（19）中华人民共和国国家知识产权局

（12）发明专利

（10）授权公告号 CN 101881741 B
（45）授权公告日 2013.04.24

（21）申请号 200910107401.6
（22）申请日 2009.05.08
（73）专利权人 清华大学
 地址 100084 北京市海淀区清华园 1号清华
 大学清华－富士康纳米科技研究中心
 401 室
 专利权人 鸿富锦精密工业（深圳）有限公司

（72）发明人 李庆威 刘长洪 范守善

（51）Int. Cl.
 G01N 25/20 (2006.01)

（56）对比文件
 JP 2006177870 A, 2006.07.06,
 Qingwei Li, et al. Measuring the
 thermal conductivity of individual carbon
 nanotubes by the Raman shift method.

（54）发明名称
 一维材料热导率的测量方法

（57）摘要

本发明涉及一维材料热导率测量系统，其包括一被测物放置装置、一几何尺寸获取模块、一拉曼光谱特征峰值获取模块、一热功率获取模块、一比较模块、一计算模块。所述被测物放置装置至少包括隔段设置的四个电极，被测物设置于该四个电极的表面，且被测物位于中间两个电极的部分悬空设置。所述拉曼光谱特征峰值获取模块，用于获取被测物的电流作用下自加热并达到热平衡后其悬空部分中心点拉曼光谱的特征峰值作为初始值以及被测物悬空部分任一端点的拉曼光谱的特征峰值。所述计算模块用于根据被测物悬空部分中心点与任一端点之温差、几何尺寸及热功率计算所述被测物热导率。本发明还涉及一种利用所述热导率测量系统测量一维材料热导率的方法。
1. 一种一维材料热导率测量方法，其包括以下步骤：
 提供一被测物放置装置，该被测物放置装置至少包括间隔设置的四个电极；
 获取所需的被测物的几何尺寸；
 将被测物放置于被测物放置装置的四个电极的表面，被测物位于中间两个电极的部分
 悬空设置，通过外侧的两个电极给被测物通入恒定电流，被测物在电流的作用下自加热，并
 在一段时间后达到热平衡，其中，将被测物放置于被测物放置装置的四个电极的表面的方
 法具体包括以下步骤：在所述被测物放置装置的临近所述四个电极中的一侧外侧电极的外
 侧放置二氧化硅基石，并将二者置于一反应室中，提供浓度为 10^{-5}-10^{-2} 摩尔 / 升的硫化
 铁溶液作为催化剂的前驱体；将上述氯化铁溶液加热至 950°C，与氢气和氮气的混合气体
 形成催化剂气体并以 60-200 立方厘米 / 分的速率通入反应室中；通入氢气和甲烷作为碳源
 的混合气体，在被测物放置装置的四个电极的表面生长单层碳纳米管，通过控制碳源的
 气流方向使该碳纳米管倾倒于所述被测物放置装置的四个电极的表面；获取被测物悬空
 部分中心点和任一端点的拉曼光谱的特征峰频值；比较被测物悬空部分中心点与任一端
 点拉曼光谱的特征峰频值之差；获取沿被测物悬空部分轴向传导的热功率；

 利用所述被测物悬空部分中心点与任一端点拉曼光谱的特征峰频值之差获取所述被
 测物悬空部分中心点和任一端点的温差；

 根据被测物悬空部分中心点与任一端点之温差、几何尺寸及热功率并利用公式

 \[k = \frac{U}{I \Delta L} \]

 来计算所述被测物的热导率，其中，k 为被测物的热导率；U 为被测物悬空部分的
 电压；I 为流经被测物的电流；\Delta L 为被测物悬空部分的长度；S 为被测物的横截面积；\Delta T
 是被测物悬空部分的中心点和任一端点的温差。

2. 如权利要求 1 所述的热导率测量方法，其特征在于，所述获取被测物悬空部分中
 心点和任一端点的拉曼光谱的特征峰频值的方法包括以下步骤：

 将所述放置有被测物的被测物放置装置置于一真空腔体中并将所述真空腔体抽真空，
 以使被测物放置装置及被测物处于真空状态；

 通过拉曼激光照射被测物悬空部分中心点和任一端点，获取被测物悬空中心点和任一
 端点的拉曼光谱特征峰频值。

3. 如权利要求 2 所述的热导率的测量方法，其特征在于，所述被测物悬空部分中心点
 和任一端点的拉曼光谱特征峰频值为至少三次测量结果的平均值。

4. 如权利要求 1 所述的测量热导率的方法，其特征在于，所述被测物为单壁碳纳米管，
 所述获取单壁碳纳米管的长度和外径的方法包括以下步骤：提供放置有碳纳米管的被测物
 放置装置；通过扫描原子力显微镜获取碳纳米管的外径；通过扫描电子显微镜获取碳纳米管
 悬空部分的长度。

