
US 2013 0124669A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0124669 A1

Anderson et al. (43) Pub. Date: May 16, 2013

(54) SYSTEM FORMONITORINGELEASTIC (52) U.S. Cl.
CLOUD-BASED COMPUTING SYSTEMISASA USPC ... 709/217; 709/224
SERVICE

(57) ABSTRACT

(76) Inventors: Eric Paul Anderson, Pflugerville, TX Provided is a computing-system monitor configured to moni
(US); Scott Conrad Johnson, Austin, tor a plurality of computing-systems each having a plurality
TX (US); David Perdue, Austin, TX of monitored computing-instances. The computing-system
(US); Luke Ehresman, Holly Springs, monitor may include a plurality of collectors, each collector
NC (US); Robert B. Gordon, Austin, executed by one of a plurality of monitored computing-in
TX (US) stances, wherein the plurality of monitored computing-in

stances each are part of one of a plurality of separately moni
(21) Appl. No.: 13/293,751 tored computing systems, and wherein each of the collectors

is operable to output metrics of a corresponding monitored
(22) Filed: Nov. 10, 2011 computing-instance executing that collector. The computing

system monitor may also include an analytics platform, the
Publication Classification analytics platform having a plurality of analytic computing

instances, the analytics platform being operable to receive
(51) Int. Cl. metrics output by the plurality of collectors, calculate statis

G06F 15/16 (2006.01) tics with the analytic computing-instances based on the
G06F II/30 (2006.01) received metrics, and output the calculated Statistics.

-
18

monitored Computing system
16

analytics-platform computing system
25

monitoring computing instance

26
26 s

monitoring computing instance

monitored Computing system

monitored computing system

monitored Computing instance
3O

monitored computing instance

30- collector e

28

monitored computing instance
3O

14

22
cietiewice

2O

US 2013/O124669 A1 May 16, 2013 Sheet 1 of 11 Patent Application Publication

I ?un6|-
OZ

T?????TH, og

Z ?un6|-

US 2013/O124669 A1 ion Patent Application Publica

Patent Application Publication May 16, 2013 Sheet 3 of 11 US 2013/O124669 A1

66

68

operate a nonitored Computing Systein

has a new Computing
instance auched?

yes

obtain an instance identifier of the
new computing instance

Obtaia acCQuint identifief of as a{COnt
associated with the Computing system

obtain an address of an analytics platform

initiate a Sessioi with the
analytics platform by transmitting a request

to monitor the computing instance to the address

traShit the istance identifier aid the
account identifier to the analytics piatform

for aSSOciatios with the Sessio:

Figure 3

Patent Application Publication May 16, 2013 Sheet 4 of 11 US 2013/O124669 A1

1. 82

initiate a session between a computing
instance of a monitored Computing system and 84

an analytics platform

86
update coilector

obtain Collector parameters 88

9 O

obtain metrics of the computing instance

has an aggregation
period elapsed?

form metric-data batch indicative of metrics
obtained during aggregation period

output the metric-data batch
to the analytics platform

Figure 4

US 2013/O124669 A1 May 16, 2013 Sheet 5 of 11 Patent Application Publication

9 ?un6|-

OOT_^

G ?un6|-

ZOI
86

US 2013/O124669 A1

OZIÞZI ,

May 16, 2013 Sheet 6 of 11

GZT

OZI ZI

Patent Application Publication

Patent Application Publication May 16, 2013 Sheet 7 of 11 US 2013/O124669 A1

12O

receive engine
134

decryption

decompression

account management

parser

queue output

output to database engine

Figure 8

US 2013/O124669 A1 May 16, 2013 Sheet 8 of 11 Patent Application Publication

6 ?un61-I uGen?eA9-e?d??u?

Patent Application Publication May 16, 2013 Sheet 9 of 11 US 2013/O124669 A1

126

web UI engine

AP Server

web server

162

166

PS Service

Figure 11

platform engine 124
16

update manager

170

Scheduler

17

database
rainterance

17

instance
manager

Figure 10

8

4.

US 2013/O124669 A1 May 16, 2013 Sheet 10 of 11 Patent Application Publication

Z 6 T

Patent Application Publication May 16, 2013 Sheet 11 of 11 US 2013/O124669 A1

COMPUTING DEVICE
it.

Rigi Ay:RSix
iTS8 gai

C&C

f{{{SSC; R
iigg

i^ REWii
tiis; A&E

i3;

RORCESSOR
i{iji

i/O. Evice S.
S

SYSify fity

2
R&R8sia

iNSRfCitiS
iii.

iA
iii.; ACE

is:

PROCESSOR
i{iin

Figure 13

US 2013/01 24669 A1

SYSTEM FORMONITORINGELEASTC
CLOUD-BASED COMPUTING SYSTEMSASA

SERVICE

BACKGROUND OF THE INVENTION

0001 1. Field of the Invention
0002 The present invention relates generally to comput
ing systems, and more specifically, to monitoring the opera
tion of computing systems.
0003 2. Description of the Related Art
0004 Systems management programs are often used for
monitoring groups of computing devices, such as a group of
personal computers deployed within a company's local area
network. Generally, some systems management programs are
configured to monitor the performance, usage, configuration,
and network activity of each of the computing devices in the
system. Some such systems management programs obtain
data from programs, referred to as agents, executed by each of
the computing devices. The agents gather data at the comput
ing device, and the systems management program generally
coordinates the operation of the agents by establishing con
nections with the agents and requesting the agents to report
data back to the systems management program, often by
periodically polling the agents for data.
0005 Generally, existing systems management programs
are not well-suited for monitoring the operation of relatively
large computing systems, multiple computing systems, or
computing systems in which constituent computing devices
are frequently added or removed. Configuring system man
agement programs is often relatively labor-intensive, as cer
tain Such programs require an operator to identify, and con
figure the program for, each new computing device added to
the system. Further, relatively large computing systems or
multiple computing systems generally yield relatively large
amounts of data, as each computing device in the system may
be an additional potential source of information to be moni
tored.
0006. These inadequacies are particularly challenging for
those monitoring computing systems in a data center or other
Scalable computing system, such as computing systems oper
ating in a cloud-based virtual data center. Often such com
puting systems are designed to be scalable, such that new
computing devices or virtual machines are provisioned based
on the load placed on the computing system. As a result, in
Some use cases, new computing devices or new virtual
machines (that is, computing instances of the computing sys
tem) are added and removed relatively frequently as demand
fluctuates. These transient computing instances are difficult
for certain existing system management programs to effec
tively monitor, as the amount of data generated can be poten
tially relatively large and the new instances often go unno
ticed and unmonitored by the systems management program
until the systems management program is reconfigured to
establish a connection with the new computing instances and
request data from them. Further, systems management pro
grams are often configured by technicians with relatively
specialized knowledge, but such persons are often not in the
employ of entities operating cloud-based virtual data centers,
which are often specifically designed to be used by entities
without specialized expertise in the operation and mainte
nance of Such computing systems. Moreover, because Such
computing systems are often accessed over the Internet,
rather than a local area network under the control of a single
entity, the connection between the systems management pro

May 16, 2013

gram and the monitored computing instances is often less
reliable, which can result in uneven data flows that could
potentially overwhelm the systems management program or
cause data to be lost. Finally, those operating computing
systems often rely on those computing systems continuing to
operate and perform with certain characteristics without fail
over relatively long periods of time, for instance over months
or years. Relatively short deviations in performance or opera
tion are therefore of interest to Such users, but many existing
systems management programs either do not monitor data
indicative of performance with Sufficient granularity or do not
monitor data indicative of performance with frequency speed
to inform users of events briefly affecting performance.

BRIEF DESCRIPTION OF THE DRAWINGS

0007. The aspects of the present techniques will be better
understood when the application is read in view of the fol
lowing figures in which like numbers indicate similar or
identical elements:

0008 FIG. 1 shows an embodiment of an analytics-plat
form computing system for monitoring a plurality of moni
tored computing systems;
0009 FIG.2 shows an embodiment of a collector executed
on computing instances of monitored computing systems of
FIG. 1:
0010 FIG. 3 shows an embodiment of a process for initi
ating a monitoring session with an analytics platform from a
computing instance to be monitored;
0011 FIG. 4 shows an embodiment of a process for out
putting metrics of a monitored computing instance to an
analytics platform;
0012 FIG. 5 shows an embodiment of a process for pre
paring gathered data to be transmitted to an analytics plat
form;
0013 FIG. 6 shows an embodiment of a process for trans
mitting gathered data indicative of performance of a moni
tored computing instance to an analytics platform;
0014 FIG. 7 shows details of the analytics-platform com
puting system of FIG. 1;
0015 FIG. 8 shows an embodiment of a receive engine of
the analytics-platform computing system of FIG. 7:
0016 FIG.9 shows an embodiment of an analytics engine
of the analytics-platform computing system of FIG. 7:
0017 FIG. 10 shows an embodiment of a web user inter
face engine of the analytics-platform computing system of
FIG.7;
0018 FIG. 11 shows an embodiment of a platform engine
of the analytics-platform computing system of FIG. 7:
0019 FIG. 12 shows an embodiment of a process for ana
lyzing data received from a monitored computing system; and
0020
0021 While the invention is susceptible to various modi
fications and alternative forms, specific embodiments thereof
are shown by way of example in the drawings and will herein
be described in detail. The drawings may not be to scale. It
should be understood, however, that the drawings and
detailed description thereto are not intended to limit the
invention to the particular form disclosed, but to the contrary,
the intention is to cover all modifications, equivalents, and
alternatives falling within the spirit and scope of the present
invention, e.g., as defined by the appended claims.

FIG. 13 is an example of a computing device.

US 2013/01 24669 A1

DETAILED DESCRIPTION OF CERTAIN
EMBODIMENTS

0022 FIG. 1 shows an embodiment of an analytics-plat
form computing system that may address some or all of the
deficiencies described above. In certain embodiments, as
described below, the analytics-platform computing system 12
may be configured to output results within less than (or Sub
stantially less than, e.g., in real time) approximately 120
seconds of when the events upon which the results are based
occur, e.g., an even occurring on a monitored computing
instance. Further, some embodiments may be capable of
monitoring a plurality of different computing systems, each
associated with a different account, for example on behalf of
a plurality of different entities having accounts, such that
monitoring is provided as a service to account holders who
are relieved of the burden of hosting a computer system
management program. Some embodiments, as described
below, may also be relatively easy to configure to monitor
new computing instances added to a monitored computing
system because, in Some instances, the new computing
instances may initiate a monitoring session with the analytics
platform and push data to the analytics platform, without the
analytics platform being pre-configured to communicate with
each specific new computing instance. Additionally, in some
embodiments described below, the analytics-platform com
puting system 12 may be a scalable computing system oper
able to provision additional monitoring computing instances
26 or other additional computing resources based upon need,
thereby potentially reducing the hardware costs associated
with the system. Notall embodiments, however, provide all of
these benefits, as various trade-offs may be made using the
techniques described herein in pursuit of other objectives, and
Some embodiments may provide other benefits, some of
which are described below.

0023. In the embodiment of FIG. 1, a computing environ
ment 10 includes the analytics-platform computing system
12; a plurality of monitored computing systems 14, 16, and
18; a plurality of client devices 20, 22, and 24; and a network
25. The illustrated analytics-platform computing system 12
includes a plurality of monitoring computing instances 26
which may serve a variety of different functions, examples of
which are described below with reference to FIG. 7, and the
number of which may be variable based on the computing
load placed on the analytics-platform computing system 12,
as described below with reference to FIG. 11.

0024. In some embodiments, the analytics-platform com
puting system 12 is a computing system having a plurality of
monitoring computing instances 26, each of which may be a
different physical computing device operating an operating
system on one or more processors connected to memory, for
example operating in a single memory address space. Or the
monitoring computing instances 26 may be virtual machines,
e.g., virtual machines executed by a virtualization host, and
several virtual machines may be hosted on a single physical
computing device, or some instances may hosta single virtual
machine on multiple physical computing devices. In either
case, the computing devices may be one of the examples of
computing devices described below with reference to FIG.
13, Such as laptops, desktops, or rack-mounted computing
devices, for example. Each monitoring computing instance
26 may have an operating system upon which an application
may be loaded and within which the application may be

May 16, 2013

executed, and in Some embodiments, some monitoring com
puting instances 26 may include one or more physical and
virtual machines.

