
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0006868 A1

US 20140.006868A1

Grey et al. (43) Pub. Date: Jan. 2, 2014

(54) TEST EXECUTIVE SYSTEM WITH OFFLINE Publication Classification
RESULTS PROCESSING

(51) Int. Cl.
(71) Applicant: NATIONAL INSTRUMENTS G06F II/263 (2006.01)

CORPORATION, Austin, TX (US) (52) U.S. Cl.
CPC G06F II/263 (2013.01)

(72) Inventors: James A. Grey, Cedar Park, TX (US); USPC .. 71.4/33
David A. Rohacek, Austin, TX (US)

(57) ABSTRACT

(21) Appl. No.: 14/012,689 Test executive system and method of use. The system
includes a test executive engine, configured to execute at least
one test executive sequence to test at least one unit under test

(22) Filed: Aug. 28, 2013 (UUT), a process E. that specifies one or more function
sequences for pre-test or post-test functionality for the test

Related U.S. Application Data executive sequences, and a plug-in framework, configured to
(63) Continuation of application No. 13/930.265, filed on selectively incorporate one or more process model plug-in

Jun. 28, 2013. instances in the process model. Each process model plug-in
s instance specifies at least one respective function sequence

(60) Provisional application No. 61/666,041, filed on Jun. for pre-test or post-test functionality for the test executive
29, 2012. Sequences.

Configured with program
instructions according to
erbodiferts of the

invertior

Computer System
8.

Patent Application Publication Jan. 2, 2014 Sheet 1 of 13 US 2014/0006868 A1

Efter
Seria ibér

Enter r
Seria Nurier

ref 2
Seria Ninber

Start festing Start festing

Generate
Report

-1 Aches Y.
n U2 - Yes Y- Yes NUUT?-1
N 1 1 \ -

N NC; No - - - - : End Ed (End)
Y-- & v Y-...-

Parae ProCeSS Vodie

Figure 1A
(Prior Art)

Patent Application Publication Jan. 2, 2014 Sheet 2 of 13 US 2014/0006868 A1

Stari) (l/

Enter Batch Seia Ninibef

Eiter 2
Seria Nief

Enter 1
Seria Ninter

Enter
Seria Nimber

Start Testing
it in

Star Testing Start esting

Batch Synchronization
Wait for Al UITs to Complete

Generate
Report

Yes 1Another
\ Baich? -
N

No
y

- N

(End)

Batch Process Mode

Figure 1B
(Prior Art)

Patent Application Publication Jan. 2, 2014 Sheet 3 of 13 US 2014/0006868 A1

Configured with program
instructions according to
embodiments of the

invertion

Computer System
8.

Figure 2A

US 2014/0006868 A1 Jan. 2, 2014 Sheet 4 of 13 Patent Application Publication

US 2014/0006868 A1 Jan. 2, 2014 Sheet 5 of 13 Patent Application Publication

US 2014/0006868 A1 Jan. 2, 2014 Sheet 6 of 13 Patent Application Publication

US 2014/0006868 A1 Patent Application Publication

?

Patent Application Publication Jan. 2, 2014 Sheet 8 of 13 US 2014/0006868 A1

Process vigde Pig-in
(function sequence file)

rocess Modei Plug-in entry point function sequence A

Process Model Plug-in entry point function sequence C

Estace of ProCeSS Model Pitig-in

ata
ata 2
ata 3

Figure 5

Patent Application Publication Jan. 2, 2014 Sheet 9 of 13 US 2014/0006868 A1

rocess via

inherent rode function

oit A ----------------ee- w

F2:ESS.Egis giggin.eity.giftigiQE.Segie C2. A

tests

Port E.-8-

Process Rodeligitigii entry goistiliticitor. Seguerce B

rthere rode fiction 2

oint C ~-e-
POCESSIOdeligiugi erity positiestigii. Séguierce C

PEQCeSS. Oise. Eligit, entry point fiSigli...SieglieEige. C.
as asss

inherent rode function 3

www.wwwe

Patent Application Publication Jan. 2, 2014 Sheet 10 of 13 US 2014/0006868 A1

Figure 7A

Figure 7B

Patent Application Publication Jan. 2, 2014 Sheet 11 of 13 US 2014/0006868 A1

Figure 7C

Patent Application Publication Jan. 2, 2014 Sheet 12 of 13 US 2014/0006868 A1

Figure 7D

Figure 7E

US 2014/0006868 A1 Jan. 2, 2014 Sheet 13 of 13 Patent Application Publication

US 2014/0006868 A1

TEST EXECUTIVE SYSTEM WITH OFFLINE
RESULTS PROCESSING

PRIORITY INFORMATION

0001. This application is a continuation of U.S. patent
application Ser. No. 13/930,265 titled “Test Executive Sys
tem. With Process Model Plug-ins, filed on Jun. 28, 2013,
whose inventor was James A. Grey, and which claims priority
to U.S. provisional patent application No. 61/666,041 titled
“Test Executive System With Process Model Plug-ins.” filed
on Jun. 29, 2012, whose inventor was James A. Grey.

FIELD OF THE INVENTION

0002 The present invention relates to the field of test
executive sequence software, and more particularly to a test
executive system that includes plug-ins for process models.

DESCRIPTION OF THE RELATED ART

0003 Test executive software is specialized software that
allows a user to create and execute test executive (function)
sequences to test units under test (UUTs). The test executive
Software operates as a control center for an automated test
system. More specifically, the test executive software allows
the user to create, configure, and control execution of test
executive sequences for various test applications, such as
production and manufacturing test applications. Text execu
tive software typically includes various features such as test
sequencing based on pass/fail results, logging of test results,
and test report generation, among others.
0004
steps, and one or more of the steps may call user-supplied
code modules, also referred to herein as test modules. As used
herein, a user-supplied code module or test module refers to a
software module that is written or supplied by a user of the
test executive software. The user may construct various test
modules designed to perform tests on a UUT, and execution
of these test modules may be invoked by steps in a test
executive sequence when the sequence is executed. For
example, the test modules may interact with one or more
hardware instruments to test the UUT(s). Moreover, pre
defined test modules and sequences may be provided to users,
which may be configured or edited by the users as needed.
0005. The test executive software typically includes a
sequence editor for creating test executive sequences and a
test executive engine operable to execute the test executive
sequences. Executing a test executive sequence may com
prise executing each of the steps in the test executive
sequence, e.g., executing each of the steps according to an
order defined by the test executive sequence.
0006 For each step in the test executive sequence that calls
a user-supplied code module, executing the step may com
prise both executing program instructions of the test execu
tive engine and executing the user-supplied code module. For
example, in addition to calling a user-supplied code module,
a step in a test executive sequence may also perform addi
tional functionality, where the additional functionality is
implemented by the test executive engine and not coded by
the user. For example, the step may be operable to perform
common functionality which is useful for various automated
test applications, where the common functionality is imple
mented by the test executive engine. This may remove the
burden on the user from implementing this functionality for

A test executive sequence may include a plurality of

Jan. 2, 2014

the step, thus increasing the user's ease and efficiency of
creating the automated test system.
0007 As one example, the test executive engine may
implement automatic result collection for a step in a test
executive sequence. For example, when the step is executed
during execution of the test executive sequence, the test
executive engine may first invoke execution of a user-Sup
plied code module called by the step. The user-supplied code
module may execute to perform a specific test of a UUT. The
user-supplied code module may conform to a programming
interface through which its execution results can be passed
back to the test executive engine. When the user-supplied
code module finishes execution, the test executive engine
may be operable to automatically receive the execution
results of the module and log them in a report file or database.
Thus, in this example, the user may implement the specific
test functionality performed by the user-supplied code mod
ule but may not be required to implement the functionality of
logging the execution results of the user-supplied code mod
ule since the logging is performed automatically by the test
executive engine.
0008. In some cases a test executive sequence may also
include one or more steps that do not call user-supplied code
modules. For example, the functionality of some steps may be
implemented entirely by the test executive engine and may
not be coded by the user. However, the test executive soft
ware, e.g., the sequence editor, may allow the user to set
various properties or parameters affecting operation of the
steps, e.g., by interacting with a dialog box or other graphical
user interface associated with the steps.
0009. Thus, testing a UUT typically requires more than
just executing a set of tests. Usually, the test system must
perform a series of operations before and after it executes the
sequence that performs the tests. Common operations include
identifying the UUT, notifying the operator of pass/fail status,
logging results, and generating a test report. These opera
tions, which define the testing process, and their flow of
execution may be included in a process model. This process
model based architecture Substantially distinguishes from
both commercial and “home-grown' monolithic test execu
tive systems.
0010 For example, without a process model, each test
sequence would need to provide the mechanism for these
common tasks. This code would have to be repeated in each
new test sequence created. Any changes to the operation of
these common tasks would need to be repeated in each test
sequence. Using a process model, one has increased modu
larity and reusability by keeping all of the code that performs
common tasks. Any modifications to the common operations
need to be changed in only one common location.
0011. There are several advantages to this process model
architecture. For example, one can use a single process model
with several different test sequences, which minimizes devel
opment effort and improves maintainability in the future. An
additional advantage is that you can run a single test sequence
within several process models, which results in increased
flexibility when running in different environments. The same
test sequence can be used for validation and Verification tasks
during development and be passed onto the factory floor to
test UUTs in a different process model. Thus the test process
can change but the tests executed remain the same.
0012 Various process models can be used and even modi
fied, e.g., a sequential model, a batch model, and a parallel
model. The sequential model can be used to run a test

US 2014/0006868 A1

sequence on one UUT at a time. Using the parallel and batch
models, one can run the same test sequence on multiple UUTs
at the same time. Each process model may provide a different
test experience without requiring any modifications to the
client sequence file.
0013 FIGS. 1A and 1B illustrates exemplary parallel and
batch process models, respectively. As may be seen, in each of
these cases, the process model provides various pre- and
post-testing functions or operations, including, for example,
entry of UUT serial numbers, synchronization of instruments,
initiation of the testing process, report generation, and so
forth, with specific tests (test sequences) invoked and per
formed in the context of these operations.
0014 Monolithic test executives often implement their
process model internally and do not allow users to modify
them. The use of separate and distinct process models pro
vides a mechanism for defining new process models or cus
tomizing existing ones. Process models are generally repre
sented as a sequence file that contains three special types of
sequences with which users can customize behavior. The user
can edit a process model in the same way that sequence files
are edited to create customized behavior. By representing a
process model as a sequence, it becomes simple to edit and
extremely flexible. Changes can be made in any language and
any arbitrary code can be added. For example, the user can
modify the process model by opening it in the sequence editor
and adding steps the same way one creates client sequence
files.
0.015. One type of special sequence in a process model is a
model callback. Model callbacks are sequences that are typi
cally executed inside of a process model, but client sequences
can override the default behavior. When a callback is over
ridden, rather than calling the code inside of the process
model sequence, code is executed in the client sequence. With
this feature one can implement unique behavior for a particu
lar test sequence without impacting other parts of the process
model. For example, for one particular type of UUT, a user
may want to use a bar code scanner rather than the manual
serial number entry. Other examples of a model callback are
the process setup and process cleanup sequences. When test
ing a large batch of UUTS, it may make sense to initialize and
clean up a set of instruments a single time rather than initial
izing and cleaning up before and after every UUT. Overriding
the process setup and process cleanup callbacks in a client
sequence is an effective way to add functionality to the testing
process without impacting other common tasks in the process
model. Callbacks increase modularity of code but allow
maximum flexibility for customized behavior.
0016. Another special type of sequence in a process model

is an execution entry point. Execution entry points in a pro
cess model offer different modes of execution that lead to
different testing procedures. Examples of entry points
include, but are not limited to, “test UUTs and “single pass'.
where, for example, the test UUTs execution entry point
executes in a loop that repeatedly identifies and tests UUTs,
and the single pass execution entry point tests a single UUT
without identifying it. Execution entry points can be config
ured for restricted user access. For example, operators may
run only the test UUTs execution entry point, but technicians
may run both the test UUTs and single pass execution entry
points. Users can customize the process model to create their
own entry points for other purposes, such as debugging, and
so a sequence editor may automatically add additional entry
points to the appropriate menu. Operator interfaces can

Jan. 2, 2014

accommodate the addition of execution entry points without
changing any code. This modular architecture improves flex
ibility and maintainability by reducing the amount of recod
ing when changes are made to the process model.
0017. Another special type of sequence in a process model

is a configuration entry point. With configuration entry
points, an operator can set various configuration options for
the process model. Such as configure report options and con
figure database options. Like the other parts of the process
model, configuration entry points are fully customizable.
Existing entry points can be customized for additional
options and new configuration entry points can be added to
add different options. Using configuration entry points, a
station can be configured in several different ways without
changing code. For example, one test station can be used to
diagnose problems and may not need to use database logging.
By using the configure database options configuration entry
point, this station can be configured to disable database log
ging without the need for recoding the process model. Similar
to the execution entry points, configuration entry points are
automatically added as menu items when they are created. No
code needs to be rewritten in operator interfaces to add these
options.
0018. However, the above approach still requires signifi
cant effort by users to specify or otherwise customize testing
behaviors, including specifying and customizing process
models.
0019. Accordingly, improved systems and methods for
testing units under test are desired.

SUMMARY OF THE INVENTION

0020 Various embodiments of a system and method for
creating a test executive sequence are described. The test
executive sequence may include a first plurality of steps to be
performed by a test executive engine to test a unit under test
(UUT). The test executive sequence may be configured with
a process model which includes a second plurality of steps to
be performed by the test executive engine before and/or after
executing the first plurality of steps. The process model may
be configured to accept process model plug-ins that define or
specify the second plurality of steps. Configuring the test
executive sequence with the process model may include
selecting one or more process model plug-ins for the process
model. Each process model plug-in may include two or more
of the second plurality of steps.
0021 Prior to selecting the one or more process model
plug-ins, each of the process model plug-ins may be created
in response to user input. Creating each respective process
model plug-in may include receiving user input selecting
each of the steps to be included in the process model plug-in,
e.g., via a sequence editor or other graphical user interface.
Each respective process model plug-in may be created by
creating a respective process model plug-in file and storing
information defining the steps of the respective process model
plug-in in the respective process model plug-in file. The steps
for a given process model plug-in may be read from its pro
cess model plug-in file when the process model plug-in is
used in a test executive sequence.
0022. In some embodiments the process model may
include a plurality of entry points. Each of the one or more
process model plug-ins may be associated with a respective
one of the entry points.
0023 The first plurality of steps of the test executive
sequence may be designed to execute particular tests on the

US 2014/0006868 A1

UUT. In various embodiments the process model plug-ins
may be configured to perform any of various kinds of func
tionality before and/or after the execution of the first plurality
of steps. For example, in one embodiment a given process
model plug-in may include two or more steps configured to
receive test results generated by the first plurality of steps
when testing the UUT and generate a report indicating the test
results. As another example, in another embodiment a given
process model plug-in may include two or more steps con
figured to receive test results generated by the first plurality of
steps when testing the UUT and log the test results in one or
more of a file or database.

