发明名称

疝气网眼补片固定用的系固件

摘要

一种将修复件附着于身体组织的外科用系固件，是由大体平坦连续体部件件所构成。该本体有近端和远端及其间的纵轴线。本体最好以超弹性镍钛合金制作。该装置还包括至少一个、最好两个弹性倒钩，倒钩近侧地并轴向地远离远端延伸，且最好是以不同方向远离。该装置还包括至少一个，最好两个弹性腿，弹性腿近侧地并轴向地远离近端延伸，且最好是不同方向远离。该倒钩及腿也最好以超弹性镍钛合金制作。
1. 一种将修复件附着到身体组织用的外科手术系固件（105），其特征在于包括:

5 一个具有第一和第二端以及由其间限定的一个纵向轴线的平坦连续体部件（109）；

轴向地远离该第一端延伸并且从该体部件向外弯曲的至少一个弹性倒钩（107 或 108），和

轴向地远离该第二端延伸并且从该体部件以不同方向向外弯曲的至少两个弹性腿部（110, 111）。

2. 如权利要求 1 所述的系固件，其特征在于，所述倒钩和所述腿部中的至少一个是向外翻后再朝对所述体部件。

3. 如权利要求 1 所述的系固件，其特征在于，所述倒钩和所述腿部中的至少一个具有一个钝端。

4. 如权利要求 1-3 之一所述的系固件，其特征在于，所述的系固件是由不锈钢制成。

5. 如权利要求 1-3 之一所述的系固件，其特征在于，所述的系固件是由一种超弹性合金制成。

6. 如权利要求 5 所述的系固件，其特征在于，所述的超弹性合金是镍钛合金。

7. 如权利要求 1-3 之一所述的系固件，其特征在于：第一和第二端分别为体部件的远端和近端。

8. 如权利要求 7 所述的系固件，其特征在于，所述的系固件有至少两个倒钩。

9. 如权利要求 8 所述的系固件，其特征在于，所述的至少两个倒钩从该远端于轴向的不同方向上作延伸。

10. 如权利要求 1-3 之一所述的系固件，其特征在于，所述的该体部件的远端作成钝的。

11. 如权利要求 1-3 之一所述的系固件，其特征在于，所述的体部件、倒钩和腿是由整体合金板材成型的。
说明书

疝气网眼补片固定用的系固件

5 技术领域
本发明所述的一种外科手术用的系固件，具体而言，是用于诸如腹股沟疝的组织缺陷修复术中附着修复件用的一种手术用系固件。

背景技术
腹股沟疝是发生在患者下腹部肌肉壁或腹股沟内的一处缺陷、或称薄弱处，于该处会挤出一小圈肠段的情况。这种情况于人群中常有发生，特别是男性。此类疝可以是患者与生俱来的一种先天缺陷，也可以是因抬重物或损伤所致。已知负重会在腹壁上造成大的压力并可形成该腹肌薄弱点处的撕裂而形成缺陷或开口。一旦造成不觉察的于该缺陷处的肠组织膨胀，患者会有痛感，负重能力下降，并在某些情况下，若该突出组织的血流被切断，则会有肠嵌塞，或可能出现其他并发症。

解决该难题的一种方法是手术。于外科手术中，或通过一个敞开的切口以内窥镜方式，或是以套环插入探口，进到该缺陷并作仔细的检查。无论何种情况，都可进行仔细的检查，由于在该典型的缺陷区域内有脉管和神经的网络，则要求外科医师有特别的技艺与小心来施行修补。在该区域内可见到例如胃，外骷骨，以及粗的腹上部的各血管结构，和诸如穿过该腹股沟底延伸的脉载体输送的生殖脉管。

由于外科医师是熟悉患者的解剖特征的，故由该缺陷处医生可小心地将肠推回至患者的腹腔内。缺陷的修复可包括采用缝合或系固件以闭合该缺陷，但一般是将诸如一种带网眼的补片的手术修复品覆盖开口缺陷，再行通常的缝合术或是用系固件将该网眼补片附着到腹股沟底之上。该网眼补片起到屏障的作用以防肠部从缺陷处凸出。腹股沟网眼补片缝合术比较适合于开腹手术，而对于内窥镜方式则太过费时费力了。随着外科内窥镜术的采用，应用手术系固件的内窥镜手术仪器得到越来越多的使用。然而，当所用的针或系固件会穿透，诸如耻骨韧带（Cooper’s ligament）组织时，对于作腹股沟底组织手术的外科大夫则面临着特殊的挑战。
目前，外科大夫在施用内窥镜术或剖腹术中可采用各种仪器及系固件将网眼补片附着到腹股沟底上去。最早采用的内窥镜术仪器的类型之一是一种外科用类似钉书机的钉钉机。该外科器械使用一系列加长的“U”型样钉，一次一个地钉进该网眼补片及腹股沟壁上去。这种“U”型钉作成一盒，它在压进组织时定型并牢固地将网眼补片把持在组织上。一系列这种未定型钉一般是按顺序码放进一个钉匣之中，并被一个弹簧机构从该器械中顺序地送进。此类外科系固件可在罗伯特.罗斯福等人的号为 US 5,470,010,以及 US 5,582,616 的美国专利中找到。

尽管外科钉钉机式的器械确可牢固地将网眼补片固定于腹股沟壁，而由于外科医师需求一种适用于内窥镜术的更小尺寸的器械，其使用已不似当初之盛。与一种 10 毫米直径的钉书机相比，外科医师已经开始使用使腹部有更小可进出切口的一种更小的 5 毫米装置。诸多螺旋状丝的系固件顺序存放在该 5 毫米的轴中，并被旋进或拧进组织中去。该器械被激发时，由一个载荷弹簧从远端推压或进给剩下的弹簧。这种类型的器械和系固件可见于里伯杜克等人的号为 US 5,582,616; US 5,810,882 ; 以及杰佛瑞等人的号为 US 5,830,221 的美国专利之中。

例如象便于作单个激发插入式使用的牙样用品的系固件，以及也是插入式用品的“H”型服装装系用类型的系固件之类的其它的手术用系固件和外科用器械已被试用。该锐式系固件具有带把倒钩的尖端及在另一端的一个大盘。该系固件按记述是以聚丙烯，不锈钢作成或 polydioxanone 缝合。使用时，外科大夫将尖部插进网眼补片和组织。该倒刺将尖部留在组织内而大盘将网眼补片抵靠于该腹股沟底部。为使有多次对系固件激发，采用了一个旋转式进给仓。现有技术中也描述了 “H” 型服装装系固件。“H” 的主垂直腿装进一个施力器的针部而使 “H” 的水平杆部及余下的副垂直腿伸出。该针被插进网眼补片及组织，而该主垂直腿随即张开以锁进组织并让该副腿与网眼补片接触。该 “H” 系固件也以聚丙烯，不锈钢及 polydioxanone 缝合制作。此类系固件和外科器械都可以在均为爱德华飞利浦的号为 US 5,203,864 和 US5,290,297 的美国专利中找到。这些器械尚未为外科协会的接受，可能是因为其单发性以及该旋转管的尺寸太大。