0025. In certain embodiments, the analytics platform
computing system 12 may be embodied as a cloud-based
distributed application, Such as an application deployed in a
public cloud (e.g., the elastic compute cloud service offered
by Amazon.com, Inc. of Seattle, Wash.), or in a private cloud
operated as a virtualized infrastructure within an enterprise
data center (for instance, based on the open-source KVM
hypervisor). Some embodiments of the cloud-based analyt
ics-platform computing system 12 may scale (e.g., by adding
or subtracting monitoring computing instances 26) based on
the computing load of the analytics-platform computing sys
tem 12. For example, Scaling may be performed automati
cally based solely on the computing load or based on the
computing load and other factors, such as the cost of marginal
computing instances, bandwidth, or other resources, or scal
ing may be performed based solely (or partially) on one of
these other factors, independent of load, or a combination
thereof, e.g., a Subset. An analytics-platform computing sys
tem that is configured to scale based on load is expected to
accommodate a variable number of monitored computing
systems and monitored computing systems of variable size
without incurring the cost of provisioning computing
resources for the maximum expected load. Examples of Such
scaling are described below with reference to FIG. 7. In other
embodiments, the analytics platform computing system 12
does not scale, does not scale automatically, or is not cloud
based and may be executed by a single computing device,
which is not to suggest that any other feature described herein
may not also be omitted in some embodiments.
0026. The analytics-platform computing system 12, in
Some embodiments, may be operable to monitor or manage
computing systems 14, 16, and 18 for multiple users associ
ated with client devices 20, 22, and 24 and the computing
systems 14, 16, and 18, thereby providing computer system
management Software as a service (e.g., a Subscription Ser
vice). As explained in greater detail below, some embodi
ments may be capable of associating each of the different
monitored computing systems 14, 16, and 18 with a different
account, and in Some embodiments, users associated with
those accounts may monitor the corresponding one of the
computing systems 14, 16, and 18 via one of the client devices
20, 22, or 24. In some embodiments described below, the
client devices 20, 22, and 24 include a web browser (e.g., a
laptop, desktop, Smartphone, or remote virtual machine hav
ing a browser), and the analytics-platform computing system
12 is operable to serve a web-based interface to users via the
web browser. Advantageously, Some embodiments may pro
vide a computing system management service to each of a
plurality of different users, each monitoring one of a plurality
of different computing systems, thereby potentially reducing
or eliminating the need of such users to host or maintain their
own computing system management program. Some
embodiments, however, may have one analytics-platform
computing system for each monitored computing system, and
both systems may be operated by the same entity, which is not
to Suggest that any other feature described herein may not also
be omitted in some embodiments.

0027. The monitored computing systems 14, 16, and 18
may each be a different monitored computing system associ
ated with, and under the control of a different entity, for
example a different account of a cloud computing service, a

US 2013/01 24669 A1

different operator of a data center, or a different user of the
analytics-platform computing system 12. In some embodi
ments, some or all of the monitored computing systems 14,
16, and 18 may be executed on the same cloud computing
service or data center that executes the analytics-platform
computing system 12 or on different systems. Some embodi
ments of the monitored computing systems 14, 16, and 18
may be hosted on examples of the above-mentioned public
cloud, examples of the above-mentioned private cloud,
examples of the above-mentioned data centers, or some com
bination thereof. In some instances, some or all of the com
puting systems 14, 16, or 18 may be executed on a virtualized
infrastructure. Such as a virtualized infrastructure executed
within an enterprise data center. In some embodiments, one or
more of the monitored computing systems may be character
ized as a cluster computing system. Some embodiments may
be operated on host devices under the control of a single
entity, or under the control of multiple entities, e.g., a Volun
teer distributed computing project.
0028. In some embodiments, the computing systems 14,
16, and 18 may be executed, partially or substantially entirely,
on a public cloud computing service. The cloud computing
service may have certain attributes. For example, the physical
infrastructure upon which computing instances are built may
be not visible to users of the cloud computing service. The
cloud service provider may obscure from, or abstract away
from, users details of the physical computing devices upon
which the computing instances are hosted. Further, in some
instances, users of the cloud computing service may have
service-level agreements with the provider of the cloud com
puting system that specify minimum performance and uptime
characteristics, and as described below, some embodiments
of the analytics-platform computing system 12 may be
capable of verifying whether these service-level agreements
are met.

0029. The computing systems 12, 14, 16, and 18, in some
embodiments, may each include a plurality of computing
instances, such as the monitoring computing instances 26 of
the analytics-platform computing system 12 or the monitored
computing instances 28 of each of the monitored computing
systems 14, 16, and 18. The computing instances 26 and 28 in
each of these examples may be a physical computing device
or may be a virtual machine, either of which may execute an
operating system and one or more applications performing
certain tasks. The computing instances are not necessarily
physical computers, and in some embodiments, attributes and
configurations of the physical computers upon which the
computing instances are executed may be obscured to those
using the computing instances and controlling the execution
of the applications. The applications may be executing any of
a wide variety of different tasks. For example, some applica
tions may be executing a data analysis algorithm, a database,
a Web server, or any of a variety of other tasks.
0030. In the course of executing these applications, the
number of computing instances may change. For example,
Some cloud computing systems are operable to increase or
decrease the number of computing instances based on the
computing load, for example based on the amount of data to
be processed by the above-mentioned applications or the
speed of such processing, which in Some use cases correlates
with the number of users interacting with the services pro
vided by the monitored computing systems 14, 16, and 18. As
described in greater detail below, the analytics-platform com
puting system 12 may be capable of tracking newly added

May 16, 2013

computing instances as those newly added computing
instances identify themselves to the analytics-platform com
puting system 12.
0031. Further, as the monitored computing systems 14, 16,
and 18 execute their applications, attributes of the monitored
computing instances may vary. Examples of Such attributes
include the amount of memory allocated to, or possessed by,
each computing instance in use, the amount of processing
power of each computing instance in use (e.g., the percentage
of time that a CPU is generally idle), attributes of network
usage (e.g., input bandwidth use, output bandwidth use, or
input or output bandwidth use of certain types of traffic—for
instance based on packet headers, latency, packet loss, and the
like), economic attributes (e.g., the cost of instances, the cost
of CPU cycles, the cost of memory, or the cost of network
traffic), and sensed physical properties of the underlying
computing device. Such as temperature and vibrations. As
explained in greater detail below, some or all of these
attributes or similar attributes may be monitored by the ana
lytics-platform computing system 12 Such that a user operat
ing one of the client devices 20, 22, or 24 can view informa
tion about such attributes of a computing system 14, 16, or 18
under that user's control. (In some embodiments, one or more
of the client devices 20, 22, or 24 may be one of the monitored
computing instances 28, e.g., a virtual machine operating a
web browser by which performance of that computing
instance 28 and other computing instances 28 is displayed.)
0032. In some embodiments, some, all, or substantially all
of the computing instances 28 of a monitored computing
system 14, 16, or 18 may execute a collector 30. As described
in greater detail below with reference to FIG. 2, the collectors
may be capable of introducing new computing instances to be
monitored to the analytics-platform computing system 12 and
initiating a monitoring session with the analytics-platform
computing system 12 to monitor the new computing instance.
Further, as described in greater detail below with reference to
FIGS. 5 and 6, the collectors 30 may be capable of bundling,
compressing, encrypting, buffering, and then pushing gath
ered data to the analytics-platform computing system 12 in a
manner that is relatively robust to interruptions in network
connections between the collector 30 and the analytics-plat
form computing system 12 and bursts of traffic over Such
connections. The collectors 30 may be executed within the
operating system of each of the monitored computing
instances 28, for example as a parallel thread or process to
those threads or processes executing the above-described
applications for each of the monitored computing systems 14,
16, and 18.
0033. In some embodiments, each monitored computing
system 14, 16, and 18 may perform a process for adding a new
computing instance to the monitored computing system, for
example based on a load of the monitored computing system,
for instance in response to the load exceeding a threshold, in
response to a response time of Some or all of the monitored
computing system exceeding a threshold, or in response to
one or more attributes of monitored computing instances
exceeding some threshold or obtaining some state. When
adding a monitored computing instance, in some embodi
ments, a monitored computing system may request a new
computing instance from a cloud computing system provider
or other resource for computing instances and transmit, or
request that such a transmission be performed, to the new
computing instance a machine image including an operating
system and one or more applications to be executed within the

US 2013/01 24669 A1

operating system, including the collector 30. Upon booting of
this image on the new computing instance to be monitored, as
described in greater detail below with reference to FIG. 3, the
collector 30 may initiate communication with the analytics
platform computing system 12, identify the new computing
instance to the analytics-platform computing system 12, and
then push data about the operation of the new computing
instance to the analytics platform computing system 12.
0034. The illustrated embodiment includes three moni
tored computing systems 14, 16, and 18, but other embodi
ments may include fewer or Substantially more. In some
embodiments, each monitored computing system 14, 16, and
18 may be associated with an account, Such as a Subscription
account, identified in memory accessible to the analytics
platform computing system 12. In some embodiments one (or
one and only one) account may be associated with each moni
tored computing system by the analytics-platform computing
system 12. In other embodiments, one account may be asso
ciated with one or more monitored computing systems, and
each Such monitored computing system may be associated
with a system identifier also associated with the account that
distinguishes among the various monitored computing sys
tems of the account. As explained in greater detail below with
reference to FIG.10, users associated with such accounts may
receive data indicative of the operation of corresponding
monitored computing systems through one of the client
devices 20, 22, and 24 by identifying the account to the
analytics-platform computing system 12, for instance by
entering an account identifier and a password in a web user
interface.

0035. The client devices 20, 22, and 24 may be a variety of
different types of computing devices, including the above
described computing instances, and the devices described
below with reference to FIG. 13, such as personal computers,
laptops, Smartphones, or other devices having a user interface
capable of presenting data about the operation of a monitored
computing system. In some embodiments, some or all of the
client devices 20, 22, and 24 may not have such ainterface, for
example some of the client devices 20, 22, and 24 may be a
server or other computing device capable of controlling one
of the monitored computing systems 14, 16, or 18 based on
data from the analytics-platform computing system 12. For
instance, the client devices 20, 22, or 24 may add computing
instances to a monitored computing system based on data
indicating a load on the monitored computing system has
increased, has increased above a threshold, has increased at a
rate such that the rate exceeds a threshold, or data indicating
a response time of a monitored computing system has
increased or increased above a threshold. Similarly, such
embodiments may terminate computing instances from a
monitored computing system upon a decrease in Such factors,
e.g., a decrease below similar thresholds.
0036. The network 25 may include a variety of different
types of networks, either individually or in combination. In
some embodiments, the network 25 may include the Internet.
In another example, the network 25 may include a wide area
network or a local area network, such as an Ethernet. The
network 25 may span a relatively large geographic area, in
Some embodiments. For example, the analytic-platform com
puting system 12 may be remote from the monitored comput
ing systems 14, 16, and 18, which may be each remote from
one another, and the systems 12, 14, 16, and 18 may all be
remote from the client devices 20, 22, and 24, which each may
also be remote from one another, for example these compo

May 16, 2013

nents may be further than 10 miles apart, further than 100
miles apart, or further than 500 miles apart.
0037. Like the other features and embodiments of other
figures described herein, embodiments are not limited to sys
tems having the same number of features as those illustrated
in FIG. 1. For example, other embodiments may include
multiple analytics-platform computing systems 12, a single
or many more monitoring computing instances 26, a single or
many more monitored computing systems 14, 16, and 18, a
single or many more monitored computing instances 28
within each of the monitored computing systems 14, 16, and
18, more than one collector 30 within each monitored com
puting instance 28, and Zero, one, or many more than one
client devices 20, 22, and 24 each associated with one of the
monitored computing system 14, 16, and 18. This is not to
Suggest that any other embodiment described herein is lim
ited to the exact number of features illustrated in a figure.
0038 FIG. 2 illustrates an embodiment of the collector 30
described above with reference to FIG.1. The same collector
30 may be executed in each of the above-described monitored
computing instances 28, or in some embodiments, different
collectors may be configured for different computing
instances 28. The collector 30 may be operated in combina
tion with the other components described above with refer
ence to FIG. 1, or the collector 30 may be used to collect data
in other computer systems, such as networking systems or
storage systems, for other computer system management pro
grams.

0039. As described in greater detail below, in some
embodiments, the collector 30 may be capable of identifying
a new computing instance to the analytics-platform comput
ing system 12, which may lower labor costs and reduce
response time associated with configuring the analytics-plat
form computing system 12 to monitor a new computing
instance relative to systems in which the analytics-platform
computing system 12 initiates communication or polls data
from the computing instance. Further, as is also described in
greater detail below, the collector 30 may be capable of com
pressing gathered data in a manner that tends to reduce over
head associated with transmission of the data to the analytics
platform computing system 12. Embodiments of collectors
30 are also capable of buffering and modulating the transmis
sion of the gathered data such that data is retained in the event
of a network failure, or failure of any other component exist
ing in-between the collector and functioning monitoring
computing instance 26 including a component or process of
the analytics-platform itself, and Such that Surges in the trans
mission of data are mitigated following recovery of the net
work 25 after such a failure. The collector 30 may also be
capable of receiving updates of collector software from the
analytics-platform computing system 12, thereby potentially
lowering the burden on users of monitored computing sys
tems desiring to keep collector Software up-to-date.
0040. In some embodiments, the collector 30 includes an
operating system interface 32, an input/output module 34, a
data acquisition module 36, a session initiator module 38, a
collector updater module 40, and a collector controller mod
ule 42. These modules are described and depicted as separate
functional blocks; however hardware or software implement
ing the corresponding functions may be intermingled, con
joined, separated, or otherwise organized relative to the func
tional blocks described herein.

