ABSTRACT: Apparatus and process for vapor depositing epitaxial films on substrates. A gaseous reactant is introduced into a reaction chamber formed from a material, such as quartz, which is transparent and nonobstructive to radiant heat energy transmitted at a predetermined short wavelength. A graphite susceptor, which is opaque to and absorbs the radiant heat energy, is positioned within the reaction chamber and supports the substrates to be coated. The susceptor is heated while the walls of the reaction chamber remain cool to preclude deposition of epitaxial film on the walls. To insure uniform heating of the susceptor, the same may be moved relative to the radiant heat source which, in the preferred embodiment, comprises a bank of tungsten filament quartz-iodine high intensity lamps.
3,623,712

EPITAXIAL RADIATION HEATED REACTOR AND PROCESS

BACKGROUND OF THE INVENTION

Field of the Invention

This invention relates to the field of vapor deposition of films on substrates. More particularly, the field of this invention involves the vapor deposition of epitaxial films, for example silicon dioxide and like films, on exposed surfaces of articles, such as silicon wafer substrates commonly used in the electronics industry. Gaseous chemical reactants are brought into contact with a heated substrate within a reaction chamber, the walls of which are transparent to radiant heat energy transmitted at a predetermined short wave length. A susceptor, which absorbs energy at the wavelength chosen, supports the substrate to be coated and heats the same as a result of its absorption of the heat energy transmitted into the reaction chamber from the radiant heat source employed.

Description of the Prior Art

While substrates, such as silicon wafers, have been coated heretofore with epitaxial films, such as silicon dioxide or like films, so far as is known, the specific and improved vapor deposition apparatus and process disclosed herein is novel. The apparatus and process of this invention are effective to produce uniform film coatings on substrates under controlled conditions so that coated substrates of high quality and excellent film thickness uniformity are producible within closely controlled limits.

In chemical deposition systems, it is highly desirable to carry out the deposition reaction in a cold wall-type reaction chamber. By maintaining the reaction chamber walls in the unheated state, such walls received little or no film deposition during substrate coating Cold wall systems are additionally desirable because they permit the deposition of high purity films, such as silicon dioxide films. Impurities can be evolved from or permeate through heated reaction chamber walls. Because such impurities would interfere with and adversely affect the purity of the substrate coating cold wall reaction chambers are employed to preclude such impurity evolution or permeation.

To avoid such problems chemical deposition processes have been developed heretofore which permit heating of a substrate positioned within a reaction chamber without simultaneously heating the reaction chamber walls. Heretofore, the most successful of such processes involved the use of radio frequency (RF) induction heating of a conducting susceptor positioned within the reaction chamber, the walls of which were formed of nonconductive or insulating material. For example, RF heating of a graphite susceptor within a quartz reaction chamber for depositing epitaxial silicon films has been known generally heretofore.

However, such an RF heating technique, while it generally produces the stated objective in a cold wall reaction chamber, has several inherent and important disadvantages which make the same undesirable under many circumstances. For example, an expensive and bulky RF generator is required which is very space consuming and which must be located close to the epitaxial reactor. Also, the high voltages required with the RF coils produce substantial personnel hazards, and RF radiation from the RF coils can and frequently does interfere with adjacent electrical equipment. Furthermore, such an RF procedure requires the utilization of an electrically conducting susceptor for supporting the substrates to be heated. Also, RF systems are considerably more expensive overall than the simplified radiation heated system disclosed herein which were designed to replace the RF systems utilized heretofore.

SUMMARY OF THE INVENTION

This invention relates generally to an improved process for coating a substrate with an epitaxial film and to an improved apparatus for effecting such procedure. More particu-
These and other objects of this invention will become apparent from a study of the following description in which reference is directed to the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a longitudinal sectional view, largely schematic in nature, through one embodiment of the subject apparatus.

FIG. 2 is a vertical sectional view through the apparatus taken in the plane of line 2—2 of FIG. 1.

FIG. 3 is a vertical sectional view corresponding generally to FIG. 2 showing a modified embodiment of the subject apparatus.

