一种含有螺虫乙酯与噻虫啉的杀虫组合物

摘要

本发明涉及一种螺虫乙酯与噻虫啉的杀虫组合物，其有效成分为螺虫乙酯与噻虫啉二元复配。其中螺虫乙酯与噻虫啉的质量比为 1～50：50～1，制剂中有效成分螺虫乙酯与噻虫啉的质量分数为 1％～80％，其余为农药中允许使用和接受的辅助成分。本发明所述杀虫组合物的剂型为乳油、悬浮剂、可湿性粉剂、水分散粒剂、水乳剂、微乳剂、颗粒剂、微胶囊剂、水剂，可有效防治棉花、大豆、柑橘、热带果树、坚果、葡萄、啤酒花、土豆和蔬菜上各种刺吸式口器害虫，如蚜虫、蓟马、木虱、粉蚧、粉虱和介壳虫等病虫害。
1. 一种含有螺虫乙酯与噻虫啉的杀虫组合物，其特征在于：该杀虫组合物的有效成分螺虫乙酯与噻虫啉两元复配，其余为辅助成分，其中有效成分螺虫乙酯与噻虫啉的质量比为 1 ~ 50 : 50 ~ 1。

2. 根据权利要求 1 所述的杀虫组合物，其特征在于：螺虫乙酯与噻虫啉在制剂中的总重量占整个制剂质量的 1% ~ 80%。

3. 根据权利要求 3 所述的杀虫组合物，其特征在于：螺虫乙酯与噻虫啉在制剂中的总重量占整个制剂质量的 1% ~ 50%。

4. 根据权利要求 1 或 2 或 3 所述的杀虫组合物，其特征在于：该杀虫组合物的剂型为乳油、悬浮剂、可湿性粉剂、水分散粒剂、水乳剂、微乳剂、颗粒剂、微胶囊剂，水剂。
说明书

一种含有螺虫乙酯与噻虫啉的杀虫组合物

技术领域
[0001] 本发明涉及农药复配技术领域，特别是涉及一种含有螺虫乙酯与噻虫啉的杀虫组合物。

背景技术
[0002] 螺虫乙酯是季酮酸类化合物，其化学名为 cis-3-(2,5-二甲基苯基)-8-甲氧基-2-氧代-1-氯杂螺环[4.5]-癸-3-烯-4-基乙酸乙酯。螺虫乙酯具有独特的作用特征，是迄今唯一具有双向内吸传导性能的现代杀虫剂。螺虫乙酯高效广谱，可有效防治各种刺吸式口器害虫，如蚜虫、蓟马、木虱、粉蚧、粉虱和介壳虫等。可防治的主要作物包括棉花、大豆、柑橘、热带果树、坚果、葡萄、啤酒花、土豆和蔬菜等。
[0003] 噻虫啉由德国拜耳农化公司和日本拜耳农化公司合作开发的新型氯代烟碱类杀虫剂，其化学名称为 (3-(6-氯-3-吡啶基)-甲基)-1, 3-噻唑啉-2-亚基) 异恶。噻虫啉的作用机理与其它传统杀虫剂有所不同。它主要作用于神经突触后膜，通过与烟碱乙酰胆碱受体结合，干扰昆虫神经系统正常传导，引起神经传导的阻塞，造成乙酰胆碱的大量积累，从而使昆虫异常兴奋，全身痉挛、麻痹而死。具有较强的内吸、触杀和胃毒作用，与常规杀虫剂或拟除虫菊酯类、有机磷类和氨基甲酸酯类没有交互抗性，因而可用于抗性治理，是防治刺吸式和咀嚼式口器害虫的高效药剂之一。
[0004] 在农业生产的实际过程中，施用化学药剂是防治植物病虫害最为有效的手段，但通过化学防治害虫最容易产生的问题是害虫抗药性的产生。而且长期连续高剂量地施用单一的化学杀虫剂，容易造成药剂的残留、环境污染等一系列问题。合理的化学杀虫剂复配或混配具有扩大杀虫谱，提高防治效果、延长施药适期、减少用药量、降低药害、减少残留、延长害虫耐药性和抗药性的发展与发展的积极特点，杀虫剂复配或混配是解决上述问题的最为有效的方法之一。我们在室内筛选和田间试验的基础上，筛选出螺虫乙酯与噻虫啉复配，具有明显的增效作用。且关于螺虫乙酯与噻虫啉复配的杀虫组合物及应用目前尚无人报道过。

