DEVICE FOR ENHANCED REMOVAL OF HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS HAVING AN ACTUATOR

A treatment device for removing heat from subcutaneous lipid-rich cells of a subject having an actuator that provides mechanical energy to the tissue. The mechanical energy provided may include a vibratory component that can range between low and ultra-high frequencies, and such energy may include various combinations of two or more frequencies tailored to produce the desired effect on the subcutaneous tissue. Disruption of adipose tissue cooled by an external treatment device may be enhanced by applying mechanical energy to cooled tissue. Furthermore, such mechanical energy may impart a vibratory effect, a massage effect, a pulsatile effect, or combinations thereof on the tissue.

The device may include an actuator configured to apply mechanical energy to the tissue, and a control system configured to control the actuator. The control system may receive input from the subject, such as feedback from the subject or from sensors monitoring the treatment area. The control system may adjust the energy applied to the tissue in real-time based on the feedback to optimize the treatment outcome.

Fig. 1

Abstract: A treatment device for removing heat from subcutaneous lipid-rich cells of a subject having an actuator that provides mechanical energy to the tissue. The mechanical energy provided may include a vibratory component that can range between low and ultra-high frequencies, and such energy may include various combinations of two or more frequencies tailored to produce the desired effect on the subcutaneous tissue. Disruption of adipose tissue cooled by an external treatment device may be enhanced by applying mechanical energy to cooled tissue. Furthermore, such mechanical energy may impart a vibratory effect, a massage effect, a pulsatile effect, or combinations thereof on the tissue.
METHOD OF ENHANCED REMOVAL OF HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS AND TREATMENT APPARATUS HAVING AN ACTUATOR

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of U.S. Patent Application No. 11/750,953, filed May 18, 2007, and entitled METHOD OF ENHANCED REMOVAL OF HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS AND TREATMENT APPARATUS HAVING AN ACTUATOR, which is incorporated herein by reference.

TECHNICAL FIELD

[0002] The present application relates generally to treatment devices, systems, and methods for removing heat from subcutaneous lipid-rich cells; more particularly, but not exclusively, several embodiments are directed toward a treatment device including an actuator such as a vibration device, a pneumatic device and/or a massage device and at least one treatment unit to affect subcutaneous lipid-rich cells.

BACKGROUND

[0003] Excess body fat, or adipose tissue, can detract from personal appearance and athletic performance. Excess adipose tissue may be present in various locations of the body, including, for example, the thigh, buttocks, abdomen, knees, back, face, arms, and other areas. Moreover, excess adipose tissue is thought to magnify the unattractive appearance of cellulite, which forms when subcutaneous fat protrudes into the dermis and creates dimples where the skin is attached to underlying structural fibrous strands. Cellulite and excessive amounts of adipose tissue are often considered to be unappealing. Moreover, significant health risks may be associated with higher amounts of excess body fat. An effective way of controlling or removing excess body fat therefore is needed.
Liposuction is a method for selectively removing adipose tissue to "sculpt" a person's body. Liposuction typically is performed by plastic surgeons or dermatologists using specialized surgical equipment that invasively removes subcutaneous adipose tissue via suction. One drawback of liposuction is that it is a surgical procedure, and the recovery may be painful and lengthy. Moreover, the procedure typically requires the injection of tumescent anesthetics, which is often associated with temporary bruising. Liposuction can also have serious and occasionally even fatal complications. In addition, the cost for liposuction is usually substantial. Other emerging techniques for removal of subcutaneous adipose tissue include mesotherapy, laser-assisted liposuction, and high intensity focused ultrasound.

Conventional non-invasive treatments for removing excess body fat typically include topical agents, weight-loss drugs, regular exercise, dieting, or a combination of these treatments. One drawback of these treatments is that they may not be effective or even possible under certain circumstances. For example, when a person is physically injured or ill, regular exercise may not be an option. Similarly, weight-loss drugs or topical agents are not an option when they cause an allergic or negative reaction. Furthermore, fat loss in selective areas of a person's body cannot be achieved using general or systemic weight-loss methods.

Other non-invasive treatment methods include applying heat to a zone of subcutaneous lipid-rich cells. U.S. Patent No. 5,948,011 discloses altering subcutaneous body fat and/or collagen by heating the subcutaneous fat layer with radiant energy while cooling the surface of the skin. The applied heat denatures fibrous septae made of collagen tissue and may destroy fat cells below the skin, and the cooling protects the epidermis from thermal damage. This method is less invasive than liposuction, but it still may cause thermal damage to adjacent tissue, and can also be painful and unpredictable.

Additional methods of reducing subcutaneous adipocytes cool or otherwise selectively remove or target them, as disclosed for example in U.S. Patent Publication Nos. 2003/0220674 and 2005/0251120, the entire disclosures of which are incorporated herein. These publications disclose, among other things, the concept of reducing the temperature of subcutaneous adipocytes.
selectively affect them without damaging the cells in the epidermis and other surrounding tissue. Although the methods and devices disclosed in these publications are promising, several improvements for enhancing the implementation of these methods and devices would be desirable.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.

[0009] Figure 1 is an isometric view of a system for removing heat from subcutaneous lipid-rich cells in accordance with an embodiment of the invention.

[0010] Figure 2 is an isometric view of an actuator for use with a treatment device in accordance with an embodiment of the invention.

[0011] Figure 3 is an isometric view of the actuator of Figure 2 coupled to a frame segment of a treatment device in accordance with an embodiment of the invention.

[0012] Figure 4a is an isometric view of an actuator for use with a treatment device in accordance with an embodiment of the invention. Figure 4b is an isometric and exploded view of the treatment device of Figure 4a.

[0013] Figure 5 is a schematic view of an embodiment of the actuator of Figure 4 in accordance with an embodiment of the invention.

[0014] Figure 6 is a schematic view of an embodiment of the actuator of Figure 4 in accordance with an alternative embodiment of the invention.

[0015] Figure 7 is a schematic view of an embodiment of the actuator of Figure 4 in accordance with an alternative embodiment of the invention.
Figure 8 is an isometric view of a treatment device for removing heat from subcutaneous lipid-rich cells in accordance with embodiments of the invention.

Figure 9 is an exploded isometric view of the treatment device of Figure 8 further illustrating additional components of the treatment device in accordance with another embodiment of the invention.

Figure 10 is an isometric top view of an alternative treatment device for removing heat from subcutaneous lipid-rich cells in accordance with an embodiment of the invention.

Figure 11 is an isometric bottom view of the alternative treatment device of Figure 10.

Figure 12 is an isometric and exploded view of a treatment device for removing heat from subcutaneous lipid-rich cells in accordance with a further embodiment of the invention.

Figure 13 is an isometric and exploded view of a vibrator disposed in the treatment device for removing heat from subcutaneous lipid-rich cells in accordance with yet another embodiment of the invention.

Figure 14 is a block diagram showing computing system software modules for removing heat from subcutaneous lipid-rich cells in accordance with another embodiment of the invention.

DETAILED DESCRIPTION

A. Overview

This document describes devices, systems, and methods for cooling subcutaneous adipose tissue. The term "subcutaneous tissue" means tissue lying beneath the dermis and includes subcutaneous fat, or adipose tissue, which primarily is composed of lipid-rich cells, or adipocytes. Several of the details set forth below are provided to describe the following embodiments and methods in a manner sufficient to enable a person skilled in the relevant art to practice, make and use them. Several of the details and advantages described below, however, may not be necessary to practice certain embodiments and
methods of the invention. Additionally, the invention may include other embodiments and methods that are within the scope of the claims but are not described in detail.