FIG. 4 is a vertical sectional view through another modified embodiment of the apparatus.

FIG. 5 is an isometric view of a portion of the apparatus of FIG. 4.

FIG. 6 is a vertical sectional view through a further modification of the apparatus.

FIG. 7 is a sectional view taken in the plane of line 7—7 of FIG. 6.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Several embodiments of apparatus designed to carry out the improved epitaxial deposition procedure of this invention are disclosed herein. Each of such embodiments employs the same basic concepts characteristic of the improved features of this invention as exemplified by the utilization of a cold-wall reaction chamber in which a substrate to be epitaxially coated is positioned preferably upon a susceptor which is opaque and absorbs radiant heat energy transmitted through the walls of the reaction chamber without absorption by such walls. The source for such radiant heat comprises a high intensity lamp, or bank of such lamps which produces and transmits high temperature heat energy at a wave length which is not interfered with by the walls of the reaction chamber.

The chemical epitaxial deposition procedure within the reaction chamber is essentially the same as that employed heretofore with known coating procedures. Therefore, only brief reference herein is directed to the concepts of epitaxial film growth which are well known and understood in the chemical vapor deposition art. By way of introductory example, however, the apparatus and process of this invention are utilizeable to produce various epitaxial films on substrates, such as silicon wafers. The system of this invention employs chemical reaction and/or thermal pyrolysis to deposit a variety of films, such as silicon, silicon nitride, and silicon dioxide, as well as metal films such as molybdenum, titanium, zirconium, and aluminum in accordance with reactions such as the following:

\[
\text{SiH}_{4} + \text{N}_{2} \rightarrow \text{Si} + 2\text{H}_{2} + \text{N}_{2}
\]

Silicon nitride deposition may be effected at temperatures in the range of 600° to 1100° C. in accordance with reaction such as the following:

\[
3\text{SiH}_{4} + 4\text{NH}_{3} \rightarrow \text{Si}_{3}\text{N}_{4} + 12\text{H}_{2}
\]

Deposition of silicon dioxide from silane or silicon tetrachloride may be effected in accordance with the following reaction at temperatures of 800° to 1100° C.:

\[
\text{SiH}_{4} + 2\text{O}_{2} \rightarrow 2\text{SiO}_{2} + 2\text{H}_{2} \text{O}
\]

At somewhat lower temperatures, silicon dioxide deposition from silane oxidation in the range of 300° to 500° C. may be effected as follows:

\[
\text{SiH}_{4} + \text{O}_{2} \rightarrow \text{SiO}_{2} + 2\text{H}_{2}
\]

Also, metal deposition at temperatures in the range of 900° to 1200° C. can be produced in accordance with the following exemplary reaction:

\[
2\text{MoCl}_{5} + 5\text{H}_{2} \rightarrow 2\text{Mo} + 7\text{HCl}
\]

Corresponding reactions for producing other exemplary metal and nonmetal films as noted above also can be employed in accordance with known procedures. The above reactions are intended as examples of procedures for which a cold wall deposition system is highly effective and alternative uses of such a system by those skilled in the chemical deposition art will become apparent from the following detailed description. Apparatus of the type described herein has been effectively used for producing silicon nitride and silicon dioxide dielectric films with film thickness uniformity of ±5 percent from wafer to wafer within a run. Highly effective results can be insured because operating temperatures can be closely controlled and uniformly held due to use of the novel heat source employed heretofore.

Referring first to the apparatus embodiment shown in FIGS. 1 and 2, it should be understood that the reactor structure is shown in generally schematic fashion and is intended to be enclosed within a surrounding enclosure (not shown) in and on which the necessary gaseous reactant flow controls, electrical power sources, and other attendant mechanisms are intended to be housed and mounted. For purposes of clarity of illustration, only those portions of the reactor necessary to illustrate the inventive concepts disclosed herein have been shown in the drawings. It will be understood that those portions of the reactor illustrated are intended to be supported within the aforementioned enclosure in any suitable fashion.

