

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2013276511 B2

(54) Title
Synergistic compositions for the protection of agrarian crops and the use thereof

(51) International Patent Classification(s)
A01N 35/04 (2006.01) **A01N 43/50** (2006.01)
A01N 37/34 (2006.01) **A01N 43/54** (2006.01)
A01N 37/36 (2006.01) **A01N 43/56** (2006.01)
A01N 37/38 (2006.01) **A01N 43/653** (2006.01)
A01N 37/46 (2006.01) **A01N 43/84** (2006.01)
A01N 37/50 (2006.01) **A01N 43/88** (2006.01)
A01N 43/30 (2006.01) **A01N 47/02** (2006.01)
A01N 43/36 (2006.01) **A01N 47/12** (2006.01)
A01N 43/40 (2006.01) **A01N 47/18** (2006.01)

(21) Application No: **2013276511** (22) Date of Filing: **2013.06.13**

(87) WIPO No: **WO13/186325**

(30) Priority Data

(31) Number (32) Date (33) Country
MI2012A 001045 **2012.06.15** **IT**

(43) Publication Date: **2013.12.19**
(44) Accepted Journal Date: **2017.01.19**

(71) Applicant(s)
Stichting I-F Product Collaboration

(72) Inventor(s)
Pellacini, Franco;Vazzola, Matteo Santino;Gusmeroli, Marilena;Sinani, Entela;Riservato, Manuela

(74) Agent / Attorney
Phillips Ormonde Fitzpatrick, L 16 333 Collins St, Melbourne, VIC, 3000

(56) Related Art
WO 2011/135830 A1
EP 0199822 B1

(43) International Publication Date
19 December 2013 (19.12.2013)

(51) International Patent Classification:

<i>A01N 35/04</i> (2006.01)	<i>A01N 43/50</i> (2006.01)
<i>A01N 37/34</i> (2006.01)	<i>A01N 43/54</i> (2006.01)
<i>A01N 37/36</i> (2006.01)	<i>A01N 43/56</i> (2006.01)
<i>A01N 37/38</i> (2006.01)	<i>A01N 43/653</i> (2006.01)
<i>A01N 37/46</i> (2006.01)	<i>A01N 43/84</i> (2006.01)
<i>A01N 37/50</i> (2006.01)	<i>A01N 43/88</i> (2006.01)
<i>A01N 43/30</i> (2006.01)	<i>A01N 47/02</i> (2006.01)
<i>A01N 43/36</i> (2006.01)	<i>A01N 47/12</i> (2006.01)
<i>A01N 43/40</i> (2006.01)	<i>A01N 47/18</i> (2006.01)

(21) International Application Number:

PCT/EP2013/062306

(22) International Filing Date:

13 June 2013 (13.06.2013)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

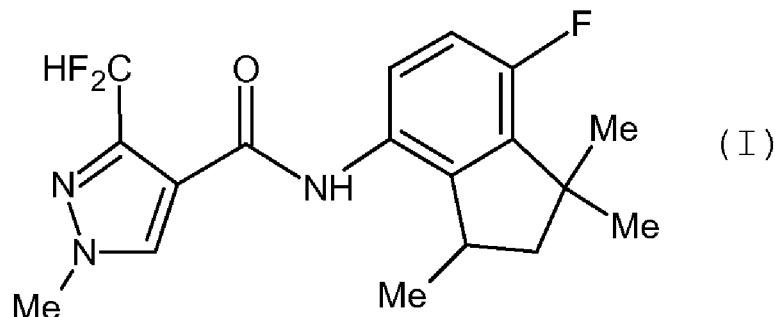
MI2012A 001045 15 June 2012 (15.06.2012) IT

(71) Applicant: STICHTING I-F PRODUCT COLLABORATION [NL/NL]; Prins Bernahardplein 200, NL-1097 JB Amsterdam (NL).

(72) Inventors: PELLACINI, Franco; Via Giacomo Balla, 14, I-20151 Milano (IT). VAZZOLA, Matteo Santino; Via P. Mascagni, 11, I-20815 Cogliate (mb) (IT). GUSMEROLI, Marilena; Viale Libertà 114/B, I-20900 Monza (mb) (IT). SINANI, Entela; Via Monte San Michele, 4, I-28100 No-

vara (IT). RISERVATO, Manuela; Via Maestra T.Q., 130, I-28100 Novara (IT).

(74) Agent: BOTTERO, Carlo; c/o Barzanò & Zanardo Milano S.p.A., Via Borgonuovo 10, I-20121 Milano (IT).


(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: SYNERGISTIC COMPOSITIONS FOR THE PROTECTION OF AGRARIAN CROPS AND THE USE THEREOF

(57) Abstract: Synergistic compositions comprising: one component (A), consisting of the compound having formula (I) 3-difluoromethyl-N- (7-fluoro-1, 1, 3-trimethyl-4-indanyl) -1 -methyl-4-pyrazolecarboxamide (I), one or more components (B) having fungicidal insecticidal activity, and their use the control of harmful insects in agrarian crops.

SYNERGISTIC COMPOSITIONS FOR THE PROTECTION OF AGRARIAN CROPS
AND THE USE THEREOF

5 The present invention relates to synergistic compositions for the protection of agricultural crops and use thereof.

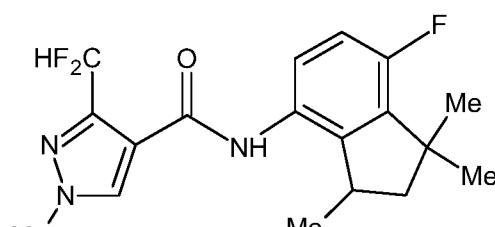
In particular, one aspect of the present invention are compositions comprising one compound belonging to the N-indanyl-pyrazolecarboxamides chemical class and one or more fungicidal or insecticidal compounds.

10 In the application of antiparasitic products for agricultural use, it has previously been described to combine two or more products having a different mechanism of action and/or a different biological target, in order to broaden the action range of the mixtures with respect to the product used
15 individually and to prevent the occurrence of resistance phenomena from the harmful organisms, phenomena which with time tend to reduce the effectiveness of the antiparasitic products used.

Compositions of fungicidal N-indanyl-1-methyl-3-(halo)alkyl-4-pyrazolecarboxamides with fungicidal or insecticidal compounds such as azoles, strobilurins, acylalanines, phenylpyrroles, chlorothalonil, dithiocarbamates, abamectin, insecticidal diamides, neonicotinoids, sulfoxaflor, pyrethroids, carbamates, phenylpyrazoles, are
20 described in the patent applications WO 2011/135833, WO 2011/135835, WO 2011/135836, WO 2011/135837, WO 2011/135838, WO 2011/135839, WO 2011/135827, WO 2011/135828, WO
25 2011/135830, WO 2011/135831, WO 2011/135832, WO 2011/135834, WO 2011/135840.

30 The applicant has now surprisingly found that combining one specific fungicidal compound belonging to the class of N-indanyl-pyrazolecarboxamides with one or more compounds selected from a series of compounds having fungicidal or insecticidal activity, compositions are obtained having

biological activities which are:


- 1) improved with respect to those expected on the basis of the activities of the products used alone;
- 2) superior to those achievable with the compositions disclosed in said prior art documents.

Where the terms "comprise", "comprises", "comprised" or "comprising" are used in this specification (including the claims) they are to be interpreted as specifying the presence of the stated features, integers, steps or components, but not precluding the presence of one or more other features, integers, steps or components, or group thereof.

The discussion of documents, acts, materials, devices, articles and the like is included in this specification solely for the purpose of providing a context for the present invention. It is not suggested or represented that any or all of these matters formed part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.

A first aspect of the present invention therefore relates to synergistic compositions for the protection of agricultural crops comprising:

- at least a component [A] consisting of the compound of formula (I) 3-difluoromethyl-N-(7-fluoro-1,1,3-trimethyl-4-indanyl)-1-methyl-4-pyrazolecarboxamide

(I)

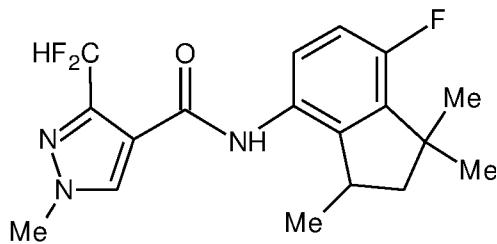
wherein Me represents a methyl group CH_3- ,

- at least a component [B] selected from fungicidal or insecticidal compounds belonging to one or more of the

following groups of fungicidal and insecticidal compounds:

fungicidal compounds:

- i) azoles;
- ii) amino-derivatives;
- 5 iii) strobilurins;
- iv) specific anti-oidium compounds;
- v) aniline-pyrimidines;
- vi) benzimidazoles and analogues;
- vii) dicarboximides;
- 10 viii) polyhalogenated fungicides;
- ix) systemic acquired resistance (SAR) inductors;
- x) phenylpyrroles;
- xi) acylalanines;
- xii) anti-peronosporic compounds;
- 15 xiii) dithiocarbamates;
- xiv) arylamidines;
- xv) phosphorous acid and its derivatives;
- xvi) fungicidal copper compounds;
- xvii) fungicidal amides;
- 20 xviii) nitrogen heterocycles;


insecticidal compounds:

- xix) neonicotinoids;
- xx) phenylpyrazoles;
- xxi) pyrethroides;
- 25 xxii) carbamates;
- xxiii) macrolides of microbial origin;
- xxiv) insecticidal diamides;
- xxv) trifluoromethylpyridyl derivatives.