[0024] Reference throughout this specification to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the occurrences of the phrases "in one embodiment" or "in an embodiment" in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. The headings provided herein are for convenience only and do not limit or interpret the scope or meaning of the claimed invention.

[0025] The present invention is directed toward a treatment device for removing heat from subcutaneous lipid-rich cells of a subject and methods for using such a device. The treatment device includes an actuator that provides mechanical energy to the tissue. The mechanical energy provided may include a vibratory component that can range between low and ultra-high frequencies, and such energy may include various combinations of two or more frequencies tailored to produce the desired effect on the subcutaneous tissue. According to an embodiment, for example, disruption of adipose tissue cooled by an external treatment device may be enhanced by vibrating the cooled tissue. As applied to the tissue, then, such vibration may impart a vibratory effect, a massage effect, a pulsatile effect, combinations thereof, etc.

[0026] Several embodiments of treatment devices for removing heat from subcutaneous lipid-rich cells include at least one actuator and a treatment unit. The actuator may connect directly to the treatment unit, or the actuator may be affixed to a housing for the treatment unit. Alternatively, the treatment device may further include a flexible substrate containing a treatment unit and the actuator is connected to the flexible substrate. The actuator may provide mechanical energy to the tissue. This may be done in a number of different ways; for example, varying mechanical energy, such as vibratory energy, may be imparted through the applicator. Alternatively, or additionally the tissue may
directly manipulated with varying pneumatic pressure. The actuator may include a motor with an eccentric weight or other vibratory motors such as hydraulic motors, electric motors, solenoids, other mechanical motors, or piezoelectric shakers to provide the energy to the treatment site. The treatment units may use a number of cooling technologies including, for example, thermoelectric coolers, recirculating chilled fluid, vapor compression elements, or phase change cryogenic devices. One skilled in the art will recognize that there are a number of other cooling technologies and mechanical movement technologies that could be used such that the treatment units and mechanical devices need not be limited to those described herein.

[0027] Another embodiment of a treatment device may include one or more actuators coupled to at least one of a plurality of interconnected hinged or coupled segments; the hinged or coupled segments allow the treatment device to conform to a body portion. The one or more actuators may rigidly be affixed or releasably coupled to any portion of the interconnected hinged or coupled segment. Alternatively, the one or more actuators may be on or embedded in a flexible substrate which further contains the treatment units.

[0028] In yet another embodiment, a treatment device comprises one or more actuators controllable to provide varying intensity, frequency, location and/or duration of motion during treatment. The motion profile can, for example, be configured to provide motion along a selected region of the treatment device for a pre-selected or controlled time period. Alternatively, the motion profile may, for example, be configured to provide periods of increased intensity. In other embodiments, the motion profile may vary over time to provide a decreasing or an increasing intensity during treatment according to a predetermined pattern. In still other embodiments, different actuators may simultaneously provide different types of motion or motion of varying intensity, frequency, location and/or duration between or among the actuators, or some actuators may be deactivated while others are activated in varying patterns throughout the course of treatment.

[0029] Additional embodiments disclosed below are directed toward methods of affecting lipid-rich cells by applying a treatment device and imparting mechanical energy to the target cells from one or more actuators. The actuator may provide mechanical energy imparted to the tissue. Depending on t
frequency and amplitude of the mechanical energy, the mechanical energy may yield an effect such as a vibratory effect, a massage effect, a pulsatile effect, or any combination thereof that sends mechanical energy to the patient via or in connection with the treatment device. One embodiment of such a method includes arranging a treatment device in a desired configuration, cooling a heat exchanging surface of a treatment unit to a desired temperature, placing the cooled heat exchanging surface proximate to the subject's skin, activating an actuator that imparts mechanical energy to the tissue, and reducing the temperature of a region such that lipid-rich cells in the region are affected while non-lipid-rich cells in the region generally are not affected. Alternatively, the actuator and the treatment units may be on and/or within a flexible substrate.

[0030] Further embodiments disclosed below are directed toward systems for efficiently removing heat from subcutaneous lipid-rich cells. An embodiment of a system includes a treatment device having one or more actuators coupled to a hinge, frame, substrate or other portion of the treatment device. The actuator is configured to impart mechanical motion relative to the skin of a patient, including positive and negative pressure; for example, the actuator may include a pneumatic feature, such as vacuum, for drawing and/or pressuring the subject's tissue away from and/or towards, respectively, the treatment device. In another embodiment, the actuator may include a vibratory device for providing mechanical vibration transferred to the subject's tissue via the treatment device. In yet another embodiment, the actuator may provide mechanical energy to produce a massage effect, thus providing mechanical massage to the treated region. When placed proximate to a subject's skin, the treatment device is capable of reducing a temperature of a region such that lipid-rich cells in the region are affected while non-lipid-rich cells in the epidermis and/or dermis are not generally affected.

B. System for More Effectively Selectively Reducing Lipid-Rich Cells

[0031] Figure 1 is an isometric view of an embodiment of a treatment system 100 for removing heat from subcutaneous lipid-rich cells of a subject 101. The system 100 may include a treatment device 104 including an actuator 105. The treatment device 104 may be placed, for example, at an abdominal area 102.
of the subject 101 or another suitable area for cooling or removing heat from the subcutaneous lipid-rich cells of the subject 101. Various embodiments of the treatment device 104 are described in more detail below with reference to Figures 2-12.

[0032] The system 100 may further include a treatment unit 106 and supply and return fluid lines 108a-b between the treatment device 104 and the fluid source 106. The fluid source 106 can remove heat from a coolant to a heat sink and provide a chilled coolant to the treatment device 104 via the fluid lines 108a-b. Examples of the circulating coolant include water, glycol, synthetic heat transfer fluid, oil, a refrigerant, and/or any other suitable heat-conducting fluid. The fluid lines 108a-b may be hoses or other conduits constructed from polyethylene, polyvinyl chloride, polyurethane, and/or other materials that can accommodate the particular circulating coolant. The treatment unit 106 may be a refrigeration unit, a cooling tower, a thermoelectric chiller, or any other device capable of removing heat from a coolant. Alternatively, a municipal water supply (i.e., tap water) may be used in place of the treatment unit.