The radiation heated reactor of FIGS. 1 and 2, generally designated 1 comprises an elongated housing generally designated 2 defined as best seen in FIG. 2 by opposed sidewalls 3 and 4 and a removable top closure 6, the latter being slideable along or otherwise separable from the upper margin of the sidewalls 3 and 4 to permit access to the hollow interior 7 of the housing. Opposite ends of the housing, designated 8 and 9, may be closed off in any suitable fashion, such as by employing end walls or the like so that the interior 7 of the housing is completely enclosed. However, access into the hollow interior through one end of the housing is necessary so that substrates to be coated can be loaded and unloaded therefrom prior to and following deposition coating thereof. Suitable access doors (not shown) may be provided in the end wall 9 of the housing and in the reaction chamber to be described so that such access may be had to the reaction chamber.

Preferably the inner surfaces 11 of each of the confining walls of the housing and of the top closure thereof are formed of a highly polished reflecting material, such as polished sheet aluminum. Such reflecting surfaces are provided to permit maximum utilization of the heat generated by the heat source to be described.

Such heat source is designated 12 and extends laterally across the housing as seen in FIG. 2 and is secured in position by fastening the same to suitable portions of the housing sidewalls. The heat source comprises at least one high intensity lamp capable of producing and transmitting radiant heat energy at a short wave length, preferably one which is approximately 1 micron or less.

In the embodiment illustrated, the heat source comprises a bank of such lamps, each designated 13, which are mounted in threaded sockets 14 in a pair of side by side lamp mounting blocks 16. The electrical connections for the lamps are not illustrated but such connections are conventional. The upper open end of each lamp socket 14 is formed as an enlarged semispherical recess 17 which is highly polished to serve as a reflecting surface for the purpose noted.

The lamps preferably employed with the present apparatus and those illustrated in the drawings are high intensity tungsten filament lamps having a transparent quartz envelope and a halogen gas contained therein, preferably iodine. Such lamps are manufactured by the Aerometrics Division of Aerojet-General Corporation. Similar lamps are produced by General Electric Corporation.

The lamp employed in the embodiment of FIGS. 1 and 2 is constructed to be mounted upright but in another embodiment to be described hereinafter another configuration may be utilized.
Because of the substantial temperatures at which such lamps operate e.g., 5000°-6000° F., means are provided in conjunction with the housing and with the lamp mounting blocks to cool the housing walls and the areas surrounding the lamp. Sockets may be provided to receive the lamps. As noted best from FIG. 2, such cooling means for the walls includes a plurality of parallel cooling conduits 20 through which water or a like cooling medium is circulated. Similar cooling conduits 18 are provided in the top closure of the housing. Such conduits may be operatively connected with a supply of cooling fluid and a disposal system thereof in known fashion.

Also, preferably fluid cooling conduits 19 are provided between adjacent rows of the bank of high intensity lamps as seen best in FIG. 2. Such conduits 19 are similarly connected with the supply of the cooling medium employed and a disposal system therefor.

The cooling means also preferably includes air circulation means which in the embodiment shown comprises a pair of adjacent cooling air plenum chambers 21 and 22 extending through the lamp mounting blocks 16 adjacent the base thereof. Such plenum chambers are operatively connected directly with the sockets 14 in which the lamps are received as well as with other portions and laterally extending channels 23 which similarly extend longitudinally of the lamp mounting blocks. Thus, cooling air if forced to circulate around the lamps and through the hollow interior 7 of the housing for subsequent discharge through an exhaust port 25 in communication with an exhaust system (not shown).

Positioned within the hollow interior of the housing is a structure which defines the reaction zone of the present apparatus in which the epitaxial coatings are deposited on substrates positioned therein. Such reaction zone is generally designated 31 and comprises a reaction chamber defined by an elongated generally enclosed tubular structure selectively formed from a material which is transparent to the short wave length heat energy generated by the heat source 12 previously described. In its preferred form, such reaction chamber has its walls formed from quartz which is transparent to radiation energy in the one micron and below range. The tube is generally rectangular in cross-sectional construction and the dimensions thereof may vary according to particular production needs. However, one such tube having dimensions of 2 inches by 6 inches with the length being determined in accordance with production requirements may be employed.