BRIEF DESCRIPTION OF THE DRAWINGS

0024. A better understanding of the present invention can
be obtained when the following detailed description of the
preferred embodiment is considered in conjunction with the
following drawings, in which:
0025 FIGS. 1A and 1B illustrates exemplary test execu

tive sequence process models, according to the prior art;
0026 FIG. 2A illustrates a computer system configured to
execute an embodiment of the present invention;
0027 FIG. 2B illustrates a network system comprising
two or more computer systems that may implement an
embodiment of the present invention;
0028 FIG. 3A illustrates an instrumentation control sys
tem according to one embodiment of the invention;
0029 FIG. 3B illustrates an industrial automation system
according to one embodiment of the invention;
0030 FIG. 4 is an exemplary block diagram of the com
puter systems of FIGS. 2A, 2B, 3A, and 3B;
0031 FIG.5 is a high-level block diagramofan exemplary
process model plug-in and associated instance, according to
one embodiment;
0032 FIG. 6 is a high-level block diagramofan exemplary

test executive system process model with process model
plug-ins, according to one embodiment;
0033 FIGS. 7A-7E illustrate various user interfaces for
specifying, configuring, and managing, process model plug
ins, according to various embodiments; and
0034 FIG. 7F illustrates an exemplary GUI for one
embodiment of an Offline Results Processing Utility applica
tion.
0035. While the invention is susceptible to various modi
fications and alternative forms, specific embodiments thereof
are shown by way of example in the drawings and are herein
described in detail. It should be understood, however, that the
drawings and detailed description thereto are not intended to
limit the invention to the particular form disclosed, but on the
contrary, the intention is to cover all modifications, equiva
lents and alternatives falling within the spirit and scope of the
present invention as defined by the appended claims.

DETAILED DESCRIPTION OF THE INVENTION

Incorporation by Reference

0036. The following references are hereby incorporated
by reference in their entirety as though fully and completely
set forth herein:

0037 U.S. patent application Ser. No. 13/930,265 titled
“Test Executive System With Process Model Plug-ins.”
filed on Jun. 28, 2013.

Jan. 2, 2014

0038 U.S. Pat. No. 6,401.220 titled “Test Executive Sys
tem and Method Including Step Types for Improved Con
figurability.’ issued Jun. 4, 2002.

0039 U.S. patent application Ser. No. 09/944,546 titled
“System and Method Enabling Execution Stop and Restart
of a Test Executive Sequence(s), filed Aug. 31, 2001.

0040 U.S. patent application Ser. No. 10/056,853 titled
“Test Executive System Having XML Reporting Capabili
ties, filed Jan. 25, 2002.

TERMS

0041. The following is a glossary of terms used in the
present application:
0042. User-Supplied Code Module
0043. A software module or component written by a user.
A user-supplied code module may be constructed or pack
aged in any of various ways and may be created using any of
various programming tools or application development envi
ronments. For example, a user-supplied code module may be
implemented as a function in a Windows Dynamic Link
Library (DLL), a LabVIEW graphical program (VI), an
ActiveX component, a Java component, or other type of pro
gram module or component that implements a specific test or
other functionality.
0044 Test Module
0045. A user-supplied code module that performs a test of
a UUT.

0046 Test Executive Step—
0047. An action that the user can include within a test
executive sequence. A step may call a user-supplied code
module, e.g., may call a test module to perform a specific test
of a UUT. The step may have properties or parameters that can
be set by the user, e.g., through a dialog box or other graphical
user interface. In addition to calling a user-supplied code
module, a step may also have built-in functionality imple
mented by the test executive software.
0048 Step Module
0049. The user-supplied code module that a test executive
step calls.
0050 Test Executive Sequence
0051 A plurality of test executive steps that the user speci
fies for execution on a unit under test in a particular order.
Whether and when a step is executed can depend on the
results of previous steps. A test executive sequence may be
created using a sequence editor. For example, the sequence
editor may create a sequence file or other data structure rep
resenting the test executive sequence. A test executive
sequence may be executed by a test executive engine.
0052 Process Model
0053 A set of steps performed before and/or after the
execution of a test executive sequence. The process model
defines the flow of execution of the test process and deter
mines what actions to take before and after the test executive
Sequence eXecutes.
0054 Process Model Plug-in
0055. A subset of the steps in a process model. A process
model plug-in is invoked at a particular point during the
execution of the process model.
0056 Sequence Editor
0057. A program that provides a graphical user interface
for creating, editing, and debugging sequences. One embodi
ment of a sequence editor is described in detail below.

US 2014/0006868 A1

0058 Test Executive Engine
0059 A program operable to execute a test executive
sequence. One embodiment of a test executive engine is
described in detail below.
0060 Run-time Operator Interface Application—
0061 An application program that provides a graphical
user interface for controlling execution of test executive
sequences, e.g., on a production station. For example, the
graphical user interface of the run-time operator interface
application may allow a test operator to start and stop execu
tion of the test executive sequences. A sequence editor and
run-time operator interface application can be separate pro
grams or different aspects of the same program. The test
executive engine may provide an application programming
interface (API) which the run-time operator interface appli
cation calls to control execution of the test executive
Sequences.
0062) Application Development Environment (ADE)—
0063 A programming environment such as LabVIEW,
LabWindows/CVI, Microsoft Visual C++, Microsoft Visual
Basic, etc., in which a user can create user-supplied code
modules and run-time operator interface applications.
0064 Unit Under Test (UUT)–
0065. A physical device or component that is being tested.
0066 Memory Medium
0067. Any of various types of memory devices or storage
devices. The term “memory medium is intended to include
an installation medium, e.g., a CD-ROM, floppy disks 104, or
tape device; a computer System memory or random access
memory such as DRAM, DDR RAM, SRAM, EDO RAM,
Rambus RAM, etc.; a non-volatile memory such as a Flash,
magnetic media, e.g., a hard drive, or optical storage; regis
ters, or other similar types of memory elements, etc. The
memory medium may comprise other types of memory as
well or combinations thereof. In addition, the memory
medium may be located in a first computer in which the
programs are executed, or may be located in a second differ
ent computer which connects to the first computer over a
network, Such as the Internet. In the latter instance, the second
computer may provide program instructions to the first com
puter for execution. The term “memory medium may
include two or more memory mediums which may reside in
different locations, e.g., in different computers that are con
nected over a network.
0068 Carrier Medium
0069 a memory medium as described above, as well as a
physical transmission medium, Such as abus, network, and/or
other physical transmission medium that conveys signals
Such as electrical, electromagnetic, or digital signals.
0070 Programmable Hardware Element
0071 includes various hardware devices comprising mul

tiple programmable function blocks connected via a pro
grammable interconnect. Examples include FPGAs (Field
Programmable Gate Arrays), PLDs (Programmable Logic
Devices), FPOAS (Field Programmable Object Arrays), and
CPLDs (Complex PLDs). The programmable function blocks
may range from fine grained (combinatorial logic or look up
tables) to coarse grained (arithmetic logic units or processor
cores). A programmable hardware element may also be
referred to as “reconfigurable logic”.
0072 Software Program
0073 the term “software program' is intended to have the

full breadth of its ordinary meaning, and includes any type of
program instructions, code, Script and/or data, or combina

Jan. 2, 2014

tions thereof, that may be stored in a memory medium and
executed by a processor. Exemplary Software programs
include programs written in text-based programming lan
guages, such as C, C++, PASCAL, FORTRAN, COBOL,
JAVA, assembly language, etc.; graphical programs (pro
grams written in graphical programming languages); assem
bly language programs; programs that have been compiled to
machine language; Scripts; and other types of executable soft
ware. A Software program may comprise two or more soft
ware programs that interoperate in Some manner. Note that
various embodiments described herein may be implemented
by a computer or software program. A Software program may
be stored as program instructions on a memory medium.
0074 Hardware Configuration Program—
0075 a program, e.g., a netlist orbit file, that can be used
to program or configure a programmable hardware element.
(0076 Program
(0077 the term “program' is intended to have the full
breadth of its ordinary meaning. The term “program
includes 1) a software program which may be stored in a
memory and is executable by a processor or 2) a hardware
configuration program useable for configuring a program
mable hardware element.
(0078 Graphical Program
0079 A program comprising a plurality of interconnected
nodes or icons, wherein the plurality of interconnected nodes
or icons visually indicate functionality of the program. The
interconnected nodes or icons are graphical source code for
the program. Graphical function nodes may also be referred
to as blocks.
0080. The following provides examples of various aspects
of graphical programs. The following examples and discus
sion are not intended to limit the above definition of graphical
program, but rather provide examples of what the term
'graphical program' encompasses:
I0081. The nodes in a graphical program may be connected
in one or more of a data flow, control flow, and/or execution
flow format. The nodes may also be connected in a “signal
flow” format, which is a subset of data flow.
I0082) Exemplary graphical program development envi
ronments which may be used to create graphical programs
include LabVIEWR), DASYLabTM, DIAdemTM and MatrixX/
SystemBuildTM from National Instruments, Simulink(R) from
the MathWorks, VEETM from Agilent, WiTTM from Coreco,
Vision Program ManagerTM from PPT Vision, Soft WIRETM
from Measurement Computing, SanscriptTM from North
woods Software, KhorosTM from Khoral Research, SnapMas
terTM from HEM Data, VisSimTM from Visual Solutions,
ObjectBenchTM by SES (Scientific and Engineering Soft
ware), and VisiDAQTM from Advantech, among others.
I0083. The term “graphical program' includes models or
block diagrams created in graphical modeling environments,
wherein the model or block diagram comprises intercon
nected blocks (i.e., nodes) or icons that visually indicate
operation of the model or block diagram; exemplary graphi
cal modeling environments include Simulink(R), System
BuildTM, VisSimTM, Hypersignal Block DiagramTM, etc.
I0084. A graphical program may be represented in the
memory of the computer system as data structures and/or
program instructions. The graphical program, e.g., these data
structures and/or program instructions, may be compiled or
interpreted to produce machine language that accomplishes
the desired method or process as shown in the graphical
program.

US 2014/0006868 A1

0085. Input data to a graphical program may be received
from any of various sources. Such as from a device, unit under
test, a process being measured or controlled, another com
puter program, a database, or from a file. Also, a user may
input data to a graphical program or virtual instrument using
a graphical user interface, e.g., a front panel.
I0086 A graphical program may optionally have a GUI
associated with the graphical program. In this case, the plu
rality of interconnected blocks or nodes are often referred to
as the block diagram portion of the graphical program.
0087 Node
0088. In the context of a graphical program, an element
that may be included in a graphical program. The graphical
program nodes (or simply nodes) in a graphical program may
also be referred to as blocks. A node may have an associated
icon that represents the node in the graphical program, as well
as underlying code and/or data that implements functionality
of the node. Exemplary nodes (or blocks) include function
nodes, Sub-program nodes, terminal nodes, structure nodes,
etc. Nodes may be connected together in a graphical program
by connection icons or wires.
I0089. Data Flow Program
0090. A Software Program in which the program architec
ture is that of a directed graph specifying the flow of data
through the program, and thus functions execute whenever
the necessary input data are available. Data flow programs
can be contrasted with procedural programs, which specify an
execution flow of computations to be performed. As used
herein “data flow” or "data flow programs’ refer to “dynami
cally-scheduled data flow” and/or “statically-defined data
flow”.
0091 Graphical Data Flow Program (or Graphical Data
Flow Diagram)—
0092 A Graphical Program which is also a Data Flow
Program. A Graphical Data Flow Program comprises a plu
rality of interconnected nodes (blocks), wherein at least a
Subset of the connections among the nodes visually indicate
that data produced by one node is used by another node. A
LabVIEW VI is one example of a graphical data flow pro
gram. A Simulink block diagram is another example of a
graphical data flow program.
0093 Graphical User Interface
0094 this term is intended to have the full breadth of its
ordinary meaning. The term “Graphical User Interface' is
often abbreviated to “GUI”. A GUI may comprise only one or
more input GUI elements, only one or more output GUI
elements, or both input and output GUI elements.
0095. The following provides examples of various aspects
of GUIs. The following examples and discussion are not
intended to limit the ordinary meaning of GUI, but rather
provide examples of what the term “graphical user interface”
encompasses:
0096 AGUI may comprise a single window having one or
more GUI Elements, or may comprise a plurality of indi
vidual GUI Elements (or individual windows each having one
or more GUI Elements), wherein the individual GUI Ele
ments or windows may optionally be tiled together.
0097 AGUI may be associated with a graphical program.
In this instance, various mechanisms may be used to connect
GUI Elements in the GUI with nodes in the graphical pro
gram. For example, when Input Controls and Output Indica
tors are created in the GUI, corresponding nodes (e.g., termi
nals) may be automatically created in the graphical program
or block diagram. Alternatively, the user can place terminal