[0033] As explained in more detail below, the treatment device 104 includes at least one actuator 105 and at least one treatment unit. The treatment unit may be a Peltier-type thermoelectric element, and the treatment device 104 may have a plurality of individually controlled treatment units to create a custom spatial cooling profile and/or a time-varying cooling profile. The system 100 may further include a power supply 110 and a processing unit 114 operatively coupled to the treatment device 104 and the actuator 105. In one embodiment, the power supply 110 provides a direct current voltage to a thermoelectric treatment device 104 and/or the actuator 105 to remove heat from the subject 101. The processing unit 114 may monitor process parameters via sensors (not shown) placed proximate to the treatment device 104 through power line 116 to, among other things, adjust the heat removal rate based on the process parameters. The processing unit 114 may further monitor process parameters to adjust actuator 105 based on the process parameters. The processing unit 114 may be in direct electrical communication with treatment device 104 through electrical line 112 as shown in Figure 1; alternatively, processing unit 114 may be connected to treatment device (and/or any number of other components of system 100 as
discussed below) via a wireless or an optical communication link. Processing unit 114 may be any processor, Programmable Logic Controller, Distributed Control System, and the like. Note that power line 116 and line 112 are shown in Figure 1 without any support structure. Alternatively, power line 116 and line 112 (and other lines including, but not limited to fluid lines 108a-b) may be bundled into or otherwise accompanied by a conduit or the like to protect such lines, enhance user safety and ergonomic comfort, ensure unwanted motion (and thus potential inefficient removal of heat from subject 101) is minimized, and to provide an aesthetic appearance to system 100. Examples of such a conduit include a flexible polymeric, fabric, or composite sheath, an adjustable arm, etc. Such a conduit may be designed (via adjustable joints, etc.) to "set" the conduit in place for the treatment of subject 101.

[0034] In another aspect, the processing unit 114 may be in electrical or other communication with an input device 118, an output device 120, and/or a control panel 122. The input device 118 may be a keyboard, a mouse, a touch screen, a push button, a switch, a potentiometer, any combination thereof, and any other device or devices suitable for accepting user input. The output device 120 may be include a display screen, a printer, a medium reader, an audio device, any combination thereof, and any other device or devices suitable for providing user feedback. The control panel 122 may include visual indicator devices or controls (lights, numerical displays, etc.) and/or audio indicator devices or controls. In alternative embodiments, the control panel 122 may be contained in, attached to, or integrated with the treatment device 104. In the embodiment shown in Figure 1, processing unit 114, power supply 110, control panel 122, treatment unit 106, input device 118, and output device 120 are carried by a rack or cart 124 with wheels 126 for portability. In alternative embodiments, the processing unit 114 may be contained in, attached to, or integrated with the treatment device 104 and/or the actuator 105. In yet another embodiment, the various components may be fixedly installed at a treatment site.

C. Actuator for Use with a Treatment Device

[0035] Figures 2, 3 and 4 are isometric views of embodiments of actuators 105 for use with a treatment device 104 suitable for use in the system
100. The actuator may provide mechanical energy to create a vibratory, massage, and/or pulsatile effect. The actuator may include one or more various motors, for example, motors with eccentric weight, or other vibratory motors such as hydraulic motors, electric motors, pneumatic motors, solenoids, other mechanical motors, piezoelectric shakers, etc. to provide vibratory energy to the treatment site. Further embodiments include a plurality of actuators 105 for use in connection with a single treatment device 104 in any desired combination. For example, an eccentric weight actuator may be associated with one treatment device 104 while a pneumatic motor may be associated with another section of the same treatment device. This, for example, would give the operator of treatment system 100 options for differential treatment of lipid rich cells within a single region or among multiple regions of subject 101. The use of one or more actuators and actuator types in various combinations and configurations with treatment device 104 is possible with all the embodiments of the invention.

D. Treatment Device Having an Actuator Such as a Vibratory Device

[0036] Figure 2 shows an actuator 105 including a motor 150 containing an eccentric weight 151 to create mechanical vibration, pulsing and/or cycling effect. Power is supplied to the motor 150 through power lines 152. Alternatively, the motor 150 could be battery powered or could include an electrical plug. Alternatively, vibration, pulsing and/or cycling can be induced by a mechanism using hydraulic, electric, electromechanical, solenoid, or mechanical devices as are known in the art. Figure 3 shows the motor 150 of Figure 2 affixed to a selected portion of the treatment device 104 as described further herein.

[0037] According to one embodiment, an actuator 105 is affixed by screws 154 or other mechanical fixation devices to a housing 156 of the treatment device 104 to transmit mechanical energy through the treatment device 104 to the tissue of a patient. Alternatively, the actuator 105 may be strapped in place proximate to the treatment device 104 to transmit mechanical energy through the treatment device 104 of the tissue of the patient. According to still further embodiments, the actuator 105 may be incorporated into the treatment device 104 to provide an integrated treatment device with an activator for providing mechanical energy.
According to alternative embodiments, the treatment device 104 includes a plurality of links that are mechanically coupled with a plurality of hinges and a single actuator to transfer mechanical vibratory energy through adjacent links to the skin. Alternately, the actuator can be incorporated into more than one link, or a plurality of actuators may be used with a single treatment device.

In specific embodiments of the motor 150, the eccentric weight may be a weight machined out of brass; alternatively, the mass may be fabricated from steel, aluminum, alloys thereof, high density polymeric materials, or any other relatively dense material. According to further embodiments, the motor used is a brushed DC motor; alternatively, any electric motor could be used, or any other means of rotating the mass as is known in the art.

The actuator 105 need not have a rotating eccentric weight; rather, other embodiments may have an electrical coil or the like to create a varying or pulsing energy. The electrical coil, for example, may include a solenoid, a vibrating armature or a voice coil. According to an embodiment using a solenoid, a coil is energized to create a magnetic field that moves a steel or iron armature. The armature may be attached to a mass and can be driven into a hard stop to produce a pulse. If the hard stop is mechanically coupled to the device applied to the skin, this energy will be transferred into the tissue. This method of imparting mechanical energy to lipid-rich cells so to create a massage or massage-like effect is suited, but not necessarily limited, to lower frequencies and higher impulse energies.

A specific embodiment of a vibrating armature or voice coil has a coil driven by an alternating current to move or oscillate the armature back and forth. The inertia of this motion may be transferred through the link into the tissue to provide an actuator for enhancing the vibratory effect on the lipid-rich cells.

According to still further embodiments, the mechanical force may create a massage massage-like effect using a water hammer. Water, or any of a number of other heat transfer fluids suitable for cooling the thermoelectric coolers, can have significant mass, and when flowing through tubing, these fluids can commensurately have significant momentum. By quickly halting the flow of such a fluid, such as, e.g., by placing a solenoid valve in the fluid line and closing the...
flow path, a properly designed system transfers the momentum of the fluid to the treatment device 104 and into the tissue. According to aspects of this embodiment, such a water hammer or similar momentum-transferring arrangement is suited to low frequencies. Further, such an arrangement may reduce the heat transfer rate, which may be desirable for certain applications.

[0043] In operation, the motor 150 shown in Figure 2 rotates an eccentric weight to provide mechanical energy. The motor is rigidly attached to the treatment device 104, for example, to a housing 156 of the treatment device 104 as shown in Figure 3. Mechanical energy creating a pulsing, cycling, or oscillation effect is applied by the centripetal force generated as the eccentric weight rotates, creating a varying or pulsing mechanical energy. This energy is transferred through the treatment device 104 to the patient's skin and underlying tissue. The frequency of the vibration can be increased by increasing the rotational rate of the weight. A higher frequency also increases the applied force of the vibration. According to one embodiment, the frequency of massage (or vibration) is in the range of about 0.1Hz to about 50 MHz, and more preferably in the range of between about 200 Hz and about 400 Hz, according to alternative embodiments; the frequency of massage (or vibration) can be higher or lower. The motor 150 may further include passive or active damping materials (not shown). The force applied during each rotation of the weight may be increased, for example, by increasing the mass of the weight or increasing the distance between the center of gravity of the weight and its axis of rotation. Similarly, decreasing the mass of the weight or decreasing the distance between the center of gravity of the weight and its axis of rotation may, for example, decrease the force applied during each rotation of the weight. The appropriate force is dependent on the mass of the housing 156 or other component of the treatment device 104 to which the motor 150 is applied. According to embodiments, a more massive housing assembly requires a more massive eccentric weight so that the vibratory force is transferred through the housing 156 into the tissue to which the treatment device 104 is applied.