尽管上述各种系固件利于将修复件附着于体内而用于补疝，但未见有对该
系固件是由一种超弹性或准弹性的形状记忆合金制作的披露。这些合金所显示的特性可用以该系固件的改进。现有技术启示在医学装置中使用有形状记忆和/或超弹性特征的诸如镍钛合金，它被设计用于嵌入患者的体内。该形状记忆特征允许该装置受变形以便其镶入体腔或凹窝，并且随后在体内被加热而使该装置恢复其原来的形状。另外，超弹特性一般是允许该金属变形并于变形状态下受约束以便含这种金属的医学装置置入患者的体内，伴随这种变形引起该相变换。一旦体腔内的超弹性件上的约束被去除，其间因减小了该应力就会因其转换回原有的相而能使该超弹性件回复至其原来的非变形形状。具有形状记忆/超弹性特征的合金一般具有两个相。这些相为具有相对低的拉伸强度并且相对低的稳态温度的一种马氏体相，和具有相对高的拉伸强度并且高于马氏体相的稳态温度的一种奥氏体相。

通过将金属的温度加热至高于实现从马氏体相到奥氏体相的变换的一个温度，形状记忆特性就被传达给该合金，也就是高于一个奥氏体是稳定的温度（Af温度）。于此热处理中该金属的形状乃是被记住的形状。该热处理过的金属被冷却至一个马氏体相稳定的温度，引起该奥氏体相转换至马氏体相。马氏体相的该金属而后会被塑性变形，例如有利于其进到患者的体内。随后变形的马氏体相加热至高于马氏体到奥氏体变换温度的一个温度，遂引起该变形的马氏体相变换至奥氏体相，并且在此相变换过程中，若无约束则该金属会逆返至其原来的形状。若受有约束，该金属将保持马氏体直至该约束去除。

将这些合金的形状记忆特性用于医用装置，欲将其置入患者体内的诸多方法遇到操作上的种种困难。例如，遇到具用一个稳态马氏体温度的形状记忆合金低于体温，要让含有这样一种合金的该医用装置的温度保持足以低于体温，这在将该装置正被插入患者体内时防止马氏体相向奥氏体相的转变往往是困难的。遇到具有马氏体 -对- 奥氏体变换温度正好高于体温的形状记忆特性和合金所作成的血管内装置，将该装置引入患者的体内会很少出问题，但必得被加热至该马氏体 -对- 奥氏体变换温度，而该温度却经常高至足以造成组织损毁和令患者感到非常疼痛的程度。

使诸如镍钛合金、处在高于稳态奥氏体的一个温度（即该温度下完成马氏体相对奥氏体相的变换）下显示有超弹性特性的一个金属样件受力时，该样件会作弹性变形直至一个特别的应力状态，此状态下该合金会经历自奥氏体
相对马氏体相变换的一种应力-感生相（stress-induced）。在该相变换过程中，
该合金经受应变的显著增加，而在应力方面却没有或很少有相应的增加。这种
应变增加而应力基本不变直到完成奥氏体相至马氏体相的变换。此后，应力的
进一步增大会引起进一步的变形。依据施加附加的应力该马氏体金属先是变
形，尔后按塑性方式会有永久性的残留变形。

如果在任何永久残留变形发生前撤去样件上的负荷，该马氏体样件会弹性
恢复并变换回至奥氏体相。这种应力减小首先引起应变减小。由于应力减小达
到的水准乃是在该马氏体相变换回奥氏体相的水准，该样件上的这种应力状态
会基本保持不变（但大体小于该不变应力水准，此刻奥氏体变换为马氏体）
直至完成变换回至奥氏体相，即是显著的应变恢复而仅有很小的相应应力减
小。在完成了这种变换回奥氏体后，进一步的应力减小造成弹性应变的减小。
依施加的负荷，相对不变的应力下发生显著应变以及随着负荷的撤消该变形恢
复的这种性能一般被认为是超弹性或准弹性。正是材料的这种性能使其在自膨
张手术系固件的制备方面非常有用。现有技术中已启示使用具有超弹性特性的
金属合金于医用装置中，即是要插入，或是用于患者的体内。例子详见美国
专利 US4,665,906 (Jervis) 和 US4,925,445 (Sakamoto 等人)

瑞斯等人的号为 US5,217,486 的美国专利中公开了一种形状记忆合金作
的超弹性系固件。瑞斯等人的专利公开了一种嵌入骨骼上钻的孔并紧固于该处
的缝合锚。该锚的倒钩样部分是由形状记忆合金制成，且作弯曲以使该系固件
进入该孔并植入其中以防自该处缩回。所述该缝合锚由于是被作成许多部分并
用缝合以附着筋腱或修复件至骨骼上。瑞斯等人并无公开有该系固件用于组
织。

一种形状记忆合金作的超弹性系固件还被公开在爱伦等人的号为 US
6,133,611 的美国专利之中。爱伦教导一种存于执行器械内的手术系固件、如
一种直的丝状，而当放入组织时它会自动变换成压迫组织的一种形状（螺旋或
螺钉状）。然而，爱伦等人的装置一次只送进一个系固件。另外，其使用未提及
用于补疤。

现需要的是一种简单、可装进 3 毫米或更小轴内的并可靠地将修复件或网
眼补片附着到组织上去的整件系固件。一系列这样的系固件应是可以序列方
式被储存进该轴及器械的本体内，且装入轴中会是可作变形而又可膨胀以附着修
复件到组织上。另外，它应是按需求使之可放置的一种系固件，并可保持在耻骨韧带内。

发明内容

一种将修复件附着于身体组织的外科用系固件，是由大体平坦连续体部件件所构成。该体部件有如近端的第一端和如远端的第二端及其间的纵轴线，至少一个弹性倒钩轴向地远离该第一端延伸并且从该体部件向外弯曲，和至少两个弹性腿部轴向地远离该第二端延伸并且从该体部件以不同方向向外弯曲。

体部件最好以超弹性镍钛合金制作。该装置还包括至少一个、最好两个弹性倒钩，倒钩近侧地（proximally）或轴向地远离该远端延伸，且最好是以不同方向远离。该装置还包括至少一个、最好两个弹性腿部，弹性腿部近侧地或轴向地远离近端以延伸，且最好是以不同方向远离。该倒钩及腿部也最好以超弹性镍钛合金制作。