Jan. 2, 2014

nodes in the block diagram which may cause the display of
corresponding GUI Elements front panel objects in the GUI,
either at edit time or later at run time. As another example, the
GUI may comprise GUI Elements embedded in the block
diagram portion of the graphical program.
0098. Front Panel
0099. A Graphical User Interface that includes input con
trols and output indicators, and which enables a user to inter
actively control or manipulate the input being provided to a
program, and view output of the program, while the program
is executing.
0100 Afront panel is a type of GUI. A front panel may be
associated with a graphical program as described above.
0101. In an instrumentation application, the front panel
can be analogized to the front panel of an instrument. In an
industrial automation application the front panel can be
analogized to the MMI (Man Machine Interface) of a device.
The user may adjust the controls on the front panel to affect
the input and view the output on the respective indicators.
0102 Graphical User Interface Element—
0103 an element of a graphical user interface, such as for
providing input or displaying output. Exemplary graphical
user interface elements comprise input controls and output
indicators.
0104 Input Control—
0105 a graphical user interface element for providing user
input to a program. An input control displays the value input
by the user and is capable of being manipulated at the discre
tion of the user. Exemplary input controls comprise dials,
knobs, sliders, input text boxes, etc.
0106 Output Indicator—
0107 a graphical user interface element for displaying
output from a program. Exemplary output indicators include
charts, graphs, gauges, output text boxes, numeric displays,
etc. An output indicator is sometimes referred to as an "output
control'.
0.108 Computer System—
0109 any of various types of computing or processing
systems, including a personal computer system (PC), main
frame computer system, workstation, network appliance,
Internet appliance, personal digital assistant (PDA), televi
sion system, grid computing system, or other device or com
binations of devices. In general, the term “computer system”
can be broadly defined to encompass any device (or combi
nation of devices) having at least one processor that executes
instructions from a memory medium.
0110. Measurement Device—
0111 includes instruments, data acquisition devices,
Smart sensors, and any of various types of devices that are
configured to acquire and/or store data. A measurement
device may also optionally be further configured to analyze or
process the acquired or stored data. Examples of a measure
ment device include an instrument, such as a traditional
stand-alone “box” instrument, a computer-based instrument
(instrument on a card) or external instrument, a data acquisi
tion card, a device external to a computer that operates simi
larly to a data acquisition card, a Smart sensor, one or more
DAQ or measurement cards or modules in a chassis, an image
acquisition device, such as an image acquisition (or machine
vision) card (also called a video capture board) or Smart
camera, a motion control device, a robot having machine
vision, and other similar types of devices. Exemplary "stand
alone' instruments include oscilloscopes, multimeters, signal

US 2014/0006868 A1

analyzers, arbitrary waveform generators, spectroscopes, and
similar measurement, test, or automation instruments.
0112 A measurement device may be further configured to
perform control functions, e.g., in response to analysis of the
acquired or stored data. For example, the measurement device
may send a control signal to an external system, Such as a
motion control system or to a sensor, in response to particular
data. A measurement device may also be configured to per
form automation functions, i.e., may receive and analyze
data, and issue automation control signals in response.
0113 Automatically—
0114 refers to an action or operation performed by a com
puter system (e.g., Software executed by the computer sys
tem) or device (e.g., circuitry, programmable hardware ele
ments, ASICs, etc.), without user input directly specifying or
performing the action or operation. Thus the term “automati
cally' is in contrast to an operation being manually performed
or specified by the user, where the user provides input to
directly perform the operation. An automatic procedure may
be initiated by input provided by the user, but the subsequent
actions that are performed “automatically' are not specified
by the user, i.e., are not performed “manually', where the user
specifies each action to perform. For example, a user filling
out an electronic form by selecting each field and providing
input specifying information (e.g., by typing information,
selecting check boxes, radio selections, etc.) is filling out the
form manually, even though the computer system must
update the form in response to the user actions. The form may
be automatically filled out by the computer system where the
computer system (e.g., software executing on the computer
system) analyzes the fields of the form and fills in the form
without any user input specifying the answers to the fields. As
indicated above, the user may invoke the automatic filling of
the form, but is not involved in the actual filling of the form
(e.g., the user is not manually specifying answers to fields but
rather they are being automatically completed). The present
specification provides various examples of operations being
automatically performed in response to actions the user has
taken.

FIG. 2A Computer System
0115 FIG. 2A illustrates a computer system 82 configured
to implement embodiments of the present invention.
0116. The computer 822 may be configured to execute a

test executive sequence operable to analyze, measure, con
trol, or otherwise test a unit under test (UUT) or process. For
example, the test executive sequence may include various
steps that invoke Software test modules operable to connect
through the one or more instruments to analyze, measure, or
control the unit under test (UUT) or process The software test
modules that are invoked or called by the steps in the test
executive sequence may comprise user-supplied code mod
ules. In other words, the test modules may be written or
supplied by a user of the test executive software. The test
executive software may include a test executive engine 220
operable to execute the test executive sequence.
0117. As shown in FIG. 2A, the computer system 82 may
include a display device configured to display the test execu
tive sequence as it is created and/or executed, and/or to dis
play results of the execution. The display device may also be
configured to display a graphical user interface during execu
tion of the test executive sequence. The graphical user inter
face may comprise any type of graphical user interface, e.g.,
depending on the computing platform.

Jan. 2, 2014

0118. The computer system 82 may include at least one
memory medium on which one or more computer programs
or software components according to one embodiment of the
present invention may be stored. For example, the memory
medium may store one or more programs which are execut
able to perform the methods described herein. Additionally,
the memory medium may store a a development environment
application used to create and/or execute text executive
sequences and related elements, such as process model plug
ins, described below in detail. The memory medium may also
store operating system software, as well as other Software for
operation of the computer system. Various embodiments fur
ther include receiving or storing instructions and/or data
implemented in accordance with the foregoing description
upon a carrier medium.

FIG. 2B Computer Network
0119 FIG. 2B illustrates a system configured to imple
ment embodiments of the present invention, including a first
computer system 82 that is coupled to a second computer
system 90. The computer system 82 may be coupled via a
network 84 (or a computer bus) to the second computer sys
tem 90. The computer systems 82 and 90 may each be any of
various types, as desired. The network 84 can also be any of
various types, including a LAN (local area network), WAN
(wide area network), the Internet, or an Intranet, among oth
ers. The computer systems 82 and 90 may execute a graphical
program, Such as a test executive sequence, in a distributed
fashion. For example, computer 82 may execute a first portion
of the test executive sequence and computer system 90 may
execute a second portion of the test executive sequence. As
another example, computer 82 may display the graphical user
interface of a test executive sequence system and computer
system 90 may execute the test executive sequence.

Exemplary Systems

I0120 Embodiments of the present invention may be
involved with performing test and/or measurement functions;
controlling and/or modeling instrumentation or industrial
automation hardware; modeling and simulation functions,
e.g., modeling or simulating a device or product being devel
oped or tested, etc. Exemplary test applications where the
graphical program may be used include hardware-in-the-loop
testing and rapid control prototyping, among others.
I0121. However, it is noted that embodiments of the present
invention can be used for a plethora of applications and is not
limited to the above applications. In other words, applications
discussed in the present description are exemplary only, and
embodiments of the present invention may be used in any of
various types of systems. Thus, embodiments of the system
and method of the present invention is configured to be used
in any of various types of applications, including the control
of other types of devices such as multimedia devices, video
devices, audio devices, telephony devices, Internet devices,
etc., as well as general purpose software applications such as
word processing, spreadsheets, network control, network
monitoring, financial applications, games, etc.
0.122 FIG. 2A illustrates an exemplary instrumentation
control system 100 which may implement embodiments of
the invention. The system 100 comprises a host computer 82
which couples to one or more instruments. The host computer
82 may comprise a CPU, a display screen, memory, and one
or more input devices Such as a mouse or keyboard as shown.

US 2014/0006868 A1

The computer 82 may operate with the one or more instru
ments to analyze, measure or control a unit under test (UUT)
or process 150.
0123. The one or more instruments may include a GPIB
instrument 112 and associated GPIB interface card 122, a
data acquisition board 114 inserted into or otherwise coupled
with chassis 124 with associated signal conditioning circuitry
126, a VXI instrument 116, a PXI instrument 118, a video
device or camera 132 and associated image acquisition (or
machine vision) card 134, a motion control device 136 and
associated motion control interface card 138, and/or one or
more computer based instrument cards 142, among other
types of devices. The computer system may couple to and
operate with one or more of these instruments. The instru
ments may be coupled to the unit under test (UUT) or process
150, or may be coupled to receive field signals, typically
generated by transducers. The system 100 may be used in a
data acquisition and control application, in a test and mea
Surement application, an image processing or machine vision
application, a process control application, a man-machine
interface application, a simulation application, or a hardware
in-the-loop validation application, among others.
0.124 FIG. 2B illustrates an exemplary industrial automa
tion system 160 which may implement embodiments of the
invention. The industrial automation system 160 is similar to
the instrumentation or test and measurement system 100
shown in FIG. 2A. Elements which are similar or identical to
elements in FIG. 2A have the same reference numerals for
convenience. The system 160 may comprise a computer 82
which couples to one or more devices or instruments. The
computer 82 may comprise a CPU, a display screen, memory,
and one or more input devices such as a mouse or keyboard as
shown. The computer 82 may operate with the one or more
devices to perform an automation function with respect to a
process or device 150, such as MMI (Man Machine Inter
face), SCADA (Supervisory Control and Data Acquisition),
portable or distributed data acquisition, process control,
advanced analysis, or other control, among others.
0.125. The one or more devices may include a data acqui
sition board 114 inserted into or otherwise coupled with chas
sis 124 with associated signal conditioning circuitry 126, a
PXI instrument 118, a video device 132 and associated image
acquisition card 134, a motion control device 136 and asso
ciated motion control interface card 138, a fieldbus device
170 and associated fieldbus interface card 172, a PLC (Pro
grammable Logic Controller) 176, a serial instrument 182
and associated serial interface card 184, or a distributed data
acquisition system, Such as the Fieldpoint system available
from National Instruments, among other types of devices.
0126. In the embodiments of FIGS. 3A and 3B above, one
or more of the various devices may couple to each other over
a network, such as the Internet. In one embodiment, the user
operates to select a target device from a plurality of possible
target devices for programming or configuration using a
graphical program. Thus the user may create a graphical
program on a computer and use (execute) the graphical pro
gram on that computer or deploy the graphical program to a
target device (for remote execution on the target device) that
is remotely located from the computer and coupled to the
computer through a network.
0127 Graphical software programs which perform data
acquisition, analysis and/or presentation, e.g., for measure
ment, instrumentation control, industrial automation, model

Jan. 2, 2014

ing, or simulation, Such as in the applications shown in FIGS.
3A and 3B, may be referred to as virtual instruments.

FIG. 4 Computer System Block Diagram

I0128 FIG. 4 is a block diagram representing one embodi
ment of the computer system 82 and/or 90 illustrated in FIGS.
1A and 1B, or computer system 82 shown in FIG. 2A or 2B.
It is noted that any type of computer system configuration or
architecture can be used as desired, and FIG. 4 illustrates a
representative PC embodiment. It is also noted that the com
puter system may be a general purpose computer system, a
computer implemented on a card installed in a chassis, or
other types of embodiments. Elements of a computer not
necessary to understand the present description have been
omitted for simplicity.
I0129. The computer may include at least one central pro
cessing unit or CPU (processor) 160 which is coupled to a
processor or host bus 162. The CPU 160 may be any of
various types, including an x86 processor, e.g., a Pentium
class, a PowerPC processor, a CPU from the SPARC family of
RISC processors, as well as others. A memory medium, typi
cally comprising RAM and referred to as main memory, 166
is coupled to the hostbus 162 by means of memory controller
164. The main memory 166 may store test executive sequence
Software, e.g., test executive sequences, process models, a test
executive engine, and/oratest executive sequence application
development environment, among others. The main memory
may also store operating system software, as well as other
Software for operation of the computer system.
0.130. The hostbus 162 may be coupled to an expansion or
input/output bus 170 by means of a bus controller 168 or bus
bridge logic. The expansion bus 170 may be the PCI (Periph
eral Component Interconnect) expansion bus, although other
bus types can be used. The expansion bus 170 includes slots
for various devices such as described above. The computer 82
further comprises a video display subsystem 180 and hard
drive 182 coupled to the expansion bus 170. The computer 82
may also comprise a GPIB card 122 coupled to a GPIB bus
112, and/or an MXI device 186 coupled to a VXI chassis 116.
I0131. As shown, a device 190 may also be connected to the
computer. The device 190 may include a processor and
memory which may execute a real time operating system. The
device 190 may also or instead comprise a programmable
hardware element. The computer system may be configured
to deploy a test executive sequence to the device 190 for
execution on the device 190. The deployed sequence may take
the form of graphical program instructions or data structures
that directly represents the sequence. Alternatively, the
deployed sequence may take the form of text code (e.g., C
code) generated from the sequence. As another example, the
deployed sequence may take the form of compiled code gen
erated from either the sequence or from text code that in turn
was generated from the sequence.

Process Model Plug-ins

0.132. In some embodiments, a test executive system may
be provided (e.g., for deployment to and execution on a com
puter system) that includes a test executive engine, configured
to execute at least one test executive sequence to test at least
one unit under test (UUT), and a process model, where the
process model specifies one or more function sequences for
pre-test or post-test functionality.

US 2014/0006868 A1

0133. The test executive system may also include a plug-in
framework, which may be configured to selectively incorpo
rate one or more process model plug-in instances in the pro
cess model. Each process model plug-in may include or
specify at least one respective function sequence for pre-test
or post-test functionality. Note that for brevity the process
model plug-ins may be referred to herein simply as “plug
ins.
0134 Each plug-in may thus include or specify one or
more function sequences that the test executive engine (or
simply “engine' for brevity) may call during process model
execution to accomplish various tasks, e.g., results processing
tasks, such as report generation and database logging tasks.
The test executive system may include one or more built-in
plug-ins, e.g., a Reports Generation plug-in to handle report
generation, a Database Logging plug-in to handle database
logging, and/or an Offline Results Generation plug-in for raw
result logging, also referred to as offline results generation.
Moreover, in some embodiments, a user may create custom
process model plug-ins to extend or modify the functionality
of the process model(s) without changing the process model
files directly. In some embodiments, the test executive system
may further include a sequence editor, configured to include
or configure a plurality of test executive steps in a test execu
tive sequence in response to user input to the sequence editor,
although this functionality is not required for the techniques
disclosed herein.
0135 An illustrative exemplary implementation of a test
executive system with process model plug-ins is described
herein in the context of the TestStandTM test executive system
provided by National Instruments Corporation, although it
should be noted that the embodiments described are not
intended to limit the invention to any particular implementa
tion, formats, feature set, names, directories, or appearance.