0041. The collector 30, in some embodiments, may be
capable of collecting or measuring performance, configura

US 2013/01 24669 A1

tion, and resource utilization data (referred to as metrics)
from the operating system executing on the monitored com
puting instance via the operating system interface 32. The
metrics may be gathered by the data acquisition module 36
and may be referred to as metrics of the monitored computing
instance. The metrics may be indicative of performance,
resource utilization, component hardware and Software com
ponent identities and versions, costs of use, and other
attributes. The resulting metric data, in Some embodiments,
may be pre-processed by the input/output module 34 by pack
aging the data into time-based buckets or other batches aggre
gated according to other criteria, for example based on a
predetermined quantum of data, thereby potentially reducing
the amount of data to be transmitted to the analytics-platform
computing system 12 and reducing operating costs and net
work usage. Other embodiments, however, may not pre-pro
cess the data, which is not to suggest that any other feature
described herein may not also be omitted in some embodi
ments. In this embodiment, the operating system interface 32
may be capable of making calls to an application program
ming interface of the operating system of the monitored com
puting instance, for example in response to requests for data
or commands from the other components of the collector 30.
0042. In some embodiments, the input/output module 34

is capable of communicating with the other components of
the collector 30 and with the analytics-platform computing
system 12 via the network 25 (FIG. 1). As illustrated by FIG.
2, this embodiment of an input/output module 34 includes a
throttle module 44, a buffer module 46, an encryption module
48, and a compression module 50. Other embodiments may
include additional modules or fewer modules, again which is
not to Suggest that other features may not also be omitted.
0043 FIG. 2 illustrates some of these modules as being
spatially interspersed between other modules, but FIG. 2 is
not limited to a particular topology, and the components of
FIG. 2, as is the case with the other block diagrams herein,
may communicate with one another, in Some use cases and
some embodiments bi-directionally, either directly or indi
rectly through other modules or components. Such commu
nication may occurthrough a variety oftechniques at a variety
of different layers of abstraction, including via a wired or
wireless network, via a bus within a computing device, by
way of calling module or component application program
interfaces (APIs), or via reference to value stored in memory,
Such as values associated with variables within a program, or
via copies of Such values passed between processes or Sub
programs.

0044) The input/output module 34 and its components 44,
46, 48, and 50 may be operable to execute portions of the
processes described below with reference to FIG.3 and FIG.
4 and the processes described below with reference to FIG. 5
and FIG. 6, in Some embodiments. As explained in greater
detail below with reference to these figures, the throttle mod
ule 44 may be capable of throttling the output of the collector
30 to the analytics platform computing system 12 such that
Sudden spikes in network traffic to the analytics-platform
computing system 12, for instance following a systemic fail
ure or recovery from a network failure, are mitigated, thereby
potentially reducing the likelihood of a spike in traffic from
one monitored computing system impeding the flow of data
from another monitored computing system. The buffer mod
ule 46 may be capable of storing (e.g., buffering) metrics Such
that data losses are avoided or mitigated when the throttle
module 44 (or a network outage) causes the input/output

May 16, 2013

module 34 to transmit data at a slower rate than the collector
30 is gathering data. The encryption module 48 may be opera
tive to encrypt data from the collector 30, such that an entity
monitoring network traffic, for example an entity performing
deep packet inspection of traffic to the analytics-platform
computing system 12, may be impeded from inferring details
about the operation of a monitored computing system 14.
thereby potentially satisfying some regulatory requirements
for the security of data relating to certain systems and poten
tially limiting the likelihood of certain types of attacks on
system security, such as attacks based on changes in resource
usage in response to more or fewer characters of a password
being correct. The compression module 50 of this embodi
ment may be operative to reduce the amount of network traffic
used to convey a given amount of information from the col
lector 30 to the analytics-platform computing system 12.
Examples of compression are described below with reference
to FIG.S.

0045. In this embodiment, the data acquisition module 36
includes an operating system status interface module 52, a
network-usage interface module 54, a sensor interface mod
ule 56, a data pre-processor module 58, and a data aggregator
module 60. Other embodiments may include additional mod
ules or fewer modules, again which is not suggest that other
features may not also be omitted or Supplemented.
0046. In some embodiments, the operating system status
interface module 52, the network usage interface module 54,
and the sensor interface module 56 may be capable of gath
ering metrics about the monitored computing instance. For
example, the operating system status interface module 52
may be capable of commanding the operating system, via the
operating system interface 32, to return data indicative of
resource utilization, configuration, and performance of the
operating system, resources of the operating system, or soft
ware executed in the operating system, including resource
utilization and performance of applications and other pro
cesses. Examples of Such metrics include utilization of sys
tem memory, for instance utilization of random-access
memory, utilization of various other types of memory, such as
cache memory, persistent storage memory (e.g., hard disk
drive memory, Solid-state drive memory, and the like), graph
ics memory, and other forms of special-purpose memory,
such as buffer memory in a network interface card. In another
example, the metrics may include utilization of various types
of processors, such as utilization of one or more cores of a
central processing unit, and utilization of a graphics process
ing unit, for example. Utilization may be expressed in a
variety of formats, for example a percentage of a capacity
(such as incomparison to historic averages, peaks and troughs
where the historic data was previously recorded by the ana
lytics platform computing system, in comparison to historic
data gathered from a wide variety of time and date ranges, in
comparison to aggregate historic data previously gathered
from similar or different instances, running in the same or
different cloud/data center/virtual infrastructure), an absolute
amount of utilization, for instance in megabytes or cycles of
a CPU, or a binary indicator of whether some condition has
been obtained or not been obtained. Metrics may include data
logged by the operating system, including error conditions,
and data indicative of which processes are running Metrics
may also include performance metrics, for example data
indicative of the amount of time various tasks take, such as the
time taken to retrieve data from memory or write data to
memory, or time taken to perform certain processing tasks,

US 2013/01 24669 A1

Such as the time taken to iterate a portion of an application or
time taken to yield some results. Other metrics may include
metrics that are application or process specific, such as the
above-described metrics that are attributable to a given pro
cess or application, and a list of Such processes or applica
tions. Some embodiments may be capable of obtaining met
rics indicative of the configuration of the monitored
computing instance, for example a size of a memory space of
the monitored computing instance, for instance whether the
monitored computing instance is a 32-bit or 64-bit system,
system information about allocated or present processing
power and memory, and the like. Gathered data may also
include data indicative of versions of applications, drivers,
and firmware. Metrics may also include cost data associated
with the operation of the computing instance, for instance
cost data associated with electrical power, cost data of units of
processing, costs data of units of memory, and cost data of
network transmissions or reception of data.
0047. In some embodiments, the network-usage interface
module 54 may be capable of obtaining information relating
to network usage via the operating system interface 32 by
transmitting commands to the operating system interface 32
and receiving data retrieved via the operating system interface
32. Examples of network usage data include data indicative of
a rate or amount of network traffic received by or transmitted
by the monitored computing instance and data indicative of
performance of network traffic, such as packet loss, latency,
bandwidth, routes, and data indicative of recipients of net
work traffic or transmitters of network traffic to the monitored
computing instance. The data indicative of network traffic
may also include data that is specific to particular types of
network traffic, for example network traffic encoded accord
ing to particular protocols, data particular to certain applica
tions, data particular to network traffic received through or
transmitted through a particular port, and data indicative of
network traffic received from or transmitted to some other
computing device. The data indicative of network traffic may
also include data indicative of the operation of a network
interface card, physical or virtual, such as data indicative of an
amount of data stored in a buffer of the network interface card
and data indicative of the capabilities of the network interface
card, Such as Supported protocols, an amount of memory,
Supported features, and firmware versions. In some embodi
ments, the network usage interface module 54 is also operable
to gather data indicative of information encoded in network
traffic, such as data available through deep packet inspection
of network traffic, from which can be derived transaction
information including transaction response times, for
example the response times for various application or storage
protocol transactions.
0.048. In some embodiments, the sensor interface module
56 is operable to obtain data from various sensors of the
computing device providing the monitored computing
instance by transmitting requests for Such data to the operat
ing system interface 32 and receiving results retrieved by the
operating system interface 32 from sensors. Examples of such
data include temperature data indicative of the temperature of
various components of the physical computerprovided by the
monitored computing instance, such as the temperature of a
processor (e.g. a central processing unit, a digital signal pro
cessor, a graphics processing unit, a memory controller, a
hard disk drive controller, and the like), the temperature of
memory (e.g., random-access memory, cache memory, or a
hard disk drive memory, such as a solid-state drive), the

May 16, 2013

temperature of a power Supply, or (i.e., and/or) the ambient
temperature within a case or rack in which the monitored
computing instance is disposed. Other examples of sensor
data may include audio data or motion sensor data indicative
of vibration of components of the physical computer provid
ing the monitored computing instance (e.g., capacitor or fan
vibrations) or a current draw or a Voltage of various compo
nents, such as fans, processors, memory, or a power Supply. In
Some embodiments, obtaining sensor data may include
accessing some form of clock chip or other component that
provides, or can be made to provide signals or indications on
a regular basis, either absolutely or relative to the virtual
clock of virtual machines.

0049. The metrics gathered by the interface modules 52.
54, and 56 may be processed by the data pre-processor mod
ule 58, in some embodiments. In embodiments having a data
pre-processor module 58, this module may perform certain
analyses on the gathered data to identify certain metrics that
are discernible within the subsequently described batches of
data formed by the data aggregator 60. For instance, the data
pre-processor 58 may be capable of identifying within data
associated with these batches a maximum value, a minimum
value, an average value, a median value, a standard deviation,
a variance, a count of some events, and the like. The data
pre-processor 58 may also be capable of reducing the granu
larity of metrics, for example by sampling the data obtained
by the module 52, 54, and 56.
0050. The data aggregator module 60, in this embodiment,
may be capable of receiving metrics from the data pre-pro
cessor 58 or directly from the interfaces 52, 54, and 56 and
packaging the metrics in batches. The batches may be defined
based on time, for example data arriving within a duration,
Such as a predetermined or dynamically determined duration
of time that remains constant (e.g., a period) or varies during
the operation of the collector 30. In another example, the
batches may be defined based on an amount of data, for
example each batch may contain a predefined or dynamically
determined amount of data, such as one kilobyte, 10 kilo
bytes, or 1 megabyte, for instance. In another example, the
batches may be defined based on the occurrence of events, for
example a batch may begin when a process executed by the
monitored computing instance starts and end when the pro
cess ends. Batching the data is expected to reduce the amount
of data transmitted to the analytics-platform computing sys
tem 12 while still providing data indicative of the operation of
the monitored computing instance over the batching duration.
In some embodiments, the batches may be relatively small in
order to provide a relatively high resolution view of the opera
tion of the monitored computing instance, for example the
batches may span an amount of time less than or approxi
mately equal to 30 seconds, 20 seconds, 10 seconds, 5 sec
onds, one second, or 100 microseconds or less. Other embodi
ments, however, may not batch data, and some or all of the
gathered data may be transmitted to the analytics platform
computing system 12, which is not to Suggest that any other
feature described herein may not also be omitted in some
embodiments.

0051. In some embodiments, the data aggregator module
60 may include an input, a buffer, a batch manager, and an
output. The input may receive data from the data pre-proces
sor module 58 and store the data in the buffer. The batch
manager may determine when a batch is complete and, in
response, instruct the output to transmit the batch to the
input/output module 34 and clear the buffer.

US 2013/01 24669 A1

0052. As noted above, the controller 30 may also include
the session initiator module 38, in some embodiments, which
may include an instance identifier generator 62 and an
account identifier module 64. Details of the operation of the
session initiator module 38 are described in greater detail
below with reference to FIG. 3. The session initiator module
38 may be capable of requesting identifiers from these mod
ules 62 and 64 and initiating a monitoring session with the
analytics-platform computing system 12.
0053. In some embodiments, the session initiator 38 is
capable of initiating communication with the analytics-plat
form computing system 12, without the analytics-platform
computing system 12 first communicating with the collector
30 or the new monitored computing instance. In some
embodiments, the session initiator 38 is capable of alerting
the analytics-platform computing system 12 to the existence
of a new computing instance to be monitored without the
analytics-platform computing system 12 otherwise receiving
instructions indicating the existence. The session initiator 38
may be characterized as being capable of selfidentifying the
collector 30 or the monitored computing instance to the ana
lytics-platform computing system 12. The session initiator
module 38 is expected to simplify the burden associated with
configuring an analytics-platform computing system 12 to
monitor a computing system by automatically informing the
analytics-platform computing system 12 of which computing
instances are to be monitored. However, other embodiments
may not include a session initiator module 38, and some
embodiments may include an analytics-platform computing
system 12 that is configured to identify a new monitored
computing instance based on signals received from some
other source, for example signals received from one of client
devices 20, 22, or 24 or one of the other monitored computing
instances 28 tasked with requesting a new computing
instances from a cloud service provider, which again is not to
Suggest that any other feature herein is required in all
instances.

0054 The instance identifier generator module 62 may be
capable of forming an identifier, Such as an identification
number, code, or other string, that is unique to (or likely to be
unique to, for example more likely than one in 100,000) each
monitored computing instance within a monitored computing
system or each monitored computing instance. Further, in
Some embodiments, the instance identifier generator module
62 is capable of forming such an identifier without receiving
information from the analytics-platform computing system
12, for example prior to initiating contact with the analytics
platform computing system 12. The instance identifier may
be formed based on a variety of attributes of the monitored
computing instance, for example some operating systems
alone, or by way of interaction with another component may
provide a unique identifier which may be used, a network
address of the monitored computing instance, a MAC address
of the monitored computing instance, serial numbers of com
ponents of the monitored computing instance, or attributes
likely to vary, Such as a pseudorandom number generated by
the monitored computing instance, less significant digits of a
temperature of the monitored computing instance, and less
significant digits of a Voltage measured by the monitored
computing instance. In some embodiments, these values may
be inputs to a hash function that generates the instance iden
tifier.