5. 如权利要求 1 所述的测量热导率的方法，其特征在于，所述利用被测物悬空部分中
 心点和任一端点的拉曼光谱的特征峰频值之差计算所述被测物悬空部分中心点和任一端
 点的温差的方法具体包括以下步骤：

 获取被测物在多个不同温度下的拉曼光谱的特征峰频值，得到多个与不同温度值对应的
 拉曼光谱特征峰频值的数据点；

 拟合所述多个数据点得到表征被测物的拉曼光谱特征峰频值随温度变化的函数关系
的曲线；

比较被测物悬空部分的中心点和任一端点的特征峰峰值之差；

利用表征被测物的拉曼光谱特征峰峰值随温度变化的函数关系的曲线及被测物悬空部分的中心点和任一端点的拉曼光谱的特征峰峰值之差计算得出被测物悬空部分中心点和任一端点之间的温度差。

6. 如权利要求 5 所述的测量热导率的方法，其特征在于，所述被测物为纳米管时，纳米管的悬空部分中心点和任一端点的温差与纳米管中心点与任一端点的 G 峰峰值之差满足以下关系式：

$$\Delta T = K \Delta G$$

其中，K 为纳米管的拉曼光谱 G 峰峰值随温度变化的直线的斜率；

$$\Delta T$$ 为纳米管悬空部分中心点和任一端点的温差；

$$\Delta G$$ 为纳米管悬空部分中心点和任一端点的 G 峰峰值之差。
一维材料热导率的测量方法

技术领域

[0001] 本发明涉及一种测量系统及测量方法，尤其涉及一种一维材料热导率测量系统及方法。

背景技术

[0002] 热导率是反应材料热学性质的重要参数，因此在工程散热等应用领域，选择具有合适热导率的材料尤为重要，故准确测量各种材料的热导率对于材料的工程应用具有重要意义。

[0003] 当需要测量热导率的被测物为一维的纳米材料时，如纳米丝、单根碳纳米管、碳纳米管和碳纳米线等，其热导率的测量一直比较困难。因为在热导率测量中，需要得到被测物在某一区域的温度差。但是对于一维的纳米材料，由于它们横截面的特征宽度在 100 纳米以内，需要对被测物测温的区域在微米量级（1-20 微米），传统的测温工具不具有如此精确的测量分辨率，因此用传统的测温工具难以测量一维纳米材料某一区域的温度差，即使测到了，也很不精确。

[0004] 物质的热容量正比于其质量。通常，一维的纳米材料在小尺度测温区域内的质量很小，因此一维的纳米材料在该区域的热容量也很小。如果用接触式的测温方法，当温度计的温度探头与该一维纳米材料接触时，该一维纳米材料的局部温度就会被迅速的改变，直到与温度探头的温度接近。而温度探头通常是宏观体，热容量很大，在小尺度测温区域内该一维纳米材料释放的热量对温度的改变是微乎其微的。这样，传统的测温方法不仅无法测量一维纳米材料的温度，而且会严重影响一维纳米材料的热学状态。另外，由于一维纳米材料的尺寸很小导致被测物各点的温差无法准确测量，从而导致与温差相关的热导率的测量都无法进行。同理一维纳米材料，一维微米材料的热导率测量也存在同样的问题。

发明内容

[0005] 有鉴于此，确有必要提供一种一维材料热导率的测量系统及其测量方法，其可测量被测物为一维纳米材料或一维微米材料的热导率。

[0006] 本发明涉及一种一维材料热导率测量方法，其包括以下步骤：提供一被测物放置装置，该被测物放置装置至少包括间隔设置的四个电极；获取所需的被测物的几何尺寸；将被测物放置于被测物放置装置的四个电极的表面，被测物位于中间两个电极的部分悬空设置，通过外侧的两个电极给被测物通入恒定电流，被测物在电流的作用下自加热，并在一段时间后达到热平衡，其中，将被测物放置于被测物放置装置的四个电极的表面的方法具体包括以下步骤：在所述被测物放置装置的近端所述四个电极中的一最外侧电极的外侧放置二氧化硅基底，并将二者置于一反应室中；提供浓度为 10^{-5}-10^{-8} 摩尔/升的氯化铁溶液作为催化剂的前驱体；将上述氯化铁溶液加热至 950°C，与氢气和氯气的混合气体形成催化剂气体并以 60-200 立方厘米/分的速率通入反应室中；通入氯气和甲烷作为碳源气。
的混合气体，在被测物放置装置的四个电极的表面生长单根碳纳米管，通过控制碳源气的气流方向使该碳纳米管偏在一所述被测物放置装置的四个电极的表面；获取被测物悬空部分中心点和任一端点的拉曼光谱的特征峰频值之差；获取沿被测物悬空部分轴向传导的热功率；利用所述被测物悬空部分中心点与任一端点拉曼光谱的特征峰频值之差获取所述被测物悬空部分中心点和任一端点的温度差；根据被测物悬空部分中心点与任一端点之温度差、几何尺寸及热功率并利用公式 $k = \frac{UAL}{SAT}$ 来计算所述被测物的热导率，其中，k 为被测物的热导率；U 为被测物悬空部分的电压；I 为流经被测物的电流；ΔL 为被测物悬空部分的长度；S 为被测物的横截面积；ΔT 是被测物悬空部分的中心点和任一端点的温差。