[0044] The illustrated embodiment of the actuator as shown in Figure 2 can allow a compact and relatively low power actuator 105 to be coupled to one or more of the link assemblies of a treatment device 104. By coupling the
actuator 105 to the treatment device 104, mechanical energy may be applied at any time in the cooling or heating process without necessarily removing the applicator. Alternatively, the applicator may be removed and an actuator such as a commercial massage device may be applied to the tissue or the tissue may be manually massaged.

[0045] In addition, the illustrated embodiment may provide acceleration and enhancement of the ischemic reperfusion damage to adipose tissue through mechanical massage or vibration. Further, the illustrated embodiment of the actuator and the treatment device combine to provide an enhanced ability to disrupt crystallized adipose cells and further affect lipid-rich cells.

E. Treatment Device Having an Actuator Such as a Vacuum Device

[0046] Figures 4a and 4b show a vacuum device 160 suitable for use with a treatment device for applying a vacuum to the subject's tissue before, during and/or after cooling. As discussed with reference to Figure 3, the actuator 105, shown as a vacuum device 160 in this embodiment, may include treatment units 408a, 408b affixed to the vacuum device 160. The vacuum device 160 may provide mechanical energy to a treatment region. Imparting mechanical vibratory energy to the patient's tissue by repeatedly applying and releasing a vacuum to the subject's tissue, for instance, creates a massage action. Alternatively, massage devices as are known in the art may be used to enhance the desired effect on lipid-rich cells. Figures 5-7 illustrate schematic diagrams of embodiments of the vacuum device 160.

[0047] As described herein, techniques for incorporating massage into a treatment device 105 may include using a pressure differential to draw the skin against a thermally controlled plate or plates. In an actuator such as the vacuum device 160 shown in Figures 4a and 4b, a vacuum line 162 can be connected to the vacuum device 160. In operation, air is evacuated from a chamber in the vacuum device 160 create a pressure differential which draws a fold of the subject's skin and subcutaneous tissue up inside a reservoir 430 of the vacuum device 160 and against the treatment units 408a, 408b.

[0048] The vacuum device 160 defines the reservoir 430 for receiving tissue of a subject during treatment. The vacuum device 160 may further inc
treatment units 408a, 408b positioned at opposite sides of the vacuum 160. Alternatively, the treatment units 408a, 408b may be adjacent one another. Further, vacuum device 160 may comprise a single treatment unit or more than two treatment units. As shown in the example of Figure 4b, one or both of the treatment units 408a, 408b may include a heat exchanging interface 420 for transferring heat to/from the subject 101. A cryoprotectant or coupling agent (not shown) may be applied to the heat exchanging interface 420 to prevent ice from forming thereon when the temperature is reduced to a temperature around or below the freezing point of water (0° C). In one embodiment, the heat exchanging interface 420 is generally planar, but in other embodiments, the heat exchanging interface 420 is non-planar (e.g., curved, faceted, etc.) The interface 420 may be constructed from any suitable material with a thermal conductivity greater than 0.05 Watts/Meter K, and in many embodiments, the thermal conductivity is more than 0.1 Watts/Meter K Examples of suitable materials include aluminum, other metals, metal alloys, graphite, ceramics, some polymeric materials, composites, or fluids contained in a flexible membrane. Portions of the heat exchanging element 420 may be an insulating material with a thermal conductivity less than about 0.05 Watts/Meter K.

[0049] The heat exchanging interface 420 may also include at least one sensing element (not shown) proximate to the heat exchanging interface 420. The sensing element, for example, may be generally flush with the heat exchanging interface 420. Alternatively, it may be recessed or protrude from the surface. The sensing element may include a temperature sensor, a pressure sensor, a transmissivity sensor, a bio-resistance sensor, an ultrasound sensor, an optical sensor, an infrared sensor, a sensor for measuring blood flow, or any other desired sensor. In one embodiment, the sensing element may be a temperature sensor configured to measure the temperature of the heat exchanging interface 420 and/or the temperature of the skin of the subject. For example, the temperature sensor may be configured as a probe or as a needle that penetrates the skin during measurement. Examples of suitable temperature sensors include thermocouples, resistance temperature devices, thermistors (e.g., neutron-transmutation-doped germanium thermistors), and infrared radiation temperature sensors. In another embodiment, the sensing element may be an ultrasound
sensor configured to measure the thickness of a fat layer in the subject or crystallization of subcutaneous fat in the treatment region of a subject. In yet another embodiment, the sensing element may be an optical or infrared sensor configured to monitor an image of the treatment region to detect, for example, epidermal physiological reactions to the treatment. In yet another embodiment, the sensing element may be a device to measure blood flow. The sensing element may be in electrical communication with the processing unit 114 via, for example, a direct wired connection, a networked connection, and/or a wireless connection.

[0050] The vacuum device 160 may further include a mounting element 406 that couples the treatment units 408a, 408b to the vacuum device 160. The mounting element 406, for example, may be a bracket, frame or other suitable fixture. The treatment units 408a, 408b may include a heat sink 402 with a cover 401, and a thermoelectric cooler 404 disposed between the heat sink 402 and the heat exchanging interface 420. The thermoelectric cooler 404 may be a single Peltier-type element or a plurality of Peltier-type elements. One suitable thermoelectric cooler is a Peltier-type heat exchanging element (model # CP-2895) produced by TE Technology, Inc. in Traverse City, Michigan.

[0051] In the illustrated embodiment, the heat sink 402 includes a serpentine shaped fluid conduit at least partially embedded in the heat sink 402. In the illustrated embodiment, the heat sink includes fluid ports 410a, 410b that may be coupled to a circulating fluid source (not shown) via the fluid lines 108a-b. In other embodiments, the heat sink 402 may include a plate-type heat exchange, a tube and a shell heat exchanger, and/or other types of heat exchanging devices.

[0052] Vacuum pressure may be supplied by any pump (not shown) capable of creating a pressure differential. Air pressure can either be controlled with a regulator between the vacuum source and the applicator, or pressure may be reduced up to the maximum capacity of the pump. For example, systems incorporating a regulator immediately downstream of the pump are designed to eliminate the regulator by sizing a pump with an appropriate maximum pressure capacity. According to one embodiment, approximately 5 inches Hg of vacuum is applied; in alternative embodiments, higher or lower vacuum levels are appli
In this embodiment, if the vacuum level is too low, the tissue will not be drawn adequately (or at all) inside reservoir 430 of the vacuum device 160; if the vacuum level is too high, undesirable discomfort to the patient and/or tissue damage could occur.