0055 Drawing on these sources of values that are likely to
vary among the monitored computing instances is expected to

May 16, 2013

yield instance identifiers that are likely to be unique among
the monitored computing instances, thereby potentially pro
viding an identifier with which the collector 30 may initiate a
session with the analytics-platform computing system 12
without the analytics-platform computing system 12 cen
trally coordinating the allocation of instance identifiers, and
potentially relieving users of the burden of configuring the
analytics-platform computing system 12 for Such central
coordination. In other embodiments, however, the instance
identifier may be received from some other source, for
example from a client device 20, 22, or 24 or another com
puting instance coordinating the operation of other comput
ing instances or from the analytics-platform computing sys
tem 12, which is not to Suggest that other features cannot also
be omitted in some embodiments.
0056 Similarly, the account identifier module 64 may
obtain an identifier that is unique to (or likely to be unique to)
an account associated with the monitored computing system
of the monitored computing instance. The account identifier,
in Some embodiments, may be obtained from a computing
instance controlling the instantiation and termination of new
computing instances of a monitored computing system, for
example. Other embodiments may not include an account
identifier, for instance, Some embodiments may include an
identifier for a monitored computing system that is not asso
ciated with an account.

0057 The session initiator module 38 may also include an
address of the analytics-platform computing system 12, for
example an address reachable through the network 25 (FIG.
1). The address may take a variety of forms, for example the
address may be an Internet protocol address, such as an Inter
net protocol version 4 or version 6 address, or the address may
be a uniform resource identifier associated with the network
address of the analytics-platform computing system 12 and
resolvable through a domain name service. The session ini
tiator 38 may also be operative to establish a secure connec
tion with the analytics-platform computing system 12, for
example by exchanging encryption keys.
0058. The collector updater module 40 may be capable of
determining the version or configuration of the collector 30,
requesting data indicative of newer versions or a newest ver
sion of a collector from the analytics-platform computing
system 12, determining based on this data whether to upgrade
the collector 30, requesting data encoding instructions for a
new collector corresponding to the newer version or newest
version from the analytics-platform computing system 12,
and launching a module configured to uninstall the old Ver
sion of the collector 30 and install the new version or newer
version. In some embodiments the determination to upgrade
may be made at the analytics-platform computing system 12
or in Some other computing system or device.
0059. The updater module 40 may, in some embodiments,
receive a signal from the session initiator module 38 indicat
ing that a new monitoring session has been established with
the analytics-platform computing system 12, and in response,
the collector updater 40 may perform the steps described
above to determine whether to upgrade. In some embodi
ments, the collector updater module 40 may perform a similar
determination repeatedly during the operation of the collector
30, for example upon the hour, once a day, once a week, or
once a month. The collector updater module 40 may be
capable of updating the collector 30 to a new version during
the operation of a monitored computing instance without
losing data measured by the monitored computing instance,

US 2013/01 24669 A1

or with losing relatively little data monitored by the collector
30. For example, the collector updater 40 may be capable of
installing a new collector embodying the new version while
the collector 30 continue to operate, determining that the new
collector is operative and has established a monitoring ses
sion, instructing the older version of the collector 30 to stop
gathering data, determining that the remaining data stored in
the buffers of the older version of the collector 30 have been
transmitted, and then terminating the older version of the
collector 30.

0060. The collector controller 42 may be capable of coor
dinating the operation of the components of the input-output
module 34, the data acquisition module 36, the session ini
tiator module 38, the collector updater module 40, and the
operating system interface module 32. For example, the col
lector controller 42 may instantiate and terminate each of
these modules 34, 36, 38, 40, and 32, and in some embodi
ments, these modules may bi-directionally communicate
with one another via the collector controller module 42, for
instance bypassing values by reference or as copies of values
as parameters returned to the collector controller 42, which
may then pass these values or references to other modules. In
some embodiments, the collector controller 42 may be
executed in response to a new computing instance booting or
a new version of the collector 30 being installed, and upon (in
response to) being executed, the collector controller module
42 may launch the session initiator module 38 to establish a
monitoring session with the analytics-platform computing
system 12, then launch the update module 40 to determine
whether the collector 30 is the correct version, then upon
determining that the collector 30 is the correct version, launch
the data acquisition module 36 and the input/output module
34 to begin gathering and reporting data to the analytics
platform computing system 12.

0061 The collector 30, in some embodiments, is expected
to automatically reconfigure the analytics-platform comput
ing system 12 to monitor new computing instances as new
computing instances are added to a monitored computing
system and automatically update the collector as new ver
sions are promulgated. These techniques, either individually
or in isolation, are expected to reduce the burden on those
attempting to monitor computing systems, particularly those
attempting to monitor Scalable computing systems formed
within a cloud computing service that Supports automatic
provisioning of additional computing resources based on load
or other needs. These techniques may be prohibited in spe
cific use cases for a variety of reasons, such as security con
cerns. The collector 30 in some embodiments may have the
automated reconfiguration and automated update capabilities
permanently disabled. In such embodiments, reconfiguration
and collector updates may be carried out by manual interven
tion. Other embodiments, however, may not necessarily pro
vide these advantages, and various engineering trade-offs
may be made to use the techniques described herein to obtain
other objectives.
0062 FIG.3 illustrates an embodiment of a process 66 for
initiating a monitoring session, for instance with the analyt
ics-platform computing system 12, upon the launch of a new
computing instance. Some, all, or Substantially all of the
process 66 may be performed by the session initiator module
38, for instance in cooperation with the other components of
the collector 30 of FIGS. 1 and 2. Applications of the process
66, however, are not limited to these configurations.

May 16, 2013

0063. The process 66 begins with operating a monitored
computing system, as indicated by block 68. Operating a
monitored computing system may include operating one or
more monitored computing instances of the monitored com
puting system. In some embodiments, the instances may be
formed by uploading from a main instance, or a controlling
client device, a machine image including an operating sys
tem, the above-described collector, and applications to be
executed by the instance to perform the tasks that the com
puting system is intended to perform for a user. New instances
may be obtained, in some embodiments, by transmitting a
request for a new instance to a cloud service provider or other
system for dynamically allocating computing resources. Such
as an elastic data center or virtualized computing infrastruc
ture provider. The request may include specifications of the
requested computing instance, for example an amount of
addressable memory Supported, processor specifications
such as 32 bits or 64bits, memory specifications and the like.
Some requests may also specify an operating system.
0064. Next, in some embodiments, the process 66 includes
determining whether a new computing instance has launched,
as indicated by block 70. In some embodiments, this and the
subsequent steps may be performed by the collector 30,
which may be launched upon the boot of the new computing
instance, thereby determining that the new computing
instance has launched. In other embodiments, Software or
hardware external to the new computing instance may deter
mine that a new computing instance has launched. For
example, a computing device that requests the launch of the
new computing instance may make this determination upon
having made the request or upon having received confirma
tion that the request was satisfied. Upon determining that a
new computing instance has not launched, in response, the
process 66 may return to block 68. Alternatively, upon deter
mining that a new computing instance has launched, in
response, the process 66 may proceed to the next step
described.

0065. Next, in some embodiments of process 66, an
instance identifier of the new computing instance may be
obtained, as indicated by block 72. Obtaining an instance
identifier may be performed with the instance identifiergen
erator module 62 described above with reference to FIG. 2. In
Some embodiments, the instance identifier may be a number,
code, or other string that is unique or likely to be unique to the
new computing instance, and in Some embodiments, the new
instance identifier may be obtained based on attributes of the
new computing instance. Such that the instance identifier is
formed without central coordination from, for example, an
analytics platform.
0.066 Next, in some embodiments of process 66, an
account identifier of an account associated with the comput
ing system of the new computing instance may be obtained, as
indicated by block 74. This step may be performed with the
above-described account identifier module 64 of FIG. 2. The
process 66 also includes obtaining an address of an analytics
platform, as indicated by block 76, which may include the
above described techniques for obtaining an Internet protocol
address or a uniform resource identifier. In some embodi
ments, the address may be obtained by recalling the address
from memory allocated to a collector, and the address may be
encoded as a constant in code executed as the collector. In
Some embodiments, each collector of each monitored com
puting instance of each monitored computing system may
obtain the same address.

US 2013/01 24669 A1

0067. The process 66 in some embodiments includes ini
tiating a session with the analytics platform by transmitting a
request to monitor the computing instance to the obtained
address, as indicated by block 78. Initiating a session may
include transmitting a signal indicative of the existence of a
new computing instance to be monitored to the analytics
platform. In some embodiments, the signal indicative of the
new instance may constitute a request. In certain embodi
ments, the first communication between the analytics plat
form and the new computing instance may be a transmission
by the collector or other transmissions from the new comput
ing instance to the analytics platform. Initiating communica
tion from the new computing instance is expected to simplify
configuration of the analytics platform, as the analytics plat
form, in Some embodiments, may not need to be reconfigured
manually for each new computing instance, though not all
embodiments necessarily provide this benefit. The initiated
session, in some embodiments, may include transmissions
from a monitored computing instance to the analytics plat
form and transmissions from the analytics platform to the
monitored computing instance. As explained in greater detail
below, data received at the analytics platform may be associ
ated with the session, and the session may be associated with
the monitored computing instance, for example with the iden
tifier of the new computing instance, such that session data
received at the analytics platform may be associated with the
monitored computing instance and, in some embodiments,
the account identifier.

0068. The process 66 also includes, in this embodiment,
transmitting the instance identifier and the account identifier
to the analytics platform for association with the session, as
indicated by block 80. In some embodiments, this transmis
sion may be a transmission by which a session is initiated, as
described above with reference to block 78. In other embodi
ments, the session may be initiated, and the identifier is may
be transmitted subsequently, for example by the collector
controller either in response to confirmation from the analyt
ics-platform computing system 12 that the session has been
established or in response to a request for the identifiers from
the analytics-platform computing system 12.
0069 Embodiments of the process 66, like the other pro
cesses described herein, are not limited to the particular
sequence illustrated in the figure. For example, in some
embodiments, account identifiers and instance identifiers
may be obtained after initiating a session. Further, like the
other systems, devices, and processes described herein, not
all embodiments necessarily include all the features of pro
cess 66, for instance some embodiments may omit certain
steps or include additional steps.
0070 FIG. 4 illustrates an embodiment of a process 82 for
reporting data from a monitored computing instance. The
process 82 may be performed by the collector 30 described
above with reference to FIG. 2, though embodiments are not
limited to the variations of the collector 30 described above.
As described in greater detail below, the process 82 may
convey data from the monitored computing instance to the
analytics platform in a fashion that is relatively easy for users
to configure, is relatively robust to interruptions in network
communication, and is relatively parsimonious with band
width, while providing relatively high resolution indicators of
the performance of a monitored computing instance.
0071. The illustrated process 82, in some embodiments,
begins with initiating a session between a computing instance
of a monitored computing system and an analytics platform,

May 16, 2013

as indicated by block 84. This step, in some embodiments,
may be performed by the above-described session initiator 88
of FIG. 2 by executing the process 66 of FIG. 3. In some
embodiments, the session is initiated by the monitored com
puting instance, and in other embodiments, the session is
initiated by the analytics platform or by Some other comput
ing device.
0072 Next, in some embodiments, the process 82 includes
updating a collector of the monitored computing instance, as
indicated by block 86. Updating the collector may be per
formed by the above-described collector updater module 40
of FIG. 2 using the techniques described with reference to the
operation of this module 40.
0073. The process 82, in some embodiments, also includes
obtaining collector parameters, as illustrated by block 88.
Obtaining collector parameters may include obtaining user
configurable parameters that control the operation of the col
lector. Examples of user configurable parameters include
selections by a user of the monitored computing system (for
instance a user who controls or builds the monitored comput
ing system in order to serve customers of the user) regarding
which data is transmitted from the monitored computing
instance, how the data is pre-processed and processed, and
how the data is identified and grouped. For instance, the
collector parameters may include a parameter that specifies
how data is to be batched, for example the duration of a
Subsequently described aggregation period. Such as the
above-described time-based batches of metrics.

0074. Other examples include data indicative of which
metrics are to be transmitted to the analytics platform and the
format for those transmissions. For instance. Some embodi
ments may specify that different categories of metrics be
transmitted in a particular sequence, such that the categories
of the metrics can be identified at the analytics-platform com
puting system 12 based on the sequence without also trans
mitting labels for the categories, thereby potentially reducing
the amount of data exchanged between the collector and the
analytics platform. By way of example, the collector param
eters may specify that a processor usage metric is transmitted
first, followed by a delimiter, such as a comma, followed by a
memory usage metric, thena delimiter, followed by a network
usage metric, and so on. The collector parameters, including
sequences for data transmission, may be obtained from the
analytics-platform computing system 12, which may retrieve
the collector parameters based on an account identifier
received upon the initiation of a session in step 84 and may
transmit the collector parameters to the collector. Establish
ing Sucha sequence based on collector parameters is expected
to reduce network usage relative to systems that transmit
parameters using various markup languages, such as exten
sible markup language (XML) or JavaScript object notation
(JSON). In other embodiments, the transmitted data may be
labeled with each transmission, and this benefit may not be
provided.
0075) Next, in some embodiments of process 82, metrics
of the computing instance may be obtained, as indicated by
block 90. Obtaining metrics may be performed with the
above-described data acquisition module 36 using the tech
niques described with reference to the operation of that mod
ule. In particular, some embodiments may obtain metrics with
the above-described interface modules 52, 54, and 56 by
communicating with the operating system interface 32.
0076 Some embodiments of the process 82 include deter
mining whether an aggregation period has elapsed, as illus

US 2013/01 24669 A1

trated by decision block 92. The aggregation period may be a
period of time within which obtained data is packaged or
otherwise grouped into time-based buckets or other batches.
The duration of the aggregation period may be one of the
obtained collector parameters obtained in step 88. In some
embodiments, the duration may be one of the durations
described above with reference to the data aggregator 60. The
duration may be selected based on trade-offs between the
amount of data to be conveyed between the analytics platform
and the monitored computing instance and the desired reso
lution of analyses performed by the analytics platform, as
described below.
0077. Upon determining that the aggregation period has
not elapsed, in response, the process 82 may return to block
90. Alternatively, upon determining that the aggregation
period has elapsed, in response, the process 82 may proceed
to block 94.