【0007】与现有技术相比较，本发明提供的热导率测量系统和测量方法利用非接触的光谱测量方法可以避免具有较大热容量的物体与一维材料接触，使一维材料的温度保持稳定，进而将测量结果更加准确。

附图说明
【0008】图 1 是本发明实施例提供的一种热导率测量系统的功能模块组成示意图。
【0009】图 2 是本发明实施例提供的一种热导率测量系统中被测物放置装置的结构示意图。
【0010】图 3 是本发明实施例提供的被测物悬空部分的中心点和任一端点的拉曼光谱图。
【0011】图 4 是本发明实施例提供的一维材料热导率测量方法的流程图。
【0012】图 5 是本发明实施例提供的一种热导率测量方法的流程图。
【0013】图 6 是本发明实施例提供的测量被测物悬空部分中心点和任一端点的拉曼光谱的特征峰频值的方法的流程图。
【0014】图 7 是本发明实施例提供的利用拉曼光谱测量被测物悬空部分的中心点和任一端点温度差 ΔT 的方法的流程图。
【0015】图 8 是本发明实施例提供的单壁碳纳米管的拉曼光谱G峰频值随温度变化的关系曲线。

具体实施方式
【0016】以下将结合附图对本发明实施例提供的一种热导率测量系统及其测量方法作进一步的说明。
【0017】图一并参阅图 1 和图 2，为本发明实施例提供的一种热导率测量系统 100，用于测量一被测物 220 的热导率。该热导率测量系统 100 包括一被测物放置装置 10，一几何尺寸获取模块 20，一拉曼光谱特征峰频值获取模块 30，一热功率获取模块 40，一比较模块 50 及一计算模块 60。所述被测物放置装置 10 包括四个电极，被测物 220 设置于该四个电极的表面，且被测物 220 位于中间两个电极的部分悬空设置。所述几何尺寸获取模块 20 用于获取所需的被测物 220 的几何尺寸。所述拉曼光谱特征峰频值获取模块 30 用于获取被测物 220 在电流作用下自加热并达到热平衡后其悬空部分中心点拉曼光谱的特征峰频值作为初始值以及被测物悬空部分任一端点的拉曼光谱的特征峰频值。所述热
功率获取模块 40 用于获取沿被测物 220 悬空部分轴向传导的热功率。所述比较模块 50 用于比较被测物 220 悬空部分中心点与任一端点的拉曼光谱的特征峰频重之差以获取所述被测物 220 悬空部分中心点和任一端点的温差。所述计算模块 60 用于根据被测物 220 悬空部分中心点与任一端点之温差、几何尺寸及热功率计算所述被测物 220 的热导率。

[0018] 所述被测物 220 为一维材料，该一维材料为一维纳米材料或一维微纳米材料。一维纳米材料为纳米管、纳米棒、纳米线、纳米纤维或纳米带等。具体地，本实施例中所述被测物 220 为单壁碳纳米管。

[0019] 请参阅图 2，该被测物放置装置 10 包括基底 111、一第一载具 114、一第二载具 115、一第一绝缘层 112、一第二绝缘层 113、一第一电极 116、一第二电极 117、一第三电极 118 及一第四电极 119。所述第一载具 114、第二载具 115 间隔设置于基底 111 的表面。第一绝缘层 112 设置于第一载具 114 的表面。第二绝缘层 113 设置于第二载具 115 的表面。本实施例中，所述第一载具 114、第二载具 115 间隔并排设置于基底 111 的表面，且第一载具 114、第二载具 115 和基底 111 一体成型。所述四个电极间隔设置，被测物 220 与所述四个电极均接触，且被测物 220 位于四个电极的部分悬空设置。本实施例中，所述第一电极 116 和第二电极 117 间隔并排设置在第一绝缘层 112 的表面。所述第三电极 118 和第四电极 119 间隔并排设置在第二绝缘层 113 的表面。所述被测物 220 的一端放置在所述第一电极 116 和第二电极 117 的表面，其另一端放置在所述第三电极 118 和第四电极 119 的表面。所述一维被测物 220 垂直于被测物放置装置的四个电极。所述第一电极 116 和第四电极 119 通过一电源（图未示）及一电流表（图未示）串联连接，与被测物 220 共同组成一回路。所述第二电极 117 和第三电极 118 连接一电压表。此时，与第二电极 117、第三电极 118 相接触的两个点成为被测物 220 悬空部分的两个端点。被测物 220 悬空部分的第一端点标记为 l1，第二端点标记为 l2，相对应地，这两个端点的中心点标记为 0。