In another aspect, the present invention relates to synergistic compositions for the protection of agrarian crops comprising:

- at least one component (A), consisting of the compound having formula (I) 3-difluoromethyl-N-(7-fluoro-1,1,3-trimethyl-4-

indanyl)-1-methyl-4-pyrazolecarboxamide

5 (I)

wherein Me represents a CH₃- methyl group,

- at least one component [B] selected from compounds having a fungicidal or insecticidal activity belonging to one or more of the following groups of fungicidal and insecticidal compounds:

10 fungicidal compounds:

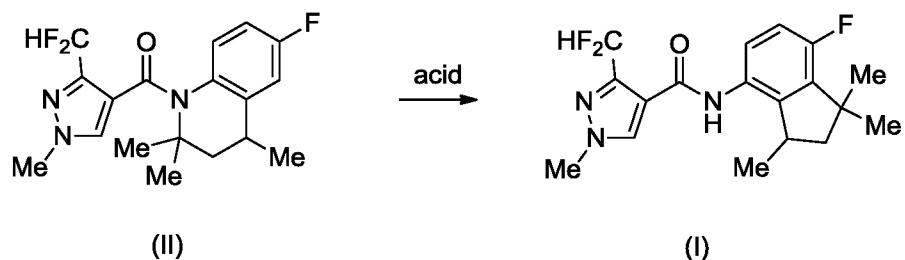
i) azoles: azaconazole, bitertanol, bromuconazole, cyproconazole, difenoconazole, epoxyconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imazalil, ipconazole, metconazole, myclobutanil, penconazole, propiconazole, prochloraz, prothioconazole, simeconazole, tebuconazole, tetriconazole, triadimefon, triadimenol, triflumizole, triticonazole;

15 iii) strobilurins: azoxystrobin, dimoxystrobin, fluoxa-strobin, kresoxim-methyl, metominostrobin, orysa-strobin, picoxystrobin,

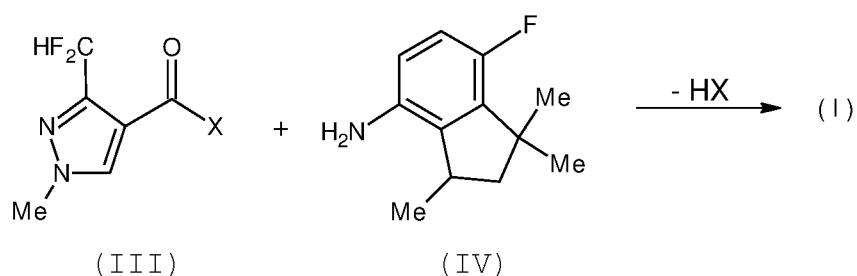
20 pyraclostrobin, pyrameto-strobin, pyraoxostrobin, trifloxystrobin;

iv) benzimidazoles and their analogues: benomyl, carbendazim, fuberidazole, thiabendazole, thiophanate-methyl;

v) dicarboxyimides: iprodione, procymidone;

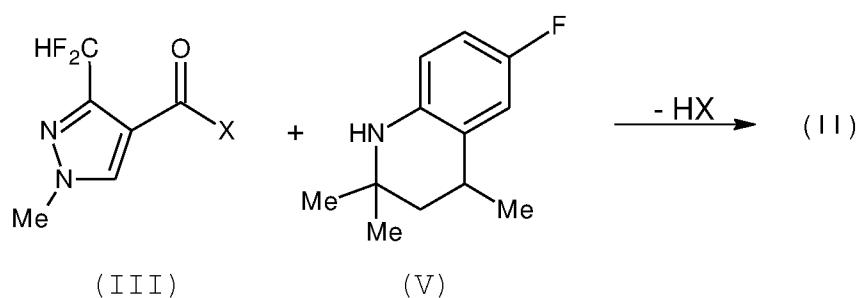

25 vi) polyhalogenated fungicides: chlorothalonil; captan, captafol, folpet, dichlofluanid, tolylfluanid;

- vii) inducers of acquired systemic resistance (SAR): acibenzolar, probenazole, isotianil, tiadinil;
- viii) acylalanines: benalaxyd, benalaxyd-M, furalaxyd, metalaxyd, metalaxyd-M;
- 5 x) dithiocarbamates: maneb, mancozeb, propineb, zineb;
- xi) copper-based fungicides: copper (II) hydroxide, copper oxychloride, copper (II) sulfate, Bordeaux mixture, copper salicylate $C_7H_4O_3 \cdot Cu$, cuprous oxide Cu_2O ;
- insecticidal compounds:
- 10 xiii) neonicotinoids: acetamiprid, clothianidin, dinotefuran, flupyradifurone, imidacloprid, nitenpyram, thiacloprid, thiametoxam;
- xiv) pyretroids: bifenthrin, beta-cyfluthrin, lambda-cyhalothrin, cypermethrin, deltamethrin, tefluthrin, wherein
- 15 the weight ratio between said at least one component [A] and said at least one component [B] ranges from 1:20 to 20:1.


The compound of formula (I) can be prepared:

- 1) by acid isomerization of N-(3-difluoromethyl-1-methyl-1H-4-pyrazolecarbonyl)-6-fluoro-2,2,4-trimethyl-1,2,3,4-tetrahydro-quinoline (II), according to reaction scheme 1, and as described in Example 1:

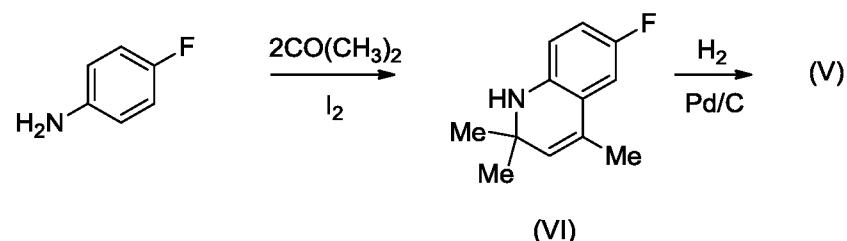
scheme 1



2) by condensation of 3-difluoromethyl-1-methyl-1H-pyrazole-4-carboxylic acid or its derivative, of general formula (III),
 5 with 7-fluoro-1,1,3-trimethyl-4-aminoindane (IV), utilizing methods well known in organic chemistry, according to scheme 2:
 scheme 2

10 wherein X represents a group selected from OH, alkoxy C₁-C₆ or a halogen atom (preferably chlorine).

The intermediate of formula (II) is in turn obtained by condensation of a compound of general formula (III) with 6-fluoro-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline (V), according to scheme 3:



wherein X represents a group selected from OH, alkoxy C₁-C₆ or a halogen atom (preferably chlorine).

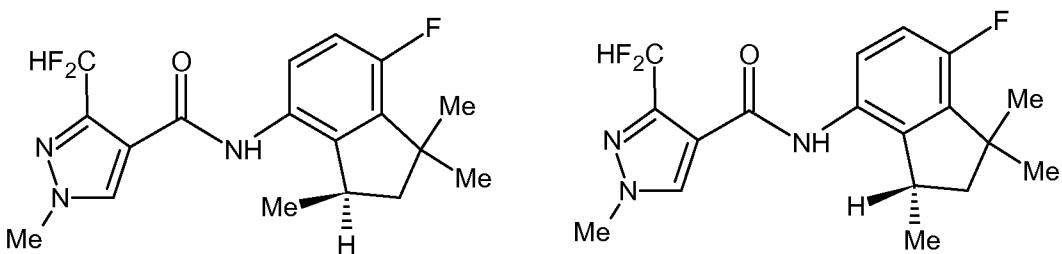
The 3-difluoromethyl-1-methyl-1H-pyrazole-4-carboxylic acid and its derivatives of general formula (III) have previously been described, for example in the patent N. US 5,093,347.