As seen in FIG. 1, one end of the reaction tube is operatively connected at 24 with an exhaust hood 26 which in turn is connected with the aforementioned exhaust system so that spent reaction gases may be removed from the reactor.

At its opposite end, the gaseous reactants to be employed in the coating procedure are introduced into the reaction chamber through means which, in the embodiment illustrated, comprises a pair of conduits 32 and 33 which pass through a portion 34 of the end wall 8 of the reactor and terminate within a mixing chamber 36 defined by a baffle plate 37 and the end wall portion 34. The gaseous reactants emanate from tube 32 through a series of openings 38 provided therein in adjacent the baffle plate while the end 39 of the other tube 37 is open directly into the mixing chamber. Following thorough mixing of the gaseous reactants in the mixing chamber, the same pass beneath the baffle plate and through a slotted passageway 41 provided therebetween and the bottom wall of the reaction chamber as seen in FIG. 1. It should be understood, of course, that the particular means chosen for introducing the gaseous reactants into the reaction chamber may be varied to meet particular manufacturing and production requirements.

Supported within the reaction chamber in the preferred embodiment shown is an elongated slablike susceptor 42 on which a series of silicon or like wafers 43 are supported in spaced relationship. The size of the susceptor is correlated to the size of the quartz reaction chamber and may vary to meet particular commercial needs. It should also be understood that in commercial reactors, more than one reactor station may be provided so that treatment of one batch of wafers in one reaction chamber may be progressing while another reaction chamber is being loaded or unloaded.

Preferably susceptor 42 is supported above the bottom wall of the reaction chamber and for that purpose a supporting stand of any suitable construction may be provided, such as the elongated T-shaped stand 44 illustrated in FIG. 2. Preferably such a stand is transparent to the radiant energy emitted by the heat source and as such may be formed of quartz. While it is a requirement that the susceptor material employed be opaque to the radiant energy emitted from the heat source, various materials may be employed in that regard. In the preferred embodiment, such susceptor preferably is produced from graphite which readily absorbs radiant heat energy at the short wave length noted. However, it is not a requirement that the susceptor be electrically or thermally conducted. By utilizing a susceptor, uniform heating of the wafers positioned thereon is insured.

In certain embodiments of this apparatus it is visualized that the wafers may be directly heated in the reaction chamber without a susceptor by supporting the wafers directly on the bottom wall of the chamber. However, such a procedure is less desirable but, because of the opaque nature of the wafers, such a procedure will produce acceptable results although utilization of a susceptor as noted is highly preferable.

The reaction chamber 31 may be supported in any suitable fashion within the housing. In the generally schematically shown, a series of projecting supports, designated 46, are provided at intervals along the length of the reactor as best seen in FIG. 2 and the reaction chamber rests upon such supports. Such supports may be formed from quartz to prevent their interferring with effective heat transmission.

The alternate embodiment shown in FIG. 3 is in all important respects the same as that described previously in FIGS. 1 and 2 with modifications being evident in conjunction with the heat source, generally designated 51, in FIG. 3. Such heat source comprises at least one and preferably a bank of high intensity lamps 52 which generate radiant heat energy of the type described previously. However, the individual lamps 52 differ from those lamps 13 described previously in that each comprises an elongated tubular configuration which extends through opposite sidewalls thereof to be received within opposite spring mounting means 53 and 54 each defined by a socket 56 in which an end of the lamp is positioned. A pair of springs 57 and 58 are suitably anchored at 59 and 61 in brackets secured to a housing wall. The electrical connections for the lamps 52 have not been illustrated but such connections are of conventional construction and extend at spaced intervals across the housing at longitudinally spaced positions therealong.