发明内容
[0005] 基于以上情况，本发明目的在于提供一种新型高效的农药杀虫组合物，可有效防治棉花、大豆、柑橘、热带果树、坚果、葡萄、啤酒花、土豆和蔬菜上各种刺吸式口器害虫，如蚜虫、蓟马、木虱、粉蚧、粉虱和介壳虫等病虫害。
[0006] 本发明所述技术方案是通过以下措施来实现的：
一种含有螺虫乙酯与噻虫啉的杀虫组合物，该杀虫组合物中有效成分螺虫乙酯与噻虫啉的质量比为 1 : 50 ~ 50 : 1，所述的本发明杀虫组合物经毒力测定实验验证，螺虫乙酯与噻虫啉的质量比例在 1 : 10 ~ 10 : 1 时，增效效果较好。
[0007] 所述的本发明杀虫组合物可以配制的农药剂型为乳油、悬浮剂、可湿性粉剂、水分散粒剂、水乳剂、微乳剂、颗粒剂、微胶囊剂、水剂。螺虫乙酯与噻虫啉在制剂中的总质量占
整个制剂质量的1%～80%，其中占1%～50%时，毒性与残留均达到较好的平衡，成本也较低。

【0008】本发明所述杀虫组物配制成的农药剂型的具体实施例方案如下：

所述的杀虫组合物为乳油制剂，组分的质量份数为：螺虫乙酯1～50份；噻虫啉1～50份；常规乳化剂10～30份；常规溶剂20～50份；常规增效剂1～5份。该乳油制剂的具体生产步骤为先将有效成分螺虫乙酯与噻虫啉加入溶剂中完全溶解后再加入乳化剂、增效剂搅拌均匀后成均一透明的油状液体，灌装，即可制成本发明组合物的乳油制剂。

【0009】所述的杀虫组合物为悬浮剂，组分的质量份数为：螺虫乙酯1～50份；噻虫啉1～50份；分散剂5～20份；防冻剂1～5份；增稠剂0.1～2份；消泡剂0.1～0.8份；促湿剂0～10份；ph值调节剂0.1～5份；水，余量。该悬浮剂的具体生产步骤为先将其他助剂混合，经高速剪切混合均匀，加入有效成分螺虫乙酯与噻虫啉，在磨球机中磨球2～3小时，使粒径均在5mm以下，即可制成本发明组合物的悬浮剂制粒。

【0010】所述的杀虫组合物是可湿性粉剂，组分的质量份数为：螺虫乙酯1～50份；噻虫啉1～50份；分散剂3～10份；湿润剂1～5份；填料，余量。该可湿性粉剂的具体生产步骤为：按上述配方将有效成分螺虫乙酯与噻虫啉以及分散剂、湿润剂和填料混合，在搅拌釜中均匀搅拌，经气流粉碎机后在混合均匀，即可制成本发明组合物的可湿性粉剂。

【0011】所述的杀虫组合物为水分散粒剂，组分的质量份数为：螺虫乙酯1～50份；噻虫啉1～50份；分散剂3～10份；湿润剂1～10份；崩解剂1～5份；填料，余量。该水分散粒剂的具体生产步骤为：按上述配方将有效成分螺虫乙酯与噻虫啉以及分散剂、湿润剂和填料混合均匀，用超细气流粉碎机粉碎，经捏合，然后加入流化床造粒干燥机中进行造粒、干燥，筛分后经取样分析，即可制成本发明组合物的水分散粒剂。

【0012】所述的杀虫组合物为水乳剂，组分的质量份数为：螺虫乙酯1～50份；噻虫啉1～50份；乳化剂3～30份；溶剂5～15份；稳定剂2～15份；防冻剂1～5份；消泡剂0.1～8份；增稠剂0.2～2份；水，余量。该水乳剂的具体生产步骤为：首先将螺虫乙酯与噻虫啉的溶剂和乳化剂、助溶剂加在一起，使溶解成均匀的油相；将部分水、抗冻剂、抗微生物剂及其他农药助剂混合在一起成均匀的水相；在反应釜中高速搅拌的同时将油相加入水相，缓缓加水直至达到转相点，开启剪切机进行高速剪切，并加入剩余的水，剪切约半小时，形成水包油型的水乳剂，即可制成本发明组合物的水乳剂。