0078. As illustrated by block 94, the process 82 in some
embodiments includes forming a metric data batch indicative
of metrics obtained during the aggregation. Forming a metric
data batch may include the steps described above with refer
ence to the operation of the data pre-processor module 58 and
the data aggregator module 60 of FIG. 2. In some embodi
ments, forming metric data batches includes calculating Vari
ous statistics such as maximum values, minimum values,
median values, average values, counts, or binary alarms, and
the like. Forming a metric data batch may also include
sequencing the data according to the sequence obtained with
the collector parameters, including inserting delimiters
between data values, as described above with reference to
step 88. Alternatively or additionally, some embodiments
may include encoding the data in a markup language, such as
XML or JSON, for instance, encoding the data in a hierarchi
cal tree data structure having metadata descriptive of nodes of
the tree.
0079 Next, in the present embodiment of process 82, the
formed metric data batch may be output to the analytics
platform, as indicated by block 96. Outputting the data may
include outputting the data with the above-described input/
output module 34 of FIG. 2 using the techniques described
above with reference to the operation of this module. In some
embodiments, the data is output with the process described
below with reference to FIGS. 5 and 6. Other embodiments,
however, may output the data without performing some or all
of the steps of FIGS. 5 and 6, which is not to suggest that other
features described herein may not also be omitted, and some
embodiments may perform the process 82 in a different order
from the steps depicted, without including some of the steps
depicted, or by including additional steps, as is the case with
the other processes described herein.
0080 FIGS. 5 and 6 illustrate processes 98 and 100 for
outputting data from a monitored computing instance to an
analytics platform. In some embodiments, the processes 98
and 100 may be performed during overlapping time periods,
for example concurrently by different threads or processes of
the monitored computing instance. As explained in greater
detail below, the concurrent operation may facilitate buffer
ing of data such that the processes 98 and 100 are robust to
interruptions in network traffic, mitigating data loss during
Such interruption, and mitigating Surges of data following
restoration of service after an interruption or other source of
spikes in data to be transmitted. Other embodiments, how
ever, may perform the processes 98 and 100 non-concur
rently, for example sequentially.

May 16, 2013

I0081. The process 98, in some embodiments, begins with
obtaining a metric data batch, as indicated by block 102.
Obtaining a metric data batch may include obtaining a metric
data batch through the steps up to and including the step 94 of
process 82 described above. The obtained metric data batch
may include a batch of data obtained over some time period,
Such as over an approximately or exactly 0.5 second, 1 sec
ond, 5 second, 20 second, or 5 minute or less window of time.
I0082 In some embodiments, the process 98 includes com
pressing the metric data batch, as illustrated by block 104.
The data may be compressed with a variety of techniques, for
example using the above-described compression module 50
of FIG.2. In some embodiments, the data may be compressed
by identifying patterns existing within the data, such as along
string of repeating characters, associating the pattern with a
shorter String, replacing the pattern with the shorter string,
and outputting the result. For instance, a string of Zeros may
be replaced with a string that identifies the character Zero and
the number of zeros. Similar techniques may be used for other
repeating patterns, such as repeating patterns of Zeros and
OS.

I0083. In some embodiments, the process 98 includes
encrypting the compressed metric data batch, as illustrated by
block 106, and which may be performed in some embodi
ments by the above-described encryption module 48 of FIG.
2. Encrypting the compressed metric data batch may include
encrypting the data based on an encryption key obtained
during the above-described process for initiating a session
between a computing instance and an analytics platform.
Encryption may also include Salting the data with a random
number of leading or trailing values to impede efforts to
measure an amount of data being transmitted. Encryption,
like many of the other steps described herein, may be per
formed at a different part of the process 98 or the process 100.
For example, encryption may be performed on a group of
metric data batches retrieved from a buffer during the process
100, as described in greater detail below. Encrypting a larger
collection of Such data is expected to result in greater obfus
cation of the encrypted data.
I0084. Next, some embodiments of the process 98 may
store the encrypted metric data batch in a buffer. The buffer
may be, or may be controlled by, the buffer module 46
described above with reference to FIG. 2. In some embodi
ments, the buffer is a first-in first-out buffer, for example a
ring buffer having memory for storing data, memory for
storing an input pointer value that is incremented through
addresses of the ring buffer each time a new value is written to
one of the addresses of the ring buffer, and memory for storing
an output pointer value that is incremented through addresses
of the ring buffer each time a value is read from one of the
addresses of the ring buffer. Embodiments having a ring
buffer may also include an input counter for incrementing the
input pointer and an output counter for incrementing the
output pointer. A ring buffer is expected to occupy a prede
termined amount of memory of the computing instance,
potentially preventing the collector from causing a memory
error by consuming excess memory of the computing
instance. Other embodiments, however, may not use a ring
buffer. For example, some embodiments may consume addi
tional memory as additional data is buffered. In other embodi
ments, the buffer is a last-in first-out buffer. The selection
between these types of buffers may depend upon whether a
user prefers more up-to-date data to be delivered first or
whether the data arrive in the sequence with which it was

US 2013/01 24669 A1

acquired. The buffer is expected to store data during periods
in which data is acquired faster than it can be transmitted, for
example during periods in which network traffic is slow,
during periods in which the analytics-platform computing
system 12 is overloaded, or during periods in which the acqui
sition of data Surges, for example when the computing
instance being monitored has a systemic error. Other embodi
ments, however, may not include a buffer, and data may be
transmitted as it is acquired, which is not to suggest that any
other feature may not also be omitted in Some embodiments.
0085. The buffer data may be transmitted by executing the
process 100 of FIG. 6. In some embodiments, the process 100
begins with retrieving encrypted metric data batches from the
buffer, as illustrated by block 110. A single batch may be
obtained, a portion of a single batch may be obtained, or
multiple batches may be obtained from the buffer per retrieval
request. As described above, the obtained batches may be the
last batches input into the buffer or the oldest batches in the
buffer, or the batches may be prioritized with some other
technique, for example based on the content of the data within
the batch.

I0086. Some embodiments of the process 100 include
determining whether a latency of transmissions to the analyt
ics platform (which may include time taken for the platform
to process receipt of the data) is greater than a threshold, as
illustrated by block 112. This determination may be per
formed by the above-described throttle module 44 of FIG. 2.
High latency is expected to be indicative of Surges in network
traffic, issues with the transmission of data across the net
work, or the analytics-platform computing system 12 being
overloaded. The latency may be determined based on a vari
ety oftechniques. For example, receipt of transmissions to the
analytics platform by a monitored computing instance may be
confirmed by the analytics platform transmitting an acknowl
edgment signal to the monitored computing instance. The
transmission to the analytics platform may include a trans
mission identifier, and the acknowledgment signal may ref
erence that transmission identifier, such that the throttle mod
ule 44 may identify which acknowledgment signal is
associated with which transmission and calculate a difference
between the time at which the transmission was sent and the
time at which the acknowledgment signal was received to
determine a latency. In other embodiments, the acknowledg
ment signal may include data indicative of the time at which
the acknowledgment signal was received, or data requesting a
delay.
0087. The threshold may be a predetermined threshold or
a dynamic threshold that changes based on any of a variety of
factors. In some embodiments, the threshold is one of the
obtained collector parameters described above with reference
to step 88 of FIG. 4. The threshold, in some embodiments,
may be adjusted based on an amount of data stored in the
buffer module 46 of FIG. 2. For example, the threshold may
be increased in response to an increase in the amount of data
in the buffer, in response to the amount of data in the buffer
exceeding some buffer threshold, or some other factor. The
threshold may be decreased based on similar factors decreas
ing.
0088. Upon determining that the latency is greater than the
threshold, in response, some embodiments of the process 100
may proceed to decision block 114, in which the process 100
may wait until a transmission delay has elapsed before
attempting to transmit additional metric data. The determina
tion of block 114 may be performed by the throttle module 44

May 16, 2013

described above with reference to FIG. 2. In some embodi
ments, the transmission delay may be a predetermined value
or a dynamically determined value that varies based on one or
more factors. For example, the transmission delay may be
adjusted along with the latency threshold in the manner
described above based on the amount of data stored in the
buffer module 46 of FIG. 2. In another example, the delay
may be adjusted based on variability, Such as a standard
deviation, range, or variance, of the latency of transmissions
to the analytics platform, a technique which is expected to
exploit relatively frequent periods of low latency inter
mingled with periods of higher latency.
I0089 Waiting until the transmission delay has elapsed is
expected to throttle data received by the analytics-platform
computing system 12, thereby potentially preventing the ana
lytics-platform computing system 12 from being Swamped by
a spike in network traffic following a network outage and
potentially avoiding the loss of data, without the analytics
platform computing system 12 centrally controlling trans
mission times. Further, Such throttling is expected to protect
the analytics-platform computing system 12 from Sudden
burst of traffic during a systemic failure, for example during a
failure affecting multiple monitored computing systems
within a data center of a cloud service provider. Throttling the
transmission of metric databased on latency is also expected
to coordinate the operation of multiple collectors across mul
tiple monitored computing systems, without necessarily
requiring centralized control by the analytics-platform com
puting system 12 to coordinate the transmission of the various
collectors. This is expected to reduce the complexity of con
figuring the analytics platform and facilitate use of the ana
lytics platform as a service. Other embodiments, however, do
not throttle network traffic or centrally control transmission.
0090. Upon determining that the transmission delay has
not elapsed, the process 100 returns to block 114 and contin
ues to wait. Alternatively, upon determining that the transmis
sion delay has elapsed, the process 100 of this embodiment
proceeds to block 116. Similarly, in the decision step of block
112, upon determining that latency of transmissions to the
analytics platform is not greater than the latency threshold,
the process 100 of this embodiment also proceeds to block
116.

0091 Embodiments of the process 100 include transmit
ting metric data batches to the analytics platform, as illus
trated by block 116. Transmitting the metric data batch may
include encoding the metric data batch in various networking
protocols. In some embodiments, the data may be encoded in
a file transfer protocol, in a hypertext transfer protocol (e.g.,
HTTP Secure), or in SPDY, for instance.
0092. Some embodiments of the process 100 include
determining whether the transmission was successful, as
indicated by determination block 118. Determining whether
the transmission was successful may include determining
whether an acknowledgment signal is received from the ana
lytics platform indicating that the transmitted data was
received. In some embodiments, this determination may
include determining whether such a signal is received within
a timeout threshold. Upon determining that transmission was
not successful, some embodiments of the process 100 may
return to decision block 112 in response. Alternatively, upon
determining that transmission was successful, in response,
some embodiments of the process 100 may return to block
110, and additional data may be retrieved for transmission.

US 2013/01 24669 A1

0093. The processes 98 and 100 are expected to transmit
metrics of the monitored computing instance in a manner that
is relatively easy to configure, that is relatively robust to
changes in network traffic and changes in the capacity of the
analytics-platform computing system 12 to process data, and
is relatively unlikely to lose data. Not all embodiments, how
ever, provide some or all of these benefits.
0094 FIG. 7 illustrates details of an embodiment of the
analytics-platform computing system 12 introduced in FIG.
1. In some embodiments, the analytics-platform computing
system 12 is a scalable cloud-based computer system man
agement program capable of providing computer system
management as a service to a plurality of accounts each
having computer systems with a plurality of monitored com
puting instances. Further, some embodiments of the analyt
ics-platform computing system 12 may be capable of provid
ing real-time or near real-time analyses and reports of the
operation of the monitored computing systems. Not all
embodiments, however, provide some or all of these benefits.
0095 Some embodiments of the analytics-platform com
puting system 12 are implemented on a cloud computing
system having a plurality of computing instances and capable
of provisioning additional computing instances dynamically,
for example based on load, a desired response time, or other
factors. Such implementations are expected to reduce costs
relative to systems that statically include Sufficient computing
power for maximum expected loads, as Such systems often
include computing resources that remain unused for much of
the time. However, embodiments are not limited to cloud
based implementations or scalable implementations.
0096. In some embodiments, the analytics-platform com
puting system 12 includes one or more receive engines 120,
one or more analytics engines 122, one or more platform
engines 124, one or more web user interface engines 126, one
or more service engines 128, and one or more database
engines 130. In some embodiments, the engines 120, 122,
124, 126, 128, and 130, or a subset thereof, may be modules
of an application embodying the analytics-platform, or in
some embodiments, these engines 120, 122, 124, 126, 128,
and 130, or a subset thereof, may be separate processes, for
example separate concurrent processes executing on separate
monitoring computing instances 26 or separate processes
executing on the same monitoring computing instance 26. In
Some embodiments, the analytics-platform computing sys
tem 12 may be characterized as a distributed computing sys
tem in which the engines 120, 122, 124, 126, 128, and 130
operate on separate virtual machines or separate physical
computers that may be co-located or may be geographically
distributed. The engines 120, 122, 124, 126, 128, and 130
may be capable of communicating with one another bi-direc
tionally, for example via a network (such as a local or wide
area network Ethernet connection, via the Internet), via a bus
or backplane of a computing device, via parameters passed
between software modules (such as values passed by refer
ence or by copies), or through other techniques. Further, the
analytics platform computing system 12 may be capable of
communicating bi-directionally with the network 25, for
example sending data to and receiving data from the above
described collectors 30 and client devices 20, 22, and 24.
0097. The illustrated embodiment includes an equal num
ber of each engine and three of each engine 120, 122, 124,
126, 128, and 130, but other embodiments may include dif
ferent numbers of each engine relative to one another and
relative to the number depicted in FIG. 7. For example, some