[0020] 所述绝缘层 113 的材料为绝电、绝热材料。本实施例中，所述绝缘层 213 为二氧化硅。

[0021] 所述第一电极 116、第二电极 117、第三电极 118 及第四电极 119 的材料可以为钼、钯或镍等。在本实施例中所述第一电极 116、第二电极 117、第三电极 118 及第四电极 119 为钼电极。

[0022] 所述几何尺寸获取模块 20，用于测量被测物 220 悬空部分的长度 ΔL，及被测物 220 的横截面积等几何尺寸。其中，被测物 220 悬空部分的长度 ΔL 即为被测物放置装置 10 第二电极 117 和第三电极 118 之间的距离。所述几何尺寸获取模块 20 通过被测物放置装置 10 显微镜来实现其测量功能。如果所述被测物 220 的横截面为圆形，则测量圆的直径 d，可得圆的面积 S=0.25πd^2。如果所述被测物 220 的横截面为圆形，则测量圆环横截面的外径 R 和内径内径 h，可得圆环横截面的面积 S=（2R-h）b。在本实施例中，所述被测物 220 为单壁碳纳米管，所述碳纳米管悬空部分的长度 ΔL 通过扫描电子显微镜测量，得到 ΔL 为 30 微米。所述碳纳米管的横截面为圆环形，通过原子力显微镜（AFM）测量所述碳纳米管的外径 R、R 为 1.8 纳米。对于单壁碳纳米管，壁厚 h 近似为一个常数，b=0.34 纳米，因此，所获取的被测物 220 的面积 S=π（2R-h）b=1.1084π。

[0023] 所述拉曼光谱特征峰频值获取模块 30，用于获取被测物 220 在电流作用下自加热并达到热平衡后其悬空部分中心点 0 拉曼光谱的特征峰频值作为初始值以及被测物 220 悬
空部分任一端点 L₁或 L₂的拉曼光谱的特征峰峰值。所述拉曼光谱特征峰峰值获取模块 30 通过被测物放置装置 10、测量电路、拉曼光谱仪以及一个真空腔体 230 获取上述数据。依据被测物 220 材料的不同，所需测量的拉曼光谱的特征峰峰值也不同。对于碳纳米管而言，所需测量的拉曼光谱的特征峰峰值为其 G 峰。所述被测物 220、被测物放置装置 10 及测量电路位于真空腔体 230 中。该真空腔体 230 为一真空石英管或具有一石英窗的不锈钢真空腔体。所述被测物 220 位于被测物放置装置 10 的第一电极 116、第二电极 117、第三电极 118 以及第四电极 119 的表面。电流经由第一电极 116 流入被测物 220 并经由第四电极 119 流出被测物 220。第二电极 117 和第三电极 118 连接电压表以测量被测物 220 悬空部分的电压 U。所述真空腔体 230 内的真空度为 10⁻⁴ 托，因此被测物 220 通过周围空气传导的热能可以忽略。相对于加热功率，所述被测物 220 的红外辐射能也很微小，从而可确保被测物 220 悬空部分的热学状态不变。被测物 220 在电流的作用下自加热，加热一段时间后，被测物 220 悬空部分上的各点有了稳定的温度分布，即被测物 220 的中间温度高，两头温度低。因此，沿被测物 220 轴向传导的热功率就等于电流产生的总的热功率。通过所述拉曼光谱仪获取被测物 220 悬空部分的任一端点 L₁或 L₂ 以及被测物 220 悬空部分中心点 0 的拉曼光谱。所述拉曼光谱中的多个波峰中，峰值最高的为其 G 峰。本实施例中，被测物 220 为单壁碳纳米管，所需测量的为碳纳米管的拉曼光谱的 G 峰峰值，采用 514.5 纳米的激光作为激发光源。请参阅图 3，单壁碳纳米管悬空部分中心点 0 的拉曼光谱 G 峰对应的拉曼峰值是 1567.6 cm⁻¹，任一端点处 L₁或 L₂的拉曼光谱 G 峰对应的拉曼峰值是 1577.7 cm⁻¹。

