance with an implementation of the
present invention;

Figure 14 shows a portion of an exemplary XS-PCL in accordance with an
implementation of the present invention for illustrative purposes, including an exemplary
control logic and exemplary commands for creating an X-MSG of “Comp‘Ieted”;

Figure 15, shows a user interface of an exemplary system for inter-organizational
business process implementation in accordance with the present invention;

Figure 16, shows a user interface of an exemplary system for inter-organizational
business process implementation for a distribution company in accordance with the
present invention; and

Figure 17, shows a user interface of an exemplary system for inter-organizational
business process implementation for a distribution company in accordance with the

present invention.

10

15

20

25

WO 2004/070527 PCT/US2004/001544

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT OF THE INVENTION

Referring to Figure 1, an exemplary computing and network environment for
implementing a system and methodology in accordance with the present invention is
conceptually shown. A plurality of computing devices 110, 120 and 130 are
communicatively coupled via network communication means 115, 125, 135 and 140. By
way of example and not limitation, three computers are conceptually shown. Those skilled
in the art will appreciate that other configurations with fewer or more computers may be
used to implement a workflow execution and control methodology in accordance with the
present invention.

Each computing device 110, 120 and 130 may, for example, be a conventional
computer with a processing unit, a system memory and a system bus that communicatively
couples various system components including the system memory to the processing unit.
The system bus may be any of several types of bus structures using any of a variety of bus
architectures. The system memory may include read only memory (ROM) and random
access memory (RAM). A basic input/output system (BIOS), containing routines that help
to transfer information between elements within the computer may be stored in ROM. The
computer may also include storage devices such as a magnetic hard disk drive, a magnetic
disk drive for reading from or writing to removable magnetic disk, and an optical disk drive
for reading from or writing to a removable optical disk such as a CD-ROM or other optical
media. The magnetic hard disk drive, magnetic disk drive, and optical disk drive may be
connected to the system bus by a hard disk drive interface, a magnetic disk drive-interface,
and an optical drive interface, respectively. The drives and their associated computer-
readable media provide nonvolatile storage of computer readable instructions, data
structures, program modules and other data for the computer. These elements are

typically included in most computer systems and the aforementioned system is infended to

5

10

15

20

25

WO 2004/070527 PCT/US2004/001544

represent a broad category of systems supporting transmission, receipt and processing of
extensible markup language (XML) messages.

Software for implementing a system and methodology in- accordance with the
present invention on the above-referenced computing environment may be stored on the
hard disk, magnetic disk, optical disk, ROM or RAM. The software may include an
operating system, one or more application programs, other program modules, and program
data. Firmware, application specific integrated circuits and other manifestations of
computer processing instructions and data may be employed in lieu of or in addition to
software without departing from the scope of the present invention.

A process may be automated or require user input or intervention. A user may enter
commands and information into the computer through input devices such as a keyboard
and pointing device. Other input devices (not sﬁown) such as a microphone, scanner or
the like may be employed. These and other input devices may be connected to the
processing unit through an interface coupled to system bus, such as a serial port, parallel
port or universal serial bus (USB). A monitor or other type of display device may also be
connected to system bus via an interface, such as video adapter. In addition to the
monitor, the computer may include other peripheral output devices (not shown), such as
speakers and printers.

Of course, the computer system may include fewer, different and/or additional
elements, provided it is capable of performing steps in accordance with the present
invention. Those skilled in the art will appreciate that the invention may be practiced with
other computer system configurations, including hand-held devices, multi-processor
systems, programmable equipment and machinery, minicomputers, mainframe computers,
and the like. The invention may also be practiced in distributed computing environments

where tasks are performed by remote processing devices that are linked through a

10

15

20

25

WO 2004/070527 PCT/US2004/001544

communications network with program modules located in local and/or remote storage
devices.’

Each computer may operate in a networked environment using logical connections
to one or more remote computers. By way of example and not limitation, the network may
be a local area network (LAN) and/or a wide area network (WAN), including the Internet, a
combination of the foregoing, or some other means of communicating computer readable
data between remote computers. Such networking environments are commonplace.

While the preferred implementation of present invention employs extensible markup
language (XML) and extensible stylesheet language (XSL) and document type definitions
(DTDs), those skilled in the art will appreciate that other programming and scripting
languages and definitions, including (without limitation) predecessors, successors and
variants of XML, XSL and DTD, as well as other languages, formats and definitions based
on or derived from SGML (ISO 8879), or other languages or standards that enable
creating, defining and processing of business process rules and workflow data in
documents, files and/or objects that do not require compilation or processing by a workflow
engine to automatically control a workflow may be employed without departing from the
scope of the present invention. Those skilled in the art will also appreciate that software
used to implement and practice the present invention may, for example, include (without
limitation) tools for creating, modifying and documenting DTDs and XSL style sheets,
including cascading style sheet (CSS) editors, DTD documenters, DTD editors, DTD
generators, DTD parsers, schema converters, XSL checkers, XSL converters, XSL
transformation (XSLT) editors and generators; tools for scripted creation and modification
of XML documents; tools for supporting document management, such as document
databases and search engines; XML document database systems for storing XML

documents and providing access to their structure and individual parts; XML document

10

15

20

25

WO 2004/070527 PCT/US2004/001544

management utilities; tools for interactive creation, modification and composition of XML
documents; tools for electronic delivery and display of XML documents; XML parsers,
parsing toolkits; XML middleware; XML validators; XSL engines that support XSL
formatting objects specification; and XSLT engines that support XSLT specification, all of
which are well known in the art.

Referring now to Figure 2, a business process carried out over three companies—a
distributor, manufacturer, and sub-contractor—is conceptually shown for illustrative
purposes. The business process includes internal and external processes. Each company
has its own internal processes. Each company also has external processes representing
the interaction among companies. To illustrate, after receiving an order from a customer,
the distributor may first determine a manufacturer that will produce the ordered product.
Then, the order may be sent to the manufacturer. Determining a manufacturing company,
an activity performed within the distribution company, need not be disclosed to the other
companies. That activity qualifies as an internal process of the distribution company. In
contrast, sending an order to the manufacturer is an external activity.”

An external process may depend upon an internal activity. For example, in Figure 2
“sending order”, an internal activity of the distributor, triggers or calls for a process of the
manufacturer. In contrast, activities that the distributor has carried out prior to “sending
order” may have little or nothing to do with the external process. To distinguish internal
activities from the external process, related internal activities are enclosed in a large circle
as illustrated in Figure 2, e.g., A1, A2, A3, A4 & A5. This notion to the external process,
provides a simple intuitive model in Figure 3. |

An inter-organizational business process can be represented by a plurality of
activities and their relationships. A company participating in the inter-organizational

business process performs one or more activities. The performance of an activity by a

10

15

20

25

WO 2004/070527 PCT/US2004/001544

company participating in the inter-organizational business process may also be considered
a service. A relationship indicates the temporal sequence and/or logical precedence
between two activities. An inter-organizational business process involves a plurality of
companies performing activities. Any two activities that are inter-organizational activities
and are directly connected are carried out by two different companies. Even a complex
inter-organizational business process can be understood as a composition of such simple
relations between two activities.