[0053] By alternating between two different vacuum levels inside the vacuum device 160, the force applied to the tissue will concomitantly increase and decrease, having the effect of a massaging action on the tissue. This may be accomplished, for instance, by ensuring the minimum vacuum level is high enough to keep the tissue drawn into the vacuum device 160, and have the tissue drawn further inside vacuum device 160 when the higher vacuum level is applied. If the tissue is drawn inside the applicator to the largest extent possible, friction between the walls of the applicator and the tissue may cause the tissue to maintain its overall position or assist the tissue in maintaining such a position. The change in vacuum pressure level at a desired frequency pulses the tissue, moving the area of tissue exposed to the vacuum to alternating positions within vacuum device 160. This is possible in part because initially, a higher pressure differential is required to draw the tissue past the sealing surface of the reservoir 430 and up inside the reservoir 430; however, once the tissue has been drawn into place, the force (and therefore the vacuum level) required to hold the tissue in place is lower. In this embodiment, the lower vacuum level (nearer to ambient pressure) may be very low, potentially as low as 1 inch of Hg or lower. The higher pulsing pressure can be 2 inches of mercury vacuum or higher. In operations, increasing the difference between the two vacuum levels increases the massage force. Further, increasing the cycle rate between the two pressures increases the massage frequency. Accordingly, the tissue can be pulsed in the range of approximately 0.1 Hz or lower and 10 Hz or higher. It is also possible to select the two vacuum levels (and possibly other parameters such as frequency, etc.) sufficient to draw the tissue into the vacuum device reservoir 430 and to impart a massage or pulsatile effect to the tissue while keeping the tissue position relatively constant inside reservoir 430 as alternating levels of vacuum are applied. This may be accomplished, for example, by decreasing the relative difference between vacuum levels applied to the tissue but by keeping the lower
vacuum level high enough to keep the tissue drawn into the reservoir 430 of vacuum device 160 during treatment.

[0054] One method of creating this pneumatic massaging action is with a variable speed pump. Using pressure feedback to control the pump speed, the pump may electronically be controlled between two different vacuum levels. According to this embodiment, there is a mechanical lag in the time it takes the pump to change speeds, therefore, this embodiment may not be capable of pulsing at a frequency as high as some of the other embodiments described herein. According to yet another embodiment, a large piston is coupled to the treatment device 104; the piston is driven back and forth, either pneumatically or mechanically, to create a pressure wave in the system.

[0055] In an alternate embodiment shown in Figure 5, one pump, two regulators and a 3-way valve may be used to switch between the two regulators. Alternative embodiments may be created, for example, by removing the higher vacuum pressure regulator or moving the 3-way valve in front of the regulators. In yet another embodiment, the 3-way valve could be replaced with two 2-position valves. According to this embodiment, the valves are solenoid valves, however, according to further embodiments, pneumatically controlled valves could be used.

[0056] Alternately, as shown in Figure 6, two pumps and two regulators may be used. According to aspects of this embodiment, the dynamic response of the system is improved. Further, this embodiment may optionally be coupled with pneumatic cylinders to improve the pneumatic response of the system and provide for higher massage frequencies. According to still further embodiments, the regulators may be removed to allow the pumps to operate to their maximum pressure capacities. Other embodiments include systems in which the regulators take on different positions relative to the pumps or those in which different types of regulators are used.

[0057] As shown in Figure 7, a valve and a backpressure regulator may be installed in the system. In operation, when the valve is opened, the pressure in the system reduces to the pressure set by the regulator. According to further embodiments, the regulator may be removed and the valve may be controlled by the processing unit 114. Further, the valve may be opened and air can be vented
through an orifice (not shown) to limit the flow rate. The valve could be closed
when the lower pressure limit is reached as measured by the pressure transducer, and the system would be returned to the higher vacuum pressure by
the pump. One advantage of this embodiment is that the pressure relief would
occur very quickly, thus possibly affording higher massage frequencies, among
other advantages.

[0058] The illustrated embodiments of the actuator 105 combined with
the treatment device 104 can enhance disruption of adipose tissue cooled by an
external skin treatment device. Further, the illustrated embodiment may reduce
treatment time, reduce discomfort to the patient and increase efficacy of
treatment. For example, in an alternative embodiment, the vacuum device 160
may be employed without any vibratory, pulsing, or massage effect on the tissue
drawn therein; rather, the vacuum may statically draw tissue into the reservoir 430
of the vacuum device 160, and hold the tissue in the reservoir 430 while cooling
through a portion of or up to the entire duration of the treatment time, and
releasing it only when the cooling treatment protocol is completed. Without being
bound by theory, it is believed that while drawn into the vacuum device reservoir
430, the relative physical isolation of the target subcutaneous adipose tissue
beneath the epidermis from the thermal mass of tissue normally below such
tissue that is not drawn into reservoir 430 (e.g., underlying vasculature, muscles,
etc.) and the reduction in blood circulation through the tissue drawn into reservoir
430 allow for a more efficient temperature reduction of lipid-rich cells such that the
lipid-rich cells are substantially affected while non-lipid-rich cells in the epidermis
are not substantially affected. This may have the advantage of increasing the
efficacy of treatment and/or reducing treatment times.

F. Treatment Device Having a Plurality of Treatment units

[0059] Figure 8 is an isometric view of a treatment device 800 in
accordance with a specific embodiment of a treatment device 800 for use with an
actuator 105. In this embodiment, the treatment device 800 includes a control
system housing 202 and treatment unit housings 204a-g. The actuator 105 may
be coupled with, affixed to or contained within the control system housing 202 or
the treatment unit housings 204a-g. The control system housing 202 includes a
sleeve 308 (Figure 9) that may slide into collar 310 and/or may mechanically
attach to the treatment unit housings. The actuator 105 may further couple with,
affix to, or be contained within, or encircle the sleeve 308.

[0060] The treatment unit housings 204a-g are connected to the heat
exchanging elements (not shown) by attachment device 206. The attachment
device may be any mechanical attachment device such as a screw or pin as is
known in the art. The plurality of treatment unit housings 204a-g may have many
similar features. As such, the features of the first treatment unit housing 204a are
described below with reference symbols followed by an "a," corresponding
features of the second treatment unit housing 204b are shown and noted by the
same reference symbol followed by a "b," and so forth. The treatment unit
housing 204a may be constructed from polymeric materials, metals, ceramics,
woods, and/or other suitable materials. The example of the treatment unit
housing 204a shown in Figure 2A-C is generally rectangular, but it can have any
other desired shape.

[0061] The control system housing 202 may house that actuator 105
and/or a processing unit for controlling the treatment device 800 and/or fluid lines
108a-b and/or electrical power and communication lines. The control system
housing 202 includes a harness port 210 for electrical and supply fluid lines (not
shown for purposes of clarity). The control system housing 202 may further be
configured to serve as a handle for a user of the treatment device 800.
Alternatively, a plurality of actuators (not shown) may be contained on any one of
the treatment unit housing segments 204a-g.

[0062] As shown in Figure 8, the treatment device 800 may further
include at each end of the treatment device 800 retention devices 208a and 208b
coupled to a frame 304. According to embodiments of the invention, the actuator
105 may further be coupled to the retention devices 208a and 208b. The
retention devices 208a and 208b are rotatably connected to the frame by
retention device coupling elements 212a-b. The retention device coupling
elements 212a-b, for example, can be a pin, a ball joint, a bearing, or other type
of rotatable joints.
The treatment device 104 includes a frame 304 having a plurality of rotatably connected segments 305a-g. The rotatably connected segments 305a-g are connected by hinges 306a-g, and, according to one embodiment, the actuator 105 is attached to at least one of the hinges 306a-g. Alternatively, the rotatably connected segments 305a-g of the frame 304 could be connected by a connection that allows rotation, such as a pin, a living hinge or a flexible substrate such as webbing or fabric or the like. According to one aspect of the invention, the links or hinges are made of plastic to insulate the treatment units from each other.