The intermediate of formula (V) can be prepared, according to reaction scheme 4, by hydrogenation of 6-fluoro-2,2,4-trimethyl-1,2-dihydroquinoline (VI), in turn obtained according to a method described in *Organic Synthesis, Coll. Vol. III*, pag. 329, starting from acetone and 4-fluoroaniline:

scheme 4

in the aforesaid formulas (I)–(VI) Me represents a methyl group CH₃–.

The aminoindane of formula (IV) can be prepared, analogously to that described in the patent N. EP 0654464, by condensation of 6-fluoro-2,2,4-trimethyl-1,2-dihydroquinoline (VI) with a carboxylic acid or its derivative, hydrogenation on Pd/C, isomerization with sulfuric acid and hydrolysis of the amide bond with water in acetic acid.


The compound of formula (I) contains an asymmetric carbon atom in position 3 of the indanyl group and it is usually obtained as a racemic mixture of the two enantiomers having configurations R and S (molar ratio R:S equal to 1:1). However, it is possible to prepare mixtures of the two enantiomers of the compound of

formula (I) wherein the ratio R:S is different from 1:1 (enriched mixtures).

Moreover, it is possible to prepare the single enantiomers R and S of the compound of formula (I) in 5 substantially pure form (> 99,99% by weight).

The aforesaid enantiomeric enriched mixtures and the substantially pure single enantiomers can be prepared, for example, by condensing the compounds of general formula (III) with enriched or enantiomerically 10 pure forms (substantially pure single enantiomers) of the aminoindane of formula (IV), according to the reaction scheme 2; enriched or enantiomerically pure forms of the aminoindane of formula (IV) can be in turn obtained through enantioselective reactions and/or 15 chemical and/or chromatographic separation of the enantiomers, according to methods described in literature for analogous products, for example as disclosed in the aforesaid EP 0654464.

In the synergistic compositions of the present 20 invention the compound of formula (I) can be a racemic mixture, (I)-RS, or an enriched mixture of one of the two enantiomers, or even a substantially pure specific enantiomer (I)-R or (I)-S.

25 In the case of enriched mixtures of the compound of formula (I), those enriched in the enantiomer R are preferred, preferably with an R:S ratio of the two

enantiomers ranging from 51:49 to 99.99:0.01 by weight.

Among the two enantiomeric forms of the compound of formula (I), the substantially pure isomer R is preferred.

The compounds among which to select the component [B] of the synergistic compositions are here indicated with their common international ISO name; their chemical structures and CAS and IUPAC chemical names are reported on the Alan Wood's Website (www.alanwood.net), Compendium of Pesticide Common Names; for most compounds, these features are also reported, together with chemical-physical data and biological features, in the "Pesticide Manual", C.D.S. Tomlin, 15th Edition, 2009, British Crop Production Council Editor.

Examples of fungicidal arylamidines of group xiv are reported in the international patent applications WO 2000/46184, WO 2007/031508, WO 2009/156098.

Components [B] preferred of the compositions of the present invention are:

- i) azoles: azaconazole, bitertanol, bromuconazole, cyproconazole, difenoconazole, epoxyconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imazalil, ipconazole, metconazole, myclobutanil, penconazole, propiconazole, prochloraz, prothioconazole, simeconazole, tebuconazole, tetra-conazole, triadimefon, triadimenol, triflumizole, triticonazole;
- ii) amino-derivatives: aldimorph, dodine, dodemorph, fenpropimorph, fenpropidin, guazatine, iminoctadine, spiroxamine, tridemorph;
- iii) strobiluris: azoxystrobin, dimoxystrobin, fluoxa-

strobin, kresoxim-methyl, metominostrobin,
orysastrobin, picoxystrobin, pyraclostrobin, pyrameto-
strobin, pyraoxostrobin, trifloxystrobin;

iv) specific anti-oidium compounds: cyflufenamid,
5 flutianil, metrafenone, proquinazid, pyriofenone,
quinoxyfen;

v) aniline-pyrimidines: pyrimethanil, mepanipyrim,
cyprodinil;

vi) benzimidazoles and analogues: benomyl, carbendazim,
10 fuberidazole, thiabendazole, thiophanate-methyl;

vii) dicarboximides: iprodione, procymidone;

viii) polyhalogenated fungicides: chlorothalonil,
captan, captafol, folpet, dichlofluanid, tolylfluanid;

ix) SAR inductors: acibenzolar, probenazole, isotianil,
15 tiadinil;

x) phenylpyrroles: fenpiclonil, fludioxonil;

xi) acylalanines: benalaxyl, benalaxyl-M, furalaxyl,
metalaxyl, metalaxyl-M;

xii) anti-peronosporic compounds: ametoctradin,
20 amisulbrom, benthiavalicarb, cyazofamid, cymoxanil,
dimethomorph, ethaboxam, famoxadone, fenamidone,
flumetover, flumorph, fluopicolide, iprovalicarb,
mandipropamid, valifenalate;

xiii) dithiocarbamates: maneb, mancozeb, propineb,
25 zineb;

xiv) arylamidines: N-ethyl-N-methyl-N'-(4-[3-(4-
chlorobenzyl)-1,2,4-thiadiazolyl-5-oxy]-2,5-xylyl)-
formamidine;

xv) phosphorous acid and derivatives: fosetyl-
30 aluminium, potassium phosphite, sodium phosphite,
choline phosphite;

xvi) copper fungicides: copper (II) hydroxide, copper

oxychloride, copper (II) sulfate, Bordeaux mixture, copper salycilate $C_7H_4O_3 \cdot Cu$, cuprous oxide Cu_2O ;

17 xvii) fungicidal amides: carpropamid, fenhexamid, silthiofam, zoxamid, bixafen, boscalid, carboxin, fluopicolide, fluopyram, flutolanil, fluxapyroxad, furametpyr, isopyrazam, oxycarboxin, penflufen, penthiopyrad, sedaxane, thifluzamide;

18 xviii) nitrogen heterocycles: fenpyrazamine, fluazinam, pyribencarb, tebufloquin;

19 xix) neonicotinoids: acetamiprid, clothianidin, dinotefuran, flupyradifurone, imidacloprid, nitenpyram, thiacloprid, thiametoxam;

20 xx) phenylpyrazoles: ethiprole, fipronil, flufiprole, pyrafluprole, pyriproxyfen;

21 xxi) pyrethroids: bifenthrin, beta-cyfluthrin, lambda-cyhalothrin, cypermethrin, deltamethrin, tefluthrin;

22 xxii) carbamates: oxamyl, thiodicarb, carbosulfan, methiocarb, carbofuran;

23 xxiii) macrolides of microbial origin: abamectin, emamectin benzoate, spinetoram, spinosad;

24 xxiv) insecticidal diamides: chlorantraniliprole, cyantraniliprole, flubendiamide;

25 xxv) trifluoromethylpyridyl derivatives: flonicamid, sulfoxaflor.

26 Among the aforesaid, components [B] particularly preferred are:

27 i) cyproconazole, difenoconazole, epoxiconazole, flutriafol, penconazole, prochloraz, prothioconazole, tebuconazole, tetraconazole;

28 ii) fenpropimorph, spiroxamine;

29 iii) azoxystrobin, fluoxastrobin, kresoxim-methyl, picoxystrobin, pyraclostrobin, trifloxystrobin;

- iv) metrafenone, proquinazid;
- v) mepanipyrim, cyprodinil;
- vi) iprodione, procymidone;
- vii) carbendazim, thiophanate-methyl;
- 5 viii) chlorothalonil;
- x) fludioxonil;
- xi) benalaxyl, benalaxyl-M, metalaxy-M;
- xii) benthiavalicarb, cyazofamid, cymoxanil, dimetomorph, mandipropamid, valifenalate;
- 10 xvi) copper (II) hydroxide, copper oxychloride, copper (II) sulfate, copper salycilate $C_7H_4O_3 \cdot Cu$, cuprous oxide Cu_2O ;
- xix) clothianidin, imidacloprid, thiachloprid, thiametoxam;
- xx) ethiprole, fipronil;
- xxi) lambda-cyhalothrin, deltamethrin, tefluthrin;
- 15 xxiv) chlorantraniliprole, flubendiamide.

The weight ratios of components [A] and [B] in the compositions of the present invention can vary within a wide range, even depending on the parasites to be controlled and on the single component [B] used (or the plurality of components [B] used), and are usually comprised between 1:20 and 20:1.