A preferred implementation of the present invention coordinates activities between
two companies to control inter-organizational business processes. In particular, a request-
response control methodology is employed to achieve the desired automatic coordination
and control. Pursuant to the request—résponse control methodology, a company requests
execution of an activity and another company responds to the request.

A mechanism for driving an inter-organizational business process is the exchanging
of messages among participating companies. A completion of a service may generate a
message, which is then transferred to the next service to nofify it of the service completion.
A message preferably includes two types of data— service-specific data (or application
data) and ;ewice status data. Service-specific data may be any data pertaining to a
service, such as specifications, quantity, availability, pricing, etc. As the control mechanism
of the present invention does not depend upon details of service-specific data, such data is
not a limitation of the present invention. The present invention may be practiced with any
service specific data used for a business process.

According to a preferred implementation, with respect to service status data, there
may be several types of messages, including (for example) completed and failed. A
completed message is a message having a completed status, signifying that the

corresponding service has been successfully performed. If a service could not be launched

10

15

20

25

WO 2004/070527 PCT/US2004/001544

or its execution was terminated unsuccessfully, it generates a failed status message.
Other examples include “suspend”, “resume”, and “terminate”. A suspended message
corresponds to an activity withheld temporarily, waiting for an input from other activities or
so. A resume message restarts a suspended activity. A terminate message ends a
process. A number of different types of messages and corresponding status data can be
added as needed without departing from the scope of the present invention. The message
types describe here are for illustration purpose only and do not limit the scope of the
present invention.

The status of a message determines in part the response of a system in accordance
with the present invention. A completed message is transmitted following the direction of
its associated link specified in an inter-organizational business process. In contrast, a
failed message is conveyed in the opposite direction. The former is referred to herein as a
forward transition, and the latter a backward transition.

To execute services specified in an inter-organizational business process model in
accordance with an exemplary implementation of the present invention, messages
exchanged by participating companies create a chain reaction as follows. First, referring to
Figure 4, as the preceding service has been carried out successfully, the present service
receives a completed message 410. This changes the status of the current service to
ready 420 and then to executing 430. The executed service can be either completed 440
or failed 450. If the executed service is completed 440, the service creates another
completed message 460 and sends it to the next service as defined in the inter-
organizational business process model. This is a forward transition. In contrast, if the
executed service fails 450, the inter-organizational business process cannot gontinue its
progress in the given direction. Consequently, a failed message is created 470 and sent

back to the previous service. This is a backward transition.

10

10

15

20

25

WO 2004/070527 PCT/US2004/001544

Now referring to Figure 5, a service receives a failed message 510 because
execution of a succeeding service (which can be the immediate next succeeding service or
a subsequent service) failed. As the notified service has already been completed
successfully, it has sent a completed message 520 to its next service. If the notified service
involves an OR or XOR branch, the failed message guides the current service to search for
an alternative succeeding service among the services that have not already been executed
530. If an alternative exists, the status is set as completed 540 and the notified service
sends a completed message 550 to the alternative. However, if an alternative is
unavailable, which may be because either the applicable logical control does not
contemplate or allow alternatives or because all alternatives are exhausted, then the status
is set as failed 560 and the notified service sénds a failed message 570 back to its directly
preceding service.

The message exchange system and methodology, as discussed above and
conceptually illustrated in Figures 4 and 5, thus provides a means for controlling an inter-
organizational business process.

In a preferred implementation, the message exchange system and methodology are
XML-enabled. An inter-organizational business process is preferably modeled in XML.
Likewise, the message exchanged is defined in XML. The XML document for an inter-
organizational business process model is referred to herein as an X-IBP. The XML
document for a message is referred to herein as an X-MSG. Controlling a process entails
conveying X-MSG's in accordance with service flows represented in X-IBP’s. This entails
interpreting both XML documents, i.e., X-IBP and X-MSG. Advantageously, the
interpretation can be performed with a conventional XML parser, avoiding the need for a
hard-coded workflow application.

To interpret an XML document, an XML parser refers to an XSL document that

11

10

15

20

25

WO 2004/070527 PCT/US2004/001544

contains parsing logic defining how to transform and process the XML document. The
interpretation can vary depending upon the XSL document to which the XML parser refers.
This flexibility, often touted as an advantage of XML, is leveraged by the present invention
to control an inter-organizational business process. This is accomplished by extracting
general process control logic from inter-organizational business process models, and then
transforming the extracted logic into XSL process control logic, referred to herein as XS-
PCL. An XML parser refers to the XS-PCL to interpret X-IBP and X-MSG. This makes it
possible to automatically control execution of inter-organizational business process
processes without hard-coded workflow applications.

Figure 6 illustrates how the exchange of XML messages can implement an inter-
organizational business process. It conceptually shows two services A and B, with service
B immediately following service A. In accordance with the request-response methodology,
the completion of service A triggers execution of service B, as follows:

(1) When service A is completed successfully, a completed X-MSG 610 is

created.

(2) The X-MSG 610 is delivered to the XML parser 620. From the point of view of

the parsef, the message is a response-message to a request for service A by the

parser.

(3) The XML parser 620 interprets X-IBP 630 and the X-MSG 610 by referring to

XS-PCL 640. The parser 620 recognizes that service B should be executed after

service A.

(4) The XML parser 620 creates a new X-MSG 650. From the point of view of

the parser 620, the message is a request-message for service B.

(5) The new X-MSG 650 is delivered to service B for execution.

12

10

15

20

25

WO 2004/070527 PCT/US2004/001544

In a preferred implementation, the transformation of an inter-organizational business
process into XML, i.e., an X-IBP, is a two-part process. The inter-organizational business
process is first transformed into a tree-structured model. The tree-structured model is then
represented in XML.

Transformation into a tree-structured model first involves identifying process
patterns, called blocks, which make it possible to use predetermined rules for actual
process control. As used herein, a block is a unit of representation that minimally specifies
the behavioral pattern of process flow. By way of example and not limitation, blocks may be
serial, AND-parallel, OR-parallel, XOR-parallel, CON-parallel and iterative blocks. The
table provided in Figure 7 describes control logic for each block. Complex processes can
be considered a composition of the block types. An original activity in a process model is
referred to herein as a primitive activity.

A block may contain other blocks. A block provides a simple means of identifying
process control logic. As a block type defines a logical pattern of process flows, a set of
rules can be predefined to control the pattern of process flows for each block type. Those
skilled in the art will appreciate that block types are not limited and can be expanded or
newly created depending upon the needs of the applications without departing from the
scope of the present invention.

A process model may be transformed into a tree of blocks or a tree model. For
example, the process model in Figure 8 may be broken down into several blocks, which

may then be rearranged into a tree model as in Figure 9. Each node of the tree may be

" represented as an XML element. Additionally, the tree structure, or the parent-child relation

of nodes, is transformed into an XML representation. A block type element may contain
sub-elements that correspond to the block type element’s child nodes. An exemplary

Document Type Definition (DTD) used for the representation is provided in Figure 10.