附图说明

本发明新的特征是结合附图，参看下面的描述可对发明本身即操作的组织和方法及本发明的其它优点和目的进行最好的理解，其中：

图 1 所示为一种外科器械的立体图，其中，图中移去了左半手柄以显示其中的组件及处于开启位置的扳机；

图 2 所示为图 1 中的外科器械的立体图，其中，扳机从图 1 中所示的开启位置移动至图中所示的闭合位置，并且，一个端部执行器从外科器械中延伸出来；

图 2B 所示为图 1 中的外科器械的一些内部组件的分解立体图，其中，为清楚显示的目的而省去了了一些组件；

图 3 所示为图 1 中所示的外科器械的第一侧的侧面剖视图，其左半手柄被移去，其中，图中显示了组装的全部内部组件及扳机处于开启位置；

图 4 所示为图 3 中所示的外科器械的第二侧的侧视图，其左半手柄处于其位置而右半手柄被移去，图中显示了所有的内部组件及扳机处于开启位置；

图 5 所示为图 3 中的外科器械的第一侧的侧视图，其中，扳机移动至部分闭合的位置而使端部执行器从外科器械中延伸出来；

图 6 所示为图 5 中的外科器械的第二侧的侧视图，其中，扳机移动至部分闭合的位置而使端部执行器从外科器械中延伸出来；

图 7 所示为图 5 中的外科器械的第一侧的侧视图，其中，扳机移动至完全闭合位置而使端部执行器的第一部分回缩入外科器械中，并暴露出位于端部执
行器处的系固件的一部分；

图 8 所示为图 7 中的外科器械的第二侧的视图，其中，扳机移动至完全闭合状态而使端部执行器的上部分回缩入外科器械中，并暴露出位于端部执行器处的系固件的一部分；

图 9 所示为本发明优选的系固件的立体图，其中，本发明优选的系固件具有一对远端侧钩和一对较长的近端臂，图中显示的本发明系固件处于未受迫的状态；

图 10 所示为图 9 中的系固件的侧视图，其中，本发明优选的系固件处于未受迫的状态；

图 11 所示为图 9 中的系固件的立体图，其中，图中所显示的本发明的优选系固件处于受迫的状态，即如在图 1 中的外科器械中看到的一种受迫状态；

图 12 所示为图 11 中所示的系固件的侧视图，其中，图中所显示的本发明优选系固件处于一种受迫状态；

图 13 所示为图 12 中所示的系固件的仰视图，其中，图中所显示的本发明的优选系固件处于一种受迫状态；

图 14 所示为本发明的外科器械的一根简杆的远端的剖面侧视图，端部执行器通常回缩在该简杆中，且在该简杆中容纳有多个本发明的优选手术系固件；

图 15 所示为对图 9 中的端部执行器和简杆的 10—10 线所作的剖视图，图中显示了一个通道及容纳在其中的一个本发明优选系固件；

图 16 所示为将一块网眼补片放置到下腹部的腹股沟底中的损伤处或疝气之上所用的外科夹持器的部分透视图，图中特别地显示了左腹股沟的解剖情况；

图 17 所示为图 16 中所示的下腹部的腹股沟底的剖面侧视图，图中显示了根据本发明而在准备修补损伤处的过程中将网眼补片放置到组织之上的情况；

图 18 所示为下腹部的腹股沟底的剖面侧视图，其中，图 14 中所示的简杆的远端将网眼补片向下推到腹股沟底上，而端部执行器带着包含在简杆中的一个系固件在简杆中向下移动；

图 19 所示为腹股沟底和图 18 中所示的器械的剖面侧视图，其中，本发明
的端部执行器从简杆延伸入腹股沟底，端部执行器中包含有本发明优选的一个人
系固件；

图 20 所示为腹股沟底和图 19 中所示的器械的剖面侧视图，其中，端部执行
器的第一部分部分回缩入简杆中而展开包含在其中的本发明优选系固件的
一个倒钩，并将第一倒钩与腹股沟底相配合；

图 21 所示为图 20 中所示的结构的剖面侧视图，其中，本发明的端部执行
器的第一部分完全回缩入筒杆中，该全部的回缩将本发明优选的系固件的臂释
放入筒杆中由端部执行器的第一部分原来占据的部分；

图 22 所示为图 21 中所示的结构的剖面侧视图，其中，本发明的端部执行
器的第二部分完全回缩入筒杆中，该完全的回缩使本发明优选的系固件的第二
倒钩与腹股沟底相配合且两根臂与筒杆相配合；

图 23 所示为图 22 中的结构的剖面侧视图，其中，图 22 中的外科器械的
筒杆已向上移动以释放本发明优选的系固件的臂，被释放的臂将手术网眼补片
附加到腹股沟底上；

图 24 所示为图 1 中的本发明的扳机锁定机构的部分侧视图，其中，一个
锁定臂固定加到可枢转的扳机上而可操作性地与一个棘轮相配合；

图 25 所示为本发明的锁定机构的部分剖视图，图中显示了处于初始位置
的棘轮及与轮爪相配合的情况，其中，锁定臂向上移动而从起始位置（虚线所示）
移动至与棘轮相邻的第二位置（横面所示）；

图 26 所示为图 25 中的结构的局部剖视图，图中显示了向上移动的锁定臂
与棘轮的第一齿相配合，其中的结合使棘轮逆时针转动一个齿，而锁定臂准备
回复至初始位置（虚线所示）；

图 27 所示为图 26 中的结构的部分剖视图，图中显示了向上移动的锁定臂
与棘轮的最后齿相配合，其中，扳机的反复击发使棘轮转动至最后齿，一个锁
定突起恰好位于向上移动的锁定臂之下（横面所示）；

图 28 所示为图 27 中的结构的部分剖视图，图中显示了向上移动的锁定臂
进一步与棘轮的最后齿相配合，其中，棘轮逆时针转动而将锁定突起定位在锁
定臂之下；

图 29 所示为图 28 中的结构的片断侧视图，图中显示了向上移动爪臂阻止
棘轮进一步的转动，锁定臂附加到卡在一个齿和棘轮的锁定臂之间的扳机上。
具体实施方式

本发明涉及在患者组织缺损修补术中用的一种新式外科系固件。更具体地说，本发明涉及一种在修复缺损修补术中多用的手术方法。采用顺序补充方式的新式手术用系固件。

结合腹股沟症的修补并用对本发明进行了显示和描述。但是应该知道，本发明可适用于需要对组织缺损进行修补的其它不同的手术过程。

手术器械

如图 1 和图 2 所清楚显示的那样，本发明的一系列手术系固件 105 是装进该手持式手术器械 35 中的，该手术器械通常用于将修复件附加到组织上或作为组织标记。本发明的手术系固件 105 是由超弹性镍钛合金制成的且以受迫或被压扁状态储存在外科器械中，当将其从外科器械中释放时，该系固件就扩展至一种未受迫的状态。该器械的动作在从其远端释放本发明的一个系固件 105 的同时引导器械中的多个系固件 105。