Preferred compositions are those comprising at least the following combinations of compounds:

- C1: (I)-RS + tetraconazole;
- C2: (I)-RS + tebuconazole;
- 25 C3: (I)-RS + cyproconazole;
- C4: (I)-RS + difenoconazole;
- C5: (I)-RS + epoxyconazole;
- C6: (I)-RS + flutriafol;
- C7: (I)-RS + penconazole;

C8: (I)-RS + prothioconazole;

C9: (I)-RS + prochloraz;

C10: (I)-RS + fenpropimorph;

C11: (I)-RS + spiroxamine;

5 C12: (I)-RS + azoxystrobin;

C13: (I)-RS + fluoxastrobin;

C14: (I)-RS + kresoxim-methyl;

C15: (I)-RS + picoxystrobin;

C16: (I)-RS + pyraclostrobin;

10 C17: (I)-RS + trifloxystrobin;

C18: (I)-RS + metrafenone;

C19: (I)-RS + proquinazid;

C20: (I)-RS + mepanipyrim;

C21: (I)-RS + cyprodinil;

15 C22: (I)-RS + iprodione;

C23: (I)-RS + procymidone;

C24: (I)-RS + carbendazim;

C25: (I)-RS + thiophanate-methyl;

C26: (I)-RS + chlorothalonil;

20 C27: (I)-RS + fludioxonil;

C28: (I)-RS + benalaxyl-M;

C29: (I)-RS + metalaxyl-M;

C30: (I)-RS + benthiavalicarb;

C31: (I)-RS + cyazofamid;

25 C32: (I)-RS + cymoxanil;

C33: (I)-RS + dimethomorph;

C34: (I)-RS + mandipropamid;

C35: (I)-RS + valifenalate;

C36: (I)-RS + copper salycilate $C_7H_4O_3 \cdot Cu$;

30 C37: (I)-RS + cuprous oxide Cu_2O ;

C38: (I)-RS + clothianidin;

C39: (I)-RS + imidacloprid;

C40: (I)-RS + thiacloprid;
C41: (I)-RS + thiamethoxam;
C42: (I)-RS + ethiprole;
C43: (I)-RS + fipronil;
5 C44: (I)-RS + lambda-cyhalothrin;
C45: (I)-RS + deltamethrin;
C46: (I)-RS + tefluthrin;
C47: (I)-RS + chlorantraniliprole;
C48: (I)-RS + flubendiamide;
10 C49: (I)-RS + tetraconazole + azoxystrobin;
C50: (I)-RS + tebuconazole + azoxystrobin;
C51: (I)-RS + epoxyconazole + azoxystrobin;
C52: (I)-RS + cyproconazole + azoxystrobin;
C53: (I)-RS + propiconazole + azoxystrobin;
15 C54: (I)-RS + prothioconazole + azoxystrobin;
C55: (I)-RS + tetraconazole + picoxystrobin;
C56: (I)-RS + tebuconazole + picoxystrobin;
C57: (I)-RS + epoxyconazole + picoxystrobin;
C58: (I)-RS + cyproconazole + picoxystrobin;
20 C59: (I)-RS + propiconazole + picoxystrobin;
C60: (I)-RS + prothioconazole + picoxystrobin;
C61: (I)-RS + tetraconazole + kresoxim methyl;
C62: (I)-RS + tebuconazole + kresoxim methyl;
C63: (I)-RS + epoxyconazole + kresoxim methyl;
25 C64: (I)-RS + cyproconazole + kresoxim methyl;
C65: (I)-RS + propiconazole + kresoxim methyl;
C66: (I)-RS + prothioconazole + kresoxim methyl;
C67: (I)-RS + chlorothalonil + azoxystrobin;
C68: (I)-RS + chlorothalonil + picoxystrobin;
30 C69: (I)-RS + chlorothalonil + pyraclostrobin;
C70: (I)-RS + chlorothalonil + kresoxim methyl;
C71: (I)-RS + copper (II) hydroxide + copper oxy-

chloride;

C72: (I)-RS + copper (II) hydroxide + copper oxychloride + copper salycilate $C_7H_4O_3 \cdot Cu$;

C73: (I)-R₈S₂ + tetraconazole;

5 C74: (I)-R₈S₂ + azoxystrobin;

C75: (I)-R₈S₂ + benalaxyl;

C76: (I)-R₉S₁ + tetraconazole;

C77: (I)-R₉S₁ + azoxystrobin;

C78: (I)-R + tetraconazole;

10 wherein:

- (I)-RS represents the compound of formula (I) in form of racemic mixture,

- (I)-R₈S₂ represents the compound having the enantiomers R and S in molar ratio R:S = 8:2,

15 - (I)-R₉S₁ represents the compound having the enantiomers R and S in molar ratio R:S = 9:1,

- (I)-R represents the enantiomer R in substantially pure form (>99,99 weight %).

Preferably, in said compositions C1-C25, C27-C35, 20 C-38-C48 e C73-C77 the weight ratio of components [A] e [B] ranges from 1:20 to 20:1.

Preferably, in said compositions C26, C36, C37 the weight ratio of components [A] e [B] ranges from 1:20 to a 20:10.

25 Preferably, in said compositions C49-C69 the weight ratio of component [A] with respect to the two components [B] ([A]:[B₁]:[B₂]) ranges from 1:20:20 to 20:1:1.

30 Preferably, in said composition C70 the weight ratio of component [A] with respect to the two components [B] ([A]:[B₁]:[B₂]) ranges from 1:20:20 to 20:10:1, whereas in C71 the ratio [A]:[B₁]:[B₂] ranges

from 1:20:20 to 20:10:10.

Preferably, in said composition C72, the weight ratio of component [A] with respect to the three components [B] ([A] :[B₁] :[B₂] :[B₃]) ranges from 1:20: 20:20 to 20:10:10:10.

5 As said, the compositions of the present invention exhibit a strong synergistic effect, which can be evaluated by applying Colby' s formula ("Weeds", 1967, 15, pag. 20-22):

$$E_t = E_A + E_B - (E_A \times E_B / 100)$$

10 wherein E_t is the expected efficacy percentage for the composition containing the compounds A and B at the dosages d_A+d_B, E_A is the efficacy percentage observed for the component A at the dosage d_A, E_B is the efficacy percentage observed for the component B at the dosage d_B.

15 When the efficacy observed for the composition A+B (E_{A+B}) is higher than the efficacy expected according to Colby' s formula (E_{A+B}/E_t > 1), there is the presence of a synergistic effect.

In case of ternary combinations, Colby' s formula becomes:

$$E_t = E_A + E_{B1} + E_{B2} - (E_A \cdot E_{B1} + E_A \cdot E_{B2} + E_{B1} \cdot E_{B2} / 100) + (E_A \cdot E_{B1} \cdot E_{B2} / 10000)$$

20 wherein E_t is the expected efficacy percentage for the composition containing the compounds A, B1 and B2 at the dosages d_A+d_{B1}+d_{B2}, E_A is the efficacy percentage observed for the component A at the dosage d_A, E_{B1} is the efficacy percentage observed for the component B1 at the dosage d_{B1}, E_{B2} is the 25 efficacy percentage observed for the component B2 at the dosage d_{B2}. When the efficacy observed for the composition A+B1+B2 (E_{A+B1+B2}) is higher than the efficacy expected according to Colby' s formula (E_{A+B1+B2}/E_t > 1), there is the presence of a synergistic effect.

30 Due to the high synergistic effects, the amplitude of the action range, the considerable reduction in resistance phenomena from the target microorganisms, the compositions of the present invention are endowed with a very high fungicidal activity, which is exerted with respect to numerous

phytopathogenic fungi attacking important agricultural crops.

Said compositions exert a fungicidal activity which can be curative, preventive or eradicant, and generally have a very low or null phytotoxicity on the treated crops.

5 Therefore a further aspect of the present invention is the use of the synergistic fungicidal compositions described above for the control of phytopathogenic fungi in agricultural crops.

10 Examples of phytopathogenic fungi that can be effectively treated and fought with the compositions of the present invention, are those belonging to the groups of Basidiomycetes, Ascomycetes, Deuteromycetes or imperfect fungi, Oomycetes:

Puccinia spp., *Ustilago* spp., *Tilletia* spp., *Uromyces* spp., *Phakopsora* spp., *Rhizoctonia* spp., *Erysiphe* spp., *Sphaerotheca* spp., *Podosphaera* spp., *Uncinula* spp., *Helminthosporium* spp.,

15 *Rhynchosporium* spp., *Pyrenophora* spp., *Monilinia* spp.,

Sclerotinia spp., *Septoria* spp. (*Mycosphaerella* spp.), *Venturia* spp., *Botrytis* spp., *Alternaria* spp., *Fusarium* spp., *Cercospora* spp., *Cercosporella herpotrichoides*, *Colletotrichum* spp.,

Pyricularia oryzae, *Sclerotium* spp., *Phytophthora* spp., *Pythium* spp., *Plasmopara viticola*, *Peronospora* spp.,

Pseudoperonospora cubensis, Bremia lactucae.