【0013】所述的杀虫组合物为微乳剂，组分的质量份数为：螺虫乙酯1～50份；噻虫啉1～50份；乳化剂10～30份；防冻剂1～8份；稳定剂0.5～10份；常规溶剂助溶剂20～50份。将螺虫乙酯与噻虫啉用助溶剂完全溶解，再加入乳化剂、防冻剂稳定剂等其他成分，均匀混合，最后加入水，充分搅拌后即可配成微乳剂。

【0014】所述的杀虫组合物为颗粒剂，组分的质量份数为：螺虫乙酯1～50份；噻虫啉1～50份；湿润分散剂1～10份；增稠剂0.1～5份；消泡剂0.1～5份；浸泡麻，余量补足。将有效成分螺虫乙酯与噻虫啉、分散剂、稳定剂、消泡剂和溶剂等各组分按配方的比例混合，放入砂磨釜内研磨后，送入均质混合器内混匀即得成品。

【0015】所述的杀虫组合物为微胶囊剂，组分的质量份数为：螺虫乙酯1～50份；噻虫啉1～50份；尿素5～20份；甲醛5～20份；乳化分散剂5～20份；防冻剂1～5份；增稠剂0.1～2份；消泡剂0.1～0.8份；水，余量。在装有搅拌装置的三口烧瓶中加入尿素和
甲醛（物质的量比约为1 : 1.5～2.0），用氢氧化钠溶液调节溶液的pH值到8～9左右，然后升温至70～80℃，反应得到稳定的脲醛树脂预聚体。取一定量的螺虫乙酯与噻虫啉的原药溶于环己烷中，并在溶液中加入乳化分散剂，伴随剧烈搅拌，配成以含乳化分散剂的水溶液为水相的O/W型稳定乳液。将上述的脲醛树脂预聚体加入乳液中，调节pH值，在酸催化条件下发生聚合反应，使油相物质被包裹起来，形成微胶囊颗粒。缓慢升温，固化，温度控制在40～50℃，固化时间1h。选择加入适量的助剂，即可得稳定的微囊剂。

[0016] 所述的杀虫组合物为水剂，组分的质量份数为：螺虫乙酯1～50份；噻虫啉1～50份；乳化分散剂0.1～30份；防冻剂2～8份；消泡剂0.1～1份；增稠剂0.1～3份；展着剂5～15份；水，余量补足。将有效成分螺虫乙酯与噻虫啉，用助溶剂完全溶解，再加入分散剂，防冻剂、消泡剂等其他成分，均匀混合，最后加入水，充分搅拌后，即可得成品。

[0017] 其中以上所述的乳化剂选自十二烷基苯磺酸钙与脂肪酸聚氧乙烯醚，烷基酚聚氧乙烯醚磺基琥珀酸酯，苯乙烯基苯酚聚氧乙烯醚，壬基酚聚氧乙烯醚，蓖麻油聚氧乙烯醚，脂肪酸聚氧乙烯醚，聚氧乙烯脂肪醇醚中的任何一种或一种以上任意比组成的混合物。

[0018] 所述的溶剂为二甲苯或生物柴油，甲苯，柴油，甲醇，乙醇，正丁醇，异丙醇，松脂基植物油代号为ND-45，溶剂油，二甲基甲酰胺，甲基亚砜，水等溶剂中的一种或一种以上任意比组成的混合物。

[0019] 所述的分散剂选自聚羧酸盐代号为LG-3，GY-D1252，GY-D1256，SNWGF-01，木质素磺酸盐代号为201107，201108，烷基酚聚氧乙烯醚甲磺衍物钠盐，烷基磺酸盐钠盐，苯磺酸甲磺酸钠盐，烷基酰聚氧乙烯醚，脂肪酸聚氧乙烯醚，脂肪胺聚氧乙烯醚，甘油脂肪酸酯聚氧乙烯醚中的一个或多个。

[0020] 所述的湿润剂选自十二烷基硫酸钠，十二烷基苯磺酸钠，十二烷基苯磺酸钙，拉开粉BX，湿润渗透剂F，烷基苯磺酸盐聚氧乙烯醚三苯胺稀苯磷酸钠，皂角粉，蚕沙，无患子粉中的一种或多种。