本发明的外科器械 35 具有一个手柄 40，从手柄 40 向远处延伸的一根伸长筒杆 92 和从手柄 40 向下延伸的拔机 85。手柄 40 具有右半部 41 和左半部 42，右半部 41 和左半部 42 通常互为镜像式对称，在图 1 和图 2 中省略了左半部 42。伸长的筒杆 92 固定安装到手柄 40 上，它是由较硬的中空材料如不锈钢管形成的。把柄 43 固定安装到手柄 40 上且与拔机 85 相邻，把柄 43 从手柄 40 的远端向下延伸。拔机 85 可转动地安装于手柄 40 中且可从图 1 中所示的开启位置运动至图 2 中所示的与把柄 43 相邻的位置。拔机 85 向闭合位置的运动使端部执行器 95 从筒杆 92 的远端伸出(参见图 2)以释放系固件。

图 2B 所示为在外科器械 35 中看到的主要组件的立体分解视图。该分解视图可使读者熟悉包含在其中的关键组件及形成外科器械 35 所用的组装方法。为清楚显示起见，图中移去了多个组件如左半手柄 42。图 2B 中的一些组件形状复杂，在下面参考的内容中为辨识或理解本发明的特征，建议读者再行参见该图。外科器械 35 的组件均包含在右半手柄 41 和左半手柄 42 中，手柄可由工程热塑材料如苯乙烯-聚碳酸酯或其它多种适合的材料之一来制成。轴槽 44 位于左半手柄 42 和右半手柄 41 的上部分的远端，该槽用于接收筒杆 92 并将其保持于其中。

栓槽 45 大体上位于右半手柄 41 中的轴槽 44 之下。栓槽 45 为直角形以将
栓 55 装配于其中。栓 55 的远端具有一个较硬的栓杆 57 及从栓杆 57 向远处延伸的一个直角杆 56。杆 56 是由弹性材料如不锈钢制成的。杆 56 的远端陷于并保持在栓槽 45 中，从栓槽 45 中伸出的杆 56 的大部分呈悬臂状态。当杆 56 偏转时，杆 56 的悬臂部分可使栓杆 57 上下自由移动。栓 55 的重要性将在下文中进行描述。

第一和第二滑动架 60、70 是相对的两个部件，它们通常通过外科器械 35 的简杆 92 和手柄 40 向近端和远端延伸而形成用于驱动系固件 105 的一个送进机构。第一和第二滑动架 60、70 可相对于外科器械 35 向近端和远端运动并分别独立相对运动，它们分别被滑动性地限制在左半手柄 42 和右半手柄 41 中的一对导槽 46 中。在图 2B 中，第一和第二滑动架 60、70 具有一个近端和一个远端，在组装前它们之间相间隔，多个系固件 105 就储存在它们之间。系固件 105 沿着第一和第二滑动架 60、70 的整个长度延伸。第一和第二滑动架 60、70 具有远端的第一和第二输送部件 61、71，第一和第二输送部件滑动性地安装在简杆 92 中，第一和第二滑动架 60、70 还具有较大的近端第一和第二后续件 62、72，该后续件滑动性地安装在左半手柄 42 和右半手柄 41 中。第一和第二输送部件 61、71 截面为半圆形且分别具有第一和第二外表面 64、74。一对第一和第二钉栓 64a、74a 分别从第一和第二外表面 64、74 的远端向外延伸。第一和第二接触表面 63、73 分别完成了第一和第二输送部件 61、71 的半圆形截面。第一和第二接触表面 63、73 沿着第一和第二滑动架 60、70 的整个长度相互面对且具有在其中延伸的第一和第二系固件通道 65、75。在已组装的情况下，第一和第二滑动架 60、70 沿着第一和第二接触表面 63、73 的整个长度进行滑动接触，而第一和第二系固件通道 65、75 形成一个中空的矩形通道以用于保持系固件 105 并将它们在通道中顺序输送(参见图 15)。

第一和第二滑动架 60、70 的系固件通道 65、75 为“U”形以将系固件 105 容纳在其中，它们还具有一对相对的内表面或通道底板与系固件 105 配合。内表面具有多个凸起或在其上用于驱动系固件的特征空间以与系固件 105 结合。如在放大的图 14 中清楚显示的那样，这些凸起或锯齿 120 沿着第一和第二系固件通道 65、75 的底板的整个长度从近端向远端延伸且以纵向的距离“D”等长度相间隔。所述的距离“D”在 8 英寸及 0.005 英寸之间。本发明中的间隔“D”为 0.475 英寸。该间隔“D”将系固件相互分离，这样，当系固件在外科器械 35
中输送时，它们就不会相互结合或接触。如图所示，每个锯齿 120 均具有近端
的倾斜表面 122 和远端的台阶 121。在下面的内容中将对锯齿 120 在系固件 105
的输送中的作用进行详细描述。

在第一和第二系固件通道 65、75 的远端分别为第一和第二系固件导轨
66、76，它们倾斜进入系固件通道 65、75 的近端以协助将系固件 105 放置于
其中。这些系固件导轨 66、76 通常相互为镜像式对称。在图 2B 中隐藏了第一
系固件导轨 66。

第一和第二滑动架 60、70 的较大近端部分为第一和第二后续件 62、72，
它们控制着系固件输送结构的计时和排序以从器件的远端释放一个系固件并
在器械内向远端引导或输送多个系固件。第一后续件 62 具有从其两侧横向向
外延伸的一对引导翼 68 及在远端处向上延伸的一个第一弹簧挡块 67。引导翼
68 安装在手柄左右半部 42、41 的导槽 46 中，引导翼 68 可滑动性地将组装的
滑动架 60、70 紧贴在手柄 40 中。一对“C”形导槽 69 位于后续件 62 的下面且
沿着第一后续件 62 的近端半部纵向延伸。第二后续件 72 具有第二弹簧挡块
77，该挡块 77 位于第二后续件 72 的近端，而叉形的挡块 78 在第二后续件 72
的远端向上延伸。凸轮板 79 从第二后续件 72 的较远的一侧朝着右半手柄 41
延伸。一对滑动架翼肋 83 沿着第二后续件 72 的近端半部分横向向外延伸。第
一和第二滑动架 60、70 可由工程热塑材料如聚氯乙烯、聚碳酸酯、尼龙、
苯乙烯或类似物来作成一个整体。