May 16, 2013

embodiments may include additional database engines 130
that are added in response to increases in the amount of data
stored by the analytics-platform computing system 12,
increases in response to the amount of requests for data to be
stored or retrieved from the analytics-platform computing
system 12, or other factors. Similarly, other engines 120, 122,
124, 126, or 128 may be added or removed based on load, for
instance based on response time, requests, commands, etc.
(0098. While the illustrated engines 120, 122, 124, 126,
128, and 130 and their components described below are illus
trated and described with reference to discrete functional
blocks, these components may be implemented in hardware
or Software that is intermingled, conjoined, Subdivided, or
otherwise differently organized.
0099. In some embodiments, each of the engines 120, 122,
124, 126, 128, and 130 may be executed on a monitoring
computing instance 26 within an operating system of the
monitoring computing instance. And each of the engines 120,
122, 124, 126, 128, and 130 and the analytics-platform com
puting system 12 may receive data via a load balancer server,
which may route tasks and data to various instances of the
engines 120, 122, 124, 126, 128, and 130 based upon unused
capacity within these engines.
0.100 FIG. 8 illustrates additional details of an embodi
ment of the receive engine 120 of FIG. 7. In this embodiment,
the receive engine 120 includes an input 132, a decryption
module 134, a decompression module 136, an account man
agement module 138, a parser module 140, a queue output
module 142, and an output module 144 to the database engine
130 of FIG.7. As described in greater detail below, the receive
engine 120, in some embodiments, may be capable of receiv
ing data from the collectors 30 (FIG. 1), decrypting the
received data, decompressing the received data, associating
the received data with an account and with a computing
instance, parsing the received data, and outputting the parsed
data to a queue for Subsequent processing by the analytics
engine 122 and to the database engine 130 for storage in
memory. The receive engine 120 may also be capable of
maintaining a session with one or more collectors, associating
the received data with the corresponding session, and trans
mitting data (e.g., acknowledgement signals) to the appropri
ate collector of the corresponding session. In some embodi
ments, the receive engine may decode the above-described
network transfer protocols and validate the status of an
account and credentials associated with the account for the
monitored computing system, for example by querying the
service engine 128 for a Subscription status and determining
whether a subscription is current or lapsed. Some embodi
ments may not process data that is received without a corre
sponding active Subscription.
0101 Some embodiments may include one instance of the
receive engine per session, or other embodiments may
include a single receive engine that processes multiple ses
sions. In certain embodiments, sessions may be managed by
the platform engine 124 or the service engine 128 described
below, and the receive engine 120 may receive data that is
already associated with a session or a corresponding collec
tOr.

0102. In some embodiments, the decryption module 134
may receive data from the input 132. Such as encrypted metric
batches from the collectors and decrypt the received data. In
Some embodiments, the receive engine 120 may obtain a
decryption key associated with the corresponding collector,
monitored computing instance, monitored computing sys

US 2013/01 24669 A1

tem, or account (e.g., from the service engine 128), and the
decryption engine 134 may decrypt data based on this
obtained (e.g., received) encryption key.
0103) The decryption module 134 may output the
decrypted data to the decompression module 136, which may
decompress the received data, Such as the received metric
batches from the collectors 30. Decompression may include
identifying strings in the decrypted data corresponding to
larger patterns in the uncompressed metric data and replacing
the identified strings with the corresponding larger pattern. In
Some embodiments, data indicative of these patterns and the
corresponding identifying strings may be transmitted to the
receive engine from the collector or from the platform engine
124.

0104. The decompressed data may be transmitted from the
decompression module 136 to the account management mod
ule 138, which may associate the decompressed data with an
account, a monitored computing system, or a monitored com
puting instance (for example with each of these entities). In
Some embodiments, the account management module may
attach metadata to the decompressed data indicating the asso
ciation. Some embodiments of the account management
module 138 may also retrieve or otherwise obtain configura
tion data of the collector 30 indicative of the formatting of the
metric data batches transmitted from the collector 30. For
example, the account management module 138 may obtain
data indicating delimiters and which fields are transmitted in
which sequence and, in response, the account management
module 138 may label the uncompressed data with metadata
indicating the corresponding fields, for example by inserting
XML tags and attributes or JSON names for name-value pairs
and removing delimiters.
0105. The output of the account management module 138
may be transmitted to the parser module 140, which may
parse the received data. The input to the parser module 140
may be a serialized data-structure, e.g., a document or string
expressed in XML or JSON. In some embodiments, the parser
140 may de-serialize the input data into a hierarchical or
graph data structure held in random access memory, such as a
tree, an object within an object oriented programming envi
ronment, a multi-dimensional array, or the like. In some
embodiments, the parser module 140 may parse the received
data into a data structure that, when accessed with the appro
priate tools, can be queried, iterated through, or otherwise
interrogated. A de-Serialized data structure is expected to
provide faster analysis and storage of data than a serialized
string or document, as data can be accessed and manipulated
without potentially having to iterate through every character
of the String or document, though some embodiments may
leave the data in a serialized format or some other format.

0106 The output of the parser 140 may be transmitted to
the queue output module 142 and the output module 144 to
the database engine 130 (FIG. 7). In some embodiments, the
outputs 142 and 144 may be separate processes or separate
threads that output data during overlapping time periods, for
instance concurrently or approximately concurrently. Out
putting the data in parallel is expected to reduce the time
between when data is first received and when analyses and
results of the data are reported to users, though not all embodi
ments necessarily provide this benefit. Indeed, some embodi
ments may not output data to different destinations or may not
output data in parallel, which is not to suggest that any other
feature described herein is required in every embodiment. In
Some embodiments, the queue output module 142 may trans

May 16, 2013

mit the received data to a buffer (e.g., a queue) from which the
Subsequently described analytics engine 120 pulls tasks or to
a queue in the platform engine 124 that assigns tasks to the
analytics engine 120. The output module to the database
engine 130 may be capable of transmitting the received data
to the database engine 130 and instructing the database
engine 130 to write the data to memory.
0107 An embodiment of the analytics engine 122 is
shown in greater detail in FIG. 9. In some embodiments, the
analytics engine may include a plurality of analysis functions,
examples of which are described below, that vary according
to the priority of their activities. The analytics engine may
receive signals (including metric data) from the receive
engine 120, for example signals from the queue output mod
ule 142 indicating that data is available to be analyzed or other
tasks are available to be performed, or some embodiments of
the analysis engine 122 may include a set of processes or
threads that remove tasks from a queue hosted by the platform
engine 124. Some embodiments may include one analysis
engine per session with a collector, one analysis engine for
multiple sessions, one analysis engine per monitored com
puting system, one analysis engine per account, or one analy
sis engine for multiple monitored computing systems,
depending upon the computing load and the computing
power of the analysis engine 122.
0108. In some embodiments, the analysis engine 122 may
include a metric data input/output 146, a command input/
output 148 by which new commands or tasks are identified or
transmitted, a plurality of window analyzers 150, 152, and
154, and a plurality of new task flags 156, 158, and 160 that
may signal the availability of new collections of data to be
processed to each of the window analyzers 152 through 154,
as described in greater detail below.
0109. The window analyzers 150, 152, and 154 may each
be configured to analyze a different temporal window of data,
for example window analyzer 150 may be configured to ana
lyze 20-second windows of data, the window analyzer 152
may be configured to analyze 10-minute windows of data,
and the window analyzer 154 may be configured to analyze
one-month windows of data. Details of the operation of the
window analyzers 150, 152, and 154 described in greater
detail below with reference to FIG. 12. The window analyzers
150, 152, and 154 may receive data from the database engine
130 by transmitting queries to the database 130 or may
receive data directly from the receive engine 120 via the
input/output path 146. Similarly, the window analyzers 150,
152, and 154 may write results to the database engines 130 by
transmitting results and write commands via the input/output
path 146 to the database engines 130.
0110. The operation of the window analyzers 150, 152,
and 154 may be staged such that each window analyzer 150,
152, and 154 triggers the next window analyzer when the
appropriate time for that next window analyzer to run occurs,
for example when the next window of the adjacent window
analyzer starts. In some embodiments, window analyzers 152
through 154 may be started based on a signal from a window
analyzer tasked with analyzing a smaller window, the signal
indicating that a new instance of the larger window has
started. Starting window analyzers in this fashion, based on
signals from more frequently operated window analyzers, is
expected to conserve computing power and reduce the degree
to which the operation of a process or thread analyzing one
month windows of data, for example, interferes with the
operation of processes or threads analyzing shorter windows

US 2013/01 24669 A1

of data. This technique is expected to expedite results from
the first window analyzer 150, resulting in real-time or near
real-time reporting of analyses of received metrics of moni
tored computing instances. Not all embodiments, however,
provide this benefit or use this technique. For example, some
embodiments may operate separate processes or threads for
each of the window analyzers 150, 152, and 154 that operate
generally continually and generally concurrently, e.g., an
analysis for the trailing one-month window may be generally
continually updated, rather than being updated once per
month.

0111 Each window analyzer 150, 152, and 154 includes
one or more statistics calculators 162 and one or more criteria
evaluators 164. In operation, upon instantiation of each of the
window analyzers 150, 152, 154 or upon a signal indicating
that a window has closed or is near closing, each window
analyzer 150, 152, and 154 may transmit a request to the
database engine 130 for data measured within that closing
window, data that arrived within that window, or results of
calculations by other window analyzers 150, 152, and 154
based on Such data (thereby reducing the amount of data
requested and speeding operation). In some embodiments,
the statistics calculators 162 may calculate statistics based on
the results of the request. For example, statistics calculators
162 may calculate a maximum, a minimum, an average, a
median, a mode, a count, a standard deviation, a range, a
variance, or other statistics. Similarly, the criteria evaluators
164 may evaluate the data received from the query against
various criteria, Such as whether thresholds are crossed,
whether certain trending rules have been satisfied (e.g., five or
more consecutive increasing data points or two out of three
data points outside of three standard deviations from a mean),
or whether various states have obtained in the monitored
computing instances, such as whether various error condi
tions have occurred in the monitored computing instances.
0112. In some embodiments, window analyzers 152
through 154 may calculate statistics and evaluate criteria
based on the result of calculated statistics or evaluated criteria
from more frequently operated window analyzers. For
example, window analyzer 152 may retrieve from the data
base engine 130 the results of statistics calculated by the first
window analyzer 150. Retrieving results from other window
analyzers is expected to reduce the amount of data processed
by each of the window analyzers and speed operation of the
analytics engine 122. However, Some embodiments may
retrieve all data received within an analyzed window for some
or all of the calculated statistics or evaluated criteria within
some or all of the windows.

0113. Upon calculating statistics and evaluating criteria,
the results may be written to the database engine 130. The
results may include statistics by which various data visual
izations, such as charts, may be formed and binary outputs,
such as alarms. The window analyzers 150, 152, and 154 may
also determine whether the next longer window has closed or
is about to close. Upon determining that the next longer
window has closed or is about to close, the window analyzers
150, 152, or 154 may set a new task flag 156, 158, or 160 for
the next longer window analyzer, and in response, the next
longer window analyzer 152 through 154 may begin an analy
sis based on the change in state of the new task flag 156, 158,
or 160. By way of example, first window analyzer 150 may
determine that a window to be analyzed by the second win
dow analyzer 152 has closed, and in response, first window
analyzer 150 may set new task flag 156 to true. In response to

May 16, 2013

this change in new task flag 156, the second window analyzer
152 may begin analyzing the next longer window and reset
the new task flag 156 to false. This process may be repeated
for each of the window analyzers 152 through 154. The first
window analyzer 150 may analyze each metric data batch
received from the receive engine 120, or the first window
analyzer 150 may receive commands from the platform
engine 124, for example, indicating that a new window is
ready for analysis. In other embodiments, a separate process
or thread, such as a job scheduler operated by the platform
engine 124 may schedule tasks for the window analyzers 150,
152, and 154. These tasks and other commands may be com
municated to the window analyzers 150, 152, and 154 via the
command input/output 148.
0114. In some embodiments, the analytics engine 122 may
be capable of obtaining an account identifier, an identifier of
a monitored computing instance, or an identifier of a moni
tored computing system associated with the data to be ana
lyzed, and based on these identifier(s) obtain user-config
urable statistics, criteria, and window periods by which the
data is to be analyzed. In some embodiments, analysis criteria
may be stored in the database engine 130 and indexed accord
ing to an account identifier, an analysis identifier, a monitored
computing instance identifier, or a monitored computing sys
tem identifier. Some embodiments may receive analysis
specifications from users, for example via the client devices
20, 22, and 24, and the statistics calculators 162, window
durations, and the criteria evaluators 164 may be configured
to perform the requested calculations and criteriaevaluations.
0.115. An embodiment of the web user interface engine
126 is illustrated in greater detail with reference to FIG. 10.
The web user interface engine 126 may be configured to
interface with client devices 120, 122, and 124 of FIG. 1, for
example by providing an interface by which users of the
analytics platform may monitor the performance of moni
tored computing systems and configure the operation of the
analytics-platform computing system 12.
0116. In some embodiments, the web user interface
engine 126 may include an application program interface
server 162, a web server 164, and a hypertext transport pro
tocol Secure service module 166. The HTTPS module 166
may encode and decode commands and data for transmission
via a network protocol. Such as the network protocols
described herein, via the network 25 to and from the client
devices 20, 22, and 24. In some embodiments, the web user
interface engine 126 may be capable of validating credentials
and accounts for users attempting to interface with the ana
lytics-platform computing system 12. For example, the web
user interface engine 126 may be operative to transmit request
to the service engine 128 including user provided account
identifiers and credentials and selectively allow access to
particular account databased on whether the service engine
128 indicates the account identifiers and credentials are valid
and whether a Subscription is current.
0117 The application program interface server 162 may
be a server capable of parsing calls to the application program
interface received over the network 25, for example from
client devices 20, 22, or 24, and executing commands
requested by the calls. For example, the API server 162 may
be capable of querying data from the database engine 130
based on API calls requesting Such a query, changing the
configuration of monitoring or analyses of metrics based on
API calls requesting Such a change, or perform other tasks.