[0024] 所述热功率获取模块 40 可用来获取沿被测物 220 悬空部分轴向传导的热功率。所述热功率获取模块 40 通过被测物放置装置 10、测量电路及真空腔体 230 实现。所述被测物 220、被测物放置装置 10 及测量电路均位于真空腔体 230 内。当通过第一电极 116 和第四电极 119 给被测物 220 通入电流后，所产生的总热能为沿所述被测物 220 轴向传导的热量、红外辐射能以及周围空气传导的热能的总和。本实施例中真空腔体 230 内的真空度为 10⁻⁴ 托，因此沿所述被测物 220 轴向传导的热量、红外辐射能以及周围空气传导的热能可以忽略。本实施例中通入被测物 220 的电流 I 为 0.298 安，由第二电极 117 和第三电极 118 连接的电压表测得的被测物悬空部分的电压 U 为 1.175 伏，从而可计算加热功率为 P=UI=3.5×10⁻⁴ W。红外辐射能 P_{radiation}=\sigma T^4 \times S，此时应用斯蒂芬−玻尔兹曼定律 (Stefan–Boltzmann Law) F=\sigma T^4，其中 \sigma=5.67×10⁻⁸ W/(m²•K⁴) 是一个常数，S 是悬空单壁碳纳米管的表面积，S=\pi d×2L。假设整个悬空单壁碳纳米管的温度为 700K，经计算红外辐射能为 P_{radiation}=3.15×10⁻⁸ W, 仅加热功率的百分之一。因此，沿所述被测物 220 通过电流自加热，产生的总热能 P=UI 就等于沿被测物 220 悬空部分轴向传导的热量。这样轴向传导的热功率就等于电流加热的功率 P=UI。

[0025] 所述比较模块 50 用于获取所述被测物 220 中心点 0 和任一端点 L₁或 L₂的温差。利用被测物 220 的拉曼光谱特征峰峰值随温度变化的曲线以及被测物 220 悬空部分的中心点 0 和任一端点 L₁或 L₂的拉曼光谱中的特征峰峰值之间随温度变化的曲线得到被测物 220 中心点 0 和任一端点 L₁或 L₂之间的温度差。本实施例中，请参阅图 8，被测物 220 为单壁碳纳米管，碳纳米管的拉曼光谱中的 G 峰峰值随温度变化的曲线为一直线，该直线的斜率为 K。因此，所述碳纳米管悬空部分中心点 0 和任一端点 L₁或 L₂之间的温差满足以下关系式：

\[\Delta T = K \Delta G \]

[0027] 其中，K为碳纳米管的拉曼光谱的 G 峰峰值随温度变化的直线的斜率；ΔT 为碳纳米
米管悬空部分中心点 0 和任一端点 L1 或 L2 的温差；ΔG 为碳纳米管悬空部分中心点 0 和任
一端点 L1 或 L2 的 G 曲线差。本实施例中，经测量单壁碳纳米管悬空部分中心点 0 和任一
端点 L1 或 L2 的拉曼光谱中 G 曲线差差 ΔG=1567.6cm⁻¹-1577.7cm⁻¹=-10.1cm⁻¹，单壁碳
纳米管的拉曼光谱的 G 曲线差差随温度变化的直率的斜率 K=0.0257cm⁻¹/K。因此，碳纳米管
悬空部分中心点 0 和任一端点 L1 或 L2 的温度差 ΔT=(-10.1cm⁻¹)(-0.0257cm⁻¹/K)=393K。

[0028] 所述计算模块 60 用于计算所述被测物 220 热导率，热导率的计算满足以下关系式：

\[k = \frac{U}{\pi AL} SL \]

[0030] 其中，k 为被测物 220 的热导率；U 为被测物 220 悬空部分的电压；I 为流过被测物
220 的电流；ΔL 为被测物 220 悬空部分的长度；S 为被测物 220 的横截面积；ΔT 为被测物
220 悬空部分的中心点 0 和任一端点 L1 或 L2 的温差。

[0031] 本实施例中，将上述各个模块分别获取的碳纳米管的横截面积 S=π(2R-b)
b=1.1084 π 平方纳米、ΔT=393K、ΔL=30 微米，以及 P=U1=3.5×10⁻⁷W 代入热导率所满足的关系式中，得到所述碳纳米管的热导率为：

\[k = \frac{U}{\pi(2R-b) b \Delta T} \approx 2400W/mK \]

[0032] 因此，单壁碳纳米管的热导率为 2400W/m K。

[0033] 请参阅图 4。所述材料热导率测量的方法流程图。该热导率测量方法包括以下步骤：

[0034] 步骤 S101，提供一被测物放置装置 10，该被测物放置装置至少包括间隔设置的
四个电极；

[0035] 步骤 S102，获取所需的被测物 220 的几何尺寸；

[0036] 步骤 S103，将被测物 220 放置于被测物放置装置 10 的四个电极的表面，被测物
220 位于中间两个电极部分悬空设置，通过外侧的两个电极给被测物 220 通入恒定电流，
被测物 220 在电流的作用下自加热，并在一段时间内达到热平衡；

[0037] 步骤 S104，获取被测物 220 悬空部分中心点 0 和任一端点 L1 或 L2 的拉曼光谱的
特征峰频值，并比较被测物 220 悬空部分中心点 0 与任一端点 L1 或 L2 的拉曼光谱的特征峰
频值之差；

[0038] 步骤 S105，获取沿被测物 220 悬空部分轴向传导的热功率；

[0039] 步骤 S106，利用上述被测物 220 悬空部分中心点 0 与任一端点 L1 或 L2 拉曼光谱的
特征峰频值之差获取所述被测物 220 悬空部分中心点 0 和任一端点 L1 或 L2 的温差；