13

10

15

20

25

WO 2004/070527 PCT/US2004/001544

An XML representation of the tree model includes attributes describing the type and
status of nodes, both of which are required for execution control. The type attribute may,
for example and not limitation, be serial, AND-parallel, OR-parallel, XOR-parallel, CON-
parallel, iterative and primitive. As the type of attribute for a node does not change over
time (unless the process changes), it is considered static. The status attribute represents
the execution status of a node. By way of example and not limitation, a status attribute can
be one of Ready, Executing, Completed, or Failed. As anode’s status changes depending
upon the status of the other nodes linked with it, the status atiribute is dynamic.

Referring now to Figure 11, an exemplary X-IBP document representing the block
tree in Figure 9 is shown. Only the body part of the XML document is shown. A parent-
child relation between a block node and its components can be recursively identified in the
representation. Every element for a primitive activity node may, for example, have four
types of sub-elements, such as an activity name, a description, a participating company
carrying out the activity, and messages the company generates. By way of example, the
child elements of activity A7 indicate that the service is “Receiving production order”, the
activity is serviced by ABC company, and it specifies links for request and response
messages with which the company should deal.

Those skilled in the art will appreciate that a system and methodology in accordance
with the present invention may have additional, fewer and/or different types of sub-
elements. The present invention is not limited in the number and contents of the activities
or its component elements.

In an X~IBP, a process model is modularized into a set of blocks. As itis possible to
predefine the control logic for each block type, the modularized representation facilitates
process control. The control logic stems from the following characteristics of block trees.

(1) The root node of an XML block tree is a serial block comprised of a start

14

WO 2004/070527 PCT/US2004/001544

activity, an end activity, and a sequence of other nodes between the start and end

activities.

(2) A leaf node of a block tree is a primitive activity. Interim nodes represent

blocks.

(3) Every node, except the root node, has only one parent. Otherwise, the node

involves cycles and no longer qualifies as a tree.

(4) A serial block cannot have another serial block in its parent or child nodes. A

serial block is the maximum set of nodes forming a sequential pattern. However, all

the serial activities do not have to be included in one serial block. For practical
reasons, there is a need that some serial activities may belong to different blocks,
although they are at the same level.

(5) Ifa parent node of a parallel node is a serial node, then the first sibling node

of the parallel node must be a primitive activity. Thus, there should be an activity at

which the parallel block can be split. In other words, two parallel blocks whose
parent is a serial block cannot be adjacent.

Those skilled in the art will appreciate that the foregoing characteristics may be used
to extract and implement control logic from a block tree representation. The control logic for
an XS-PCL in accordance with an exemplary implementation of the present invention, as
shown in the flowchart of Figure 12, is divided into three parts. A first part (Part 1 in Figure
12) determines whether a process flow is a forward transition or backward transition 1204-
1212. When a performed service generates a completed message, the service calls a
second part (Part 2 in Figure 12) 1212-1222 that tests for iterations 1226-1232 and invokes
1234-1254 a forward transition (Parts 2-1, 2-2 and 2-3 in Figure 12). In contrast, a
performed service that generates a failed message calls a third part (Part 3 in Figure 12)

1212-1210 that invokes a backward transition.

15

10

15

20

25

WO 2004/070527 PCT/US2004/001544

The second part (Part 2 in Figure 12) initially tests if iteration is required 1226. If
iteration is required, control is transferred to the activity and the iteration starts 1232, If
iteration is not required or if required iteration has been performed, the exemplary process
then examines the tree structure of X-IBP to determine the transition type 1234-1254,
Forward transitions may be of three types—serial (Part 2-1 in Figure 12), split (Part 2-2 in
Figure 12), and merge (Part 2-3 in Figure 12) transitions. The transition type may be
determined by the link between two adjacent services. Figures 13 (a) and (b) conceptually
present the transition types in a process diagram and a corresponding block tree model.
The control logic may be divided into three parts.

A serial transition, as conceptually presented in Figure 13(c), exists when a service
is directly linked with only one succeeding service. It is represented in a block tree with a
serial block node and two child nodes, where both child nodes are activity nodes. Upon
completing activity A, control is transferred to sibling activity B for execution. Referring
again to Figure 12, if a parent node is a serial block 1234, and a current node is not the last
child 1242, and the next sibling of the current node is an activity 1254, then a serial

transition exists. Control of a serial transition is conceptually illustrated in part 2-1 of the

- flowchart in Figure 12.

A split traﬁsition as conceptually shown in Figure 13(d), has as a parent a serial
block, and as a sibling a parallel block. When the activity node B is completed, the
branches contained in the parallel block proceed concurrently depending upon the block
type. According to Figure 13(b), the completion of activity B should trigger execution of the
succeeding branches of activities C and D. If the parallel node includes another parailiel
block, the control logic is recursively applied. Control of a split transition is conceptually
ilustrated in part 2-2 of the flowchart in Figure 12.

Third, a merge transition, as conceptually presented in Figure 13(e), includes a

16

10

15

20

25

WO 2004/070527 PCT/US2004/001544

parallel block and a merge activity. A split, as shown in Figure 13(a), is followed by a
merge, meaning that if a parallel block and an activity node appearing in the depicted order
share a same serial block as their parent, then the transition is a merge transition.
Controlling a merge transition, as conceptually illustrated in partA 2-3 of the flowchart in
Figure 12, first requires testing whether the parallel block is completed or not. Completion
of the parallel block triggers execution of the merge activity node. The type of parallel block
involved determines the criteria for completion. For example, if the block type is AND-
parallel, the merge activity E is executed only when all child nodes of the AND-parallel
block, namely activities C and D, are completed. When the parallel block involves other
blocks instead of simple primitive activities, the same test procedure is applied recursively
until a completion or failure determination is made for the parallel block. Control of a merge
transition is conceptually illustrated in part 2-3 of the flowchart in Figure 12.

A backward transition is reciprocal to forward transition in the sense that a forward
transition is triggered with a successful completion of a node while a backward transition is
triggered with a failure of a node. The failure of any activity influences the status of the
entire block to which the activity belongs. When execution of an activity fails, the status of
the parent block is tested for possible failure 1220. This will depend upon the block type
1236. For example, if a block type is Serial, AND-parallel, or CON-parallel, then any failure
of a child node resulits in failure of the whole block 1240, 1246. However, an OR-parallel
block fails only when all of its child nodes fail 1238. For an XOR-parallel block, a failure in
one child node triggers another child node. Nodes in an XOR-parallel block execute one
by one until one is successfully completed 1244, 1256. If none of.the child nodes are
successfully completed, the XOR-parallel block fails. Failure in a block recursively
influences the status of its parent node in such a cascading manner. This chain reaction

may extend to the root node of the block tree, which may result in a failure of the entire

17

10

15

20

25

WO 2004/070527 PCT/US2004/001544

process.

XS-PCL preferably includes two parts; one specifying the process control logic, and
the other for creating an XML message that will trigger the next service(s). Figure 14
provides a portion of an XS-PCL for illustrative purposes. As XSL is an XML document,
XS-PCL follows XML syntax.