通过将位于第二后续件 72 上的滑动架翼肋 83 对插入第一后续件 62 的导
槽 69 对中可将第一和第二滑动架 60、70 滑动性地锁定在一起。第一和第二滑
动架 60、70 通过其上附加的穿透部件或第一和第二刺板片 96、97 而制作的很锋
利。通过将第一和第二刺板片 96、97 放置到第一和第二钉栓 64a、74a 之上
而将第一和第二刺板片 96、97 附加到第一和第二滑动架 60、70 上，然后将组
合的刺板片 96、97 和第一及第二滑动架 60、70 放入中空的筒杆 92 中以形成
筒杆附属组件。图 4 中清楚地显示了这种保持刺板片的方法。刺板片 96、97
在将系固件 105 放入组织的过程中用于穿透组织，刺板片可用较硬的材料如不
锈钢制成。

下一步，将筒杆附属组件放入系固件输送位置(图中未显示)，一次将一个
系固件 105 送入第一和第二系固件导轨 66、76 中，并将其送入由系固件通道
65、75 形成的中空通道。将系固件 105 插入直至其与输送机构相配合，该内容将在下文中进行描述。系固件 105 一旦处于其位置，第一和第二滑动架 60、70 就相对而向近端和远端进行相对运动而将系固件 105 进一步引导或输送入筒杆附属机构中。该过程对于每个新系固件 105 来说是重复进行的，直至第一和第二滑动架 60、70 完全按顺序容纳多个系固件 105。多个系固件 105 沿着第一和第二滑动架 60、70 的整个长度等间距布置。然后将筒杆附属组件包含的系固件 105 放入右半手柄 41 中。筒杆 92 被接收入轴槽 44 中，第一滑动架 60 的引导翼 68 被滑动性地放入导槽 46 中。下一步，将棘轮 100 放入轮座 48 中，该轮座 48 位于右半手柄 41 中接近枢转孔 47 的位置处。

通过将扳机盘 87 和锁定臂 88 放置到在扳机 85 的两侧横向延伸的销轴 86 上且利用一对销子 89 将其固定安装到扳机 85 上就构成了一个扳机组件。驱动臂 90 从扳机盘 87 向上延伸，而弹簧栓 91 从扳机盘 87 的较远侧向右半手柄 41 延伸。扳机弹簧 104(参见图 3)的一端放置到弹簧栓 91 之上。然后通过将较远侧的销子 86(图中未显示)放入销孔 47 中而将扳机组件放入右半手柄 41 中。图中显示的扳机 85、扳机盘 87 和锁定臂 88 是分离的组件，但它们也可由工程热塑材料如聚碳酸酯、苯乙烯或类似物构成单个部件。

图 3 显示了手柄 40 完全装配在一起的组件。在图 3 中显示的视图之前，扳机弹簧 104 的自由端伸展而被安装到把手 43 的弹簧销 49 上。扳机弹簧 104 的自由端的附加上到弹簧销上将扳机弹簧 104 张紧，并将扳机 85 偏移至图中所示的开启位置。下一步，压缩第一回位弹簧 115 并将其放入在第一滑动架 60 的第一弹簧挡块 67 和手柄左右半部 41、42 的第一弹簧肋 50 之间形成的第一弹簧空腔中。另外，压缩第二回位弹簧 116 并将其放入在第二滑动架 70 的第二弹簧挡块 77 和第二弹簧肋 51 之间形成的第二弹簧空腔中。最后，将左半手柄 42 安装到右半手柄 41 上而完成外科器械 35 的组装。为清楚显示起见而移去了左半手柄 42。

致动机构

图 3-8 显示了用于控制外科器械 35 中的元件的计时和运动的致动器或排序机构的操作。致动机构由扳机 85 的动作来结合并将送进机构或第一和第二滑动架 60、70 移入至少三个顺序的位置中。扳机 85 的动作同时将第一和第二滑动架 60、70 向远端而从第一近端位置移动入第二远端位置，然后将第一滑
动架 60 回复至近端位置，最后将第二滑动架 70 回复至近端位置。该运动的顺序将多个系固件 105 向远处推进，并在两个步骤中将系固件的远端配合到组织中。该致动机构包括栓 55、上述的扳机组件、第一和第二回位弹簧 115、116 及第一和第二滑动架 60、70。

图 3 显示了图 1 中的外科器械的第一或左侧视图，其左半手柄 41 处于其位置，为清楚显示的目的而移去了左半手柄 42，扳机 85 处于初始开启位置。第一和第二回位弹簧 115、116 在手柄 41 和 42 中偏压第一和第二滑动架 60、70。扳机组件的扳机 85 处于完全开启的位置，而驱动臂 90 与第一后续件 62 的引导翼 68 的近端进行操纵性配合。第一和第二滑动架 60、70 处于第一近端位置。

图 4 显示了图中的外科器械的第二或右侧视图，左半手柄 42 处于其位置而移去了右半手柄。在该图中可看到栓 55，栓 55 的栓杆 57 与位于第一后续件 62 的远端上的第一斜坡 69a 操纵性配合。为清楚显示起见，图中以截面的形式显示了第一和第二弹簧肋 50、51 及右半手柄 41 的栓槽 45 的一部分。

图 5 和图 6 分别显示了组装在外科器械 35 的左侧视图和右侧视图，图中第一和第二滑动架 60、70 从图 3—4 中所示的第一位置通过扳机 85 的作用而向远端传动或移动至第二位置。第一和第二滑动架 60、70 向远端的移动使端部执行器 95 从简杆 92 的远端处延伸。扳机 85 处于第一部分闭合位置且准备从扳机组件的驱动臂 90 处释放第一滑动架 60。

在图 5 中，当扳机 85 逆时针朝向把柄 43 转动时，驱动臂 90 转动入与引导翼 68 进行操作配合且将第一滑动架 60 向远端移动。当第一滑动架 60 向远端移动时，它与第二滑动架 70 的叉形挡块 78 相接触而向远端推动第二滑动架 70。第一和第二滑动架 60、70 向远端的移动压缩如图所示的第一和第二回位弹簧 115、116。板机组件的锁定臂 88 向上移动而使棘轮 100 进行转动。

在图 6 中，当第一和第二滑动架 60、70 向远端运动时，它们使栓 55 的栓杆 57 向下偏斜而沿着第一滑动架 60 的第一斜坡 69a 和第二滑动架 70 的第二斜坡 80 进行滑动。栓 55 的栓杆 57 穿过第二斜坡 80 而向上偏斜以锁靠第二滑动架 70 的第三斜坡 81 和第一后续件 62 的底表面 62a。在栓 55 处于该位置的情况下，第二滑动架 70 被锁定在远端的位置而不能向近端移动。