Cooling water and cooling air means are provided for the purposes noted previously. The cooling water conduits 18 and 20 are arranged essentially the same as described previously with respect to FIG. 2. However, some modification in the cooling air arrangement is necessitated because of the different construction of the lamps 52. In that regard, an enlarged plenum chamber 62 extends along the base of the housing and a serpentine airflow passages 63 extend through the bottom wall 64 of the housing defined by a perforated metal plate so that cooling air may pass upwardly around the respective lamps and pass from the hollow interior of the housing into the exhaust system in the manner noted previously.

Lamps of the type shown at 52 are produced by General Electric as illustrated in their brochure No. TP-110 entitled "Incandescent Lamps" and marketed under the trademark "Quartzline."

FIGS. 4 and 5 illustrate a further modification of the subject radiation heated reactor in which the reactor construction is substantially different from that described previously but in which the epitaxial coating procedure corresponds to that described previously. As seen in FIG. 4, the reactor includes a
support 66 to be positioned within and supported within a housing enclosure (not shown). The heat source, generally designated 67, in this embodiment comprises a cylindrical lamp mounting block 68 having a hollow interior 69 as best seen in FIG. 5. In the upper surface of the lamp mounting block are a series of semispherical recesses 71 in which high intensity lamps 70 of the type shown and described previously with respect to FIG. 1 are positioned.

The number of lamps 70 chosen depends upon the scope of the commercial operation intended for the reactor. It should be understood that suitable socket openings communicate with the semispherical recesses to accommodate the lamps therein in generally the same manner as shown in FIG. 1. The upper surface 72 of the lamp mounting block, as well as the surfaces of the socket recesses 71 are highly polished so as to be highly heat reflective.

The lamp mounting block is supported above the support plate 66 in any suitable fashion. In that regard, conduits 73 and 74 are spacedly secured to the base of the lamp mounting block and pass through the support plate 66 and are rigidly connected with the support plate so as to position the lamp mounting block above the support plate as shown in FIG. 4. The result is conduits 73 and 74 provide water cooling inlets an outlets which communicate with internal circulating channels 75 formed within the mounting block. Although not shown, if desired, air cooling means may be provided in conjunction with the respective lamp sockets also, in the fashion described herein previously.

The reaction chamber of this embodiment is defined by an outer bell jar 76 of conventional configuration and construction which rests upon the supporting plate 66 and completely encloses the heat source and the remaining reactor structure to be described. The inner portion of the reaction chamber is defined by a quartz shroud 77 which is hollow cylindrical in configuration, and donut shaped so that an inner portion thereof fits within the bore 69 of the lamp mounting block as best seen in FIG. 4. Thus, the shroud completely separates the lamps and the lamp mounting block and associated structure from the hollow interior of the reaction chamber defined by the shroud and the surrounding bell jar.

This embodiment also uses an opaque susceptor of graphite or the like and such susceptor is in the form of a circular ring plate 81 secured in any suitable fashion to and supported by a hollow shaft 82 which projects upwardly through the support plate 66 of the reactor as seen in FIG. 4. Shaft 82 is rotatable at relatively slow speeds, e.g., 10 to 15 revolutions per minute, by means of any suitable gearing or motor drive (not shown) so that the susceptor and a supply of wafers 83 supported thereon are carried in a moving path above the heat source defined by the bank of lamps shown. The purpose of such movement relative to the heat source is to assure uniform heating of the susceptor and the wafers carried thereby. Access to the susceptor is had by lifting the bell jar.

The hollow shaft 82 further defines conduit means for introducing gaseous reactants into the reaction chamber for epitaxial reaction therein with the wafers 83. The spent reaction gases pass from the reaction chamber through a vent port 84 provided in the support plate 66 from which they pass into any suitable exhaust system (not shown).

A further embodiment of the subject radiation heated reactor is illustrated in FIGS. 6 and 7. Such arrangement comprises a supporting plate 91 which is mounted within an enclosure (not shown) in any suitable manner. Projecting upwardly through the supporting plate 91 is a shaft 92 designed to be rotated by any suitable means (not shown).