The upper part of Figure 14 providgs exemplary control logic that corresponds to the
beginning of part 2 in Figure 12. Those skilled in the art wiil appreciate that it expresses
rules to identify a completed activity and determine a type of forward transition for the
activity. The rules are preferably triggered when an XML parser reads the root node ofan
X-IBP. The XS-PCL portion provided will cause a parser to examine an activity’s parent
block and next sibling as described above.

The element <xsl:when> tests if the type of a completed activity's pareht block is
serial. For each descendant activity that the parser encounters after the root node, the
“test” attribute first determines if the activity’s ID is identical to the ID of the service that the
“wfms_key” parameter represents. An X-MSG received from a completed service provides
this parameter value. Next, the identified activity’s parent block is confined to a serial block.
The remainder chécks the completed activity's sibling to determine the transition type.

The lower part of Figure 14 includes exemplary commands for creating an X-MSG of
“Completed”. Once a parser has identified an activity that should be executed, the service
for the participating company for the identified activity is preferably notified. This may be
achieved by delivering a “Completed” message. The <xslitemplate> named
“‘completed_message” as shown in Figure 14 is invoked by another <xsl:template> that
identifies the next service. The remainder of the XS-PCL as shown creates an X-MSG and
saves it in a file named “file_name”.

Now referring to Figure 15, a user interface of an exemplary system for inter-

18

10

15

20

25

WO 2004/070527 PCT/US2004/001544

organizational business process implementation in accordance with the present invention
is conceptually shown. The user interface conceptually displays a representation of an
exemplary inter-organizational business process model in accordance with the process
depicted in Figure 2. The system is preferably Web-based thereby facilitating access to
monitor the status of a business processes using conventional Web browsers.

The user interface in Figure 15 displays a graphic inter-organizational business
process model for an exemplary X-IBP. The graphic model is equivalent to the inter-
organizational business process model in Figure 3. Darker icons, e.g., A1, preferably
distinguish completed activities, such as by indicating that an activity has been completed.
A smali circle in the corner of an activity icon, such as 1510 in activity A2, signifies that the
service is currently being activated. Those skilled in the art will appreciate that other user
interfaces, graphic representations of inter-organizational business processes, indicators of
completion and signifiers of activation may be employed without departing from the scope
of the present invention.

An inter-organizational business process model may be associated with internal
processes of participating companies. An internal process may be triggered during
execution of an inter-organizational business process. In a preferred implementation, the
present invention supports internal workflow as well as inter-organizational processes.

Figures 16 and 17 conceptually illustrate use of an exemplary graphical user
interface (GUI)-based system for controlling workflow processes in accordance with the
present invention. By way of example, activities dist001 through dist004 of an internal
process of a distribution company are completed as conceptually shown in Figure 12. Upon
completion of activity dist004, the exemplary system cdnstructs an X-MSG for delivery to
the next activity in the inter-organizational business process. The message is received and

parsed along with inter-organizational business process model, triggering execution of the

19

10

15

20

25

WO 2004/070527 PCT/US2004/001544

next activity, an inter-organizational business process, IBP10001-1, which is interwoven
with the internal workflow. Upon completion of inter-organizational business process,
IBP10001-1, the exemplary system will construct another X-MSG for delivery to one or both
of the next paraliel activities dist005 and IBP10001-2, depending of céurse upon the type
of branch or block, e.g., CON, OR, XOR. |

Figure 17 shows a corresponding internal process for a manufacturing company.
The distribution company’s transmission of an order pursuant to activity dist004, as
illustrated in Figure 16, results in the manufacturing company’s receipt of the order mfg001,
as illustrated in Figure 17. Upon completion of activity mfg001, the exemplary system will
construct an X-MSG for delivery to the next activity or activities in the inter-organizational
business process. The message is received and parsed along with the inter-organizational
business process model, triggering execution of a subsequent activity. Other interactions
can be controlled in the same way.

Thus the preferred implementation of the present invention provides a system and
method for implementing an inter-organizational business process while effectively
realizing external independency and internal encapsulation using message-based
communication and leveraging XML technology. Advantageously, it provides an effective
method of integrating heterogeneous workflow management systems. Furthermore, a
system and method in accordance with the present invention may comply with standard e-
business frameworks, such as ebXML, RosettaNet and cXML, meaning it can be readily
employed in a company that uses such standards. Moreover, the preferred use of XML in
modeling business processes not only facilitates the exchange of integrated business
processes but also simplifies integration with legacy applications.

Another important advantage of the present invention is that it does not require a

conventional workflow engine and database management system. These components,

20

10

15

WO 2004/070527 PCT/US2004/001544

found in workflow management systems heretofore, are typically cumbersome, proprietary
and expensive. Workflow engines are hard-coded, meaning they cannot be customized
without accessing, modifying and compiling or assembling source code{for the engine.
They are utilized as compiled or assembled executable programs. As used'herein, the term
“compiled workflow engine” refers to a workflow engine that is hard-coded and utilized as a
compiled or assembled program.

In contrast, the present invention employs a program such as an XML parser, many
of which are widely available, to carry out the execution and control of workflow processes
as specified in XML documents (e.g., X-MSG and X-IBP) according to an XSL document
(e.g., X8-PCL)and a DTD. Thus, workflow process execution and control according to the
present invention does not depend upon a compiled workflow engine or a database.

Yet another advantage of the present invention is that it provides a methodology for
defining process control logic and a process model for a workflow. The methodology
entails creating a tree model for the workflow process. Then a block model is created
based on the tree model. From the block model, the process control logic and a process
model are defined, preferably in XML and XSL documents as discussed above.

While the invention has been described in terms of preferred embodiments, those
skilled in the art will recognize that the invention can be practiced with modification within

the spirit and scope of the appended claims.

21

WO 2004/070527 PCT/US2004/001544

CLAIMS
Having thus described the present invention, what is claimed as new and desired

to be secured by Letters Patent is as follows:

1. A method of building, executing and controlling a workflow process without using
a compiled workflow engine to execute and control the workflow process comprising
steps of:

providing a control logic for the workflow process;

providing a process model for the workflow process;

creating a message that requests execution of an activity, the message including
activity-specific data and activity status data; and

processing the message according to the process model and control logic for the

workflow process.

2. The method of claim 1, wherein the process model is defined in a first
uncompiled document and the control logic is defined in a second uncompiled

document.

3. The method of claim 2, further comprising a step of creating a document type

definition that defines the structure of the first uncompiled document.
4. The method of claim 3, wherein the activity status data further includes at least ‘

one flag from the group consisting of successful, failed, resume, suspend and

terminate.

22

10

11

12

13

14

15

16

17

WO 2004/070527 PCT/US2004/001544

" 5. The method of claim 4, wherein the control logic further includes a first instruction

for performing a forward transition if the activity status data includes a “successful” flag
and a second instruction for performing a backward transition if the activity status data

includes a “failed” flag.

6. The method of claim 5, wherein the control logic further includes a serial

instruction indicating that the activity should be executed promptly.