FIG. 5 Exemplary Structure of Process Model Plug-ins
0.136 FIG.5 is a high-level block diagramofan exemplary
process model plug-in and associated instance, according to
one embodiment. In some embodiments, process model plug
ins may be implemented in terms of specific entry points,
entry point parameters, and/or data types. As used herein, the
term “entry points' refers to a specified (possibly abstract) set
of interfaces corresponding to specific points in the process
model execution, where process model plug-ins can provide
implementations for one or more of the interfaces in the form
of respective function sequences, which may themselves be
referred to as (implemented) entry points (or entry point
function sequences). In other words, there are various points
in process model execution where process model functional
ity can be specified by users via corresponding function
sequences, i.e., entry point function sequences, or simply
“entry points'.
0.137 As may be seen in FIG. 5, the exemplary process
model plug-in (or function sequence file) shown includes a
process model plug-in entry point function sequence A,
which may correspond to an execution point A in the process
model, as well as a process model plug-in entry point function
sequence C, which may correspond to an execution point C in
the process model, discussed in more detail below with ref
erence to FIG. 6. As FIG. 5 also shows, an instance of the
process model plug-in include data elements or structures for
the plug-in, specifically, data 1, data 2, and data 3.
0138 Entry point parameters may be passed to an invoked
plug-in function sequence, and may include various attributes

Jan. 2, 2014

of the plug-in itself. Such as, for example, ModelPlugin,
which is used to pass an instance of the plug-in to an invoked
plug-in, and thus includes the data elements for the associated
function sequence(s), e.g., data1, data 2, and/or data 3, as well
as additional data arguments passed to the function sequence
(s) for execution, e.g., ModelPluginConfiguration, Model.Th
readType, ModelType, CallingThread, and so forth. The data
types are the data definitions for the various parameters. Thus,
in some embodiments, each plug-in is a sequence file that
includes one or more function sequences, including one or
more entry point function sequences. Moreover, in some
embodiments, the sequence file may also include non-entry
point function sequences that can be called from other
sequences. Note that the name “entry point' is exemplary
only, and that any other names for process model function
sequences may be used as desired. More generally, it is not the
particular names of elements and processes described herein
that are important, but the techniques, functionality, and con
cepts disclosed.
0.139. In some embodiments, the plug-in instances and
plug-in function sequences may be considered as somewhat
analogous to the object oriented concepts of data elements
and class methods of an instantiated object, respectively. In
other words, the plug-in (sequence file) includes the function
sequences, and the instance includes the data used by the
function sequences, much as the methods of a class operate
according to the data elements of an instantiated object of the
class.
0140. It should be noted that the particular implementation
disclosed herein is meant to be exemplary only, and is not
intended to limit the embodiments of the invention to any
particular form, function, or appearance. For example, in
Some embodiments, object oriented concepts and mecha
nisms may be used, possibly including inheritance.
0.141. Thus, by setting the values for the data fields of an
instance, a user may specify the particular behavior of the
instance of the plug-in. Accordingly, multiple instances of a
plug-in may be invoked, possibly within the same model
execution, where each instance operates per its internal data
and per the other parameters passed in. Configuration of
plug-ins and plug-in instances are discussed below in more
detail.

Exemplary Plug-in Entry Points

0142. In some embodiments, process models may invoke
model plug-ins (or instances) by calling one or more optional
entry point function sequences with a pre-defined set of
parameters at specific points in the testing process.
0.143 FIG. 6 is a high-level block diagram of an exemplary
(and simplified) test executive system process model with
process model plug-ins, according to one embodiment. As
shown, in this illustrative embodiment, the process model
includes several inherent functions, specifically, inherent
model function 1, inherent model function 2, and inherent
model function 3, as well as one or more UUT tests, as
indicated. As also shown, the process model has a set of
pre-defined (execution) points, A, B, and C, at each of which
one or more process model plug-ins may invoked with par
ticular instances. In this exemplary embodiment, after perfor
mance of inherent model function 1, at point A, a process
model plug-in entry point function sequence A is invoked.
Then the one or more UUT tests are performed, after which,
at point B, process model plug-in entry point B is invoked.
Then, inherent model function 2 is performed. Subsequently,

US 2014/0006868 A1

at point C, a process model plug-in entry point function
sequence C is invoked, then a process model plug-in entry
point function sequence C" is invoked, where the “prime'
simply denotes that the second process model plug-in entry
point function sequence invoked at point C is from a different
plug-in. In other words, two different process model plug-ins
included an entry point function sequence for point C. In
Some embodiments the process model plug-in entry point
function sequences A and C may be provided by the exem
plary plug-in of FIG. 5, and the process model plug-in entry
point function sequences B and C may be provided by one or
more different plug-ins.
0144. The following is an example of a set of entry points,
where each entry point name includes “Model Plugin' to
denote its identity as a model plug-in entry point function
sequence. It should be noted that the particular names used
herein are exemplary only, and that any other names (and
functions) may be used as desired.
0145 Model Plugin Configure Standard Options
0146 Model Plugin Configure Additional Options
0147 Model Plugin Initialize
0148 Model Plugin Begin
0149 Model Plugin Pre Batch
0150 Model Plugin Pre UUT
0151 Model Plugin Batch Start
0152 Model Plugin UUT Start
0153. Model Plugin. OnTheFly Step Results
0154) Model Plugin UUT Done
O155 Model Plugin Batch Done
0156 Model Plugin Post UUT
(O157 Model Plugin Post Batch
0158 Model Plugin End
0159. Note that each plug-in may implement some subset
of the defined entry points as desired. In other words, only the
entry points needed to perform specific tasks may be imple
mented by a particular plug-in. It should be further noted that
the above entry points are meant to be exemplary only. Brief
descriptions of the above exemplary entry points are provided
below.
0160 Following the above example, the Configure Stan
dard Options and the Configure Additional Options entry
points may provide functionality invoked when editing a
model plug-in configuration. Process models may invoke
(any of) the remaining entry points at run time from specified
points in the model execution.
0161 Table 1 presents an exemplary plug-in entry point
run-time order for a sequential process model, where, per the
above convention, each plug-in entry point (function
sequence) has the “Model Plugin prefix:

TABLE 1.

Plug-in Entry Point Run-Time Order - Sequential Model
Sequential Model Controller/Socket Thread

Model Plugin - Initialize
ModelOptions Callback
Model Plugin - Begin
Process Setup
PrelJUTLoop Callback
Begin UUT Loop
PreUUT Callback
Model Plugin - Pre UUT
If (continueTesting) goto End of UUT Loop
Model Plugin - UUT Start
MainSequence Callback

Jan. 2, 2014

TABLE 1-continued

Plug-in Entry Point Run-Time Order - Sequential Model
Sequential Model Controller Socket Thread

Model Plugin - OnTheFly Step ResultsModel
Plugin - UUT Done
Model Plugin - Post UUT
PostUUT Callback
End of UUT Loop
PostUUTLoop Callback
Process Cleanup Callback
Model Plugin - End

0162 Similarly, Table 2 presents an exemplary plug-in
entry point run-time order for a parallel process model,
where, as with Table 1, each plug-in entry point (function
sequence) has the “Model Plugin prefix:

TABLE 2

Plug-in Entry Point Run-Time Order - Parallel Model

Controller Thread Test Sockets Threads

Model Plugin - Initialize
ModelOptions Callback
Model Plugin - Begin
Process Setup

Model Plugin - Pre UUT
If (continueTesting) goto End of UUT

Model Plugin - UUT Start
MainSequence Callback

Plugin - OnTheFly Step Results
Model Plugin - UUT Done

Plugin - Post UUT
PostUUT Callback
End of UUT Loop
PostUUTLoop Callback
Model Plugin - End

Process Cleanup Callback
Model Plugin - End

0163 Table 3 presents an exemplary plug-in entry point
run-time order for a batch process model, where, as with
Tables 1 and 2, each plug-in entry point (function sequence)
has the “Model Plugin prefix:

TABLE 3

Plug-in Entry Point Run-Time Order - Batch Model

Controller Thread Test Socket Threads

Model Plugin - Initialize
ModelOptions Callback
Model Plugin - Begin
Process Setup
PreBatch Loop Callback

Model Plugin - Begin
PrelJUTLoop Callback

Begin Batch Loop
PreBatch Callback
Model Plugin - Pre Batch
If (continueTesting) goto
End of Batch Loop
Model Plugin - Batch Start Begin UUT Loop

PreUUT Callback
Model Plugin - Pre UUT

US 2014/0006868 A1

TABLE 3-continued

Plug-in Entry Point Run-Time Order - Batch Model

Controller Thread Test Socket Threads

If (continueTesting) goto
End of UUT Loop
Model Plugin - UUT Start
MainSequence Callback
Model Plugin - OnTheFly Step Results
Model Plugin - UUT Done
Model Plugin - Post UUT
PostUUT Callback

Model Plugin -Batch Done

Model Plugin - Post Batch
PostBatch Callback
End of Batch Loop End of UUT Loop

PostUUTLoop Callback
Model Plugin - End

PostBatch Loop Callback
Process Cleanup Callback
Model Plugin - End

0164. As shown, in each of the above cases, particular
entry points (entry point function sequences) are invoked at
the indicated points during model execution.

Brief Descriptions of Exemplary Entry Points

0.165. As noted above, the exemplary Model Plugin—
Configure Standard Options and Model Plugin Configure
Additional Options entry points may provide configuration
functionality invoked when editing a model plug-in configu
ration.
0166 For example, the Model Plugin Configure Stan
dard Options entry point may be used to provide a way to
configure option settings for an instance of a plug-in. One
example of a configurable option is "asynch', which may
specify that an operation or function is performed in an asyn
chronous manner. In one exemplary embodiment, a plug-in
that implements Model Plugin Configure Standard Options
may include an icon in an Options column of a Result Pro
cessing dialog box. Model plug-in end users may click the
icon to invoke the Model Plugin Configure Standard
Options entry point (function sequence), which may launch a
modal dialog box in which the end user can view and edit
options for the instance of the plug-in.
0167 As another example, the Model Plugin Configure
Additional Options entry point may be used to launch a sec
ond dialog box to provide a way for plug-in end users to
configure option settings for the instance of a plug-in. Typi
cally, this entry point may not be needed because options may
be presented in a single dialog box by using tabs, modal
popup dialog boxes, or any other organizational methods to
accommodate many options. Further details regarding con
figuration of process model plug-ins are provided below.
0168 The following briefly describes exemplary non-con
figuration related entry points:
0169 Model Plugin Initialize: A process model may call
the Model Plugin Initialize entry point once in its controller
thread before calling any other run-time entry points and
before calling overriding callbacks, e.g., ModelPluginCp
tions and ModelPluginConfiguration callbacks.
0170 Typically, the Model Plugin Initialize entry point
may only be implemented (in a plug-in) if the user wants to
initialize variables or options before the process model calls
the ModelPluginCptions and ModelPluginConfiguration
callbacks. Because these callbacks can disable or remove

Jan. 2, 2014

plug-ins, no guarantee exists that the process model calls the
Model Plugin End entry point for every plug-in that calls
Model Plugin Initialize entry point. Therefore, the Model
Plugin Begin entry point (rather than the Model Plugin—
Initialize entry point) may generally be used to perform any
initialization that requires cleanup in Model Plugin End.
0171 Model Plugin Begin: The Model Plugin Begin
entry point may be used to perform required setup or initial
ization tasks. Such as opening files or establishing database
connections.
(0172 Model Plugin Pre UUT: The Model Plugin Pre
UUT entry point may be used to identify the UUT or deter
mine whether to continue testing.
(0173 Model Plugin UUT Start: The Model Plugin
UUT Start entry point may be used to perform setup or ini
tialization tasks before testing each UUT. For example, a
plug-in might use Model Plugin UUT Start to initialize
database connections or open report files.
(0174) Model Plugin. OnTheFly Step Results: The Model
Plugin. OnTheFly Step Results entry point may be used to
obtain step results during test execution. As used herein, the
term “on-the-fly” means “as the results are generated’. Thus,
for example, when the user enables the On-The-Fly Report
ing option in the Report Options dialog box, the built-in
reporting plug-in calls Model Plugin. OnTheFly Step
Results to append results information to the report during test
execution.
(0175 Model Plugin UUT Done: The Model Plugin
UUT Done entry point may be used to perform an action after
each UUT completes. For example, a plug-in might process
the UUT test results and store the information in a report file
or database tables.
(0176 Model Plugin Post UUT: A process model may
call the Model Plugin Post UUT entry point after calling the
Model Plugin UUT Done entry point.
(0177 Model Plugin End: The Model Plugin Endentry
point to perform required cleanup or finalization tasks, such
as closing files or database connections.
(0178 Model Plugin Pre Batch: The Model Plugin Pre
Batch entry point may be used to identify the batch or deter
mine whether to continue testing.
(0179 Model Plugin Batch Start: The Model Plugin
Batch Start entry point may be used to perform setup or
initialization tasks before testing each batch.
0180 Model Plugin Batch Done: The Model Plugin
Batch Done entry point may be used to performan action after
each batch completes. For example, a plug-in may generate a
batch report that summarizes the results of all test socket
threads.
0181 Model Plugin Post Batch: A process model may
call the Model Plugin Post Batch entry point after calling
the Model Plugin Batch Done entry point.
0182. As noted above, an instance of a plug-in includes the
data used by the plug-in function sequence(s) (e.g., entry
points) to perform the plug-in functionality. These data may
be implemented or organized in any of a variety of ways. In
one exemplary embodiment, the instance may include a glo
bal variable (structure) that includes a base set of data ele
ments shared by all plug-ins (or plug-in instances), and addi
tional data elements or structures that may vary between
plug-ins. One exemplary embodiment of Such a global vari
able/structure is the data type NI ModelPlugin, whose struc
ture and exemplary use is now described for illustrative pur
poses.

US 2014/0006868 A1

0183 NI ModelPlugin: In one embodiment, when a user
inserts an instance of a plug-in into a configuration, the pro
cess model creates the instance of the plug-in by copying the
FileGlobals. ModelPluginComponent Description. Default
property of the NI ModelPlugin data type in the plug-in
sequence file. When the user edits the options for an instance
of a plug-in, the user changes the values of Subproperties of
the NI ModelPlugin data type instance.
0184 Each time a function sequence is executed using a
process model, the process model may load a copy of the
plug-in configuration from its configuration file. For each
NI ModelPlugin data type instance in the configuration, the
model may pass the instance to (or as) the ModelPlugin
parameter of the entry points in the corresponding plug-in.
The plug-in may then access the ModelPlugin parameter
Subproperties to determine the options configured.