[0040] 步骤 S107，根据被测物 220 悬空部分中心点 0 与任一端点 L1 或 L2 之温差，几何尺
寸及热功率计算所述被测物 220 的热导率。

[0041] 在步骤 S101 中，该被测物放置装置 10 包括一基底 111，第一载具 114，第一载具
115，一第一绝缘层 112 和第一第二绝缘层 113，一第一极极 116，一第一第二极极 117，一第二极极
118 及一第二绝缘层 119。所述第一载具 114、第二载具 115 间隔设置于基底 111 的表面。本
实施例中所述第一载具 114、第二载具 115 间隔并排设置于基底 111 的表面。第一绝缘层
112 设置于第一载具 114 的表面。第二绝缘层 113 设置于第二载具 115 的表面。本实施例
中第一载具 114、第二载具 115 和基底 111 一体成型。所述四个电极间隔设置，被测物 220
与所述四个电极均接触，且被测物 220 位于中间两个电极的部分 悬空设置。本实施例中，所述第一电极 116 和第二电极 117 间隔并排设置在第一绝缘层 112 的表面。所述第三电极 118 和第四电极 119 间隔并排设置在第二绝缘层 113 的表面。

【0042】在步骤 S 102 中，所需获取的被测物 220 的几何尺寸为被测物 220 悬空部分的长度 ΔL 和被测物 220 的横截面积。其中，被测物 220 悬空部分的长度 ΔL 即为被测物放置装置 10 的第二电极 117 和第一电极 116 之间的距离。本实施例中，单壁碳纳米管的横截面为一圆环形，圆环的横截面的计算公式为 S = π (2R-b)天，其中 R 为单壁碳纳米管的外径，b 为单壁碳纳米管的壁厚。然而，对于单壁碳纳米管而言，b 近似为一常数，b=0.34 纳米。因此仅需获取单壁碳纳米管的悬空部分的长度与外径。本实施例中，所述获取单壁碳纳米管的长度和外径的方法包括以下步骤：提供放置有碳纳米管的被测物放置装置 10；通过原子力显微镜拍摄碳纳米管的原子力显微镜照片，使得碳纳米管悬空部分全部被清晰地显现在照片中；通过扫描电子显微镜拍摄碳纳米管的扫描电子显微镜照片，使得碳纳米管悬空部分全部被清晰地显现在照片中；测量碳纳米管的原子力显微镜照片中碳纳米管的外径，并利用照片的比例尺计算碳纳米管的外径 R；测量碳纳米管的扫描电子显微镜照片中碳纳米管悬空部分长度并利用照片的比例尺获取碳纳米管悬空部分长度的长度 ΔL。本实施例中，所述碳纳米管悬空部分的长度为 30 微米，碳纳米管的外径为 1.8 纳米。因此，碳纳米管的横截面积 S = π (2R-b)天 = 1.1084 π 平方纳米。

【0043】在步骤 S 103 中，所述所述被测物 220 的一端放置在所述第一电极 116 和第二电极 117 的表面，其另一端放置在所述第三电极 118 和第四电极 119 的表面。在这里还需要说明的是，当将被测物 220 放置在所述被测物放置装置 10 上时，此时，与第二电极 117、第三电极 118 相接触的两个点成为被测物 220 悬空部分的两个端点。通过第一电极 116 和第四电极 119 给被测物 220 输入电流。被测物 220 在电流的作用下开始自加热并在一段时间后达到热平衡。被测物 220 到达热平衡后被测物 220 的各点上有了稳定的温度分布，即中间温度高，两边温度低。本实施例中在所述被测物放置装置 10 的四个电极的表面设置单根单壁碳纳米管，该单根单壁碳纳米管的一端位于被测物放置装置 10 的第一电极 116 和第二电极 117，另一端位于被测物放置装置 10 的第三电极 118 和第四电极 220。被测物 220 位于第二电极 117 和第三电极 118 之间的部分悬空设置。本实施例中，单壁碳纳米管垂直于被测物放置装置 10 的四个电极。本实施例中，如图 5 所示为在所述被测物放置装置 10 的四个电极的表面设置 单根单壁碳纳米管的制备方法流程图，具体为：

【0044】步骤 S201，在所述被测物放置装置 10 的临近第一电极 116 或临近第四电极 119 的一侧提供一二氧化硅基底，并将二者置于一反应室中。

【0045】步骤 S202，提供浓度为 10^5～10^8 摩尔 / 升的氯化铁溶液作为催化剂的前驱体。由于所采用氯化铁溶液的浓度较低，因此可以保证在四个电极的表面生长单根碳纳米管。本实施例中，于基底上生长的碳纳米管为单壁碳纳米管。