7. The method of claim 5, wherein the activity is comprised of one activity or a
plurality of sub-activities, and the control logic includes at least one logic instruction from
the group consisting of:

a serial instruction indicating that the activity should be executed promptly, and if
the activity executes successfully then a completed status is associated with the activity,
and if the activity does not execute successfully then a failed status is associated with
the activity,

an AND-parallel instruction indicating that, if the activity is comprised of a plurality
of sub-activities, the sub-activities should promptly be executed concurrently, and if all
of the sub-activities execute successfully then a completed status is associated with the
activity, and if any of the sub-activities do not execute successfully then a failed status
is associated with the activity,

an OR-parallel instruction indicating that, if the activity is comprised of a plurality
of sub-activities, the sub-activities should promptly be executed concurrently, and if a
sub-activity executes successfully then a completed status is associated with the
activity, and if all of the sub-activities do not execute successfully then a failed status is

associated with the activity,

23

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

WO 2004/070527 PCT/US2004/001544

an XOR-parallel instruction indicating that, if the activity is comprised of a
plurality of sub-activities, the sub-activities should promptly be executed in order of
decreasing priority, from highest priority to lowest priority, until either a sub-activity
executes successfully or the sub-activity having the lowest priority does not execute
successfully, and if a sub-activity executes successfully then a completed status is
associated with the activity, and if all of the sub-activities do not execute successfully
then a failed status is associated with the activity,

a CON-parallel instruction indicating that, if the activity is comprised of a plurality
of sub-activities, a determination is made if each sub-activity meets a specified
condition, and if all sub-activities that meet the specified condition execute successfully
then a completed status is associated with the activity, and if all of the sub-activities that
meet the condition do not execute successfully then a failed status is associated with
the activity,

an iteration instruction indicating that, if the activity is comprised of a plurality of
sub-activities, the sub-activities should be executed cyclically until a determination is
made if a speéified iteration condition is satisfied, and if the iteration condition is

satisfied then a completed status is associated with the activity.

8. The method of claim 7, further comprising a step of performing a forward
transition if a completed status is associated with the activity, or a backward transition if

a failed status is associated with the activity.
9. A system for executing and controlling a workflow process without a compiled

workflow engine to execute and control the workflow process, comprising:

means for providing a control logic for the workflow process;

24

WO 2004/070527 PCT/US2004/001544

means for providing a process model for the workflow process;

means for creating a message that requests execution of an activity, the
message including activity-specific data and activity status data; and

means for processing the message according to the process model and control

logic for the workflow process.

10. The system of claim 9, wherein the means for providing a process model is a first
uncompiled document and the means for providing a control logic is a second

uncompiled document having a structure.

11. The system of claim 10, further comprising a document type definition that

defines the structure of the first uncompiled document.

12. The system of claim 11, wherein the activity status data further includes at least
one flag from the group consisting of successful, failed, resume, suspend and

terminate.

13. The system of claim 12, wherein the control logic further includes a first
instruction for performing a forward transition if the activity status data includes a
“successful” flag and a second instruction for performing a backward transition if the

activity status data includes a “failed” flag.

14. The system of claim 13, wherein the control logic further includes a serial

instruction indicating that the activity should be executed promptly, and means for

associating a completed status with the activity if the activity executes successfully, and

25

10

11

12

13

14

15

16

17

18

19

20

21

22

WO 2004/070527 PCT/US2004/001544

means for associating a failed status with the activity if the activity does not execute

successfully.

15. The system of claim 14, wherein the activity is comprised of one activity or a
plurality of sub-activities, and the control logic includes at least one logic instruction from
the group consisting of:

a serial instruction indicating that the activity should be executed promptly,
execution of the activity is completed if the activity is performed, and execution of the
activity is failed if the activity does not perform,

an AND-parallel instruction, the AND-parallel indicating that, if the activity is
comprised of a plurality of sub-activities, the sub-activities should promptly be executed
concurrently, and if all of the sub-activities execute successfully then a completed status
should be associated with the activity, and if any of the sub-activities do not execute
successfully then a failed status should be associated with the activity,

an OR-parallel instruction indicating that, if the activity is comprised of a plurality
of sub-activities, the sub-activities should promptly be executed concurrently, and if a
sub-activity executes successfully then a completed status is associated with the
activity, and if all of the sub-activities do not execute successfully then a failed status is
associated with the activity,

an XOR-parallel instruction indicating that, if the activity is comprised of a
plurality of sub-activities, the sub-activities should promptly be executed in order of
decreasing priority, from highest priority to lowest priority, until either a sub-activity
executes successfully or the sub-activity having the lowest priority does not execute
successfully, and if a sub-activity executes successfully then a completed status is

associated with the activity, and if all of the sub-activities do not execute successfully

26

23

24

25

26

27

28

29

30

31

32

33

34

35

36

WO 2004/070527 PCT/US2004/001544

" then a failed status is associated with the activity,

a CON-parallel instruction indicating that, if the activity is comprised of a plurality
of sub-activities, a determination is made if each sub-activity meets a specified
condition, and if all sub-activities that meet the specified condition execute successfully
then a completed status is associated with the activity, and if all of the sub-activities that
meet the condition do not execute successfully then a failed status is associated with
the activity,

an iteration instruction indicating that, if the activity is comprised of a plurality of
sub-activities, the sub-activities should be executed cyclically until a determination is
made if a specified iteration condition is satisfied, and if the iteration condition is
satisfied then a completed status is associated with the activity, and

the system further includes means for associating a completed status with the
activity if the activity executes successfully, and means for associating a failed status

with the activity if the activity does not execute successfully.

16. The system of claim 15 further comprising a means for performing a forward
transition if a completed status is associated with the activity, or a backward transition if

a completed status is associated with the activity.

17. The system of claim 16, wherein the means for performing a first activity includes
an extensible markup language parser, the means for creating a message requesting
execution of an activity includes an extensible markup language command, the
message includes an extensible markup language document, and the means for
providing control logic for the workflow process includes an extensible stylesheet

document.

27

10

11

12

13

14

15

16

WO 2004/070527 PCT/US2004/001544

" 18. A method of building, executing and controlling a workflow process without

using a compiled workflow engine to execute and control the workflow process,
comprising steps of:

analyzing the workflow process into a unit;

arranging the unit under a set of rules;

associating the unit with a workflow control logic;

creating a process model;

requesting an activity;

processing the activity based on the process model and the workflow control
logic; and |

sending a response when the activity is complete,

wherein the process model is specified in a document type definition
language,

wherein the activity is specified in a extensible mark up language, and

wherein the workflow control logic is specified in an extensible style sheet

language.

19. The method of claim 18, wherein the processing step further comprises steps
of:

performing a first activity;

creating a message requesting execution of a second activity, the message
including activity-specific data and activity status data; and

specifying control logic information for the workflow process,

wherein the message can be processed according to the control logic information

for the workflow process.

28

10

11

12

13

14

15

16

17

18

19

20

21

22

WO 2004/070527 PCT/US2004/001544

20. The method of claim 19, wherein the unit is a general-purpose component and

independent of any specific process model.