The main crops that can be protected with the compositions according to the present invention comprise cereals (wheat, barley, rye, oats, rice, 5 maize, sorghum, etc.), fruit trees (apples, pears, plums, peaches, almonds, cherries, bananas, grapes, strawberries, raspberries, blackberries, etc.), citrus trees (oranges, lemons, mandarins, grapefruit, etc.), legumes (beans, peas, lentils, soybean, etc.), 10 vegetables (spinach, lettuce, asparagus, cabbage, carrots, onions, tomatoes, potatoes, eggplants, peppers, etc.), cucurbitaceae (pumpkins, zucchini, cucumbers, melons, watermelons, etc.), oleaginous plants (sunflower, rape, peanut, castor, coconut, 15 etc.), tobacco, coffee, tea, cocoa, sugar beet, sugar cane, cotton.

In particular, the compositions of the present invention have proved to be particularly effective in the control of *Plasmopara viticola* on vines, 20 *Phytophtora infestans* and *Botrytis Cinerea* on tomatoes, *Puccinia recondita*, *Erysiphe graminis*, *Helminthosporium teres*, *Septoria nodorum* and *Fusarium* spp. on cereals, in the control of *Phakopsora pachyrhizi* on soybean, in the control of *Uromyces* 25 *Appendiculatus* on beans, in the control of *Venturia inaequalis* on apple-trees, in the control of *Sphaerotheca fuliginea* on cucumbers.

In addition, the compositions of the present invention are also effective in the control of 30 phytopathogenic bacteria and viruses, such as, for example, *Xanthomonas* spp., *Pseudomonas* spp., *Erwinia amylovora*, the tobacco mosaic virus.

The compositions comprising at least a compound of formula (I) and, as component [B], at least an insecticidal compound selected from one or more of the aforesaid groups of compounds xix-xxv, besides having excellent fungicidal activity, also have excellent insecticidal activity against numerous species of insects harmful to agricultural crops.

Therefore a further aspect of the present invention is the use of said compositions, comprising at least a compound of formula (I) and at least an insecticidal compound selected from one or more of the aforesaid groups of compounds xix-xxv, for the control of harmful insects in agricultural crops.

Examples of insects which can be controlled with the above said compositions, are those belonging to the order of Hemiptera, Lepidoptera, Tysanoptera, Dipthera, Coleoptera, Orthoptera, Hymenoptera: *Aphis gossypii*, *Myzus persicae*, *Macrosiphum euphorbiae*, *Brevicoryne brassicae*, *Toxoptera citricidus*, *Trialeurodes vaporariorum*, *Bemisia tabaci*, *Aonidiella aurantii*, *Comstockaspis perniciosa*, *Unaspis citri*, *Psylla piri*, *Laodelphax striatellus*, *Nilaparvata lugens*, *Nephrotettix cincticeps*, *Nephrotettix virescens*, *Chilo suppressalis*, *Ostrinia spp.*, *Spodoptera spp.*, *Mamestra brassicae*, *Agrotis spp.*, *Thricoplusia spp.*, *Heliothis spp.*, *Helicoverpa spp.*, *Pieris spp.*, *Adoxophyes spp.*, *Grapholita molesta*, *Cydia spp.*, *Phyllonorycter blancardella*, *Lymantria spp.*, *Plutella xylostella*, *Pectinophora gossypiella*, *Hyphantria cunea*, *Thrips spp.*, *Frankliniella spp.*, *Dacus spp.*, *Ceratitis capitata*, *Liriomyza trifolii*, *Anthonomus grandis*, *Callosobruchus chinensis*, *Diabrotica spp.*, *Agriotes spp.*, *Tribolium spp.*, *Locusta migratoria*, *Oxya spp.*, *Solenopsis spp.*, *Blattella germanica*, *Periplaneta spp.*

Even if the components [A] and [B] can be mixed and applied as such on the crops to be protected, for the practical use in agriculture it is usually preferable to use the fungicidal compositions according to the present invention, in

the form of suitable phytosanitary formulations.

The component [A] and the components [B] can be formulated separately and mixed in the preselected diluent (for example water) at the moment of treatment of the agricultural crops to be protected, or combined together in a single formulation ready to use before treatment.

Both in the case of components formulated separately, and in the case of components [A] and [B] combined together in formulations ready to use, the formulations can be in the form of dry powders, wettable powders, emulsifiable concentrates, emulsions, micro-emulsions, pastes, granules, water-dispersible granules, solutions, suspensions, etc.: the selection of the type of formulation depends both on the characteristics of components A and B, and on the specific use.

The compositions are prepared by previously described methods, for example by diluting the active ingredients with a solid or liquid diluent, possibly in the presence of surfactants, dispersers, suspending agents, stabilizers, adjuvants, etc..

The following can be used, for example, as solid diluent or carriers: silica, kaolin, bentonite, talc, diatomaceous earth, dolomite, calcium carbonate,

magnesia, gypsum, clays, synthetic silicates, attapulgite, sepiolites.

The following can be used, for example, as solvents or liquid diluents, in addition to water, 5 aromatic organic solvents (xyloles or alkylbenzole mixtures, chlorobenzene, etc.), paraffins (oil cuts), alcohols (methanol, propanol, butanol, octanol, glycerol, etc.), esters (ethyl acetate, isobutyl acetate, alkyl carbonates, alkyl esters of adipic acid, 10 alkyl esters of glutaric acid, alkyl esters of succinic acid, alkyl esters of lactic acid, etc.), vegetable oils (rapeseed oil, sunflower oil, soybean oil, castor oil, corn oil, peanut oil, and their alkyl esters), ketones (cyclohexanone, acetone, acetophenone, 15 isophorone, ethyl amyl ketone, etc.), amides (N, N-dimethylformamide, N-methylpyrrolidone, etc.), sulfoxides and sulfones (dimethylsulfoxide, dimethylsulfone, etc.) and mixtures thereof.

Surfactants that can be used are sodium salts, 20 calcium salts, potassium salts, triethylamine or triethanolamine of alkyl naphthalensulfonates, polynaphthalenesulfonates, alkylsulfonates, arylsulfonates, alkylarylsulfonates, polycarboxylates, sulfosuccinates, alkylsulfosuccinates, lignin sulfonates, alkyl sulfates; and again polyethoxylated fatty alcohols, polyethoxylated alkyl phenols, 25 polyethoxylated esters of sorbitol, polyethoxylated polypropoxy (block copolymers), can be used.

The compositions can also contain special 30 additives for particular purposes, for example antifreeze agents such as propylene glycol, or adhesives such as Arabic gum, polyvinyl alcohol,

polyvinylpyrrolidone, etc..

If desired, other active ingredients compatible with [A] and [B] can be added to the compositions, such as, for example, further fungicidal or insecticidal compounds different from components [B] described above, phytoregulators, antibiotics, herbicides, fertilizers and/or mixtures thereof.

Examples of fungicides, other than components [B] , that can be included in the synergistic compositions of the present invention are listed hereunder with their international ISO name: ampropylfos, anilazine, benodanil, blasticidin-S, bupirimate, buthiobate, chinomethionat, chloroneb, chlozolinate, debacarb, dichlone, diclobutrazol, diclomezine, dicloran, dicloctymet, diethofencarb, diflumetorim, dimethirimol, dinocap, dipyrithione, ditalimfos, dithianon, edifenphos, ethirimol, ethoxyquin, etridiazole, fenaminosulf, fenapanil, fenarimol, fenfuram, fenoxanil, fentin, ferbam, ferimzone, fluoroimide, fluotrimazole, flusulfamide, hymexazol, hydroxy-quinoline sulfate, iprobenfos, isoprothiolane, kasugamycin, mancopper, mebenil, mepronil, meptyldinocap, methfuroxam, metiram, metsulfovax, natamycin, nitrothal-isopropyl, nuarimol, ofurace, oxadixyl, pefurazoate, pencycuron, pentachlorofenol and its salts, phthalide, piperalin, polyoxins, propamocarb, prothiocarb, pyracarbolid, pyrazophos, pyribencarb, pyrifenoxy, pyroquilon, pyroxyfur, quinacetol, quinazamid, quintozone, streptomycin, thiadifluor, thicyofen, thiram, tioxymid, tolclofos-methyl, triarimol, triazbutil, triazoxide, tricyclazole, triforine, validamycin, vinclozolin, ziram, sulfur.