图 7 和图 8 分别显示了组装的外科器械 35 的作用视图，图中所示为在第
一滑动架 60 往复运动或回复至图 3 和图 4 所示的第一近端位置而从端部执行器 95 处部分释放一个系固件 105 之后的情况。

如图 7 所示，在从驱动臂 90 释放引导翼 68 之后，第一滑动架 60 向远端运动而从图 5 和图 6 所示的第二远端位置运动至第一近端位置。通过第一回位弹簧 115 的作用而使滑动架 60 回复至近端位置。第一滑动架 60 向近端的运动使第一刺板片 96 向近端回缩入筒杆 92 中，并释放如图所示的系固体 105 的远端。锁定臂 88 从其位置向上移动而与棘轮 100 脱离配合。

在图 8 中，当第一后续件 62 向近端移动时，第一后续件 62 的底表面 62a 从栓杆 57 处向远端移动而使栓 55 向上偏移至图 3 中所示的未偏移位置。该运动不锁定第二后续件 72。在第二后续件 72 没被锁定的情况下，被压缩的第二回位弹簧 116 将使第二滑动架 70 回复至图 3 中的初始近端位置。当第二滑动架 70 回复至第一近端位置时，栓杆 57 在凸轮板 79 的第三斜坡 81 的作用下向上偏移而移动过向远端运动的凸轮板 79 的顶部表面 82，并回复至图 3 中所示的位置。在该点处，如果没有启动机械的锁定动作，扳机 85 就被释放而使机械的元件回复至图 3 中所示的位置。

系固体

图 9—13 所示为本发明的新式外科锚件，系固体 105 的放大视图。本发明的多个系固体 105 顺次包含在外科器械 35 中（参见图 2B），该系固体被用于将一个修补件如一个手术网眼修补垫片系固或缝合到组织上。本发明的系固体 105 具有弹性，图 9 和图 10 中显示了该系固体处于其初始的未受迫状态。当系固体 105 变形或受迫时，在被释放的情况下它就会回复至其初始形状。系固体 105 可由准弹性或超弹性的镍钛合金片形成或模压成以利用其准弹性或超弹性的性能，或该系固体 105 也可由具有弹性的钢、不锈钢、铜或其他钛合金来制成。

系固体 105 最好是由所含的 Ni 占约 50.5%（此处的百分比是指原子百分比）至约 60%的一种合金来制成，而优选的情况为，Ni 占约 55%，而合金的其余部分为 Ti。另一种优选的方式为，系固体在温度下是超弹性的，它具有的 Af 在从约 24°C 至约 37°C 的范围内。系固体 105 的超弹性设计可使它从受挤压的情况下恢复，这样就可在直径较小的简杆 92 中储存大量系固体 105。

如上所述，本发明的优选系固体 105 是由一种超弹性合金制成的，最优选
的情况为：制作该系固件的合金材料中含有的镍大于 50.5%（原子百分率）及余额（balance）的钛。镍的原子百分率大于 50.5% 可使合金在从马氏体相完全转化为奥氏体相时的温度 (Af 温度) 低于人的体温而最好为约 24°C 至 37°C，这样奥氏体在体温下是唯一稳定的金相组织。

图 9 和图 10 所示的未受迫系固件 105 具有一个通常平坦的连续体部件 109，该体部件 109 具有第一（远）端和第二（近）端。至少一个倒勾从远端延伸出来，而至少两个倒钩从近端延伸出来。该连续的体部件 109 具有一个远端末梢 106。由于系固件 105 不必穿透组织，因此，该末梢 106 是圆的或钝的。另一种方式为如果需要的话，系固件 105 的远端末梢可以制作得很锋利或尖的。第一和第二倒钩 107、108 近侧地并轴向地远离远端末梢 106 延伸，并与体部件 109 远离延伸。第一和第二倒钩 107、108 可被弯曲，体部件 109 的远端具有一对倒钩或第一和第二腿 110、111，所述腿 110、111 从体部件 109 远侧地延伸并在不同的方向上相互远离，本发明的第一和第二腿 110、111 与第一和第二部件 60、70 的内表面相配合，它们也可被从体部件 109 向外弯曲而形成图 9 和图 10 中所示的外翻结构。第一和第二倒钩 107、108 及第一和第二腿 110、111 的端部可以是钝的。

图 11—13 显示了本发明的系固件 105 的立体图、侧视图和仰视图，其中图中所示的系固件 105 处于受迫状态即假定系固件 105 被储存在外科器械 35 中（参见图 1）。当将系固件 105 从外科器械 35 中释放时，它就会回复至图 9 和图 10 所示的未受迫形状。

送进机构

图 14 和 15 所示为图 3 中的筒杆 92 的远端的部分放大剖视图，图中显示了处于第一或未启动位置的第一和第二滑动架 60、70 或可移动杆，其中，第一和第二滑动架 60、70 缩入筒杆 92 中而将系固件 105 包含于其间。在第一远端位置，外科器械 35 的扳机 85 处于完全开启位置（见图 3），第一滑动架 60 的锯齿 120 整齐排列且与第二滑动架 70 中的锯齿 120 直接相对。图 15 显示了第一和第二系固件通道 65、75 如何形成用于接受系固件 105 的通道。

该送进机构是新的，因为它将系固件 105 本身作为送进机构的一部分。如图 14 所示，送进机构 59 具有三种明显的元件：即第一滑动架 60、第二滑动架 70 及以序列方式储存于其间的一系列系固件 105。系固件 105 保存在锯齿 120
之间，其倒钩 107、108 向外偏移而使系固件 105 集中在锯齿 120 之间。系固件 105 的第一和第二腿 110、111 向外偏置，与锯齿 120 的表面相接触。该第一、二腿 110、111 的末端位于台阶 121 与斜面 122 接合处的袋状槽内，并以可操纵方式与该台阶 122 咬合及与斜面 122 作滑动接触。正是这种与台阶 121 的系固件 105 的确实接触或咬合以及与斜面 122 的滑动接触，在第一、二滑动架间的往复运动中推动或送进这一系列的系固件 105 并将系固件 105 放进组织之中。

对于本领域的一些技术人员来说，上述送进机构的给定元件、第一和第二滑动架 60、70 向远端的运动可使系固件 105 与滑动架 60、70 的台阶 121 进行操纵性地配合。该操纵性地配合及滑动架 60、70 向远端的移动使系固件 105 向远端移动。如果滑动架之一如第一滑动架 60 向远端移动而另一个保持静止，系固件 105 就操纵性地与移动的滑动架 60 相配合而运动，而与静止的滑动架 70 进行滑动配合。如果滑动架之一如滑动架 60 向近端移动而另一个保持静止，系固件 105 就与静止的滑动架 70 进行操纵性地配合而保持静止，并与移动的滑动架 60 进行滑动配合。