US 2013/01 24669 A1

0118. The web server 164 may be operative to generate
instructions (e.g., instructions encoded in HTML, CSS, and
JavaScript) for forming a user interface on the client devices
20, 22, and 24. Such as a viewport of a browser displaying data
visualizations of various metrics, statistics, and criteria evalu
ation results associated with various computing instances,
monitored computing systems, or accounts. The web server
164 may also be capable of outputting a interactive user
interface by which users may enter commands, for example
by clicking, dragging, touching, speaking, or otherwise inter
acting with the client devices 20, 22, 24, and the web server
164 may be capable of responding to these commands by
requesting additional data or different data and instructing a
change in the user interface responsive to the command.
0119 The web user interface engine 126 is expected to
facilitate interactions with the analytics-platform computing
system 12 by users who use the analytics-platform computing
system 12 as a service, rather than operating their own
instance of the analytics-platform computing system 12,
thereby potentially reducing labor and equipment costs asso
ciated with monitoring a computing system. Other embodi
ments, however, may have a special-purpose application for
displaying results and configuring the analytics-platform
computing system 12.
0120. An embodiment of the platform engine 124 is illus
trated in greater detail in FIG. 11. In some embodiments, the
platform engine 124 may be capable of coordinating some or
all of the operation of the other engines 120, 122, 126, 128,
and 130, as described below. In some embodiments, the plat
form engine 124 includes an update manager module 168, a
scheduler module 170, a database maintenance module 172,
and an instance manager 174.
0121 The update manager module 168 may be operative

to cooperate with the collector updater module 40 described
above with reference to FIG. 2 to manage the version of
collectors executed by monitored computing instances. In
Some embodiments, the update manager 168 may be opera
tive to receive data indicative of the current version of a
collector executed by a monitored computing instance, deter
mine whether the current version is the latest version or is a
version specified by a user of an account associated with the
monitored computing instance, and in response to determin
ing that the current version is not the correct version, transmit
the correct version to the monitored computing instance. In
other embodiments, the update manager 168 may be capable
of receiving a request for data indicative which version is
correct, identifying the correct version, and if requested by a
collector, the transmitting the correct version to the request
ing entity, which may itself determine whether to upgrade.
0122. In some embodiments, the platform engine 124
includes the scheduler 170, which may schedule operations of
the window analyzers 150, 152, 154. In some embodiments,
the scheduler 170 schedules the operation of the window
analyzer 150, for example by signaling that a new window of
data is available to be analyzed, and the other window ana
lyzers 152 through 154 may begin their analyses based on the
new task flags 156 through 160. Orin some embodiments, the
scheduler 170 may schedule the operation of more, or all, of
the window analyzes 150, 152, and 154.
0123. The database maintenance module 172, in some
embodiments, may coordinate and Schedule certain activities
of the database engine 30. For example, the database main
tenance module 172 may schedule or coordinate the removal
of data within the database engine 130 that is older than some

May 16, 2013

date threshold and certain activities to improve performance,
for example indexing of the database.
0.124. The instance manager 174, in some embodiments,
may scale the analytics-platform computing system 12, for
example, automatically, based on need for additional
resources. In some embodiments, the instance manager 174
may periodically, or on some other schedule, determine a
response speed of the analytics-platform computing system
12 to certain tasks, determine an amount of data received or
analyzed by the analytics-platform computing system 12,
determine a number of monitored computing instances or
monitored computing systems, or some combination thereof,
and based on this determined data, the instance manager 174
may request additional instances of various engines 120, 122,
124, 126, 128, or 130 or terminate such instances. The
instance manager 174 may include machine images including
an operating system and applications for instantiating the
various engines 120, 122, 124, 126, 128, and 130. Automati
cally scaling the analytics-platform computing system 12
based on need is expected to reduce the cost of operating the
analytics-platform computing system 12, as resources are
procured as needed rather than being purchased and operated
in anticipation of a worst-case scenario. However, some
embodiments do not automatically scale, or other embodi
ments may scale automatically but provide other benefits.
0.125. As noted above with reference to FIG. 7, some
embodiments of the analytics-platform computing system 12
may include the service engine 128. The service engine 128
may contain components related to customer accounting. For
example, account identifiers, credentials associated with
accounts, collector configurations associated with accounts,
and analysis configurations associated with accounts. The
service engine may also include data indicative of Subscrip
tions, such as data indicative of account balances, data indica
tive of service-level agreements, data indicative of account
duration, and data indicative of costs. The service engine may
also be operative to generate reports based on these accounts
and signal other components of the analytics-platform com
puting system 12 when Such components are in need of data
indicative of the accounts or account related data.

0.126 The database engine 130, in some embodiments,
may be a relational or a non-relational database. Non-rela
tional databases are expected to provide certain benefits relat
ing to the speed, flexibility, and the scalability of the analyt
ics-platform computing system 12. In some embodiments,
the database engine 130 hosts a non-relational database with
out external load-balancing that is schema free, or is capable
of storing data in non-predetermined fields and organization.
Some embodiments may include a database capable of Stor
ing data in the form of documents, rather than in the form of
tables, such as XML documents or JSON documents.
I0127. In some embodiments, the database engine includes
an instance of Mongo DB or other non-relational databases.
For example, some embodiments may include a non-rela
tional database that organizes data hierarchically, in a tree
structure, or a data structure in which nodes have a parent and
child relationship with each child having only one parent, but
Some parents potentially having multiple children. For
instance, the field “processors' may be a node, with multiple
child fields named “processor, one for each processor, each
of which may have child nodes named “processor usage.”
“processor temperature.” and “processes.” Some embodi

US 2013/01 24669 A1

ments may store the data in a network model, for example as
a graph database in which child nodes are not limited to a
single parent node.
0128. A non-relational database is expected to be rela

tively flexible, as the relationship between various stored
fields need not necessarily be predefined by a user to begin
collecting data, and a non-relational database is expected to
scale relatively readily. However, embodiments are not lim
ited to the above-described non-relational databases. Some
embodiments may include a relational database, a memory
image, a document repository, or other organization of data.
0129 FIG. 12 illustrates an example of a process 176 for
analyzing data received from monitored computing
instances. The process 176, in Some embodiments, may be
performed by the analytics engine 122 described above with
reference to FIG. 9, but embodiments of the process 176 are
not limited to this configuration. In this embodiment, the
process 176 begins with determining whether a first window
has elapsed, as stated by decision block 178. Upon determin
ing that a first window has not elapsed, the process 176
continues to wait and the determination 178 is repeated. In
some embodiments, the first window of decision block 178
may be a shortest window of the windows analyzed by the
process 176, for example a window of less than or approxi
mately equal to 2 minutes, 1 minute, 30 seconds, 20 seconds,
10 seconds, 5 seconds, one second, or a half second. In some
embodiments, a determination that the first window has
elapsed may be made in response to the arrival of a batch of
metrics collected during a time period corresponding to the
first window by a collector.
0130. Upon determining that the first window has elapsed,
in response, the process 176 may proceed to obtain metrics
measured within the window, as indicated by block 180, and
calculate statistics based on the obtained metrics, as indicated
by block 182. These steps 180 and 182 may be performed by
the window analyzer 150 described above with reference to
FIG. 9, in some embodiments. The metrics may be obtained
by querying a database or receiving a parallel flow of metrics
data transmitted to the window analyzer 150. The statistics
may be calculated with the above-described statistics calcu
lator module 162, in some embodiments.
0131 The process 176 may also include storing the calcu
lated statistics, as indicated by block 184, evaluating criteria
based on obtained metrics, as indicated by block 186, and
storing results of the evaluation, as indicated by block 188.
The criteria may be evaluated with the criteria valuator mod
ules 164 described above with reference to FIG. 9, and the
stored statistics and results of the evaluation may be stored by
the above-described database engine 130.
0132) Some embodiments of the process 176 may include
determining whether a next-longer window has elapsed, as
indicated by decision block 190. Determining whether a next
longer window has elapsed may include comparing a value
indicative of the beginning of the next-longer window to a
current time and determining whether the difference is
approximately equal to or greater than a threshold of the
duration of the next longest window. In some embodiments,
the first window analyzer 150 of FIG. 9 may determine
whether the window to be analyzed by the second window
analyzer 152 has elapsed in the decision block 190. Upon
determining that the next-longer window has elapsed, in
response, the process 176 may proceed to start an analysis of
the next longer window, as indicated by initiation block 192.

May 16, 2013

Alternatively, upon determining that the next longer window
has not elapsed, the process 176 may return to decision block
178.

I0133. As indicated by initiation block 192, the process 176
may include starting a Sub process for analyzing the next
longer window. Analyzing the next longer window may
include analyzing metrics of monitored computing instances
that arrive during (or were measured during) the next longer
window, for example during the window to be analyzed by
window analyzer 152 of FIG.9.
I0134. The process 176 includes, in some embodiments,
upon the start of initiation block 192, obtaining calculated
statistics and results of criteria evaluated within the new win
dow, or the next longer window that initiated the process
block 192, as indicated by block 194. For example, multiple
instances of the window analyzed by the first window ana
lyzer 150 may occur during the window analyzed by the
second window analyzer 152, and the results of these multiple
analyses may be obtained in step 194, for instance by query
ing the database engine 130. In some embodiments, the met
ric data obtained from the collector may also be obtained in
step 194. After obtaining this data, some embodiments of
process 176 include calculating statistics based on the
obtained data, as indicated by block 196 storing the calculated
statistics, as indicated by block 198, evaluating criteria based
on the obtained data, as indicated by block 200, and storing
the results of the evaluation, as indicated by block 202. These
steps 196, 198,200, and 202 may be analogous to, or identical
to, those performed in steps 182, 184, 186, and 188 and may
be performed, for example by the second window analyzer
152 through the nth window analyzer 154, depending upon
the identity of the next longer window, for example whether
the next longer window is the window corresponding to the
second window analyzer 152, a third window analyzer, or the
nth window analyzer 154.
0.135 Some embodiments of process 176 further include
determining whether the next longer window has elapsed
(relative to the window analyzed in steps 194, 196, 198, 200,
and 202), as indicated by decision block 204. For example, in
a use case in which the steps 194-202 are evaluated for data
corresponding to a window of the second window analyzer
152, a determination may be made whether the window cor
responding to the third window analyzer has elapsed, and
during an iteration of steps 194 through 202 in which the third
window analyzer window is analyzed, a determination may
be made indecision block 204 whether a window correspond
ing to a fourth window analyzer has elapsed, and so on. Upon
determining that the next longer window has elapsed, the
process 176 may return to (e.g., recurs to, or initiate a parallel
thread or process) initiation block 192, and steps 194 through
204 may be repeated from the perspective of the next longer
window, analyzing data that arrive during the next longer
window and determining whether the next longer window
after that window has elapsed. Upon determining that the next
longer window has not elapsed, in response, the process 176
may return to decision block 178.
0.136 The process 176, particularly when used in combi
nation with the above-described embodiments of a database
engine 130 based on a non-relational database, is expected to
facilitate real-time or near real-time displays of, and alerts to,
data indicative of the operation of monitored computing
instances. For example, some embodiments may be capable
of displaying statistics indicative of a change in the operation
of a monitored computing instance within an amount of time

US 2013/01 24669 A1

approximately equal to or less than 2 minutes, 1 minute, 30
seconds, 20 seconds, 10 seconds, 5 seconds, one second, or a
half second of a change. This real-time or near real-time
response is helpful for users attempting to verify whether a
cloud service provider hosting a monitored computing sys
tem is meeting a service level agreement. Service-level agree
ments often specify uptimes on the order of 99.999% uptime,
or similar amounts of uptime, and verifying whether this
agreement has been met is often easier when real-time, rela
tively high-resolution data indicative of the operation of
monitored computing instances is available, as relatively
short interruptions or decreases in performance are more
likely to be depicted in a visualization of performance in a
user interface or detected with an alarm. Not all embodi
ments, however, necessarily provide this benefit or provide
real-time or near real-time results.