Figure 9 is an exploded isometric view of the treatment device of Figure 8 in accordance with one example of the invention for use in the system 100 as further described in US Patent Application Serial No. 11/528,225, which is herein incorporated in its entirety by reference. This further exploded view is substantially similar to previously described examples, and common acts and structures are identified by the same reference numbers. Only significant differences in operation and structure are described below. As can be appreciated by one skilled in the art, the actuator may be coupled to the treatment device at a variety of points; for example, the actuator may be contained within the housing, coupled to an outer surface of the housing, affixed to the frame at the hinge or along a segment, coupled to the treatment units, or coupled by any combination of connection points by any appropriate connection means as are known in the art.

Figure 10 is an isometric view of a plurality of thermoelectric coolers contained in a matrix design according to yet another treatment device that may be used with an actuator. As shown in Figures 10 and 11, the treatment device 810 includes a treatment unit 804 configured in a planar matrix. According to one embodiment, the actuator 105 may be integral to the planar matrix, may attach to a portion of the planar matrix or may be releasably coupled to the planar matrix. The treatment device 810 may further include a band 812 for retaining the treatment unit 804 in place during use and the actuator can be contained within or coupled to the band 812. The treatment device may further include a handle 814, a wiring harness 818 and a flap 816 for releasably securing the band 812 to the
treatment unit 804. The actuator 105 may be contained within or coupled to the handle 814, wiring harness 818 and/or flap 816.

G. Operation of the Treatment Device

[0066] Without being bound by theory, it is believed that in operation effective cooling from the treatment device, which cools through conduction, depends on a number of factors. Exemplary factors that impact heat removal from the skin area and related tissue are the surface area of the treatment unit, the temperature of the interface member and the mechanical energy delivered to the tissue.

[0067] According to illustrated embodiments, the actuator 105 and the treatment device 104 combine to enhance disruption of cooled adipose tissue. Further, the illustrated embodiments may provide reduced treatment time, reduced discomfort to the patient and increased efficacy of treatment.

[0068] The illustrated embodiments can provide the treatment device 104 and the actuator 105 which reduce subcutaneous lipid-rich cells generally without collateral damage to non-lipid-rich cells in the treatment region. In general, lipid-rich cells can be affected at low temperatures that do not affect non-lipid-rich cells. As a result, lipid-rich cells, such as subcutaneous adipose tissue, can be affected while other cells in the same region are generally not damaged even though the non-lipid-rich cells at the surface are subject to even lower temperatures. The mechanical energy provided by the actuator further enhances the affect on lipid-rich cells by disrupting the affected lipid-rich cells.

[0069] In alternative embodiments, a cryoprotectant is used with the treatment device to, among other advantages, prevent freezing of the tissue during treatment as is described in US Patent Application No. 11/741,271, filed April 27, 2007, and entitled "Cryoprotectant for use with a Treatment Device for Improved Cooling of Subcutaneous Lipid-Rich Cells," herein incorporated in its entirety by reference.

H. Spatially Controlled Treatment Unit Profile

[0070] According to aspects of the invention, a spatially controlled profile can provide more efficient cooling to the treatment region. The plurality of

-21-
actuators and/or thermoelectric coolers allows the treatment device to accommodate spatial cooling. For example, actuators may be contained at the perimeter of the treatment device to provide additional mechanical energy (via increased amplitude, or intensity, or via a longer duration, or any combination thereof) than mechanical energy provided by actuators contained at the interior of the treatment device because of different boundary conditions in the different areas of the treatment zone. Alternatively, individual actuators, or groups of individual actuators, may be actuated at varying times or with varying frequency in any combination to provide a varying spatial profile of imparted mechanical energy over the treatment region.

[0071] According to aspects of the invention, the device can accommodate spatially controlled treatment profiles which may provide at least the following advantages: (1) increased efficiency; (2) decreased power consumption with comparable efficacy; (3) increased patient comfort; or (4) decreased treatment time. For example, according to aspects of the invention, the plurality of actuators will allow adjustment for anatomical differences between patients by selectively enabling or disabling portions of the apparatus based on anatomical differences of the patient. This selective enablement may be accomplished by varying both the mechanical actuation mechanism and/or the cooling profile in any number of ways.

[0072] For instance, another alternative involves the implementation of a particular pattern of controlled cooling which may be customized to match an individual patient's pattern of cellulite, or subcutaneous fat, thus increasing the efficacy of the treatment and allowing the "sculpting" or contouring of the patient's tissue to achieve a desired aesthetic or other effect. Similarly, treatment regions requiring a higher intensity of treatment may be pre-identified by ultrasound or other devices. The device can then be spatially controlled to provide higher intensity treatment to those pre-identified areas. Further advantages include increased patient comfort and safety by allowing spatial control of cooling to accommodate special features of a particular patient's anatomy (e.g., lumps such as lipomas, blemishes or scars, areas having excess hair, areas containing implants or jewelry, or areas of heightened sensitivity such as nipples or wounds).
A further advantage of spatial control of the device includes utilizing only a subset of the actuators in order to treat only the region requiring treatment. It is advantageous to use one device that can accommodate small and large treatment regions without over treating (e.g. a large device that cannot be spatially controlled) or having to move the device multiple times thus extending the treatment time (e.g. a treatment device smaller than the treatment region). Thus, according to aspects of the invention, a selected region of actuators can be controlled to provide mechanical energy to select regions. Alternatively, a first actuator of the treatment device can be turned off while a second actuator of the treatment device is activated, such that only a selected region of the subject is treated with mechanical energy, thus limiting the treatment region. Other advantageous spatially controlled patterns include treating areas within the treatment region more intensely, conserving power by alternating actuators, increasing mechanical energy at a perimeter in order to provide a uniform energy distribution across the treatment area, and a combination of these spatially controlled patterns in order to increase treatment efficacy, reduce treatment time, decrease power consumption and provide for patient comfort and safety.

It is expressly understood that embodiments of the invention specifically contemplate utilizing, via spatial control or even a randomly selected profile, varying combinations of actuation to impart mechanical energy as described herein with applying treatment devices to affect the lipid-rich cells in any number of ways (e.g., varying frequency, intensity (amplitude), duration, start and stop times, temperature, etc.), applying mechanical energy alone without cooling, applying cooling alone without mechanical energy, utilizing reheating to accelerate damage to lipid-rich cells, to achieve the desired effect.

1. **Method of Applying Treatment devices**

In one mode of operation, the actuator is coupled to a treatment device. The treatment device may be configured to be a handheld device such as the device disclosed in U.S. Patent Application Serial No. 11/359,092, entitled "Treatment device For Removing Heat From Subcutaneous Lipid-Rich Cells", filed on February 22, 2006, herein incorporated in its entirety by reference. The treatment device may be configured to be a plurality of treatment devices.
contained in a flexible substrate or in a rotatable housing such as the device disclosed in U.S. Patent Application Serial No. 11/528,225, entitled "Cooling Devices Having a Plurality of Controllable Treatment units to Provide a Predetermined Cooling Profile", filed on September 26, 2006, herein incorporated in its entirety by reference.