Supported upon the upper end of shaft 92 is a generally cylindrical opaque susceptor of graphite or the like, designated 93. As seen in FIG. 7, the outer periphery of the susceptor is provided with a series of recesses 94 in which wafers to be epitaxially coated are positioned in generally vertical orientation. The inner wall 97 (FIG. 7) of each recess is inwardly inclined away from the vertical to insure retention of a wafer therein during rotation of the susceptor. In that regard, relatively slow rotation in the range of approximately 10 to 15 revolutions per minute is utilized. Rotation of the susceptor is provided to assure uniform heating of the susceptor by the heat source. With this embodiment, the reaction, chamber is defined by a quartz bell jar 98 of conventional construction and configuration which surrounds the susceptor and rests on the supporting plate 91 as seen in FIG. 6. Access to the susceptor is had by raising the bell jar.

The heat source, generally designated 99, employed in this embodiment comprises a cylindrical ring-shaped lamp mounting block 101 in which a series of high intensity lamps 102 are positioned in vertically spaced rows in the manner shown. The semispherical sockets from which the lamps project and inner periphery of the lamp block 101 are highly polished for the purpose noted previously.

Thus, the illustrated lamp bank surrounds the susceptor and is operatively separated therefrom by the reaction chamber defined by the bell jar 98. The lamp block 101 is provided with means for cooling the same in the form of a helical coil 103 which surrounds the same through which a cooling fluid such as water is passed at one end thereof and exit at the other end 106 thereof. Cooling air also may be introduced through the lamp mounting block if desired.

The gaseous reactants are introduced through a suitable port structure 107 provided in plate 91 and the spend reaction gases exit from the reaction chamber through a port structure 108 for passage into a suitable exhaust system.

Having thus made a full disclosure of various embodiments of improved apparatus and process for epitaxially coating substrates, reference is directed to the appended claims for the scope of protection to be afforded thereto.

What is claimed is:

1. A cool wall radiation heated reactor for effecting epitaxial and like chemical vapor deposition reactions therein on a heated substrate positioned therein and heated thereby, comprising
a. a radiant heat source for producing and transmitting radiant heat energy of short wave length, means defining a reaction chamber, for receiving therein a substrate to be coated, positioned adjacent said heat source,
 1. at least that portion of a wall of said reaction chamber which is positioned adjacent said heat source being formed from a material which is transparent to heat energy at the wave length produced by said heat source so that such heat energy is transmitted through said wall without absorption thereby, whereby said wall remains cool and substantially free of film deposits during operation of said reactor, and
C. susceptor means to be heated by said heat source positioned within said reaction chamber for supporting said susceptor thereon during operation of said reactor,
 1. said susceptor means including a susceptor body formed from a material which is opaque to said heat energy and which absorbs the same and is heated thereby,
 2. said susceptor body maintaining the temperature of said substrate substantially constant during operation of said reactor
2. The reactor of claim 1 in which all walls of said reaction chamber are formed from said heat transparent material.
3. The reactor of claim 1 in which said heat source comprises at least one high intensity lamp which radiates heat energy having a wave length of approximately 1 micron or below.
4. The reactor of claim 3 in which said reaction chamber comprises a quartz enclosure separating said heat source from said substrate, said walls of said enclosure being generally unobstructive of heat energy radiated at said wave length.
5. The reactor of claim 1 in which said susceptor means further includes
3,623,712

3. Structure for moving said susceptor body relative to said heat source to insure substantially uniform heating of said susceptor body and the substrate supported thereby.

6. The reactor of claim 1, which further includes means for cooling said radiant heat source.

7. The reactor of claim 1 in which said radiant heat source comprises a high intensity tungsten filament quartz lamp which generates heat energy having a wave length of approximately one micron or below.

8. The reactor of claim 1 in which said radiant heat source comprises a bank of high intensity tungsten filament quartz lamps each of which generates heat energy having a wave length of approximately one micron or below.

9. The reactor of claim 1 in which said susceptor means is separable from said reaction chamber so that said substrate may be positioned on said susceptor body outside said reaction chamber and thereafter introduced on said susceptor body into said reaction chamber.

* * * * *