21. The method of claim 20, wherein the workflow control logic is comprised of at
least one instruction from the group consisting of:

a serial instruction indicating that an activity should be executed promptly, and if
the activity executes successfully then a completed status is associated with the activity,
and if the activity does not execute successfully then a failed status is associated with
the activity,

an AND-parallel instruction indicating that, if the activity is comprised of a plurality
of sub-activities, the sub-activities should promptly be executed concurrently, and if all
of the sub-activities execute successfully then a completed status is associated with the
activity, and if any of the sub-activities do not execute successfully then a failed status
is associated with the activity,

an OR-parallel instruction indicating that, if the activity is comprised of a plurality
of sub-activities, the sub-activities should promptly be exe;:uted concurrently, and if a
sub-activity executes successfully then a completed status is associated with the
activity, and if all of the sub-activities do not execute successfully then a failed status is
associated with the activity,

an XOR-parallel instruction indicating that, if the activity is comprised of a
plurality of sub-activities, the sub-activities should promptly be executed in order of
decreasing priority, from highest priority to lowest priority, until either a sub-activity
executes successfully or the sub-activity having the lowest priority does not execute
successfully, and if a sub-activity executes successfully then a completed status is

associated with the activity, and if all of the sub-activities do not execute successfully

29

23

24

25

26

27

28

29

30

31

32

33

WO 2004/070527 PCT/US2004/001544

then a failed status is associated with the activity,

a CON-parallel instruction indicating that, if the activity is comprised of a plurality
of sub-activities, a determination is made if each sub-activity meets a specified
condition, and if all sub-activities that meet the specified condition execute successfully
then a completed status is associated with the activity, and if all of the sub-activities that
meet the condition do not execute successfully then a failed status is associated with
the activity,

an iteration instruction indicating that, if the activity is comprised of a plurality of
sub-activities, the sub-activities should be executed cyclically until a determination is
made if a specified iteration condition is satisfied, and if the iteration condition is

satisfied then a completed status is associated with the activity.

22. The method of claim 21, wherein the analyzing step further comprises steps
of:

creating a document type definition for describing a general structure of the
process model;

transforming the process model into an extensible markup language-friendly
structure; and

describing the workflow control logic in extensible stylesheet language.

23. The method of claim 22, wherein the extensible markup language friendly

structure is a tree structure.

24. A system for executing and controlling a workflow process without a compiled

workflow engine to execute and control the workflow process, comprising:

30

WO 2004/070527 PCT/US2004/001544

' a message processor;
a process unit that defines a process model;
a control unit that provides a workflow control logic; and

a message unit that sends and receives a message between activities.

25. The system of claim 24, wherein the message processor is an extensible

markup language parser.

26. The system of claim 25, wherein the process unit has a document type definition

that describes structures of the process model.

27. The system of claim 26, wherein the control unit is described in an extensible

stylesheet language.

28. A method for defining a process control logic and a process model for a
workflow, the method comprising steps of

creating a block model representing a workflow process, and

transforming the block model into one or more uncompiled computer processable
documents that do not require a compiled workflow engine for processing, with the one
or more uncompiled computer processable documents defining a process control logic

and a process model.

29. A method according to claim 28, wherein the block model is comprised of a tree-

structured model of blocks.

31

10

11

12

13

14

15

16

17

18

19

20

21

22

WO 2004/070527 PCT/US2004/001544

30. A method according to claim 29, wherein the blocks in the tree of blocks include

units of representation that specify a behavioral pattern of process flow.

31. A method according to claim 30, wherein the blocks in the tree of blocks include
one or more blocks from the group comprising:

an AND-parallel block indicating that, if an activity is comprised of a plurality of
sub-activities, the sub-activities should promptly be executed concurrently, and if all of
the sub-activities execute successfully then a completed status is associated with the
activity, and if any of the sub-activities do not execute successfully then a failed status
is associated with the activity;

an OR-parallel block indicating that, if an activity is comprised of a plurality of
sub-activities, the sub-activities should promptly be executed concurrently, and if a sub-
activity executes successfully then a completed status is associated with the activity,
and if all of the sub-activities do not execute successfully then a failed status is
associated with the activity;

an XOR-parallel block indicating that, if an activity is comprised of a plurality of
sub-activities, the sub-activities should promptly be executed in order of decreasing
priority, from highest priority to lowest priority, until either a sub-activity executes
successfully or the sub-activity having the lowest priority does not execute successfully,
and if a sub-activity executes successfully then a completed status is associated with
the activity, and if all of the sub-activities do not execute successfully then a failed
status is associated with the activity;

a CON-parallel block indicating that, if an activity is comprised of a plurality of
sub-activities, a determination is made if each sub-activity meets a specified condition,

and if all sub-activities that meet the specified condition execute successfully then a

32

23

24

25

26

27

28

29

WO 2004/070527 PCT/US2004/001544

" completed status is associated with the activity, and if all of the sub-activities that meet

the condition do not execute successfully then a failed status is associated with the
activity; and

an iteration block indicating that, if an activity is comprised of a plurality of sub-
activities, the sub-activities should be executed cyclically until a determination is made if
a specified iteration condition is satisfied, and if the iteration condition is satisfied then a

completed status is associated with the activity.

32. A method according to claim 31, wherein the one or more uncompiled computer
processable documents include one or more documents from the group comprising:
an XML document;
an XSl document; and

a DTD document.

33

WO 2004/070527

PCT/US2004/001544
e
[32]
~
= L
3 o
A =
R
.
Vo]
-

1/17

WO 2004/070527 PCT/US2004/001544

Sub-contractor

Figure 2

Manufacturer

Distributor

2/17

PCT/US2004/001544

WO 2004/070527

uoﬁnb:.mv-mwm)

IoneurIjuo))

J9.

¢ ainbi4

SRS

w.._mn.&::«uz

BET X (§)
uoydnpoIy

,,,,, S D

I0IqLYSI(Y

3/17

PCT/US2004/001544

WO 2004/070527

$ ainbi4

paerdwo)

oLy

4/17

PCT/US2004/001544

WO 2004/070527

g 2B

uonISuel],
premioeq

5117

PCT/US2004/001544

WO 2004/070527

9 aInbi4
<7
(o130 JonuOD (Tepom

* ss9901d ISY) ssoo01d TINTY)
TOd-SX darx
ov9 0ogs

Aowmmmoa JUSUI}OBUS (e8essowr worjojdmo
L TAX) [JseL, TINX)
DSIN-X DSIN-X
059 019

6/17

PCT/US2004/001544

WO 2004/070527

2 ainbi4

‘ulebe pa)noaxa Si Uolela)l SjOUM auj) ‘PelSES JoU S
UOBIPUOCD 8Y) J| "Pa)9eyD SI UORIPUOD-UONRISY BY) ‘Seysiul UoeIa)
oy} Jo AyAioe ise| oy usyp\ "o[oAD B SULIO Y00|q eAnels)l oyl

anleIsy

"S)E)S AJAIIOB IXaU aU) ‘Spesoons AJAIoE jojjered
Aue J| ‘penoexe ale uopIpuod uanib oy} jesW jey; senAnoe AjuQ

[eliesed-NOD

"paue]s s AJAlIOe JXaU 8y} pue
‘paioub) are sapiAloe 18Ylo aY) e ‘spesoons 3_>=om ue UusypA ‘peu
si Ayuond 1saybiy xeu ay) Buiney Ayanoe ue ‘sjey AjAnoe jusuodwos
B USYA\ ISl pajnoexe si Ajoud iseybiy eyy uim Ajianoe jusuodwios
oy} pue ‘fuoud e ypm pejeloosse si AjAoe jusuodwios Aleag