[0076] Applying the treatment device with pressure to the subject's skin or pressing against the skin can be advantageous to achieve efficient cooling. In general, the subject 101 has a body temperature of about 37°C, and the blood circulation is one mechanism for maintaining a constant body temperature. As a result, blood flow through the dermis and subcutaneous layer of the region to be treated may be viewed as a heat source that counteracts the cooling of the subdermal fat. As such, cooling the tissue of interest requires not only removing the heat from such tissue but also that of the blood circulating through this tissue. Thus, temporarily reducing or eliminating blood flow through the treatment region, by means such as, e.g., applying the treatment device with pressure, can improve the efficiency of tissue cooling and avoid excessive heat loss through the dermis and epidermis.

[0077] By cooling the subcutaneous tissue to a temperature lower than 37°C, subcutaneous lipid-rich cells can be selectively affected. In general, the epidermis and dermis of the subject 101 have lower amounts of unsaturated fatty acids compared to the underlying lipid-rich cells forming the subcutaneous tissues. Because non-lipid-rich cells usually can withstand colder temperatures better than lipid-rich cells, the subcutaneous lipid-rich cells can be selectively affected while maintaining the non-lipid-rich cells in the dermis and epidermis. An exemplary range for the treatment unit 302a-g can be from about -20°C to about 20°C, preferably from about -20°C to about 10°C, more preferably from about -15°C to about 5°C, more preferably from about -10°C to about 0°C.

[0078] The lipid-rich cells can be affected by disrupting, shrinking, disabling, destroying, removing, killing, or otherwise being altered. Without being bound by theory, selectively affecting lipid-rich cells is believed to result from localized crystallization of highly saturated fatty acids at temperatures that do not induce crystallization in non-lipid-rich cells. The crystals can rupture the bi-layer membrane of lipid-rich cells to selectively necrose these cells. Thus, damage
non-lipid-rich cells, such as dermal cells, can be avoided at temperatures that induce crystal formation in lipid-rich cells. Cooling is also believed to induce lipolysis (e.g., fat metabolism) of lipid-rich cells to further enhance the reduction in subcutaneous lipid-rich cells. Lipolysis may be enhanced by local cold exposure, inducing stimulation of the sympathetic nervous system.

Additional Embodiments of Treatment device

[0079] Figure 12 is an isometric and exploded view of a treatment device 104 in accordance with another embodiment of the invention. The treatment device 104 may include a housing 300, a cooling assembly 308 at least partially disposed in the housing 300, and retention devices 318 configured for fastening the cooling assembly 308 to the housing 300. The treatment device 104 may also include a vibration member disposed in the housing 300, as described in more detail below with reference to Figure 13.

[0080] The cooling assembly 308 may include a heat sink 312, a thermally conductive interface member 309, and a thermoelectric cooler 314 disposed between the heat sink 312 and the interface member 309. The thermoelectric cooler 314 may be connected to an external power supply (not shown) via connection terminals 316. In the illustrated embodiment, the heat sink 312 includes a U-shaped fluid conduit 310 at least partially embedded in a thermally conductive portion 313 of the heat sink 312. The fluid conduit 310 includes fluid ports 138a-b that may be coupled to a circulating fluid source (not shown) via the fluid lines 108a-b. In other embodiments, the heat sink 312 may include a plate-type heat exchanger, a tube and shell heat exchanger, and/or other types of heat exchanging device. The interface member 309 may include a plate constructed from a metal, a metal alloy, and/or other types of thermally conductive material. The thermoelectric cooler 314 may be a single Peltier-type element or an array of Peltier-type elements. One suitable thermoelectric cooler is a Peltier-type heat exchanging element (model # CP-2895) produced by TE Technology, Inc. in Traverse City, Michigan.

[0081] Individual retention devices 318 may include a plate 330 and a plurality of fasteners 306 extending through a plurality of apertures 332 (two are shown for illustrative purposes) of the plate 330. In the illustrated embodiment,
the fasteners 306 are screws that may be received by the housing 300. In other embodiments, the fasteners 306 may include bolts, clamps, clips, nails, pins, rings, rivets, straps, and/or other suitable fasteners. During assembly, the cooling assembly 308 is first at least partially disposed in the internal space 303 of the housing 300. Then, the retention devices 318 are positioned proximate to the cooling assembly 308, and the fasteners 306 are extended through the apertures 332 of the plate 330 to engage the housing 300. The fasteners 306, the plates 330, and the housing 300 cooperate to hold the cooling assembly 308 together.

[0082] By applying power to the thermoelectric cooler 314, heat may be effectively removed from the skin of the subject to a circulating fluid in the fluid conduit 310. For example, applying a current to the thermoelectric cooler 314 may achieve a temperature generally below 37°C on the first side 315a of the thermoelectric cooler 314 to remove heat from the subject via the interface member 309. The thermoelectric cooler 314 transfers the heat from the first side 315a to the second side 315b. The heat is then transferred to the circulating fluid in the fluid conduit 310.

[0083] Figure 13 is an isometric and exploded view of a vibrator 322 disposed in the treatment device 104 of Figure 12. The vibrator 322 may include a frame 324, a motor 325 carried by the frame 324, a rotating member 328 operatively coupled to the motor 325, and a plurality of fasteners 326 (e.g., screws) for fixedly attaching the frame 324 to the housing 300. In the illustrated embodiment, the motor 325 has an output shaft (not shown) generally centered about a body axis 327 of the motor 325. One suitable motor is a direct current motor (model # Pittman 8322S008-R1) manufactured by Ametek, Inc., of Harleysville, Pennsylvania. The rotating member 328 has a generally cylindrical shape and is off-centered from the body axis 327. In other embodiments, the motor 325 may have an off-centered shaft that is operatively coupled to the rotating member 328.

[0084] In operation, applying electricity to the motor 325 may cause the rotating member 328 to rotate around the body axis 327 of the motor 325. The off-centered rotating member 328 causes the vibrator 322 to be off-balanced about the body axis 327, and vibration in the frame 324 and the housing 300 may result.
J. Computing System Software Modules

[0085] Figure 14 is a functional diagram showing exemplary software modules 940 suitable for use in the processing unit 114. Each component may be a computer program, procedure, or process written as source code in a conventional programming language, such as the C++ programming language, and can be presented for execution by the CPU of processor 942. The various implementations of the source code and object and byte codes can be stored on a computer-readable storage medium or embodied on a transmission medium in a carrier wave. The modules of processor 942 can include an input module 944, a database module 946, a process module 948, an output module 950, and, optionally, a display module 951. In another embodiment, the software modules 940 can be presented for execution by the CPU of a network server in a distributed computing scheme.

[0086] In operation, the input module 944 accepts an operator input, such as process setpoint and control selections, and communicates the accepted information or selections to other components for further processing. The database module 946 organizes records, including operating parameters 954, operator activities 956, and alarms 958, and facilitates storing and retrieving of these records to and from a database 952. Any type of database organization can be utilized, including a flat file system, hierarchical database, relational database, or distributed database, such as provided by a database vendor such as Oracle Corporation, Redwood Shores, California.