【0046】步骤 S203，将上述氯化铁溶液加热至 950°C，与氢气和氯气的混合气体形成催化剂气体并以 60～200 立方厘米 / 分的速率通入反应室中。

【0047】步骤 S204，通入氢气和甲烷作为碳源气的混合气体，从而在被测物放置装置 10 的四个电极的表面生长单根碳纳米管。在所述被测物放置装置 10 上生长单根碳纳米管时，可通过控制碳源气的气流方向使该碳纳米管倾倒在所述被测物放置装置 10 的四个电极的表
面。由于单根碳纳米管的周围没有其它支撑，因此在碳源气的作用下很容易倾倒。

【0048】选择地，所述于被测物箔置的四个电极的表面设置碳纳米管的方法可以为将制备好的单壁碳纳米管直接放置于被测物放置装置 10 的四个电极的表面。

【0049】步骤 S104 中，请参阅图 6，获取被测物 220 悬空部分中心点 O 和任一端点 L1 或 L2 的拉曼光谱的特征峰位值的方法包括图 6 所示以下步骤：

【0050】步骤 S301，将所述放置有被测物 220 的被测物放置装置 10 及测量电路置于一真空腔体 230 中并将所述真空腔体 230 惟抽真空，使被测物放置装置 10 及被测物 220 处于真空状态。被测物 220 在电流自加热一段时间后达到热平衡。

【0051】步骤 S302，通过拉曼激光照射被测物 220 悬空部分的中心点 O 和任一端点 L1 或 L2，获取被测物 220 悬空部分中心点 O 和任一端点 L1 或 L2 的拉曼光谱特征峰位值。对被测物 220 悬空部分中心点 O 和任一端点 L1 或 L2 的测量均进行多次测量，即进行三次或三次以上的测量，取多次测量结果的平均值。最终获取的被测物 220 悬空部分中心点 O 和任一端点 L1 或 L2 的拉曼光谱特征峰位值为至少三次以上测量所得结果的平均值。所需获取的特征峰位值依据被测物 220 的材料不同而不同。对于碳纳米管所需获取的特征峰位值为其 G 峰峰位。获取碳纳米管的悬空部分中心点 O 和任一端点 L1 或 L2 的拉曼光谱，拉曼光谱由多个波峰组成，其中峰值最高的为其 G 峰。请参阅图 3，单壁碳纳米管悬空部分中心点 O 的拉曼光谱 G 峰对应的拉曼频值是 1567.6 cm⁻¹，任一端点处 L1 或 L2 的拉曼光谱 G 峰对应的拉曼频值是 1577.7 cm⁻¹。

【0052】步骤 S 105 中，在被测物放置装置 10 中电流由第一电极 116 流入被测物 220，通过第四电极 119 流出。由于被测物 220 位于第二电极 117 和第三电极 118 之间的部分悬空设置，因此通过第二电极 117 和第三电极 118 连接电压表可测量被测物 220 悬空部分的电压 U。被测物 220 在电流 I 的作用下，温度逐渐升高。被测物 220 由电流加热产生的热量主要沿着材料悬空部分的中心点 O 向两侧传导。经过一段时间后，被测物 220 悬空部分上的各点有了稳定的温度分布，即中间温度高，两边温度低。被测物 220 悬空部分加热功率满足关系式：P=UI。该被测物 220 悬空部分加热功率即等于沿被测物 220 悬空部分传导的热功率。在本实施例中，获取碳纳米管辐射向传导的热功率的方法包括以下步骤：读取第一电极 116 和第四电极 119 所连接的电流表的数值 I，I 为 0.298 微安；读取第二电极 117 和第三电极 118 所连接的电压表的数值 U，U 为 1.175 伏；计算碳纳米管的热功率 P=UI=3.5×10⁻⁷ W。

【0053】在步骤 S106 中，如图 7 所示为通过比较被测物 220 悬空部分中心点和任一端点的拉曼光谱的特征峰位值之差获取所述被测物 220 悬空部分中心点和任一端点的温度差 ΔT 的方法流程图。该获取所述被测物 220 悬空部分中心点和任一端点的温度差 ΔT 的方法包括以下步骤：

【0054】步骤 S401，获取被测物 220 在多个不同已知温度下的拉曼光谱的特征峰位值，得到多个与不同温度值对应的拉曼光谱特征峰位值的数据点。

【0055】将被测物放置装置 10 置于一温度控制仪之上，放置一段时间后，将被测物放置装置 10 及被测物 220 的温度等同于温度控制仪所设定的温度。因此可通过该温度控制仪控制所述被测物放置装置 10 和被测物 220 的温度。通过温度控制仪设定多个不同的温度，并测量在所设定的温度下被测物 220 的拉曼光谱的特征峰位值。在本实施例中，请参阅图 8，图中
多个数据点为单壁碳纳米管在不同温度下其拉曼光谱 G 峰峰值。