Exemplary NI ModelPlugin Properties
0185. In one embodiment, the NI ModelPlugin data type
includes PluginSpecific, Category:Specific, and Base top
level subproperties:
0186 Plug InSpecific: The Plug InSpecific property con
tains Subproperties that vary depending on the plug-in. The
Plug InSpecific property is an unstructured container, mean
ing the Subproperties and Subproperty data types can vary
regardless of the NI ModelPlugin type definition.
0187. When a developer creates a plug-in, the PluginSpe

cific property may include the following Subproperties, each
with a data type unique to the plug-in, as indicated in paren
theses. The following corresponding data type may be edited
to add Subproperties to each property.
0188 Options (<plug-in name>Options). Subproperties
may be created to store any options or settings the plug-in
provides. Typically, one implements the Model Plugin—
Configure Standard Options entry point to provide a way for
end users to edit the options added (e.g., by the developer).
(0189 AdditionalOptions (<plug-in
name>AdditionalOptions)—Subproperties may be created
only if a Model Plugin Configure Additional Options entry
point is (also) defined.
0190. RuntimeVariables (<plug-in
name>RuntimeVariables). The RuntimeVariables subprop
erty may be used to define variables the plug-in uses at run
time. Subproperties may be created to share data within the
same process model execution among the different entry
points in the plug-in. The <plug-in name>RuntimeVariables
data type may be required to always include the following
Subproperty:

(0191 PerSocket (Array of <plug-in
name>PerSocketRuntimeVariables). At run time, the
process model may resize the PerSocket array to include
one element for each test socket in the test executive
system. By adding properties to the <plug-in
name>PerSocketRuntimeVariables data type, one can
create per-socket variables that can be used to share data
within the same process model execution among the
different entry points in the plug-in.

0.192 In some embodiments, modifying the structure of
these properties at run-time may not be Supported, although in
other embodiments, it may.
0193 Category:Specific: The Category:Specific property
may provide a location for related plugs-ins to store informa
tion common to all plug-ins within a category. The Catego
rySpecific property may not need to be edited unless a set of

Jan. 2, 2014

related plug-ins is being developed that store common prop
erties to Support behavior that all plug-ins in the category
share. In one embodiment, the Category:Specific property
may include the following Subproperties (data type indicated
in parentheses):
0194 Name (String) Specifies the category to which the
plug-in belongs. Plug-ins with the same case-insensitive
name belong to the same category. Code that implements
category-specific functionality can inspect this field to deter
mine the category of the plug-in.
(0195 Settings (<company prefix> <category
name>CategorySettings)—The specific data type of category
settings defines the option properties common to plug-ins in a
category.
0196. The built-in reporting, database, and offline results
generation plug-ins may set the Category:Specific.Name
property to ResultProcessor and may set the data type of the
Category:Specific. Settings property to NI ResultProcessor
CategorySettings. These values may be required to be used
for a plug-in to appear in the Result Processing dialog box.
The test executive system may use these default values for any
plug-in created from within the Result Processing dialog box.
0.197 Base: The Base property may contain subproperties
that specify functionality common to all plug-ins. The pro
cess model may use the Subproperties of the Base property to
determine how to invoke plug-in entry points and other
aspects of plug-in operation. In one embodiment, the Base
property includes the following Subproperties:
(0198 Enabled (Boolean) Specifies whether the model
invokes the instance of the plug-in at run time.
(0199 DisplayNameExpression (Expression)—An
expression that specifies the name to display in the Result
Processing dialog box to identify the instance of the plug-in,
such as “KCompany Name> Production Database', including
the quotation marks. The value takes the form of an expres
sion so that the default value the plug-in defines can refer to
localized text, e.g., using the Resstr() expression function.
One may edit the text in the Output Name column of the
Result Processing dialog box.
(0200 NewThread (Boolean) Specifies whether the
plug-in performs some operations in a separate thread.
0201 UselDefaultNewThread Implementation (Bool
ean)—Specifies whether the process model automatically
calls the Model Plugin UUT Done and Model Plugin—
Batch Done entry points in a new thread when the New Thread
property is True. This property should be set to False if the
plug-in provides its own implementation for processing in a
new thread when the NewThread property is True.
(0202 CompleteBeforeNextUUT (Boolean) Specifies
whether the process model waits for the UUT Done thread of
the plug-in to complete before calling any additional entry
points for the current execution, except for the UUT Done
entry points of other plug-ins. If the plug-in sets the UseOe
faultNew Thread Implementation property to False, the plug
in should honor the CompleteBeforeNextUUT setting.
(0203 ProcessOnTheFly (Boolean) Specifies whether
the process model calls the Model Plugin. OnTheFly Step
Results entry point.
(0204 CanProcessOfflineCnTheFlyResults (Boolean)–
Indicates whether the plug-in can process an offline results
file written on-the-fly. This property should be set to False for
plug-ins that do not use the OnTheFly Step Results entry
point or that access the Step or Context parameters within that
entry point. The entry point should not access the Step or

US 2014/0006868 A1

Context parameters because the test executive system does
not pass any data to these parameters when processing data
from an offline results file.
0205 CanProcessOfflineResultsTree (Boolean) Indi
cates whether the plug-in can process an offline results file
that was not written on-the-fly. A value of True indicates that
the UUT Done and Post UUT entry points completely process
the results without requiring a call to the OnTheFly Step
Results entry point.
0206 OptionsDescriptionExpression (Expression). The
result of the expression evaluation is the text displayed to
Summarize the option settings in a configuration dialog box.
The ModelPlugin prefix may be used to access the properties
of the plug-in instance in the expression. For example, one
may use the following expression to display the path of a
plug-in-specific output directory:

0207 “My plug-in stores its output files at:'+Model
Plugin.PluginSpecific. Options.MyPluginCutputPath

0208 SequenceFileName (String). The process model
sets this property to the filename of the sequence file that
implements the instance of the plug-in. The filename is rela
tive to the enclosing ModelPlugins directory.
0209 IconName (String). This property may be set to the
name of an icon that represents the instance of the plug-in.
The leftmost column of the Result Processing dialog box may
display this icon. The icon name should be a valid argument
to the Engine.FindImage method.
0210 GUID (String)—A string that uniquely identifies
the instance of the plug-in.
0211 AlwaysInitialize (Boolean)—If this property is
True, the process model calls the Model Plugin Initialize
entry point and the ModelPluginCptions callback for the
plug-in even when the Enabled property is False. The entry
point and callback can set the Enabled property to True. This
option adds overhead for a disabled plug-in instance because
the process model must still load the plug-in sequence file at
run time.
0212 RequiresBatchControllerAnd
SocketSynchronization (Boolean)—If this property is True,
the Batch process model allows the plug-in instance to per
form controller and socket synchronization between the
Model Plugin Batch Start and Model Plugin UUT Start
entry points and between the Model Plugin Batch Done and
Model Plugin UUT Done entry points. Further information
regarding synchronization is provided below.
0213 RunOrder (Number) If the RunOrder properties
of two plug-in instances are not equal, the process model
invokes entry points on the plug-in with the lower RunOrder
value first. The Order of Entry Point Execution at Run Time
(see above) may be referred to for more information.
0214) RuntimeVariables (NI ModelPlugin RuntimeVari

ables). Variables the process model updates to control and
indicate the execution state of the instance of the plug-in.

Configuring Process Model Plug-ins
0215. In some embodiments, the plug-in framework may
include, provide, or have access to, a plurality of options, and
accordingly, each plug-in may further specify one or more
options (of the plurality of options) regarding the at least one
function sequence. In other words, in some embodiments,
each plug-in may not only specify at least one function
sequence to invoke or execute, but may also specify a set of
options with which to invoke the function sequence(s) of the
plug-in. The set of options may be implemented as data fields

Jan. 2, 2014

whose values (which may be default values or set by a user)
may initialize or populate an instance of the plug-in at runt
ime, and which specify at least some of the behavior of the
corresponding function sequence. Plug-in options may
specify any attributes desired. For example, one exemplary
option for a report generating plug-in may indicate which
report to generate or display. Other examples of Such options
include, but are not limited to, report path, and report format,
e.g., HTML, XML, or Text formats. As noted above, in some
embodiments, multiple instances of a plug-in may be inserted
into the process model (e.g., via copying the instances into a
configuration file), each with its own configuration. Thus, for
example, respective instances of a report generating plug-in
may be configured and inserted into the process model to
produce two different versions of a report, e.g., text and XML.
0216. As also noted above, a process model may invoke
plug-in instances at defined points during execution. A plug
in instance may specify the plug-in (or sequence file) to
invoke and the set of options with which to invoke the plug-in.
In some embodiments, a user may specify insertion of plug-in
instances into a process model and/or configure Such
instances via a dialog box (or other user interface), which in
Some embodiments may be category specific, as discussed in
more detail below. One example of a broad plug-in category
is “Results Processor, although it should be noted that other
categories may be defined and utilized as desired. Plug-ins in
the “Results Processor' category may relate to the processing
of results of the testing process, and may utilize a correspond
ing configuration file ResultProcessing.cfg, which may store
the information for plug-in instances configured via a Result
Processing dialog box.
0217. As mentioned above, in some embodiments, a user
interface (UI), e.g., a configuration UI, may be provided for
each category of plug-in, although other approaches may be
used as desired, e.g., a UI may be provided per plug-in. The
UI (e.g., a graphical user interface, such as a dialog box, or a
command line) may allow a user to select a plug-in to instan
tiate and configure (via user input), in response to which a
corresponding instance may be generated and inserted into an
appropriate configuration file. In one embodiment with cat
egory specific UIs, the UI may only allow the user to selector
configure plug-ins of the associated category. In a further
embodiment, each plug-in may have an associated configu
ration UI that is accessible (e.g., invocable) from the configu
ration UI for the category. Exemplary UIs are described
below with reference to FIGS. 7A-7F.

0218. In some embodiments, user-created or specified
plug-ins may also be Supported, referred to herein as process
model plug-in add-ons, and which may utilize a correspond
ing configuration file, e.g., Addons.cfg. In one embodiment, a
model plug-in add-on may be a model plug-in the process
model invokes without requiring end users to create and con
figure a plug-in instance. This may be accomplished by plac
ing a model plug-in function sequence file in a specified
add-ons directory (i.e., folder), e.g., <TestStand
Public-\Components\Models\ModelPlugins\Addons, to cre
ate a model plug-in add-on. In one embodiment, the process
model may update the Addons.cfg file when the process
model detects a new, removed, or updated plug-in in the
Addons directory. Thus, for example, in response to a user
putting plug-in function sequence files into the Addons
folder, the plug-in framework may automatically insert one
instance for each file into the addon configuration file. More
specifically, the process model may automatically use the

US 2014/0006868 A1

default set of options the add-on sequence file defines to
create one plug-in instance for each add-on the Addons.cfg
file contains.

0219. In some embodiments, each configuration file may
include multiple configurations, one of which may be desig
nated as “active', and each configuration may have multiple
plug-in instances. At run-time, the active configuration may
be loaded from each configuration file (unless the user has
specified a specific configuration name to load).
0220. The active configurations from all configuration

files may be merged into a single run-time configuration so
that all plug-in instances in the active configuration of each
configuration file are utilized.
0221. At run time, the process model may read the set of
plug-in instances to invoke from the plug-in configuration
(.cfg) file(s), located in a specified directory, e.g., the
<TestStand Application Data-\CfgSModelPlugins directory.
In one embodiment, by default, the test executive system may
be configured to create configuration files for the plug-ins in
the specified (configuration) directory if the files do not
already exist. For example, following the exemplary imple
mentation described herein, the plug-in framework (or devel
opment environment) may create ResultProcessing.cfg and
Addons.cfg configuration files in the <TestStand Application
Data-\CfgSModelPlugins directory if the files do not already
exist. Of course, other configuration files may be used as
desired, the particular files disclosed herein being exemplary
only.

Model Plug-in Categories

0222. As noted above, in some embodiments, there may be
one or more categories of plug-ins, each of which may have
an associated configuration file. Accordingly, in one embodi
ment, each model plug-in file may specify a category name
(see <NI ModelPlugins.Category:Specific.Name) to deter
mine when a plug-in can be invoked or made available. For
example, in the Result Processing dialog box, one may insert
only plug-in instances with the “ResultProcessor' category
name. Similarly, an Offline Results Processing Utility (de
scribed in more detail below) may invoke only plug-ins with
the “ResultProcessor' category name. Therefore, a user
should not use “ResultProcessor as the category name for a
plug-in that does not act as a result processor.
0223) In one embodiment, two configuration files may be
provided by default: the file ResultProcessing.cfg, e.g., cre
ated via the Result Processing dialog box, as noted above,
which may only contain plug-ins with a category of "Result
Processor, and Addons.cfg, e.g., created automatically with
one plug-in instance from each plug-in sequence file that is
installed in an Addons\sub-directory.
0224 However, if desired, the user may create their own
dialogs (e.g., manually, or via a wizard) to create addition
configuration files or create configuration files programmati
cally or by copying existing files. For example, a user might
make a Semiconductor Device Handler plug-in dialog
whereby the user may insert instances of plug-ins that have a
category of "SemiconductorHandler'. The dialog may
accordingly create and/or write to a SemiconductorHandler
SConfiguration.cfg file. At run-time, the model may load
plug-in instances from this file, as well as from ResultPro
cessing.cfg and Addons.cfg (and any configuration files for
other categories, e.g., various other “Handler categories, or
other categories, as desired).

Jan. 2, 2014

Creating Process Model Plug-ins

0225. In one embodiment, process model plug-in
sequence files may be required to meet the following condi
tions:

0226 1. The model plug-in sequence files should be saved
in appropriate directories, e.g., one of the following directo
ries:

<Test Stand-\Components\Models\ModelPlugins (built-in plug-ins)
<Test Stand Public\Components\Models\ModelPlugins (custom plug

ins)
<Test Stand-\Components\Models\ModelPlugins Addons (built-in add

ons)
<Test Stand Public\Components\Models\ModelPlugins. Addons (custom

add-ons). It should be noted that the above directories are exemplary only.

0227 2. An appropriate file global variable (structure)
should be included, e.g., a global structure named Model
PluginComponent Description that uses the NI ModelPlug
inComponentDescription data type.
0228. 3. The type “Model’ (or equivalent) should be speci
fied as the type of the model plug-in sequence file, e.g.,
specified via a Sequence File Properties dialog box for the
model plug-in sequence file.
0229 4. The model plug-in sequence file should contain
one or more plug-in entry point sequences, as appropriate for
the plug-in functionality.
0230. In some embodiments, plug-in entry-points may be
invoked with synchronization constraints according to the
type of process model being used.
0231. For example, in one embodiment, for all process
models, the Begin entry point in the controller thread may be
required to complete before any Begin entry point in any test
Socket thread starts. Additionally, all End entry points in any
test socket thread may be required to complete before the End
entry point in the controller thread starts.
0232. In some embodiments, batch process models may
have specific synchronization constraints. Examples of Such
synchronization constraints for batch process models may
include: All Begin entry points in all test Socket threads may
be required to complete before the Pre Batch entry point
starts. The Pre Batch entry point may be required to complete
before any Pre UUT entry points start. All restarted test socket
threads may be required to reach the same sync point as the
remaining, active test socket threads before any Pre UUT
entry points start. All UUT Start entry points may be required
to complete before the Batch Done entry point starts. The
Batch Start entry point may be required to complete before
any UUT Done entry points start. All Post UUT entry points
may be required to complete before the Post Batch entry point
starts. Of course, any Such synchronization constraints may
be used as desired.