在将上述运动和反应结合的情况下，滑动架 60、70 具有三种可能的不同运动顺序，从而向远端驱动系固件 105 而使其穿过外科器械 35(见图 3)。本发明的外科器械 35 选择应用了这些运动顺序之一，该顺序最适于将系固件 105 放置到组织中。该驱动顺序以步进的方式，利用本发明的送进机构 59 从图 14 所示的启动位置开始而以图 18 至 22 中所示的情况结束。另外两个驱动顺序将在下文中描述。

本发明的后续机构首先将第一和第二滑动架 60、70 从第一近端位置(图 14)向远端(图 18、19)移动至第二远端位置(图 19)。该运动使系固件 105 与第一和第二滑动架 60、70 进行主动配合而将其从第一位置移动至远端的第二位置。第一和第二滑动架 60、70(图 14)从第一近端位置运动至第二远端位置使全部系固件 105 在外科器械 35 中向远端移动。也就是说，每个系固件 105(最远端的系固件除外)现在均占据前一个系固件 105 的位置。

下一步，如图 20、21 所示，第一滑动架 60 从第二远端位置向近端移动或运动回复至第一近端位置而使第一和第二滑动架 60、70 的锯齿相对排列。如图所示，系固件 105 可操纵性地与静止的第二滑动架 70 相配合而在简杆 92 中
保持静止。

最后，如图 22 所示，将第二滑动架 70 从第二远端位置向近端移动或移动回复至第一近端位置而使第一和第二滑动架 60, 70 中的锯齿 120 重新对准。系固件 105 与静止的第一滑动架 60 进行操纵性地接触而保持静止且与向远端移动的第二滑动架 70 进行滑动接触。如图 22 所示，第一和第二滑动架 60, 70 已将最远端系固件 105 放置到组织中且向远端移动至第一位置。从而，作好将第一和第二滑动架 60, 70 中的一个如图所示的新系固件 105 放置入组织中的准备。

如上所述，上面描述了本发明的两个附加实施例，其中，第一和第二滑动架 60, 70 采取了不同的运动顺序。这些不同的运动顺序也可将系固件 105 向远端移动而穿过外科器械 35（参见图 3）。

在下一个或第二实施例中，在运动顺序中将第一或第二滑动架之一如滑动架 60 固定而使另一个滑动架 70 从第一位置向远端移动至第二位置并回复至第一位置。在第三个实施例中改变了运动的顺序，其中，第一和第二滑动架 60, 70 在相反的方向上同时往复运动。

解剖分析

参考图 16，本发明的外科器械的一种典型应用是对损伤如对位于腹股沟组织如腹股沟底 126 中的腹股沟疝气 125 进行修补。图中显示了病人的左腹股沟进行解剖的解剖结构以指出本发明的用途。

通常，通过髂骨肌肉 127 可进入腹股沟疝 125。很明显，在典型的腹股沟疝 125 的区域中存在一个脉管和神经的网络，这就要求外科医生应以高超的技术和万分的谨慎来进行疝修补。例如，如包括肌腱膜 128 在内，内环 129 允许胃血管 130 和输送脉管 131 延伸过腹股沟韧带 132 的边缘。股动脉血管 133 位于耻骨韧带 134 附近并包含外髂骨脉管 135 和下方的腹上郡动脉血管 136。

在许多情况下，腹股沟韧带 132 和耻骨韧带 134 的边缘用作解剖的明显标志及支撑结构以支撑如前面所述的手术系固件。所述包含外髂骨动脉血管 135 和输送脉管 131 的区域对外科医生来说通常称为“危险三角区”。因此，外科医生应避免损伤上述的这些血管，且在该区域中进行解剖、缝合或紧固时必须小心。

在图 16 和 17 中，作为股股沟疝 125 修补的第一步，利用一个手术夹持器
械 145 将一个修复体或网眼补片 140 放置到腹股沟疝 125 上。网眼补片 140 可
由任何所需要的构造、结构或材料构成。但是，网眼补片 140 最好是
PROLENE™ (由纤维制造的一种公知聚合物)制成且最好作成网状。对于外科
医生来说，使用 PROLENE™ 网眼补片 140 是训练的科目并且应是得心应手的，
这是因为网眼补片 140 容易定尺寸，例如，可在网眼补片 140 中提供一个
侧槽 141 以容纳胃血管 130 和输送脉管 131。

如上所述，可将网眼补片 140 放置到腹股沟疝 125 上以对腹腔中的内脏
(未显示)形成足够的屏障，所述的内脏可凸伸出腹股沟疝 125 而给病人带来严
重的疼痛和不适。图 17 显示了被放置到腹股沟中 126 上的网眼补片 140 的
侧视图。网眼补片 140 可附加到腹股沟底 126 上。

方法

图 18 至 23 也显示了外科器械 35 的使用方法。简杆 92 的远端的这些剖面
侧视图显示了利用外科器械 35 将本发明的新颖系固件 105 放置到腹股沟底 126
中以附加网眼补片 140 所涉及的步骤。

图 18 所示为下腹部的腹股沟底 126 的剖面侧视图，其中，外科医生已将
简杆 92 的远端放置入病人腹股沟疝 125 附近的区域中。外科医生以选择了一
个附加点或手术位置并利用外科器械 35 的远端将网眼补片 140 向下推到腹股
沟底 126 上。小心地将简杆 92 的远端布置到网眼补片 140 中的一个开口 142
上以将系固件 105 放置其中。剖视的简杆 92 中的端部执行器 95 的位置显示出
外科医生已部分启动了扳机 85。扳机 85 的部分移动或启动使第一和第二滑动
架 60、70 从图 14 所示的初始位置向远端(在图 14 中为向下)传送或移动。

如图 19 所示，外科医生继续致动或移动已移动至第一位置(参见图 2、5、
6)的扳机 85，这样使端部执行器 95 的第一和第二滑动架 60、70 完全从简杆 92
中延伸或传送出米。延伸的端部执行器 95 穿过网眼补片 140 中的开口 142 进
入腹股沟底 126。端部执行器 95 虽受到相接触的组织的阻挡，但它将最远端系
固件 105 的第一和第二倒钩 107、108 放置到腹股沟底 126 的组织中。