The total concentration of components [A] and [B] in said compositions can vary within a wide range; it generally ranges from 1% to 99% by weight with respect to the total weight of the composition, preferably from 5% to 90% by weight with respect to the total weight of the composition.

In order to protect the agricultural crops, the

compositions of the present invention can be applied to any part of the plant, or on the seeds before sowing, or on the ground in which the plant grows.

A further aspect of the present invention therefore relates to a method for the control of phytopathogenic fungi in agricultural crops, which comprises applying an effective dose of at least one synergistic fungicidal composition of the type described above on one or more parts of the plant to be protected (for example, on seedlings, leaves, fruits, stems, branches, roots) and/or on the seeds of said plants before sowing, and/or on the ground in which the plant grows.

A further aspect of the present invention is a method for the control of harmful insects in agricultural crops which comprises applying an effective dose of at least one synergistic fungicidal composition comprising at least a compound of formula (I) and at least an insecticidal compound selected from one or more of the groups of compounds xix-xxv described above, on one or more parts of the plant to be protected (for example, on seedlings, leaves, fruits, stems, branches, roots) and/or on the seeds of

said plants before sowing, and/or on the ground in which the plant grows.

Preferred way of application for the compositions comprising the compound (I) and at least an 5 insecticidal compound selected from one or more groups of compounds xix-xxv is the seed-dressing.

The total amount of components [A] and [B] to be applied in order to obtain the desired effect can vary according to different factors such as, for example, 10 the compounds used, the crop to be preserved, the type of pathogen or insect, the degree of infection, the climatic conditions, the application method, the formulation used.

Overall doses of components [A] and [B] ranging 15 from 10 g to 5 kg per hectare of agricultural crop generally provide a sufficient control.

The following examples are provided for a better understanding of the invention, which should be considered as being illustrative and non-limiting of 20 the same.

EXAMPLE 1

Preparation of the 3-difluoromethyl-N-(7-fluoro-1,1,3-trimethyl-4-indanyl)-1-methyl-4-pyrazolecarboxamide (I)

25 A solution of 40 g of 3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carbonyl chloride [compound of formula (III); MW 194,5] in 40 ml of dichloroethane, is dropped at room temperature in a solution of 34 g of 6-fluoro-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline [compound 30 of formula (V); MW 193] and 30 ml of triethylamine in 200 ml of dichloroethane.

After stirring for 3 hours at reflux, the reaction

mixture is poured in water (1,2 l) and extracted with dichloroethane. The organic layer is washed with 10% aqueous hydrochloric acid, anhydriified with sodium sulfate, concentrated under vacuum to afford 58 g of a
5 crude solid product corresponding to N-(3-difluoromethyl-1-methyl-1H-4-pyrazolecarbonyl)-6-fluoro-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline [compound of formula (II); GC-mass: $M^+ = 351$].

To this crude product, 165 ml of 85% aqueous
10 sulfuric acid are added and the mixture is then heated under stirring at 60°C for 30 minutes. After cooling the mixture is poured into water and ice, and extracted with dichloromethane. The organic layer is then washed with water, with a saturated solution of sodium
15 bicarbonate in water, and with a saturated solution of sodium chloride in water. The organic layer is anhydriified with sodium sulfate and concentrated under vacuum: the residue is purified by chromatography on silica gel (eluent heptane/EtOAc 6:4) to give 48 g of a
20 white solid with melting point 147°C, corresponding to the desired product in racemic form, (I)-RS. GC-mass: $M^+ = 351$.

1H NMR (200 Mhz, $CDCl_3$) δ at: 1,43 (3H,d), 1,38 (3H,s),
1,44 (3H,s), 1,66 (1H,dd), 2,21 (1H,dd), 3,38 (1H m),
25 3,98 (3H,s), 6,81 (1H, bs), 6,95 (1H,t), 6,70. (1H, m),
7,81 (1H,bs), 8,03 (1H,bs)

EXAMPLE 2

Preparation of separated enantiomers of compound (I).

30 36.8 g (1 eq) of racemic 7-fluoro-1,1,3-trimethyl-4-aminoindane [compound (IV)] and 14.3 g (0.5 eq) of D-(2S,3S)-(-)-tartaric acid in methanol (30 ml) were

mixed and heated at 70 °C for 1 hour.

The mixture was left to cool to room temperature; a precipitate was formed and the mixture kept for one night at 4 °C. The formed solid was filtered off, 5 washed with a small amount of methanol and recrystallized from methanol for six times to afford 14.8 g of an off white solid, corresponding to the 7-fluoro-1,1,3-trimethyl-4-aminoindane D-tartarate.

To the salt, a 5 % sodium hydroxide aqueous 10 solution was added until pH \geq 10, and the mixture extracted three times with diethyl ether. The reunited organic layers were washed with water and brine. Then, dried over Na₂SO₄ and concentrated under reduced pressure to obtain 6.38 g of (-)-4-amino-7-fluoro-15 1,1,3-trimethylindane as a white powder (yield 17%); e.e. > 99% (HPLC).

To a solution of 600 mg of 3-difluoromethyl-1-methyl-1H-pyrazole-4-carboxylic acid [compound (III)] and a catalytic amount of N,N-dimethylformamide in 20 dichloromethane (7 mL), 450 mg of thionyl chloride were added dropwise. The mixture was refluxed for 2h. The reaction was monitored by GC/MS. The solvent was evaporated in vacuo. The crude acid chloride obtained was used in the following step.

25 A solution of the crude 3-difluoromethyl-1-methyl-1H-pyrazole-4-carbonyl chloride in dichloroethane (6 mL) was added dropwise over a period of 10 minutes, under nitrogen atmosphere, to a solution of 660 mg of (-)-4-amino-7-fluoro-1,1,3-trimethylindane, a catalytic 30 amount of 4-dimethylaminopyridine and 420 mg of triethylamine in dichloroethane (5 mL).

The mixture was stirred at room temperature

overnight. At completion of the reaction (monitored through GC-MS) the mixture was diluted with dichloromethane (20 mL) and cooled at 0°C; a solution (20 mL) of 5% HCl was added.

5 The layers were separated and the organic phase washed with 5% HCl solution (2 x 20 mL), water (2 x 20 mL) and brine, then dried over Na₂SO₄. The solvent was evaporated under reduced pressure to give 1.3 g of a pale yellow solid.

10 The crude product was purified by column chromatography (eluent: heptane/EtOAc 6:4) to give 1.1 g (yield 92%) of 99.5 % pure enantiomer (-) (e.e. > 99% determined by HPLC with chiral column) as a white solid with m.p. = 129-130°C.

15 GC-MS: M⁺ = 351; [α]_D²⁰ = - 59.5° (CHCl₃, 1g/100 ml).

In analogous manner, starting from racemic 7-fluoro-1,1,3-trimethyl-4-aminoindane [compound (IV)] and L-(2R,3R)-(+)-tartaric acid, the 99.3 %pure enantiomer (+) was prepared (e.e. > 99% determined by 20 HPLC with chiral column): white solid with m.p. = 131-132°C.

GC-MS: M⁺ = 351; [α]_D²⁰ = + 60.1° (CHCl₃, 1g/100 ml).

EXAMPLE 3

25 **Determination of "in vitro" activities of racemic (I) and enantiomers against phytopathogenic microorganisms.**

Under sterile conditions, the technical racemic (I), the (-) and (+) enantiomers (prepared in Example 2) under testing, were dissolved in dimethylsulfoxide 30 and serially diluted 3-fold to obtain a growth

inhibition curve. Aqueous treatment solutions were prepared by adding DMSO stocks to water and mixing by pipet resulting in 2x final treatment concentration and 2x final DMSO concentration of 1.6%.

5 Sporulating plates of phytopathogenic micro-organisms were harvested under sterile conditions in $\frac{1}{2}$ strength Potato Dextrose Broth. Spores were filtered with cheesecloth and diluted to about 40000 spores per ml. Spores were aliquotted into 96 well microtiter 10 plates at 150 microliters of spore suspension per well. Pathogenic spore suspensions were then treated with the 2x aqueous treatment solution or 1.6% DMSO for controls to give 1x final concentration or 0.8% DMSO. Plates were then held for 43 hours at room temperature.

15 After 43 hours at room temperature, plates were visually assessed microscopically for spore germination and growth inhibition. Plates were also quantitatively measured for growth inhibition by measuring optical density on a spectrophotometric plate reader at 405 20 nanometer wavelength. Optical density was corrected for absorbance of the media and active ingredient by subtracting the 405 nm readings for the 2x aqueous treatment solution or DMSO solution diluted with 1/2 strength POTATO DEXTROSE BROTH and no spores.