0233. In one embodiment, “on-the-fly” results processing
functionality may be supported. For example, a plug-in to
process results on-the-fly may be enabled by setting a Pro
cessOnTheFly subproperty to True, and the test executive
system may progressively collect results concurrent with the
test execution. When the test executive system collects a
result and exceeds a threshold in time or in the number of
collected results, the process model may pass the results
collected since the last time the test executive system

US 2014/0006868 A1

exceeded the threshold to the Model Plugin. OnTheFly Step
Results entry point for processing (see exemplary entry point
descriptions above).
0234. A plug-in that processes results on-the-fly, such as a
report generator or a database logger, may typically append
data to a report or logs the data to a database while iterating
through each array of results the model passes to the OnThe
Fly Step Results entry point.

FIGS. 7A-7F Exemplary User Interfaces
0235 FIGS. 7A-7F illustrate exemplary user interfaces for
specifying, configuring, and managing, process model plug
ins, according to various embodiments.
0236 FIG. 7A illustrates an exemplary UI for plug-ins of
the Result Processor category, specifically, a Result Process
ing dialog box. As shown, the dialog box presents various
(basic) options for plug-ins of this category, including an
XML Document option and an offline unprocessed (i.e., raw)
results option, each with corresponding “Output”, “Enabled'.
and “Display” fields. The Result Processing dialog box may
be used to configure how the test executive system processes
the results the user's test sequences generate. For example,
one can choose to generate reports, log to databases, or store
results in compact offline result files for later processing.
Additional options may be included for processing results if
additional Result Processing Plug-ins have been created or
installed.
0237. In this exemplary embodiment, by default, the
Result Processing dialog box displays without showing its
advanced options. In this case it contains only a table with one
row in the table for each of the installed Result Processing
Plug-ins. One can enable or disable each plug-in, and can
configure the options for how each plug-in processes test
results.
0238 If the user checkmarks the Show Advanced Options
checkbox, the dialog box may display additional controls, as
illustrated in FIG. 7B. With these additional controls, the user
may insert or delete Result Process Processing Plug-in
instances, change the order in which the test executive system
invokes them, and specify whether the test executive system
invokes them serially or in parallel using separate threads.
The user can also create and manage multiple sets of config
ured Plug-in instances. Each set may be referred to as a Result
Processing Configuration.
0239 Exemplary advanced options provided by the
embodiment of FIG. 7B may include (but are not limited to)
any of
0240 Configuration. This drop down list (see Configu
ration control in the top left of the dialog box) selects which
Result Processing Configuration is active. The Plug-in
Instance Table may display the plug-in instances in the active
configuration and the test executive system may use the active
configuration to process results inline, where inline means at
runtime. The user may also select a “Manage Configurations
...' item to display a corresponding Manage Result Process
ing Configurations dialog box.
0241 Plug-in Instance Table—Each row in this table
specifies a result processing plug-in and the options with
which to invoke it. The user may insert instances of the same
plug-in on multiple rows to invoke the plug-in multiple times
with varying options. For example, a user may do this to
create multiple reports with different formats or to log to
multiple databases. Each row in the table may have the fol
lowing columns:

Jan. 2, 2014

0242 Output Indicates the type of output the results pro
cessing plug-in creates. The user may be allowed to edit the
name to make it more descriptive.
0243 Enabled Indicates whether the test executive sys
tem invokes the plug-in instance when processing results.
0244 Display This column only appears if a plug-in
instance that uses it is in the table. In one embodiment, of the
provided plug-ins, only the Report Generation plug-in uses
the Display column. For multiple instances of the Report
Generation plug-in, the checkbox in the display column
specifies which instance displays its report by default in a test
executive system Report View. At run-time, the user may still
view a report from a different plug-in instance in the Report
View by selecting from an Active Report menu from the
Report View toolbar. To create reports without the overhead
of displaying them in the report view, one may deselect the
Display checkbox for all Report Generation plug-in
instances.

0245 Options—Displays a summary of the most impor
tant option settings for the plug-in instance. One may click the
Options button to display the options dialog box for the plug
in instance.

0246 New Thread Specifies how the test executive sys
tem (e.g., TestStand) invokes the plug-in. The options may
include:

0247 Yes—the test executive system invokes the plug
in in a new thread. It processes results in parallel with
other plug-ins and with the testing of subsequent UUTs.

0248. No the test executive system waits for the plug
in to complete its processing before invoking the next
plug-in in the table, including plug-ins with New Thread
set to Yes.

0249 Yes, But Complete before next UUT invokes
the plug-in in a new thread but waits for the plug-in to
complete before testing begins on the next UUT.

0250 Insert New Plug-in Instance Displays a menu of
the installed result processing plug-ins. One may select an
item from the menu to inserta new instance of the plug-in into
the Plug-in Instance Table.
0251 Cut Removes the selected plug-in instance and
places it on the clipboard.
0252 Copy Copies the selected plug-in instance to the
clipboard.
0253 Paste Copies the plug-in instance on the clipboard
into the Plug-in Instance Table.
0254 Move Up Moves the plug-instance toward the
beginning of the Plug-in Instance Table.
0255 Move Down Moves the plug-instance toward the
end of the Plug-in Instance Table.
(0256 Help Displays the help topic for the Result Pro
cessing dialog box.
0257 Reset to Defaults—Replaces the contents of the cur
rent active configuration with one instance of each installed
result processing plug-in. Each instance is configured with its
options in their default state. This action prompts the user to
select whether they intend to use the configuration for inline
or offline processing. If offline is selected, the action does not
insert an instance of the Offline Result Generation plug-in
because the user already has an offline results file to process.

US 2014/0006868 A1

0258 Advanced ... —Displays the Advanced Result Pro
cessing Settings dialog box.
0259 Show More Options—When unchecked, the dialog
hides most of its controls and the user can only edit the
options of the plug-in instances that exist in the active con
figuration.
0260 FIG. 7C illustrates an exemplary Advanced Result
Processing Settings dialog box, according to one embodi
ment. The dialog may be launched via the user clicking on the
Advanced button in the Result Processing dialog box, and
may be used to configure advanced options that apply to result
processing for all plug-in instances in all configurations and
to create new Result Processing Plug-ins, e.g., to configure
on-the-fly result processing options that apply to all plug-in
instances in all configurations, such as specifying and man
aging the processing interval and specifying the maximum
number of results. The options in this dialog box may apply
only to the on-the-fly results processing action the test execu
tive system takes when it generates a result. The test executive
system may not process results for a thread while a code
module in the same thread executes, regardless of how long
the code module takes to execute. Additionally, these options
may set only maximum thresholds to trigger result process
ing. Depending on the internal requirements of the result
processing plug-ins used, on-the-fly result processing might
occur more frequently than the maximum values set in this
dialog box.
0261
0262 Processing Interval Specifies the duration in sec
onds since the last processing of on-the-fly results after which
a new result will trigger processing of the accumulated on
the-fly results. Said another way, this option specifies the
duration in seconds to wait after processing on-the-fly results
before processing the next set of accumulated on-the-fly
results. When a new result is available and time interval
exceeds the value set for this option, the test executive system
begins processing the results.
0263. Automatically Tune Interval—Specifies that the test
executive system also initiates processing of the accumulated
on-the-fly results when a new result is generated and the
number of accumulated results equals or exceeds the number
of results that the test executive system estimates can be
processed within the duration of the value of Processing
Interval. Enabling this option may ensure that large amounts
of rapidly generated results do not cause long pauses in test
execution during on-the-fly result processing.
0264. Maximum Number of Results—Specifies the num
ber of accumulated on-the-fly results at which to begin pro
cessing the results. The test executive system initiates the
processing of accumulated on-the-fly results when a new
result is generated and the number of accumulated results
meets or exceeds this value. In other words, when a new result
is available and the number of accumulated on-the-fly results
equals or exceeds the value set for this option, the test execu
tive system begins processing the results. If the user wants
each result to be processed immediately after it is generated,
this value should be set to 1.

0265. In one embodiment, the test executive system may
initiate processing of results when it generates a new result
and either the Processing Interval or the Maximum Number
of Results is exceeded. In a further embodiment, if the user
sets the thresholds for processing on-the-fly results so low
that only a single result or a very Small number of results

Options Supported may include:

Jan. 2, 2014

accumulate before they are processed, the overall time to
process results may be increased significantly.
0266. In yet another embodiment, the controls that govern
when on-the-fly results are processed may apply to the deci
sion regarding whether to process that the test executive sys
tem makes after it generates a result. The test executive sys
tem may not process results for a thread while a code module
in the same thread executes, regardless of how long the mod
ule takes. In addition, these controls may set maximum
thresholds that trigger result processing. Depending on the
internal requirements of the Result Processing Plug-ins used,
on-the-fly result processing might occur more frequently than
these thresholds specify.
0267 Create New Result Processor Plug-in ...—Creates
a new Result Processor Plug-in sequence file and opens the
file. The user may complete the entry points in the file that the
user's processor requires and delete the ones it does not. The
user should also update the appropriate result processor (e.g.,
plug-in) description, e.g., FileGlobals. ResultProcessorCom
ponentDescription in the user's plug-in according to the
user's requirements.
0268 FIG. 7D illustrates one embodiment of an exem
plary Manage Result Processing Configurations dialog box,
which may be used to create or delete Result Processing
Configurations. In one embodiment, a Result Processing
Configuration is a named set of result processing plug-in
instances. Having multiple configurations allows a user to
quickly change how results are processed by changing the
active configuration. It also allows the user to specify that
offline result files are processed differently than inline results
or that offline results files stored in different locations are
processed differently. By default the dialog box contains two
configurations that can be edited but not deleted or renamed:

0269 <Default for Inline Processing> This configu
ration is the default active configuration for processing
results at runtime.

(0270 <Default for Offline Processing> This configu
ration is the default configuration used by the Offline
Results Processing Utility.

0271 In some embodiments, the user may create any num
ber of additional configurations. For example, in one embodi
ment, the user may select the configuration that processes
inline results with the Configuration control on the Result
Processing dialog box (see, e.g., FIG. 7B). As noted above,
this control is visible only if Show Advanced Options is
selected on the Result Processing dialog box. The user may
select the configuration that processes offline results files for
an Offline Result Processing Profile by editing the profile in
the Offline Results Processing Utility. Exemplary options the
user may select include:
0272 Configuration List Display the list of all Result
Processing Configurations.
0273 Insert New—Inserts a new configuration into the
Configuration List.
0274 Cut Removes the selected configuration and
places it on the clipboard.
0275 Copy Copies the selected configuration to the
clipboard.
0276 Paste Copies the configuration on the clipboard
into the Configuration List.
0277 Rename Renames the selected configuration.
0278 Help Displays the help topic for the Manage
Result Processing Configurations dialog box.

US 2014/0006868 A1

0279 Reset to Defaults—Deletes all configurations and
replaces them with the two default configurations: <Default
for Inline Processing> and <Default for Offline Processing>.
0280. In some embodiments, the Offline Results Genera
tion plug-in may be configured to perform a high speed
unabridged dump of the raw results to a file. In one embodi
ment, the (dumped) data may include all data except for
plug-in configuration data. In other words, all data that can be
used for online processing, e.g., for reports or database log
ging, may be dumped. Such that the same results processing
output, e.g., reports or database entries/logs, generated
“online' by the system can be generated later offline, e.g., by
the Offline Results Processing Utility. Thus, for example, the
data may include test results, user data, machine/instrument
data, etc., but may not include plug-in configuration data, as
this aspect may instead be configured and performed by the
Offline Results Processing Utility.
0281. In some embodiments, the same software that gen
erates the (online) results processing output (e.g., the Results
Processing plug-in(s), as described above) may be used in
both situations (online and offline). This may be accom
plished by reconstructing the same execution threads and
execution order employed in the online results processing.
Accordingly, a configuration utility may be provided
whereby a user can manage the conversion of the offline
results processing output. In various embodiments, the con
figuration utility may be a GUI or command-line based.
Moreover, results processing output generation may be on
demand, or scheduled and continuous, as desired.
0282 FIG.7E illustrates one embodiment of an exemplary
Offline Results File Generation Options dialog box, which
may be used to specify options for an instance of the Offline
Results Generation plug-in. Exemplary options or controls
that may be supported include, but are not limited to:
(0283 Directory in Which to Store Result Files Specifies
the directory in which the plug-in instance stores offline result
files.
0284 File Name Format—Indicates how the plug-in
chooses the name of the result file. Note that in some embodi
ments, the user may not be allowed to edit this control. If a file
already exists that has the same name as the file name the
plug-in selects, the plug-in may append a number to the file
name to make it unique.
0285 Store Results as They are Generated (On-the-fly)—
Specifies whether the plug-in writes the results to the file after
each UUT completes or if it writes the results on-the-fly. If the
user selects to save results on-the-fly, the user may control
how frequently the plug-in writes results by setting options on
the Advanced Result Processing Settings dialog box.
0286 Limit the number of UUTs per file Specifies
whether the plug-in stores all the results from an execution in
a single file, or whether it creates a new result file whenever
the current file contains the results for a specified number of
UUTs. The limit may be an approximate threshold and may
be exceeded for Such purposes as keeping the results for all
the UUTs in a particular batch within the same results file.
0287. Automatically Start Offline Results Processing Util
ity—Specifies whether to start the Offline Results Processing
Utility when the Offline Result File Generator creates a new
results file and the utility is not already running
0288 Exit When Processing Completes—Specifies
whether the Offline Results Processing Utility automatically
exits when it completes all processing. This option may have
no effect when the utility is already launched by the user.

Jan. 2, 2014

0289 Help Displays the help topic for the Configure
Offline Results File Generation dialog box.
0290 OpenOffline Results Processing Utility—Launches
the Offline Result Processing Utility.
0291 Thus, the Offline Results Generation plug-in, with
corresponding Offline Results File Generation Options dia
log box, may provide functionality for (high speed) dumping
(storing) raw (unprocessed) results data to a specified loca
tion (or locations), e.g., for Subsequent processing by the
Offline Results Processing Utility application.