[0087] The process module 948 generates control variables based on sensor readings 960, and the output module 950 generates output signals 962 based on the control variables. For example, the output module 950 can convert the generated control variables from the process module 948 into 4-20 mA output signals 962 suitable for a direct current voltage modulator. The processor 942 optionally can include the display module 951 for displaying, printing, or downloading the sensor readings 960 and output signals 962 via devices such as the output device 120. A suitable display module 951 can be a video driver that enables the processor 942 to display the sensor readings 960 on the output device 120.
[0088] Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise," "comprising," and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of "including, but not limited to." Words using the singular or plural number also include the plural or singular number, respectively. When the claims use the word "or" in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.

[0089] The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the invention can be modified, if necessary, to employ treatment devices and actuators with a plurality of treatment units, thermally conductive devices with various configurations, and concepts of the various patents, applications, and publications to provide yet further embodiments of the invention.

[0090] These and other changes can be made to the invention in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the invention to the specific embodiments disclosed in the specification and the claims, but should be construed to include all cooling that operates in accordance with the claims. Accordingly, the invention is not limited by the disclosure, but instead its scope is to be determined entirely by the following claims.
CLAIMS

I/We claim:

[ci] 1. A treatment device for removing heat from subcutaneous lipid-rich cells of a subject having skin, comprising:
 at least one of a treatment unit; and
 an actuator configured to provide mechanical energy to the treatment units.

[c2] 2. The treatment device of claim 1, wherein the actuator generates a frequency of vibration in the range of about 0.1 Hz to about 50MHz.

[c3] 3. The treatment device of claim 2, wherein the actuator is a motor having an eccentric weight.

[c4] 4. The treatment device of claim 1 further comprising a retention device to releasably retain the actuator on the treatment units.

[c5] 5. The treatment device of claim 1 further comprising at least one of a housing on one or more of the treatment units wherein the actuator is affixed to the housing.

[c6] 6. The treatment device of claim 5 further comprising a plurality of actuators affixed to the plurality of treatment units.

[c7] 7. The treatment device of claim 1 wherein the actuator provides a mechanical energy to create a vibratory, oscillating, pulsatile, and/or massage effect.

[c8] 8. The treatment device of claim 1 wherein the actuator is rigidly affixed to the treatment units.
9. The treatment device of claim 1 further comprising a thermally conductive coupling agent for application to an interface between the treatment device and the skin of the subject to increase thermal conductivity between the treatment device and the skin of the subject.

10. The treatment device of claim 1 wherein each of the plurality of treatment units has a first side in thermal communication with a corresponding interface member and a second side opposite the first side in thermal communication with a corresponding thermoelectric heat exchanger, wherein the treatment unit is configured to reduce a temperature of a target region such that lipid-rich cells in the region are affected while non-lipid-rich cells proximate to a heat exchanging surface are not significantly affected.

11. The treatment device of claim 1 having a plurality of treatment devices wherein the treatment devices are moveably connected to adjacent treatment devices.

12. The treatment device of claim 1 wherein the actuator is a vacuum.

13. The treatment device of claim 1 further comprising a plurality of treatment units and at least one hinge between treatment units, wherein the actuator is coupled to the at least one hinge.

14. A system for removing heat from subcutaneous lipid-rich cells of a subject, comprising:

 a treatment device having a treatment unit configured to reduce a temperature of a target region beneath an epidermis of the subject to reduce the temperature of lipid-rich cells in the target region such that the lipid-rich cells are substantially affected while non-lipid-rich cells in the epidermis are not substantially affected; and
at least one actuator proximate to the treatment units configured to provide mechanical energy, a vacuum, or both mechanical energy and a vacuum to the target region.

[ci5] 15. The system of claim 14 further comprising a treatment unit in thermal communication with a fluid chamber, the fluid chamber being configured to provide a coolant to the treatment device.

[ci6] 16. The system of claim 15 further comprising a fluid line between the treatment unit and the treatment device such that the treatment device is in fluid communication with the treatment unit.

[ci7] 17. The system of claim 15, wherein the treatment device further comprises a sensing element proximate to at least one of a heat exchanging surfaces, and wherein the system further comprises:

a processor in communication with the sensing element and configured to convert signals from the sensing element into an operating parameter; and

a database connected to the processor to store the operating parameter.

[ci8] 18. The system of claim 17 wherein the processor includes a control module for controlling the temperature of the region based on the operating parameter, and wherein the temperature of the region is controlled based on a selected spatial temperature profile.

[ci9] 19. The system of claim 17 wherein the processor includes a control module for controlling the temperature of the region based on the operating parameter, and wherein the temperature of the region is controlled based on a predetermined time-varying profile.
20. A treatment device for removing heat from subcutaneous lipid-rich cells of a subject, the device comprising:
 a plurality of treatment units, each cooling element being movable relative to an adjacent cooling element; and
 an actuator proximate to at least one of the treatment units and configured to provide mechanical energy to the treatment device.

21. The treatment device of claim 20 wherein the treatment units have edges, and wherein the edges of adjacent treatment units are substantially parallel to each other.

22. The treatment device of claim 20 wherein the actuator generates a frequency of vibration in the range of about 0.1 Hz to about 50MHz.

23. The treatment device of claim 20 wherein the actuator uses pneumatic, electric, and/or electromechanical force.

24. The treatment device of claim 20 further comprising a flexible substrate, wherein the plurality of treatment units and the actuator are fixedly disposed on the substrate.

25. The treatment device of claim 20 wherein each of said plurality of treatment units is positioned adjacent to at least one other treatment units and a rotatable connection coupling the adjacent treatment units, wherein the actuator is affixed to the rotatable connection between treatment units.

26. The treatment device of claim 25 wherein the rotatable connection is a hinge.
Fig. 7
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

INV. A61B18/02

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 03/078596 A (GEN HOSPITAL CORP [US]); ANDERSON RICHARD ROX [US]; MANSTEIN DIETER (US) 25 September 2003 (2003-09-25) page 20, lines 5-10; claim 1</td>
<td>1, 7, 14-20, 23</td>
</tr>
<tr>
<td>X</td>
<td>WO 2004/000098 A (PALOMAR MEDICAL TECHNOLOGIES I [US]) 31 December 2003 (2003-12-31) claim 1; figure 8</td>
<td>1, 5, 7, 8, 14, 17</td>
</tr>
<tr>
<td>X</td>
<td>WO 97/05828 A (LUMEDICS LTD [US]) 20 February 1997 (1997-02-20) page 5, lines 3-9; claim 1</td>
<td>1, 8, 12, 14, 15, 20, 23</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

30 October 2007

Date of the actual completion of the international search

Date of mailing of the international search report

23/11/2007

Name and mailing address of the ISA/Authorized officer

European Patent Office, P B 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040, Tx 31 651 epo nl, Fax (+31-70) 340-3016

Chopinaud, Marjorie
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>page 9, lines 1-10; claim 1; figure 1</td>
<td>2-11,13, 16-19, 21,22, 24-26</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>CN 1741777 A</td>
<td>01-03-2006</td>
<td>DE 20321182 U1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2004000098 A</td>
<td>31-12-2003</td>
<td>AU 2003245573 A1</td>
</tr>
<tr>
<td>BR 0312430 A</td>
<td>26-04-2005</td>
<td>CA 2489506 A1</td>
</tr>
<tr>
<td>US 2004073079 A1</td>
<td>15-04-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 5746736 A</td>
<td>05-05-1998</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 9841157 A</td>
<td>24-09-1998</td>
<td>AU 6561898 A</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)