25 The % growth inhibition of the pathogen obtained for the technical racemic (I), (-) and (+) enantiomers was calculated according to the formula:

Percent Inhibition = $((1 - (OD_{trt} - OD_{trt\ blank}) / (OD_{untreated} - OD_{untreated\ blank})) \times 100)$

wherein OD trt is the optical density at 405 nm for the spore suspension plus aqueous treatment solution and OD trt blank is the optical density at 405 nm for the 2x aqueous treatment solution plus $\frac{1}{2}$ strength POTATO DEXTROSE BROTH and no spores and OD untreated is the optical density at 405 nm for the spores plus 1.6% DMSO and OD untreated blank is the optical density at 405nm for the 1.6% DMSO plus $\frac{1}{2}$ strength POTATO DEXTROSE BROTH and no spores. Values are the average of three replicates. Concentrations of the racemic, (-) and (+) enantiomers giving 50% growth inhibition (pI50) were calculated using GraphPad Prism software. Percent inhibition values were calculated using GraphPad Prism software Version 4.

Microorganisms tested were *Botrytis cinerea* (BC), *Stagonospora nodorum* (SN) and *Magnaporthe griseae* (MG).

The results are reported in Table 1.

Table 1.

Compound	BC pI50 (ppm)	SN pI50 (ppm)	MG pI50 (ppm)
Racemic (I)	0.32	1.1	0.72
(-)-(I)	0.17	0.42	0.46
(+)-(I)	n.i.	72	4.6

n.i. = no inhibition

20

EXAMPLE 4

Determination of the fungicidal activity in preventive application (5 days) against *Puccinia recondita* on wheat.

Leaves of wheat plants of the Salgemma variety, grown in pots in a conditioned environment kept at 20°C and 70% of relative humidity (R.H.), were treated by spraying both sides of the leaves with the compounds 5 and the compositions under testing, dispersed in hydroacetonic solutions at 20% by volume of acetone.

After remaining 5 days in a conditioned environment, the plants were sprayed on both sides of the leaves with an aqueous suspension of conidia of 10 *Puccinia recondita* (2 mg of inoculum per 1 ml of solution for infection).

After being sprayed, the plants were kept in a humidity-saturated environment at a temperature ranging from 18 to 24°C for the incubation period of the fungus 15 (1 day).

After this period, the plants were put in a greenhouse with R.H. of 70% and at a temperature of 18-24 °C for 14 days.

At the end of this period the external symptoms of 20 the pathogen appeared and it was therefore possible to proceed with the visual assessment of the intensity of the infection. The fungicidal activity was expressed as percentage of reduction of affected leaves areas with respect to those of untreated plants used as control: 25 the scale comprised, as extremes, the value 100 (full activity; healthy plant) and the value 0 (no activity; completely infected plant).

At the same time, the phytotoxicity (percentage of leaf necrosis) induced on the wheat plants by the

application of the products and compositions was evaluated: in this case, the scale ranged from 0 (no phytotoxicity) to 100 (completely necrotized plant).

5 In Table 2, the activities of racemic (I) and pure enantiomers of compound (I), prepared in Example 2, are reported.

Table 2.

Compound	Rate (ppm)	% Activity	% Phytotoxicity
Racemic (I)	125	98	0
	62.5	96	0
(-) - (I)	125	100	0
	62.5	96	0
(+)- (I)	125	45	0
	62.5	20	0

10 The synergism of the compositions (A+B) under testing was evaluated according to the Colby's formula:

$$E_t = E_A + E_B - (E_A \times E_B / 100)$$

15 wherein E_t is the expected efficacy percentage for the composition containing the compounds A and B at the dosages $d_A + d_B$, E_A is the efficacy percentage observed for the component A at the dosage d_A , E_B is the efficacy percentage observed for the component B at the dosage d_B .

When the efficacy observed for the composition A+B (E_{A+B}) is higher than the efficacy expected according to the Colby's formula ($E_{A+B}/E_t > 1$), a synergistic effect is confirmed.

EXAMPLE 5**Determination of synergistic effects "in vitro" against phytopathogenic microorganisms.**

Under sterile conditions, the products and the compositions under testing were dissolved in dimethylsulfoxide, diluted with water and added under vigorous stirring to POTATO DEXTROSE AGAR, kept in a thermostatic bath at 55°C. The AGAR preparations, containing the compounds and the compositions under testing at the desired rates, were poured into 60 mm diameter Petri dishes (three for each product and composition) and left to cool to ambient temperature.

After solidification of the agarized medium, AGAR disks having 6 mm of diameter and supporting the micelyum of the microorganism, were placed in the centre of the Petri dishes; Petri dishes containing untreated POTATO DEXTROSE AGAR were also inoculated with the microorganism and used as control.

After incubation at 28°C, when control colonies had grown over 30 mm in diameter, but without reaching the edge of the dishes, the diameters of the developed colonies in treated and untreated dishes were measured; the percentage growth inhibition of the microorganism obtained with products and compositions was calculated according to the formula:

$$I = (1 - z_1/z_0) \times 100$$

wherein z_1 is the diameter (average of three replicates) of the colonies treated with compounds and mixtures and z_0 is the diameter (average of three replicates) of

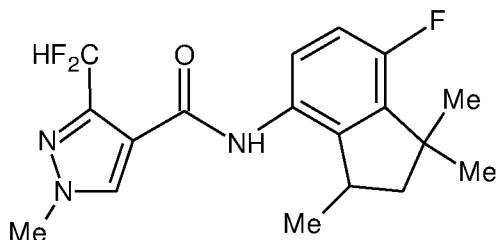
untreated colonies.

Microorganisms tested were *Botrytis cinerea*, *Fusarium culmorum*, *Helminthosporium teres*, *Pyricularia oryzae*, *Septoria nodorum*, *Venturia inaequalis*.

5 The synergism of a binary mixture (A + B) at the dose ($d_A + d_B$) was evaluated according to the Colby's formula:

$$I_t = I_A + I_B - (I_A \times I_B / 100)$$

wherein:


10 I_t is the % growth inhibition expected for the mixture; I_A is the % growth inhibition observed for compound A at the dose d_A ; I_B is the % growth inhibition observed for compound B at the dose d_B .

15 When the % growth inhibition observed for the composition (A+B) is higher than that calculated by the Colby's formula ($I_{A+B} > I_t$; $I_{A+B}/I_t > 1$), a synergistic effect is confirmed.

The claims defining the invention are as follows:

1. Synergistic compositions for the protection of agrarian crops comprising:

5 - at least one component [A], consisting of the compound having formula (I) 3-difluoromethyl-N-(7-fluoro-1,1,3-trimethyl-4-indanyl)-1-methyl-4-pyrazolecarboxamide

10

(I)

wherein Me represents a CH₃- methyl group,

15 - at least one component [B] selected from compounds having a fungicidal or insecticidal activity belonging to one or more of the following groups of fungicidal and insecticidal compounds:

fungicidal compounds:

20 i) azoles: azaconazole, bitertanol, bromuconazole, cyproconazole, difenoconazole, epoxyconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imazalil, ipconazole, metconazole, myclobutanil, penconazole, propiconazole, prochloraz, prothioconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triflumizole, triticonazole;

25 iii) strobilurins: azoxystrobin, dimoxystrobin, fluoxastrobin, kresoxim-methyl, metominostrobin, orysa-strobin, picoxystrobin, pyraclostrobin, pyrameto-strobin, pyraoxostrobin, trifloxystrobin;

- iv) benzimidazoles and their analogues: benomyl, carbendazim, fuberidazole, thiabendazole, thiophanate-methyl;
- v) dicarboxyimides: iprodione, procymidone;
- vi) polyhalogenated fungicides: chlorothalonil; captan, 5 captafol, folpet, dichlofluanid, tolylfluanid;
- vii) inducers of acquired systemic resistance (SAR): acibenzolar, probenazole, isotianil, tiadinil;
- viii) acylalanines: benalaxyl, benalaxyl-M, furalaxyl, metalaxyl, metalaxyl-M;
- 10 x) dithiocarbamates: maneb, mancozeb, propineb, zineb;
- xi) copper-based fungicides: copper (II) hydroxide, copper oxychloride, copper (II) sulfate, Bordeaux mixture, copper salicylate $C_7H_4O_3 \cdot Cu$, cuprous oxide Cu_2O ;
- insecticidal compounds:
- 15 xiii) neonicotinoids: acetamiprid, clothianidin, dinotefuran, flupyradifurone, imidacloprid, nitenpyram, thiacloprid, thiametoxam;
- xiv) pyretroids: bifenthrin, beta-cyfluthrin, lambda-cyhalothrin, cypermethrin, deltamethrin, tefluthrin,
- 20 wherein the weight ratio between said at least one component [A] and said at least one component [B] ranges from 1:20 to 20:1.