Offline Results Processing Utility
0292. In some embodiments, an Offline Results Process
ing Utility (application), referred to herein as “the utility”, for
brevity, may be provided for processing the raw or unproc
essed results data generated by the test executive system, e.g.,
by or in accordance with the Offline Results Generation plug
in. In some embodiments, the Offline Results Processing
Utility may provide the same processing functionality as the
online processing aspects of the test executive system, and in
Some embodiments, may utilize the same relevant plug-ins.
Accordingly, some or all of the results processing plug-ins
and configuration tools, e.g., dialogs, described above may be
utilized by the utility. Thus, the Offline Results Processing
Utility may be considered to be a “re-processor that can be
configured to process the offline data (file(s)) as if the data
were coming from the online test(s). Note that the name
“Offline Results Processing Utility” is exemplary, and that the
Offline Results Processing Utility may be called any other
name as desired.
0293. In one exemplary embodiment, the utility may be
launched from a UI. Such as a tools dialog or menu, e.g., by
selecting Tools->Offline Results Processing Utility or
Started-Programs>National
Instruments. Test Stands Tools.>Offline Results Process
ing Utility, or so forth. The utility may be configured to
process raw results files into reports or database tables at a
time other than when sequence execution occurs, such as
overnight, or on a different computer, and thus may be used in
situations in which performance is more important than
immediately processing results. The utility may include a UI.
e.g., a graphical user interface (GUI), whereby the utility may
be configured for desired functionality. FIG. 7F illustrates an
exemplary GUI for one embodiment of the Offline Results
Processing Utility application. As may be seen, in this illus
trative embodiment, the exemplary GUI of FIG. 7F includes
a menu or tool bar for invoking File, Edit, Profile, and Help
functionalities, as well as various windows or panes for set
ting and/or displaying configurable options, described in
more detail below. It should be noted that the GUI described
is but an exemplary embodiment following the TestStand
based example from above, and that other embodiments may
be based on other test executive system as desired.
0294. In one embodiment, specified configurations may
be defined and stored as profiles via the GUI. For example, a
user may select a UI item, such as Profile>New or may
right-click in a profiles pane (described in more detail below)
of the utility's GUI and select New Profile from a context
menu to create a profile. Profiles may be used to define a set
of raw results files to process, to specify the result processing
configuration set to use to process results, to specify the
sequence file to use as the callback file when processing the
raw results files, and/or to track files the utility has already
processed. In one embodiment, each profile may include an

US 2014/0006868 A1

“inbox” (or functional equivalent, e.g., “data source”), which
may be used to specify where to store raw results files to
process, and an "outbox” (or functional equivalent, e.g., "out
put target”) to specify where to store raw results files and
reports after processing. The user may also configure the
number of files the utility processes simultaneously.
0295. In some embodiments, when the utility generates a
report after processing, it may add a unique ID to the report
file name. In one exemplary TestStand-based embodiment,
the utility may add a TestStand Results (TSR) ID to each
report file name. The ID may be or include a unique (e.g.,
alphanumeric) string identifying the raw results file from
which the report was generated. After processing a raw results
file, the utility may automatically move the file to the output
target, e.g., to the outbox. If another raw results file with the
same name exists in the outbox, the utility may automatically
append the ID to the end of the name of the processed file.
0296. In one embodiment, the GUI may include a section,

e.g., a pane or window, for displaying and/or navigating
through reports generated by the utility from specified raw
results files. For example, the GUI may include a Report List
pane configured to display a list of reports the utility gener
ated from the raw results file of the same name, as shown in
the top left portion of the GUI. Moreover, Next Report and
Previous Report buttons (i.e., “next and “previous” buttons)
may be provided to show the next or previous unread report.
As used herein, an “unread report is one that the utility has
not opened during the current session. In some embodiments,
this pane may use the same controls as a Report pane in a
sequence editor Execution window.
0297. In one embodiment, the GUI may include a UI, e.g.,
a dialog box, for setting utility configuration options. For
example, again following the TestStand example, a user may
select a File>Settings menu item to launch the TestStand
Offline Results Processing Utility Settings dialog box, in
which the user may set utility configuration options.
0298. In one embodiment, the GUI may include a status
bar that may be configured to display a default callback file
and report selected in the Report List pane described above. In
Some embodiments, the user may use command-line argu
ments or a Call Executable step with command-line argu
ments in a sequence to launch the offline results processing
utility. In further embodiments, the user may also use sched
uled tasks in an operating system, e.g., Microsoft Win
dowsTM, to launch the offline results processing utility with
command-line arguments. The utility may reside in a speci
fied directory, e.g. <TestStand-\Components\Tools\Offline
Results Processing Utility\OfflineResultsProcessingUtility.
exe. If the user wants the offline results processing utility to
run a specified amount of time, the user may create two tasks
and specify a /duit argument (or equivalent) for the second
task to stop the utility immediately.

Exemplary Profiles Pane
0299. As noted above, in some embodiments, the GUI for
the Offline Results Processing Utility may include a profiles
pane (or equivalent) that may be configured to include (and
display) a list of profiles to use to process files. The profiles
pane may include any of various options, exemplary
examples of which may include one or more of:
0300 Profile Name Specifies the unique profile name
for command-line arguments and log files.
0301 Activate Processes available files in the inbox.
The utility may determine an optimum number of available

Jan. 2, 2014

files in the inbox to process at the same time. The Offline
Results Processing Utility Settings dialog box may be used to
adjust the number of files to process simultaneously. Note that
in Some embodiments, when the user launches the utility, it
may automatically activate profiles that were active during
the previous processing session.
0302 Pause Pauses processing files in the inbox. The

utility may finish processing the currently processing files
and may not start processing any new files.
0303 Processing Configuration Specifies the result pro
cessing configuration set to use to process the raw results
files. This option may include one or more Sub-options, e.g.:

0304 New Configuration Launches the Manage
Result Processing Configurations dialog box, in which
the user may create or delete result processing configu
rations.

0305 Edit Configuration Launches the Result Pro
cessing dialog box, in which the user may enable or
disable only the installed built-in and custom result pro
cessing model plug-ins in the active result processing
configuration and configure how the model plug-ins pro
cess test results.

0306 Inbox Specifies the directory in which to store raw
results files. When a user creates a new file in this directory,
the utility may add the file to the inbox and process the file if
the profile is active.
(0307 Outbox Specifies the directory in which to store
raw results files and reports after processing.
0308 Callback file Specifies the sequence file to use as
the callback file when processing the raw results files. This
option may supersede any default callbacks file selected in the
Offline Results Processing Utility Settings dialog box. If the
user does not specify a callback file in this option, the utility
may use the default callback file. If the user does not specify
a default callback file, the utility may not use any callback file.
A Clear Settings button may be selected to reset the callback
file to the default setting if the user made changes to this
option.

Exemplary Offline Results Processing Utility Menus

0309 As indicated above, in some embodiments, the
Offline Results Processing Utility may include File, Profile,
and/or Help menus. Exemplary menu items under these
menus are now described.
0310. In one embodiment, the File menu may contain one
or more of the following options:

0311 Settings—Launches the Offline Results Process
ing Utility Settings dialog box, in which you set utility
configuration options.

0312 Minimize to System Tray Minimizes the utility
in the Microsoft Windows System Notification Area
(system tray) of the taskbar.

0313 Exit Closes the utility.
0314. In one embodiment, the Profile menu may include
one or more of the following options:

0315 New Profile Creates a new profile.
0316 Activate All Profiles—Activates all profiles.
0317 Pause All Profiles Pauses all profiles.

0318. In one embodiment, the Help menu may include one
or more of the following options:

0319 Help Launches the help topic for the utility.
0320 About Displays version information for the

utility.

US 2014/0006868 A1

0321) Additionally, in some embodiments, context menus
may also be provided, e.g., menus that are invoked and dis
played in the GUI upon user interaction, e.g., a right mouse
click, etc. Thus, for example, in one embodiment a Profiles
Pane Context Menu may be provided that includes one or
more of the following options:

0322 Process Files Using <Profile Name> Uses a
profile selected by the user to process the selected files.

0323 Clear Inbox of Profile Deletes all files in the
inbox.

0324 Clear Outbox of Profile Deletes all files in the
outbox.

0325 Retry Processing Selected Files Using <Profile
Name> Uses the profile select by the user to reprocess
Selected files if processing errors exist.

0326) Process Selected Files Immediately Using <Pro
file Name> Uses the profile selected by the user to
immediately process the selected files before processing
any other queued files. The utility may open up to twice
the number of threads specify by the user in the Offline
Results Processing Utility Settings dialog box to handle
this request.

0327 Process Selected Files Again Using <Profile
Name> Moves the selected files to the inbox and
reprocesses them using the profile you select.

0328. Force Move File to Outbox of <Profile Name>
Immediately moves the selected file to the outbox (or
data target) of the profile selected by the user. If a name
collision exists, the utility may rename the file selected
by the user and the corresponding report files with
unique names.

0329 Delete Selected Files Deletes the files select by
the user.

0330 New Profile Creates a new profile.
0331 Delete Profile Deletes the profile selected by
the user.

0332 Open Containing Folder in Explorer Opens a
Microsoft Windows Explorer (or other file/directory
browser or finder) in the directory that contains the file
selected by the user.

0333 Copy Paths of Selected Files Copies to the clip
board the paths of the file selected by the user.

0334. As mentioned above, in some embodiments, an
Offline Results Processing Utility Settings dialog box may be
provided for configuring options (e.g., settings) for the
Offline Results Processing Utility. The dialog may be
launched via user selection of a control in the GUI, e.g., by
selecting File>Settings, and may be used for performing one
or more of the following tasks:

0335 Use a default callback sequence file for configu
ration sets that do not specify a callbacks file.

0336 Launch during system startup or to automatically
start minimized in the Microsoft Windows System Noti
fication Area (system tray) of the taskbar.

0337 Conditionally delete raw results files and report
list files from the outbox.

0338. In one exemplary embodiment, the Offline Results
Processing Utility Settings dialog box may include one or
more of the following options for configuring the Offline
Results Processing Utility:

0339 Delete Processed Files Sets the following con
ditions to delete only raw results files and report files
from the outbox after processing:

Jan. 2, 2014

0340 Never Never deletes files.
0341 Immediately Deletes files immediately after
processing.

0342. When files are older than the specified number of
days—Specifies the number of days, according to the
current system time, after the creation date of the file to
wait before deleting the file. When the number of days
exceeds this limit, the utility deletes the file.

0343. When more than the specified number of files
exist in the outbox Specifies the number of files to
exist in the outbox. When the outbox exceeds this limit,
the utility deletes the oldest files.

0344) Number of Files Processed Simultaneously—
Specifies the number of files to process at the same time. In
one embodiment, the default is the number of processing
cores on the computer. Modifying this value may lead to
performance improvements, depending on the hard drive and
the number of cores on the computer.
0345. Note that in some embodiments, if the offline pro
cessing utility is configured to generate the results from indi
vidual.tsr files to a single report file, the order in which results
appear in the report file may not match the order in which they
were generated during normal execution. To avoid this behav
ior, the offline processing utility may be launched before
generating any itsr files and the value of Number of Files
Processed Simultaneously may be set to 1, or the offline
processing utility may be configured to generate results from
individual tSr files to separate, uniquely named report files.
0346 Similarly, in some embodiments, if the offline pro
cessing utility is configured to generate the results from indi
vidual.tsr files to a single report file, the order in which results
appear in the report file may not match the order in which they
were generated during normal execution. To avoid this behav
ior, the offline processing utility may be launched before
generating any TSR files and the Number of Files Processed
Simultaneously control set to 1. Alternatively, the offline
processing utility may be configured to generate results from
individual tSr files to separate, uniquely named report files.
(0347. Default Callback File Specifies the default call
back file to use for configuration sets that do not specify a
callback file.
0348 Launch on startup/Remove from startup—
Launches the utility during system startup or removes the
utility from launch on startup. Note that some operating sys
tems, e.g., Microsoft Windows 7/Vista, may require privi
leges elevation for this action.
0349. In some embodiments, command-line arguments
may be used with the Offline Results Processing Utility. The
following table lists exemplary command-line arguments a
user may use with the offline results processing utility.
Optional arguments appearin brackets. If the utility is already
running, the command-line arguments may apply to the run
ning instance of the utility. The user may also store the com
mand line standard output in a log file. Note that these argu
ments and their corresponding actions are meant to be
exemplary only, and that any other arguments and actions
may be used as desired.
0350 /? Displays the help topic for the utility.
0351 /exit-when-done seconds—Instructs the utility to
exit automatically when all active profiles finish processing
files successfully. The utility may be required to process at
least one file before exiting. If the utility is already running,
this command may have no effect. “I seconds' specifies the
number of seconds to wait after all active profiles finish pro

US 2014/0006868 A1

cessing before exiting. The default value may be 30 seconds
(or any other value, as desired).
0352 /log-level <log levelD Uses a number or a string to
specify one of the following values for a supported severity
level to log. Passing an invalid value may disable logging.

0353 0 or Debug Debugging information.
0354 1 or Info Run-time events that provide informa
tion on the state of the system.

0355 2 or Warn Warnings that are not errors but that
might indicate an underlying error.

0356) 3 or Error Run-time errors or unexpected con
ditions.

0357 4 or Fatal Severe errors that might limit the
functionality of or terminate the offline results process
ing utility.

0358 5 or DisableLogging Disables logging.
0359 /process-all-profiles Activates all profiles.
0360 /process-files <profile><one or more filenames>
Activates the profile specified by the user and copies all the
files specified by the user to the outbox directory of the profile
for processing. Quotation marks may be used to escape pro
file names or filenames that include spaces. One example of
the use of this argument is:
0361 OfflineResultsProcessingUtility.exe “Profile
Name file1.txt "C:\Documents and Settings\file2.txt.
where arguments are provided to the utility specifying the
profile's name and two files to be copied.
0362 /process-files-missing-data—Automatically pro
cesses files with missing data. Files may not include all nec
essary data because the execution that created the file termi
nated or aborted while the test executive system was
generating results. The user may review the log file to deter
mine the files with missing data. If the user automatically
processes files with missing data, the test executive system
may return a warning, which the user may logby using a log
level of 2, 1, or 0. The test executive system may return an
information message for files with missing data that the user
does not process, which the user may logby using a log level
of 1 or 0.
0363 /process-no-profiles—Deactivates all profiles.
0364 /process-profiles <one or more profile names>
Activates the profiles with the names the user specifies in the
list of profiles. Quotation marks may be used to escape profile
names that include spaces. An example use of this argument
1S

0365 OfflineResultsProcessingUtility.exe Profile1 “Pro
file Name With Spaces' Profile3.
0366 ?cuit Stops the utility after the currently process
ing raw results files finish processing.
0367 ?tray–Sends the utility to the Microsoft Windows
(or other OS) System Notification Area (system tray) of the
taskbar.