[ellered-4yox

"|iey seniAnoe sy} jje usym Ajuo sjies ssaooud
Sjoym 8y 'suels AJAOB JXSu By} ‘speeoans AjAloe jusuodwod
Aue)| -Apueunouod pajnoexe ale SelAoe jusuodwiod sy JO |V

[Blesed-4o

‘s|ie} os[e sse204d 8joym U] ‘s|ies AjAnoe jusuodwiod Aue j| ‘uels
AyAipoe jxou sy} soyew sapApoe juauodiod oy jjie Jo uonsjdwiod
Injsseoong “AjuUeLInNou0D penoaxa ale SalIAoe Jusuodwo S) JO |

[eleted-gNy

"Ajerelpswiwil pape)s aq ues AJAlOe Buipeedons sy A|nisseoons

pejeldwos si AJAOE UB S U00S Sy CAJAOER Buipesoons ouo |

Ajuo pue Ajagoe Buipsoseid suo Ajuo sey Apanoe jusuodwiod Aseng

feuos

21bo| jonuo9 jo uonduoseq

3o0ig

7/17

PCT/US2004/001544

WO 2004/070527

g ainbiy

- - o o i e it o > . S = " = - P s e e e it - - - -

- - - 1

(0) sd

(anv) za aox) 19

e e e e e e e e e 2 e 1 e e o e P 1 e e e e e e a

(reues) od

8/17

PCT/US2004/001544

WO 2004/070527

6 aunbiy

® 60 600

(¥o) sg

I
(¥0) La

A

@ox) 19

9/17

PCT/US2004/001544

WO 2004/070527

01 @Inbi4

<@IINOIY# (pelied | pajeidwog | Bupnosx3 | Apesy) snies
a3uINOIY# (esuodsay | 3senbay) adfy

abessaiN 1SITLLVi>

<(v.1vaods#) sbessen INIWTTIi>

<(V1vaod#) uedioned INIWI13i>

<(V1vaod#) uonduoseq ININI1Ti>

<(V1vand#) sweN INIWI1Ii>

<Q3dNIE VIVAD AA0E uoyela)
A3NdNi# V.1V uonipuod
azaINoIY# (peiied | psjeidwon | bupnoexz | Apesy) smejs
a3yinoIu# YIvao al
aIYINOIu (ennessy | sApwid) adky
Aoy LSILLYI>
<(,eBessapy ‘Juedionied ‘vogdiuosaq ‘eweN) Aiaoy INFNT1Ii>

<Q3ANdNIE V1VGO uonipuod

azxiNOIY# (peiie4 | pejeidwod | bupnosxg | Apesy) smeys

a3ayINOIN YIVao al

azxINoOIu# (1elesed NOD | isnesed HOX | Isifered HO | 1sIiBIeEd GNY | [BIISS) 9dh
. joolg 1SILLVi>
<(¢(1ooiglAiagoy)) yoolg INIWITi>

<(o0jg) sseo0id IM INIWNTFi>

<(VLVADd#) I 0AS INTNATHI>

<{vivaods#) uogduoseq LNINI1Ti>

<(v1vaod#) ejeq uoyeard INIWI13i>

<(VLvaOd#) Jo1ea1d ININITTi>

<(vLyaods#) sweN ININIT3i>

<(Vivaod# al INIW313i>

<(ai"eneg ‘uondioseq ‘ejeq” uoiess) ‘10jeal) *SWeN ‘al) JepesH dal INIWI13i>
<(ssa001d JM ‘1epeaH ddl) dgi LNIWI13i>

<48 1N.=BUipoous 0’} =UOISIOA |WX¢>

darxioaid

10/17

PCT/US2004/001544

WO 2004/070527

L} ainbi4

<SS8001d IW/> <SS9904d IM/>

<po|g/>
<AIROY/> < Apesy,=snjejs pue,=Q LA =adf) Anoy>
<00ig/>

<jooig/>
<RUAIOYS> < ApEsY.=Sniels ZLV.=0l oANWIG,=8df) AInpDY>

<RINOY/> < Apesy, =snjeis | IV,=Q | AN =8dA) AAnoy>
< Apeay,=sness .28.=al .ANV.=2dA Yoo|g>

<jood/>
<ANGOY/> <, Apesy,=Sniels OLY,=0l SABIWL,=edk) AAoy>

<Rinvf> < ApEsy,=SmEls 6Y.=q] SABwUd,.=8dAl Angoy>
<fpesy.~smels .9d.=q| Jeuss,.=adA) 3ooig>
< Apeay,=snels za,=al Jellred QNY.=adA; dooig>
<AIAROY/> < Apesy,=sniels 8V.=al SApuld =odf) Aoy
<ApAnovy>
<abesssiN/>{WX L 12Y/10001 d€I/X0g Bslli<, fugnosx),=sne;s ,asuodsal =adh
obesse> <obesseN/>IuX’ L0/ V/L000 L dgl/X0q Bstu<, Bugnosxs,=snejs isenbal,=adf; abessap>
<uedionled/s> Auedwos Dgy <uedidpreds
<uoydudse(/>jusuuedap Sd woy Japio uoponpoid Buiaieoey<uoyduosags>
<SlWeN/>1epio uogonpold Buioey<oweN>
<.bupnosxg,=sness .Lv.=q | LARWNG, =odA) AAoY>
<}oojg/>
<00|g/>
<Apnnov> < Apesyl=sniels gv.=ql LAwid,.=odh Aoy
<3001g/>
<RINIOY/> < ApESY =SNJEIS ,SV.=(l QAW =adk) Aoy
<ApAgOY/> < ApEsy =Snels pv.=al SARWLd,=odf ANRY>
<fpeay,=snels 58.=0] MO.=~2dA 3ooig>
<AAgoY)> < Apesy.=SMels £v.=ql LMHWLG,=5dA) AAROY>
<fpeey.=snels .yd.=ql Jeues,=edA} dooig>
<4o0jg/>
<AIAROY/> - <,peje|duiog, =SS 2V~ SAHWIL,=80A) Angoy>
<AINgOY/> <, PeIBIdW0D,=SNIEIS LY.~ SARIULA,=3dA) Angoy>
<.pajeidwod =snjels £8.~qi Jeues.=adA xoojg>
<.popidwo) =smes 1a.=ql .ellRred dOoX.=odf yooig>
<AINOY/> <,Po)jelduioD,=SNIE)S JIels =] AR =00k AAjOY>
<, Bupnoax3,=snjess 08.=q Jeuas,=adf yoojg>

<SS82044 },

11/17

WO 2004/070527

i

Transilion Type

A S by 3
Find the aclivity node [
corresponding to
the message
1222

Get the first
activity of the
lteration
1232

”s Parent node
Serial block?
4

current node
last child?