[0056] 步骤 S102，拟合所述多个数据点得到拟合被测物 220 的拉曼光谱特征峰峰值随温度变化的函数关系的曲线。通过线性回归、非线性回归或样条拟合等数学手段拟合被测物 220 的拉曼光谱的特征峰峰值随温度变化的函数关系。本实施例中，对所述各个数据点进行线性拟合得到图 8 中所示的虚线，经计算该虚线的斜率为 K=-0.0257cm⁻¹/K。

[0057] 步骤 S403，比较被测物 220 悬空部分的中心点 O 与任一端点 L₁ 或 L₂ 的拉曼光谱特征峰值之差。本实施例中，利用拉曼光谱，测量悬空碳纳米管的中心点 O 与任一端点 L₁ 或 L₂ 的温度差。用于探测的拉曼激光聚焦在碳纳米管的某个点上，由于拉曼激光的空间分辨率可达 1 微米，这足以测量悬空部分为 30 微米长的悬空碳纳米管各点的温度。请一并参阅图 3，为单壁碳纳米管悬空部分中心点和任一端点的拉曼谱中 G 峰峰值的变化差异。分析图 3 即可得单壁碳纳米管悬空部分中心点 O 与任一端点 L₁ 或 L₂ 的拉曼谱中 G 峰峰值之差

[0058] 步骤 S404，利用被测物 220 的拉曼光谱特征峰峰值随温度变化的函数关系的曲线以及被测物 220 悬空部分的中心点 O 与任一端点 L₁ 或 L₂ 之的拉曼光谱的特征峰峰值之差计算得出被测物 220 中心点 O 与任一端点 L₁ 或 L₂ 之间的温度差。在本实施例中，单壁碳纳米管悬空部分中心点 O 与任一端点 L₁ 或 L₂ 的温度差 ΔT=−10.1cm⁻¹/（-0.0257cm⁻¹/K）=393K。

[0059] 在步骤 S107 中，经上述测量方法，可计算得到室温下被测物 220 的热导率为 2400W/mK。

[0060] 由于本发明提供的热导率测量系统和方法利用非接触的光谱测量方法，这样可以避免具有大热容量的物体与待测材料接触，使被测物温度保持稳定，也使测量结果更加准确。

[0061] 另外，本领域技术人员还可在本发明精神内作其它变化，当然这些依据本发明精神所作的变化，都应包含在本发明所要求保护的范围内。
图 1
图2
图 3

拉曼频值（单位: CM⁻¹）
图4

S101 提供一被测物放置装置，该被测物放置装置至少包括间隔设置的四个电极

S102 获取所需的被测物的几何尺寸

S103 将被测物放置于被测物放置装置的四个电极的表面，被测物位于中间两个电极的部分悬空设置，通过外侧的两个电极给被测物通入恒定电流，被测物在电流的作用下自加热，并在一段时间后达到热平衡

S104 获取被测物悬空部分中心点和任一端点的拉曼光谱的特征峰频值，并比较被测物悬空部分中心点与任一端点拉曼光谱的特征峰频值之差

S105 获取沿被测物悬空部分轴向传导热功率

S106 利用所述被测物悬空部分中心点与任一端点拉曼光谱的特征峰频值之差获取所述被测物悬空部分中心点和任一端点的温差

S107 根据被测物悬空部分中心点与任一端点之温差、几何尺寸及热功率计算所述被测物的热导率
在所述被测物放置装置的临近第一电极或临近第四电极的一侧提供二氧化硅基底，并将二者置于一反应室中

提供浓度为10^{-3}-10^{-8}摩尔/升的氯化铁溶液作为催化剂的前驱体

将上述催化剂溶液加热至950°C，与氢气和氨气的混合气体形成催化剂气体以60-200立方厘米/分的速率通入反应室中

通入氢气和甲烷作为碳源气的混合气体，从而在被测物放置装置的四个电极的表面生长单根单壁碳纳米管

图5

将所述放置有被测物的被测物放置及测量电路置于一真空腔体中并经所述真空腔体抽真空，使被测物放置装置及被测物处于真空状态

通过拉曼激光照射被测物悬空部分的中心点和任一端点，获取被测物悬空部分中心点和任一端点的拉曼光谱特征峰频率

图6
获取被测物在多个不同已知温度下的拉曼光谱的特征峰频值，得到多个与不同温度值对应的拉曼光谱特征峰频值的数据点。

拟合所述多个数据点得到表征被测物的拉曼光谱特征峰频值随温度变化的函数关系的曲线。

比较被测物悬空部分的中心点和任一端点的拉曼光谱特征峰频值之差。

利用表征被测物的拉曼光谱特征峰频值随温度变化的函数关系的曲线及被测物悬空部分的中心点和任一端点之的拉曼光谱的特征峰频值之差计算得出被测物中心点和任一端点之间的温度差。

图 7

![图 7](image)

图 8

![图 8](image)