0.137 In some embodiments, the computing instances
described herein may be executed by a computing device (for
example, as the computing device itself or as a virtual
machine hosted by the computing device) described below
with reference to FIG. 13. Further, the modules, applications,
and various functions described above may be implemented
by Such computing devices having instructions for executing
these acts stored in a tangible, non-transitory machine read
able medium, e.g., memory, and having one or more proces
sors that, when executing these instructions, cause the com
puting devices to perform the above-described acts.
0138 FIG. 13 is a diagram that illustrates an exemplary
computing device 1000 in accordance with embodiments of
the present technique. Various portions of systems and meth
ods described herein, may include or be executed on one or
more computer devices similar to computing device 1000.
Further, processes and modules described herein may be
executed by one or more processing devices similar to that of
computing device 1000.
0139 Computing device 1000 may include one or more
processors (e.g., processors 1010a–1010m) coupled to device
memory 1020, an input/output I/O device interface 1030 and
a network interface 1040 via an input/output (I/O) interface
1050. A processor may include a single processor or a plural
ity of processors (e.g., distributed processors). A processor
may be any Suitable processor capable of executing or other
wise performing instructions. A processor may include a
central processing unit (CPU) that carries out program
instructions to perform the arithmetical, logical, and input/
output operations of computing device 1000. A processor
may execute code (e.g., processor firmware, a protocol stack,
a database management system, an operating system, or a
combination thereof) that creates an execution environment
for program instructions. A processor may include a program
mable processor. A processor may include general or special
purpose microprocessors. A processor may receive instruc
tions and data from a memory (e.g., system memory 1020).
Computing device 1000 may be a uni-processor device
including one processor (e.g., processor 1010a), or a multi
processor device including any number of suitable processors
(e.g., 1010a–1010m). Multiple processors or multi-core pro
cessors may be employed to provide for parallel or sequential
execution of one or more portions of the techniques described
herein. Processes. Such as logic flows, described herein may
be performed by one or more programmable processors
executing one or more computer programs to perform func
tions by operating on input data and generating correspond
ing output. Processes described herein may be performed by,

May 16, 2013

and apparatus can also be implemented as, special purpose
logic circuitry, e.g., an FPGA (field programmable gate array)
or an ASIC (application specific integrated circuit). Comput
ing device 1000 may include a plurality of computing sub
devices (e.g., distributed computer systems) to implement
various processing functions.
(O140 I/O device interface 1030 may provide an interface
for connection of one or more I/O devices 1060 to computing
device 1000. I/O devices may include devices that receive
input (e.g., from a user) or output information (e.g., to a user).
I/O devices 1060 may include, for example, graphical user
interface presented on displays (e.g., a cathode ray tube
(CRT) or liquid crystal display (LCD) monitor), pointing
devices (e.g., a computer mouse or trackball), keyboards,
keypads, touchpads, Scanning devices, Voice recognition
devices, gesture recognition devices, printers, audio speakers,
microphones, cameras, or the like. I/O devices 1060 may be
connected to computing device 1000 through a wired or wire
less connection. I/O devices 1060 may be connected to com
puting device 1000 from a remote location. I/O devices 1060
located on remote computer system, for example, may be
connected to computing device 1000 via a network and net
work interface 1040.

0141 Network interface 1040 may include a network
adapter that provides for connection of computing device
1000 to a network. Network interface may 1040 may facilitate
data exchange between computing device 1000 and other
devices connected to the network. Network interface 1040
may support wired or wireless communication. The network
may include an electronic communication network, Such as
the Internet, a local area network (LAN), a wide area (WAN).
a cellular communications network or the like.
0.142 System memory 1020 may be configured to store
program instructions 1100 or data 1110. Program instructions
1100 may be executable by a processor (e.g., one or more of
processors 1010a–1010m) to implement one or more embodi
ments of the present techniques. Instructions 1100 may
include modules of computer program instructions for imple
menting one or more techniques described herein with regard
to various processing modules. Program instructions may
include a computer program (which in certain forms is known
as a program, Software, Software application, Script, or code).
A computer program may be written in a programming lan
guage, including compiled or interpreted languages, or
declarative or procedural languages. A computer program
may include a unit Suitable for use in a computing environ
ment, including as a stand-alone program, a module, a com
ponent, a Subroutine. A computer program may or may not
correspond to a file in a file system. A program may be stored
in a portion of a file that holds other programs or data (e.g.,
one or more Scripts stored in a markup language document),
in a single file dedicated to the program in question, or in
multiple coordinated files (e.g., files that store one or more
modules, Sub programs, or portions of code). A computer
program may be deployed to be executed on one or more
computer processors located locally at one site or distributed
across multiple remote sites and interconnected by a commu
nication network.
0.143 System memory 1020 may include a tangible pro
gram carrier having program instructions stored thereon. A
tangible program carrier may include a non-transitory com
puter readable storage medium. A non-transitory computer
readable storage medium may include a machine readable
storage device, a machine readable storage Substrate, a

US 2013/01 24669 A1

memory device, or any combination thereof. Non-transitory
computer readable storage medium may include, non-volatile
memory (e.g., flash memory, ROM, PROM, EPROM,
EEPROM memory), volatile memory (e.g., random access
memory (RAM), static random access memory (SRAM),
synchronous dynamic RAM (SDRAM)), bulk storage
memory (e.g., CD-ROM and/or DVD-ROM, hard-drives), or
the like. System memory 1020 may include a non-transitory
computer readable storage medium may have program
instructions stored thereon that are executable by a computer
processor (e.g., one or more of processors 1010a–1010m) to
cause the Subject matter and the functional operations
described herein. A memory (e.g., device memory 1020) may
include a single memory device and/or a plurality of memory
devices (e.g., distributed memory devices). In some embodi
ments, the program may be conveyed by a propagated signal,
Such as a carrier wave or digital signal conveying a stream of
packets.
0144 I/O interface 1050 may be configured to coordinate
I/O traffic between processors 1010a–1010n, device memory
1020, network interface 1040, I/O devices 1060 and/or other
peripheral devices. I/O interface 1050 may perform protocol,
timing or other data transformations to convert data signals
from one component (e.g., device memory 1020) into a for
mat Suitable for use by another component (e.g., processors
1010a–1010m). I/O interface 1050 may include support for
devices attached through various types of peripheral buses,
such as a variant of the Peripheral Component Interconnect
(PCI) bus standard or the Universal Serial Bus (USB) stan
dard.

0145 Some embodiments of the techniques described
herein may be implemented using a single instance of com
puter system 1000, or multiple computer systems 1000 con
figured to host different portions or instances of embodi
ments. Multiple computer systems 1000 may provide for
parallel or sequential processing/execution of one or more
portions of the techniques described herein.
0146 Those skilled in the art will appreciate that comput
ing device 1000 is merely illustrative and is not intended to
limit the scope of the techniques described herein. Computing
device 1000 may include any combination of devices or soft
ware that may perform or otherwise provide for the perfor
mance of the techniques described herein. For example, com
puting device 1000 may include or be a combination of a
cloud-computing system, a data center, a serverrack, a server,
a virtual server, a desktop computer, a laptop computer, a
tablet computer, a server device, a client device, a mobile
telephone, a personal digital assistant (PDA), a mobile audio
or video player, a game console, a vehicle-mounted com
puter, or the like. Computing device 1000 may also be con
nected to other devices that are not illustrated, or may operate
as a stand-alone device. In addition, the functionality pro
vided by the illustrated components may in Some embodi
ments be combined in fewer components or distributed in
additional components. Similarly, in Some embodiments, the
functionality of Some of the illustrated components may not
be provided or other additional functionality may be avail
able.

0147 Those skilled in the art will also appreciate that,
while various items are illustrated as being stored in memory
or on storage while being used, these items or portions of
them may be transferred between memory and other storage
devices for purposes of memory management and data integ
rity. Alternatively, in other embodiments some or all of the

May 16, 2013

Software components may execute in memory on another
device and communicate with the illustrated computer sys
tem via inter-computer communication. Some or all of the
system components or data structures may also be stored
(e.g., as instructions or structured data) on a computer-acces
sible medium or a portable article to be read by an appropriate
drive, various examples of which are described above. In
Some embodiments, instructions stored on a computer-acces
sible medium separate from computing device 1000 may be
transmitted to computing device 1000 via transmission media
or signals such as electrical, electromagnetic, or digital sig
nals, conveyed via a communication medium Such as a net
work or a wireless link. Various embodiments may further
include receiving, sending or storing instructions or data
implemented in accordance with the foregoing description
upon a computer-accessible medium. Accordingly, the
present invention may be practiced with other computer sys
tem configurations.
0.148. It should be understood that the description and the
drawings are not intended to limit the invention to the par
ticular form disclosed, but to the contrary, the intention is to
cover all modifications, equivalents, and alternatives falling
within the spirit and scope of the present invention as defined
by the appended claims. Further modifications and alternative
embodiments of various aspects of the invention will be
apparent to those skilled in the art in view of this description.
Accordingly, this description and the drawings are to be con
Strued as illustrative only and are for the purpose of teaching
those skilled in the art the general manner of carrying out the
invention. It is to be understood that the forms of the invention
shown and described herein are to be taken as examples of
embodiments. Elements and materials may be substituted for
those illustrated and described herein, parts and processes
may be reversed or omitted, and certain features of the inven
tion may be utilized independently, all as would be apparent
to one skilled in the art after having the benefit of this descrip
tion of the invention. Changes may be made in the elements
described herein without departing from the spirit and scope
of the invention as described in the following claims. Head
ings used herein are for organizational purposes only and are
not meant to be used to limit the scope of the description.
0149. As used throughout this application, the word
“may is used in a permissive sense (i.e., meaning having the
potential to), rather than the mandatory sense (i.e., meaning
must). The words “include”, “including, and “includes” and
the like mean including, but not limited to. As used through
out this application, the singular forms “a”, “an and “the
include plural referents unless the content explicitly indicates
otherwise. Thus, for example, reference to “an element” or
“an element includes a combination of two or more ele
ments, notwithstanding use of other terms and phrases for one
or more elements. The term 'or' is, unless indicated other
wise, non-exclusive, i.e., encompassing both “and” and "or.”
Terms relating to causal relationships, e.g., “in response to.”
“upon.” “when, and the like, encompass both causes that are
a necessary causal condition and causes that are a sufficient
causal condition, e.g., “state X occurs upon condition Y
obtaining is generic to “X occurs solely upon Y and “X
occurs upon Y and Z.” Similarly, unless otherwise indicated,
statements that one value or action is “based on another
condition or value encompass both instances in which the
condition or value is the sole factor and instances in which the
condition or value is one factor among a plurality of factors.
Unless specifically stated otherwise, as apparent from the

US 2013/01 24669 A1

discussion, it is appreciated that throughout this specification
discussions utilizing terms such as “processing”, “comput
ing”, “calculating”, “determining or the like refer to actions
or processes of a specific apparatus, such as a special purpose
computer or a similar special purpose electronic processing/
computing device. In the context of this specification, a spe
cial purpose computer or a similar special purpose electronic
processing or computing device is capable of manipulating or
transforming signals, for instance signals represented as
physical electronic, optical, or magnetic quantities within
memories, registers, or other information storage devices,
transmission devices, or display devices of the special pur
pose computer or similar special purpose processing or com
puting device.

1. A computing-system monitor configured to monitor a
plurality of computing-systems each having a plurality of
monitored computing-instances, the computing-system
monitor comprising:

a plurality of collectors, each collector executed by one of
a plurality of monitored computing-instances, wherein
the plurality of monitored computing-instances each are
part of one of a plurality of separately monitored com
puting systems, and wherein each of the collectors is
operable to output metrics of a corresponding monitored
computing-instance executing that collector; and

an analytics platform, the analytics platform executed by a
plurality of analytic computing-instances, the analytics
platform operable to receive metrics output by the plu
rality of collectors, calculate statistics with the analytic
computing-instances based on the received metrics, and
output the calculated Statistics,

wherein each of the separately monitored computing sys
tems is under the control of a different entity, and
wherein the analytics platform is operable to associate
an account of each entity with the corresponding moni
tored computing system under the control of that entity,
and

wherein each of the collectors is operable to identify itself
to the analytics platform without being prompted to do
So by the analytics platform, and wherein the analytics

May 16, 2013

platform is operable to receive data from the collectors
after the collectors identify themselves.

2. The computing-system monitor of claim 1, wherein
Some of the plurality of analytic computing-instances com
prise a database engine and a receive engine, the receive
engine being operable to receive the metrics output by the
plurality of collectors and output the received metrics to the
database engine, the database engine being operable to store
the received metrics in a non-relational database.

3. The computing-system monitor of claim 1, wherein each
of the collectors is operable to push the metrics to the analyt
ics platform at a time determined by the collector.

4. (canceled)
5. The computing-system monitor of claim 1, wherein the

database engine is operable to store the received metrics in a
non-predefined hierarchical data structure.

6. The computing-system monitor of claim 1, wherein the
analytics platform is capable of outputting calculated Statis
tics within less than 30 seconds of receipt of the received
metrics upon which the calculated Statistics are based.

7. The computing-system monitor of claim 1, wherein each
of the monitored computing instances and the analytics plat
form are cloud-based virtual machines.

8. The computing-system monitor of claim 1, wherein the
metrics comprise processor usage, memory usage, network
usage, temperature of a monitored computing instance, and
cost of operating a monitored computing instance.

9. (canceled)
10. (canceled)
11. (canceled)
12. (canceled)
13. (canceled)
14. (canceled)
15. (canceled)
16. (canceled)
17. (canceled)
18. (canceled)
19. (canceled)
20. (canceled)