Distributed Results Accumulation and Dispatch
0368. In some embodiments, the test executive system
may provide for distributed results accumulation or collec
tion and dispatch to plug-ins. More specifically, the test
executive system may support accumulation and dispatch of
results data to plug-ins for storage and/or processing in
chunks to amortize the cost of dispatch and processing. The
chunk size may be controllable by one or more specified
criteria. For example, in various embodiments, the criteria
may include one or more of explicit programmatic and (GUI
settable) options such as maximum number of results per

Jan. 2, 2014

dispatch, or maximum time between dispatches, policies that
enforce implementation requirements of particular plug-ins,
Such as upon entry to a Subsequence or upon exit from a
Subsequence, or an auto-tuned threshold. One example of an
auto-tuned threshold is a threshold based on the time mea
Sured for the dispatch and processing of prior results.
0369. Another example of such a threshold is a time
threshold between chunks that automatically ensures that the
dispatch and processing time does not exceed the time thresh
old the user specified for batching results. This may provide a
Smoother alternation of execution and processing in the case
where results can be generated far faster than they can be
processed. Otherwise, execution may appear to proceed rap
idly and then Suspend for processing durations that are so long
that they are confusing and uncomfortable to the user.
0370. A further example of such a threshold is a maximum
threshold determined by the explicit and policy requirements
of the union of all active plug-ins that process results as they
are generated. In other words, the requirements of all active
plug-ins that process results on-the-fly may be used to pro
grammatically determine this maximum threshold.
0371. As noted above, in some embodiments, test execu
tive systems may utilize special sequence in the process
model, referred to as model callbacks. Model callbacks are
sequences that are typically executed inside of a process
model, but for which client sequences can override the default
behavior. When a callback is overridden, rather than calling
the code inside of the process model sequence, code is
executed in the client sequence. In some embodiments, one or
more callbacks may be defined or provided for posting
results, e.g., for Subsequent offline processing, e.g., by the
Offline Results Processing Utility. One exemplary post
results processing callback may be called “PostResultsCall
back, and may have various configurable properties. This
callback and its properties may thus operate as an API (Appli
cation Programming Interface) for posting, logging, or oth
erwise storing results, e.g., for offline processing. Examples
of such properties include, but are not limited to:
0372 PostResultsCallback PreFlushMask. This prop
erty may be utilized via the exemplary call: Execution. Pos
tResultsCallback PreFlushMask, and may have a data type
of “long. The test executive system may call PostResults
callbacks with all accumulated results before entering any
sequence specified by the user via this property.
0373 Similarly, a PostResultsCallback PostFlushMask
property may be used via the exemplary call: Execution.
PostResultsCallback PostFlushMask, and may also have a
data type of “long. The test executive system may call Pos
tResults callbacks with all accumulated results before exiting
any sequence the user specifies using this property.
0374 Thus, for example, a user may (typically) set pre
flush and post-flush post-flush masks when a Model Plugin—
OnTheFly Step Results entry point requires that the Context
parameter of the entry point (see above) refers to the same
sequence stack frame that executes all the steps in the Steps
parameter of the entry point. Otherwise, the Steps parameter
of the entry point can contain steps from multiple stack
frames. Using this technique may result in fewer steps for
each invocation of the OnTheFly Step Results entry point,
which may affect performance.
0375. A PostResultsCallbackInterval property may be uti
lized via: Execution. PostResultsCallbackInterval, and may
have a data type of “double'. This property may specify the
interval at which threads in the execution call PostResults

US 2014/0006868 A1

callbacks. Thus, if the time since a thread last called the
PostResults callback equals or exceeds the value of this prop
erty, the thread may call the PostResults callback when the
test executive system next generates a result. If the interval is
a negative number, the absolute value may determine the
interval. In this case, threads may call PostResults callbacks if
the number of results accumulated exceeds the estimate of
how many results the test executive system can process within
the interval based on the duration of previous PostResults
callbacks. This mechanism may provide more of a balance
between result generation and result processing tasks if result
generation is much faster than result processing.
0376 A PostResultsCallbackMask property may be used
via Execution. PostResultsCallbackMask, with a data type of
“long, and may specify the mask of the sequences in which
the test executive system accumulates step results to transfer
as a parameter to the PostResults callbacks sequence. The
user may typically specify the callback mask if a custom
process model plug-in processes results on-the-fly.
0377. In some embodiments, one or more constants may
be provided for specifying options for the PostResultsCall
backMask property. These constants may thus represent the
options a user can use with the Execution. PostResultsCall
backMask, Execution. PostResultsCallback PreFlushMask,
and Execution. PostResultsCallback PostFlushMask meth
ods. The bitwise-OR operator may be used to specify more
than one option for a method. Exemplary constants and asso
ciated values may include (but are not limited to):
0378 PostResultsCallbackMaskOption All (Value:
-1)—Specifies to call PostResults callbacks with all accumu
lated results for all sequences with specified exceptions, e.g.,
except for SequenceFileLoad callback and SequenceFileUn
load callback sequences.
0379 PostResultsCallbackMaskOption None
O)—Specifies not to call PostResults callbacks.
0380 PostResultsCallbackMaskOption PostAction
(Value: 128) Specifies to call PostResults callbacks with all
accumulated results for all PostAction callback sequences.
0381 PostResultsCallbackMaskOption PostInteractive
(Value: 8)—Specifies to call PostResults callbacks with all

(Value:

accumulated results for all Postlinteractive callback
Sequences.
0382 PostResultsCallbackMaskOption PostResultLis
tEntry (Value: 16) Specifies to call PostResults callbacks
with all accumulated results for all PostResultListEntry call
back sequences.
0383 PostResultsCallbackMaskOption PostStep (Value:
2) Specifies to call PostResults callbacks with all accumu
lated results for all PostStep callback sequences.
0384 PostResultsCallbackMaskOption PostStepfailure
(Value: 64) Specifies to call PostResults callbacks with all
accumulated results for all PostStepfailure callback
Sequences.
0385 PostResultsCallbackMaskOption PostStepRunt
imeError (Value:32) Specifies to call PostResults callbacks
with all accumulated results for all PostStepRuntimeError
callback sequences.
0386 PostResultsCallbackMaskOption PreInteractive
(Value: 4) Specifies to call PostResults callbacks with all
accumulated results for all Prelinteractive callback sequences.
(0387 PostResultsCallbackMaskOption PreStep (Value:
1) Specifies to call PostResults callbacks with all accumu
lated results for all PreStep callback sequences.

20
Jan. 2, 2014

0388 PostResultsCallbackMaskOption SequenceCall
(Value: 256)—Specifies to call PostResults callbacks with all
accumulated results for all non-Engine callback sequences.
0389. The above exemplary constants illustrate the
breadth of possible settings for the PostResultsCallback
MaskOption set.
0390 An exemplary property for specifying or modifying
post results callback options is PostResultsCallbackOptions,
which may be used via Execution. PostResultsCallbackOp
tions, and may have a data type of “long. This property may
be used to specify options for when the test executive system
calls PostResults callbacks. Exemplary constants corre
sponding to these options may be used modify when the test
executive system invokes PostResults callbacks, and may
include:
0391 PostResultsCallbackOption CallAfterProvisional
Result (Value: 1)—Overrides the options and specifies that
the test executive system calls the PostResults callback after
collecting each provisional result.
0392. PostResultsCallbackOption NoOptions
O)—Specifies no PostResults callback options.
0393 Thus, the system may allow the user to control when
and in what manner results from testing may be output
(posted). In this way, the generation, posting, and processing
of results data may be tuned to enhance or optimize the user's
experience.
0394 The various techniques and components described
above may be used to perform corresponding methods, e.g.,
via execution of program instructions by a processor, with
various of the above system components performing respec
tive method elements. Moreover, it should be noted that in
various embodiments, any combinations of the above tech
niques and components may be used as desired.
0395 Although the embodiments above have been
described in considerable detail, numerous variations and
modifications will become apparent to those skilled in the art
once the above disclosure is fully appreciated. It is intended
that the following claims be interpreted to embrace all such
variations and modifications.

(Value:

We claim:
1. A method comprising:
utilizing a computer to perform:

creating a test executive sequence, wherein the test
executive sequence includes a first plurality of steps to
be performed by a test executive engine to test a unit
under test (UUT); and

configuring the test executive sequence with a process
model, wherein the process model includes a second
plurality of steps to be performed by the test executive
engine before and/or after executing the first plurality
of steps, wherein the process model is configured to
accept process model plug-ins to define the second
plurality of steps, wherein said configuring the test
executive sequence with the process model comprises
selecting one or more process model plug-ins for the
process model, wherein each process model plug-in
includes two or more of the second plurality of steps.

2. The method of claim 1,
wherein each of the one or more process model plug-ins is

stored in a respective file, wherein the method further
comprises reading the steps of each selected process
model plug-in from its respective file.

US 2014/0006868 A1

3. The method of claim 1, further comprising:
receiving user input via agraphical user interface selecting

each of the one or more process model plug-ins for the
process model.

4. The method of claim 1, further comprising:
prior to said selecting the one or more process model plug

ins, creating each of the process model plug-ins in
response to user input;

wherein said creating each respective process model plug
in comprises receiving user input selecting each of the
steps to be included in the process model plug-in.

5. The method of claim 4, wherein said creating each
respective process model plug-in further comprises creating a
respective process model plug-in file and storing information
defining the steps of the respective process model plug-in in
the respective process model plug-in file.

6. The method of claim 1,
wherein said selecting the one or more process model

plug-ins for the process model comprises selecting a first
process model plug-in, wherein the first process model
plug-in includes two or more steps configured to receive
test results generated by the first plurality of steps when
testing the UUT and generate a report indicating the test
results.

7. The method of claim 1,
wherein said selecting the one or more process model

plug-ins for the process model comprises selecting a first
process model plug-in, wherein the first process model
plug-in includes two or more steps configured to receive
test results generated by the first plurality of steps when
testing the UUT and log the test results in one or more of
a file or database.

8. The method of claim 1,
wherein the process model includes a plurality of entry

points, wherein each of the one or more process model
plug-ins is associated with a respective one of the entry
points.

9. The method of claim 1, further comprising:
testing the UUT, wherein said testing comprises executing

each of the process model plug-ins.
10. The method of claim 9, wherein the one or more pro

cess model plug-ins includes a first process model plug-in
configured to store test result data, wherein said executing
comprises dispatching the test result data to the first process
model plug-in in chunks, wherein a chunk size defining a size
of the chunks is configurable by user input.

11. A non-transitory computer-accessible memory
medium that stores program instructions executable by one or
more processors to implement:

creating a test executive sequence, wherein the test execu
tive sequence includes a first plurality of steps to be
performed by a test executive engine to testa unit under
test (UUT); and

configuring the test executive sequence with a process
model, wherein the process model includes a second
plurality of steps to be performed by the test executive
engine before and/or after executing the first plurality of
steps, wherein the process model is configured to accept
process model plug-ins to define the second plurality of
steps, wherein said configuring the test executive
sequence with the process model comprises selecting
one or more process model plug-ins for the process
model, wherein each process model plug-in includes
two or more of the second plurality of steps.

Jan. 2, 2014

12. The non-transitory computer-accessible memory
medium of claim 11,
wherein each of the one or more process model plug-ins is

stored in a respective file, wherein the program instruc
tions are further executable by the one or more proces
sors to read the steps of each selected process model
plug-in from its respective file.

13. The non-transitory computer-accessible memory
medium of claim 11, wherein the program instructions are
further executable by the one or more processors to imple
ment:

prior to said selecting the one or more process model plug
ins, creating each of the process model plug-ins in
response to user input;

wherein said creating each respective process model plug
in comprises receiving user input selecting each of the
steps to be included in the process model plug-in.

14. The non-transitory computer-accessible memory
medium of claim 13, wherein said creating each respective
process model plug-infurther comprises creating a respective
process model plug-in file and storing information defining
the steps of the respective process model plug-in in the
respective process model plug-in file.

15. The non-transitory computer-accessible memory
medium of claim 11,
wherein said selecting the one or more process model

plug-ins for the process model comprises selecting a first
process model plug-in, wherein the first process model
plug-in includes two or more steps configured to receive
test results generated by the first plurality of steps when
testing the UUT and generate a report indicating the test
results.

16. The non-transitory computer-accessible memory
medium of claim 11,
wherein said selecting the one or more process model

plug-ins for the process model comprises selecting a first
process model plug-in, wherein the first process model
plug-in includes two or more steps configured to receive
test results generated by the first plurality of steps when
testing the UUT and log the test results in one or more of
a file or database.

17. The non-transitory computer-accessible memory
medium of claim 11,
wherein the process model includes a plurality of entry

points, wherein each of the one or more process model
plug-ins is associated with a respective one of the entry
points.

18. A system comprising:
one or more processors; and
memory storing program instructions, wherein the pro
gram instructions are executable by the one or more
processors to:
create a test executive sequence, wherein the test execu

tive sequence includes a first plurality of steps to be
performed by a test executive engine to test a unit
under test (UUT); and

configure the test executive sequence with a process
model, wherein the process model includes a second
plurality of steps to be performed by the test executive
engine before and/or after executing the first plurality
of steps, wherein the process model is configured to
accept process model plug-ins to define the second
plurality of steps, wherein to configure the test execu

US 2014/0006868 A1 Jan. 2, 2014
22

tive sequence with the process model, the program
instructions are executable by the one or more proces
SOrS to:

select one or more process model plug-ins for the
process model, wherein each process model plug
in includes two or more of the second plurality of
steps.

19. The system of claim 18, wherein each of the one or
more process model plug-ins is stored in a respective file,
wherein the program instructions are further executable by
the one or more processors to:

read the steps of each selected process model plug-in from
its respective file.

20. The system of claim 18, wherein the process model
includes a plurality of entry points, wherein each of the one or
more process model plug-ins is associated with a respective
one of the entry points.

k k k k k