2. The compositions according to claim 1, wherein said one or more components [B] are selected from compounds belonging to 25 one or more of the following groups:

- i) cyproconazole, difenoconazole, epoxyconazole, flutriafol, penconazole, prochloraz, prothioconazole, tebuconazole, tetraconazole;
- iii) azoxystrobin, fluoxastrobin, kresoxim-methyl,
- 30 picoxystrobin, pyraclostrobin, trifloxystrobin;
- iv) carbendazim, thiophanate-methyl;
- v) iprodione, procymidone;

- vi) chlorothalonil;
- viii) benalaxyl, benalaxyl-M, metalaxyl-M;
- xi) copper (II) hydroxide, copper oxychloride, copper salicylate $C_7H_4O_3 \cdot Cu$, cuprous oxide Cu_2O ;
- 5 xiii) clothianidin, imidacloprid, thiachloprid, thiametoxam;
- xiv) lambda-cyhalothrin, deltamethrin, tefluthrin.

3. The compositions according to claim 1 or 2, wherein said compound having formula (I) is a racemic mixture ((I)-RS).

4. The compositions according to any one of claims 1 to 3, wherein said compound having formula (I) is selected from the group consisting of:

- a mixture enriched in one of the enantiomers, and
- one of the two enantiomers R ((I)-R) or S ((I)-S) in a substantially pure form (>99.99% by weight).

15 5. The compositions according to claim 4, wherein the mixture enriched in one of the enantiomers is a mixture enriched in the R enantiomer.

6. The compositions according to claim 4 or claim 5, wherein the substantially pure form (>99.99% by weight) is in the form of the R enantiomer.

20 7. The compositions according to any one of claims 1 to 6, selected from the group consisting of:

- C1: (I)-RS + tetraconazole;
- C2: (I)-RS + tebuconazole;
- 25 C3: (I)-RS + cyproconazole;
- C4: (I)-RS + difenoconazole;
- C5: (I)-RS + epoxyconazole;
- C6: (I)-RS + flutriafol;
- C7: (I)-RS + penconazole;
- 30 C8: (I)-RS + prothioconazole;
- C9: (I)-RS + prochloraz;
- C12: (I)-RS + azoxystrobin;

C13: (I)-RS + fluoxastrobin;
C14: (I)-RS + kresoxim-methyl;
C15: (I)-RS + picoxystrobin;
C16: (I)-RS + pyraclostrobin;
5 C17: (I)-RS + trifloxystrobin;
C18: (I)-RS + iprodione;
C19: (I)-RS + procymidone;
C20: (I)-RS + carbendazim;
C21: (I)-RS + thiophanate-methyl;
10 C22: (I)-RS + chlorothalonil;
C23: (I)-RS + benalaxy-M;
C24: (I)-RS + metalaxy-M;
C31: (I)-RS + copper salicylate $C_7H_4O_3 \cdot Cu$;
C32: (I)-RS + cuprous oxide Cu_2O ;
15 C33: (I)-RS + clothianidin;
C34: (I)-RS + imidacloprid;
C35: (I)-RS + thiacloprid;
C36: (I)-RS + thiamethoxam;
C37: (I)-RS + lambda-cyathrin;
20 C38: (I)-RS + deltamethrin;
C39: (I)-RS + tefluthrin;
C40: (I)-RS + tetraconazole + azoxystrobin;
C41: (I)-RS + tebuconazole + azoxystrobin;
C42: (I)-RS + epoxyconazole + azoxystrobin;
25 C43: (I)-RS + cyproconazole + azoxystrobin;
C44: (I)-RS + propiconazole + azoxystrobin;
C45: (I)-RS + prothioconazole + azoxystrobin;
C46: (I)-RS + tetraconazole + picoxystrobin;
C47: (I)-RS + tebuconazole + picoxystrobin;
30 C48: (I)-RS + epoxyconazole + picoxystrobin;
C49: (I)-RS + cyproconazole + picoxystrobin;
C50: (I)-RS + propiconazole + picoxystrobin;

C51: (I)-RS + prothioconazole + picoxystrobin;
C52: (I)-RS + tetaconazole + kresoxim methyl;
C53: (I)-RS + tebuconazole + kresoxim methyl;
C54: (I)-RS + epoxyconazole + kresoxim methyl;
5 C55: (I)-RS + cyproconazole + kresoxim methyl;
C56: (I)-RS + propiconazole + kresoxim methyl;
C57: (I)-RS + prothioconazole + kresoxim methyl;
C58: (I)-RS + chlorothalonil + azoxystrobin;
C59: (I)-RS + chlorothalonil + picoxystrobin;
10 C60: (I)-RS + chlorothalonil + pyraclostrobin;
C61: (I)-RS + chlorothalonil + kresoxim methyl;
C62: (I)-RS + copper (II) hydroxide + copper oxychloride;
C63: (I)-RS + copper (II) hydroxide + copper oxychloride +
copper salicylate $C_7H_4O_3 \cdot Cu$;
15 C64: (I)- R_8S_2 + tetaconazole;
C65: (I)- R_8S_2 + azoxystrobin;
C66: (I)- R_8S_2 + benalaxyl;
C67: (I)- R_9S_1 + tetaconazole;
C68: (I)- R_9S_1 + azoxystrobin; and
20 C69: (I)-R + tetaconazole;
wherein:
- (I)-RS indicates the compound having formula (I) in the
form of a racemic mixture,
- (I)- R_8S_2 indicates the compound containing the enantiomers R
25 and S in a molar ratio R:S = 8:2,
- (I)- R_9S_1 indicates the compound containing the enantiomers R
and S in a molar ratio R:S = 9:1,
- (I)-R indicates the enantiomer R in substantially pure form
(>99.99% by weight).
30 8. The compositions according to any one of claims 1 to 7,
wherein said at least one component [A] and said at least one
component [B], together or separately, are diluted with one

or more solid or liquid diluents.

9. The compositions according to claim 8, wherein said at least one component [A] and at least one component [B], together or separately, are diluted with one or more solid or liquid diluents, with the addition of one or more surfactants, dispersing agents, suspending agents, stabilizers, adjuvants, anti-freeze agents or adhesion agents.

10. The compositions according to claim 8 or claim 9, comprising at least a further active principle, compatible with said components [A] and [B], selected from the group consisting of fungicidal compounds or insecticidal compounds different from said compounds [B], phytoregulators, antibiotics, herbicides, fertilizers and mixtures thereof.

11. Use of the compositions according to any one of claims 1 to 10 for the control of phytopathogenic fungi in agricultural crops.

12. Use of the compositions according to claim 11, for the control of phytopathogenic fungi selected from the groups consisting of: Basidiomycetes, Ascomycetes, Deuteromycetes or imperfect fungi, Oomycetes: *Puccinia* spp., *Ustilago* spp., *Tilletia* spp., *Uromyces* spp., *Phakopsora* spp., *Rhizoctonia* spp., *Erysiphe* spp., *Sphaerotheca* spp., *Podosphaera* spp., *Uncinula* spp., *Helminthosporium* spp., *Rhynchosporium* spp., *Pyrenophora* spp., *Monilinia* spp., *Sclerotinia* spp., *Septoria* spp. (*Mycosphaerella* spp.), *Venturia* spp., *Botrytis* spp., *Alternaria* spp., *Fusarium* spp., *Cercospora* spp., *Cercosporella herpotrichoides*, *Colletotrichum* spp., *Pyricularia oryzae*, *Sclerotium* spp., *Phytophtora* spp., *Pythium* spp., *Plasmopara viticola*, *Peronospora* spp., *Pseudoperonospora cubensis*, and *Bremia lactucae*.

13. Use of the compositions according to claim 11 or claim

12, wherein the agrarian crops are selected from the group consisting of: cereals, fruit trees, citrus fruits, legumes, horticultural crops, cucurbits, oleaginous plants, tobacco, coffee, tea, cocoa, sugar beet, sugar cane, and cotton.

5 14. A method for controlling phytopathogenic fungi in agrarian crops, which comprises applying an effective dose of at least one synergistic composition according to any one of claims 1 to 10, on one or more parts of the plants to be protected and/or on the seeds of said plants before sowing
10 and/or on the ground in which said plants grow.