SN, gy
Get the next sibling of
current node

Execute the current
activity node

)

Getthe first
Ready child node Gelall ready
1284 i child nades

Execute the current
aclivity node

iid node
salisfying condition

PCT/US2004/001544

Parl 3. Backward Transilion

n the acll node
] corresponding to the R

5 All child nodes
satisfying condition
Sl A failed?
Execute the current
activity node

" Get the first child
whose status is

SN S VIUERE
Get the first node
whose status is

{ F AL .
Execute the currel
activity node
1298

12/17

PCT/US2004/001544

WO 2004/070527

sSW (2) mds (p) [eres (9)

Plered. [o][ered @ @ @

A A
PPow 313 yporg (q)

|
[orrered @ ﬁ
€1 ainbiy

[Popou ssdd0.1J ()

mds

mds

owﬁy

13/17

PCT/US2004/001544

WO 2004/070527

71 @inbi4

<BJUMIIOBIPRY>
<sbessapup/>
<Jsenbsy eoue)sujssa00I48IRID >
<EJEQIXSU0D/> *** <ejeiXsjuod>
_ <AeyenBsqO/>
</.Qll1SpESH d8l/dgl/.=108}es jo-anjeAtsX>
<AoyionasqO>
<. 2ni,=AlSjeIpaluwpielg jsenbaysoueisujssaooideiealD>
<lopeapHebessapIM/>
<Aaj><siuedppied,=100|9s Jo-an[eAlSK><ASY>
<sanbay/>
<, S8A,=paiinbayssuodsay }senbay>
<ispesabessapime
</odsuei I
<.0'1, UOISIBA BBESSONIM>
<, PWeU 8jy,=j08|ss sjumIoalpal>
< 8bessow pays|dwics,=owey sjejdwsysxs

<sjedwsyisx/>
<OSIMIBLIO:SX/>
</,uopisueyebiow, =sweu sjejdwis)-jeo:sxs>
<OSIMIBLIO:[SX>
<UBUYMISX/>
<9SO0YD:ISX/>
<BSIMIBYIO |SX/>
</Jojisueysbleul zswey sjejdwa}-||jeo:[sX>
<OSIMIBYIO [SX>
<UBUM:[SX/>
</.uonisuey jds,=aweu sjejdwel-{|es:|sx>
<«21901g, = BugisIxoug,=ise} usym:|sx>
<UBUM :[SX/>
</, UORISUEYjeuss, zalleu sjejdual-[jed |SX>
<IN, = BUlqISTIxeUS, =IS8] UBUYMI[SX>
<9S00UD:ISX>
</{[4=(uonisad] ()apou::Buyqis-Blimolioy/fAsy Suymg =
Ema_om‘_mn_nv_E&waoﬂu:mm:momwvvmﬁm:._go_low_mw HUIQISTIXoU =sWEY S|qeUBAISX>
<lfeuss,= edh@Dioig:quaied/Aey suymg = juedpmied:pyolAIARRY:UEPUSOSEP,=1Sa} USUMISK>
_ <5S00UD:ISX>
<{00]g/sS300.d JM.=yojew eje[dwsyi(sx>

14/17

PCT/US2004/001544

WO 2004/070527

3Z2V-1SIp
SZov-Isip
paubisse 10N

9z v-bpua

paubisse JoN
aZ2v-biul

9Zev-Isip

S| anbi4

i

TOd-SX MOIA
R Apesy
Asaniep 1oy seaulbus aonies Buuedaiy Apeay
abexjoed sonuss Joy Buyg Apesy
Jonquysip Apeay
03 spoob peysiuy Buuaniep pue sued Bulquassy
JojoRnUOD-gns woy Atenjep ebesioed sonleg Apeay

Buuuejd uogonpo.d Bunnosaxy

(822 Vv:1opouw) Japio Bunieoay pajeidwon

uonduoseq smels .

Aisnijeq
Asanjep 1oy Buuedeig
abesoed sonies Joy Buijg

Alquessy

Aanjjep ebeyoed sonieg
Butuueid uonsnpoig
J9piO Buniesey

- BwieN AjAnoy -

15/17

PCT/US2004/001544

WO 2004/070527

e

s
o

e
St

2

IR
B

4
iy

e e A o 7o
‘:_‘ﬁ"@“:\:’:,.:,- Ha%

Moy s

R
S

T

o
o
Ani e

L
LA

Sy
PRSI

SaRE
SR

S

1000L gl

0L} "ydep

10001 dgi

“ydep
"jdep
"1dep

"jdep

wedpiied

o 9} ainbi

abesoed GonIss o) Bulg Apeay

Alanyjep Joy Josuibus aonies Buuedely Apeay

Jasmoeinuew m Bupnoaxy
ay} woy spoob paysiuy ayj Sulaiasoy

JainjoBjnuewl pajos|es ay} 0} Jeplo Buipuss pajeldwon

yo03s 8y Bupiosyn pajaiduion

sojuedwos Suunjoeinuew Bunenjeansg pajejdwod

(azzVv:lepow) Jopio Buniessy paejdwon

- uonduosag . .smes

gl WM uopounfuoo uj - (szzv:

_m_uoc.,_v ssasoud mm_mm

200Z/0L/9

doysig woj

i T-1000Td9L

T-10001d49X

i S00ISIP

[e T

obesoed eonies 1o} Bulg z-

Alanljep 1o} Buvedsiy

. sydiada1 1-L000Ldgl §

spoob x Buunjoeinuepy

Japio Bulpueg

{00z 1dep)
Jainoginuew e Buiposq
(s9z dep)
lainjorinuew e buipioaq
lopiO Bunieoay

- PurenN 3.234.

L0001 g

S00ISIP |

P00ISIP §
€00IsIp &

2003IsIP }

16/17

PCT/US2004/001544

WO 2004/070527

Wt wre

997 Aep
Jebeuew 44
1000t dgt
Jabeuew 44
o9 Aep
Jebeuew 0D

Jabeuew g

ainpy ueyeN

juediopled

__.Il.llllill.lln

2-1000Ldgl _A._ 8006w .AJ 2006w .Au. 9006w

L1 amnbiy

aAlled

Joinqigsip o} spoof paysiuy sy Bupealieq
Alquisssy

J8pl0 yiom Bulpuag

iojoenuoo-gns wol abexoed soinies Sulaiessy
{eacidde uejd uononpoid

(1oBeuRW oBjdIoN)) Buluueid uoponpoly
(debeuew O9) Huuueld uogonpoiy

(sebeuew gdqpy) Buiuueld uogonpoig

(ezzv:j1epow)
v_ooawuo: B J0j} J9plo :o.uu:_uoa e BuiAleoay

SAl=d

Bunng 3 duiddiys

2-1000Ld8l
8006w

fiquessy z00fjw

1apio Yiop

abeyoed aoiales Buinissoy
leaosddy

Buiuueid uoponpoid

. Buuue|d uogonpoid
Buuued uogonpoig
lapJo Buialesay

SWBN AUARDY

po0Bj §

pmmm—————— -lllllllll_

_i—{ bioo0Ldal — S00BW g

| PR

-l.lll.l'.ll

I Z00Bjw

Sl

9006w
L-L000Ldgl
So06w
000w
£006jw
200w
1006w

oS i

rwamem——a

dondiosseq
EN $5000idg

17/17

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