外科医生继续致动扳机 85 而使扳机 85 从图 5 和图 6 所示的第一部分闭合
位置移动至图 7 和图 8 所示的第二完全闭合位置。在该位置中，启动本发明优
选的外科器械 35 的引导机构，这样，自动的动作顺序就随着第一滑动架 60 向
由图 20 中的箭头所示的近端的运动或移动的开始而进行。
在图 20 中，第一滑动架 60 已部分移动或回撤至筒杆 92 中。该动作将最远端系固件 105 的第一和第二倒钩 107、108 从图 19 中所示的受迫状态中释放出来，并将第一倒钩 107 与腹股沟底 126 的组织进行固定配合。在释放时，远端系固件 105 的倒钩 107、108 张开至图 20 中所示的位置而使最远端系固件 105 弯曲。

该机构一旦被启动，第一滑动架 60 就继续向远端移动入外科器械 35 中直至它回复至图 21 中所示的在筒杆 92 中的初始启动位置。当滑动架 60 处于该位置时，第二滑动架 70 自动被释放按着箭头所示的方向向远端移动或运动入筒杆 92 中。

如图 21 所示，滑动架 60 处于向图 10 所示的初始启动位置运动的状态而完全释放远端系固件 105。第二倒钩 108 和第二腿 111 将远端系固件 105 偏压到筒杆 92 中的原来由第一滑动架 60 的第一输送部件 61 所占据的位置中。这种偏压进一步使远端系固件 105 的第一倒钩 107 与腹股沟底 126 相配合。

在图 22 中，第二滑动架 70 自动向远端回缩入筒杆 92 中的第一启动位置，并完全释放远端系固件 105 的第二倒钩 108 而使其与腹股沟底 126 的组织相配合。远端系固件 105 的第二腿 111 也从第二滑动架 70 中释放出来，第一和第二腿 110、111 均在筒杆 92 中向外扩展。

最后，外科医生释放扳机 85 而使其回复至图 1 中所示的初始开启位置，并拉回筒杆 92 的远端而使其远离网眼补片 140 及配合或附加到腹股沟底 126 上的远端系固件 105。如图 23 所示，在从筒杆 92 中释放的情况下，本发明的系固件 105 的第一和第二倒钩 107、108 紧紧地植根于腹股沟底 126 中，并回复至它们初始的外翻状态(参见图 9 和图 10)。网眼补片 140 通过系固件 105 的第一和第二腿 110、111 而被固定保持在腹股沟底 126 上。现在，该外科器械准备在另一个位置用于附加网眼补片 140。为达到该目的，外科医生仅需要在另一个位置将筒杆 92 的远端进行重新定位而致动扳机 85 将另一个系固件 105 放置或附加到腹股沟底 126 中即可。该过程继续进行直至网眼补片 140 被满意地附加到腹股沟底 126 上。

锁定机构

本发明的外科器械 35(见图 1)包含多个系固件 105。在缝合物的附加过程中，随着外科医生重复击发该器械，储存在器械中的系固件 105 的数目就逐渐
减少。当将最后一个系固体 105 放置到组织中时，外科医生无法知道器械中何时没有系固体 105，可能对组织击发空置的外科器械 35。在外科器械 35 中布置了一个本发明优选的锁定机构而在外科器械 35 空置的情况下锁定扳机。

如上所述，扳机 85 具有一个固定安装且从该处延伸的锁定臂 88。扳机 85 的启动将锁定臂 88 从图 3 中所示的初始位置移动至手柄 40 中的第一部分闭合位置，且与转动安装在图 24 中所示的轴座 48 中的棘轮 100 相接触。

在图 24 中，扳机 85 使锁定臂 88 逆时针转动而与棘轮 100 的齿 101 相配合。锁定突起 102 恰好位于锁定臂 88 之上且从棘轮 100 处向外延伸。锁止爪 103 安装在右半手柄 41 上并从其上向外朝着观察者的方向延伸，锁止爪 103 可与棘轮 100 进行操纵性地配合。在棘轮 100 的较低部分中布置有一个较小的切口，该切口朝着锁止爪 103 的端部延伸。

图 25 显示沿图 24 中的 25—25 方向所做的剖面视图，图中显示了关键元件的必需部分，这样，读者可理解锁定结构的运行。本发明的锁定机构由棘轮 100、锁止爪 103 及从扳机 85 处延伸的锁定臂 88 组成。图示的棘轮 100 与转动轴线相垂直且具有与棘齿 101 操纵配合的锁止爪 103 以阻止棘轮 100 的顺时针转动。通过截面 25—25 对锁定臂进行剖视，锁定臂 88 就形成了两个截面部分。第一部分 88a 是预定臂处于初始位置的情况下对锁定臂 88 的远端作出的，第二部分 88b 是对预定臂 88 作出的以显示预定臂 88 的实际位置。图中的箭头用于显示预定臂 88 的第二部分的运动方向。

本发明的棘轮 100 在其圆周上具有的齿 101 的数目与外科器械 35 中具有的系固体 105 的数目相同。当扳机 85 完全致动而将一个系固体 105 放置入组织中时，锁定臂 88 就与棘轮 100 相接触而使棘轮按图 26 中所示的方向逆时针转动一个齿 101。在致动之后释放扳机 85 时，当锁定臂 88 回复至初始位置 88a 时，锁止爪 103 就阻止棘轮 100 进行顺时针转动。这样，对扳机 85 的一次完整致动可使棘轮 100 转动一个齿 101，而使棘轮 100 转动一圈可击发所有的系固体 105。

图 27—29 显示了在最后一个系固体 105 被击发的完全致动或闭合位置中锁定突起 102 是如何锁定锁定臂(扳机 85)的。在图 27 中，棘轮已从图 25 中的第一位置转动至接近一个完整的周期。这是由锁定突起 102 的新位置来指示
的。图中所示的锁定臂 88 的第二部分 88b 向上移动已超过锁定突起 102 且与最末尾的棘齿 101 相接触。在图 28 中，图示的锁定臂 88 的第二部分 88b 处于完全致动或闭合位置，锁定突起 102 已转动至锁定臂 88 的第二部分 88b 的下面。当释放扳机 85 时，锁定臂 88 的第二部分 88b 向下移动而与锁定突起 102 相接触，并使棘轮 100 顺时针转动以使齿 101 与锁止爪 103 配合(参见图 29)。齿 101 与锁止爪 103 的配合可阻止棘轮 100 顺时针转动并锁止锁定臂 88 的第二部分 88b。这样，在图 29 中，锁定臂 88(及扳机 85)的第二部分 88b 就由锁止爪 103 锁定在第一部分闭合位置而阻止外科器械 35 的扳机的开启。

上面的内容中已显示和描述了本发明的优选实施例，这些只是通过例子来显示的实施例对本领域的技术人员来说应是明显的。在不脱离本发明的情况下，本领域的技术人员可对其进行多种变更、变化及替换。因此，本发明的内容只是由附加的权利要求的实质和范围来限定的。
图 19
图 24