[0021] 所述的崩解剂选自膨润土，尿素，硫酸铵，氯化铝，柠檬酸，丁二酸，碳酸氢钠中的一种或多种。

[0022] 所述的增稠剂选自黄原胶，羧甲基纤维素，羧乙基纤维素，甲基纤维素，硅酸铝镁，聚乙烯醇中一种或多种。

[0023] 所述的稳定剂选自柠檬酸钠，间苯二酚中的一种。

[0024] 所述的防冻剂选自乙二醇，丙二醇，丙三醇中的一种或多种。

[0025] 所述的消泡剂选自硅油，硅酮类化合物，C_{10-20}饱和脂肪酸类化合物，C_{8-10}脂肪醇的一种或多种。

[0026] 所述的填料选自高岭土，硅藻土，膨润土，凹凸棒土，白炭黑，淀粉，轻质碳酸钙中的一种或多种。

[0027] 本发明以有效成分为螺虫乙酯与噻虫啉的复配杀虫剂具有明显的增效作用，延缓抗药性的产生，并降低了成本成本和使用成本，可有效防治棉花、大豆、柑橘、热带果树、坚果、葡萄、啤酒花、土豆和蔬菜上各种刺伤或口器害虫，如蚜虫、蓟马、木虱、粉虱、粉蛾和介壳虫等病虫害。

具体实施方式

[0028] 为使本发明的技术方案，目的以及优点更加清楚明白，本发明用以下具体实施例
进行说明，但本发明并非局限于这些例子。本发明的效果实猃采用室内生测和田间试验相结合的方式，如未特别说明，以下提及的比例都为质量份数比。

【0029】实施例：螺虫乙酯与噻虫啉不同配比联合毒力实验。

【0030】1.1 供试药剂

95%的螺虫乙酯原药，95%的噻虫啉原药，上述原药均由海利尔药业股份有限公司研发中心提供。

【0031】1.2 试验靶标

西花蓟马：置于温度27-29℃，相对湿度50%左右，光照周期16/8h（L/D）的培养箱中的饲养瓶中用刀豆角饲养建立种群，取生长一致的3龄若虫进行实验。

【0032】1.3 实验步骤

1.3.1 药剂配制

先用丙酮溶解原药，根据预备实验的结果将适量的两原药配成若干个不同配比，再用丙酮将各处理分别稀释成若干个浓度梯度待用。

【0033】1.3.2 药剂处理

采用浸叶法进行测定。将事先准备好的甘蓝叶子（2 cm × 3 cm）在药液中浸泡10秒钟，取出自然晾干至表面无水痕，用毛笔挑入西花蓟马3龄若虫，将试虫移至（28 ± 2）℃，相对湿度75%的培养皿中正常培养。每处理4次重复，每重复20头试虫。

【0034】1.4 调查时间

处理后48h调查虫死亡情况（判断虫死亡标准是将西花蓟马和药叶倒倒在黑纸上，用毛笔轻触触体，不能爬动视为死亡），记录总虫数和死虫数。

【0035】1.5 数据统计与分析

根据调查统计，计算各处理的校正死亡率，并参照 NY/T 154.7-2006 采用孙云沛法计算混剂的共毒系数（CTC值）。若对照死亡率为5%，不校正，对照死亡率在5%-20%之间，按公式2进行校正，对照死亡率>20%，试验需重新。

【0036】以药剂浓度（mg/L）的对数值为自变量X，以校正死亡率的几率值为因变量y，分别建立毒力回归方程式，采用DPS软件计算单剂及各配比混剂的 LC50 按照孙云沛方法计算共毒系数（CTC）。共毒系数CTC，计算公式如下：（以螺虫乙酯为标准药剂，共毒力指数为100）：

\[\text{噻虫啉的毒力指数} (\text{TI}) = \frac{\text{螺虫乙酯的} \text{EC}_{50}}{\text{噻虫啉的} \text{EC}_{50} \times 100} \]

M 的真实毒力指数（ATI）= 螺虫乙酯的 EC_{50}/ M 的 EC_{50} \times 100

M 的理论毒力指数（TTI）= 螺虫乙酯的 TI × P 螺虫乙酯 + 噻虫啉的 TI × P 噻虫啉

M 的共毒系数（CTC）=M 的 ATI/M 的 TTI \times 100

式中：

M 为螺虫乙酯与噻虫啉不同配比的混合物

P 螺虫乙酯为螺虫乙酯在混剂中所占的比例

P 噻虫啉为噻虫啉在混剂中所占的比例。

【0037】2.1 毒力测定结果

表1 螺虫乙酯与噻虫啉对蓟马的室内测定结果
<table>
<thead>
<tr>
<th>处理名称</th>
<th>配比</th>
<th>毒力回归方程（Y=at+bX）</th>
<th>相关系数</th>
<th>EC50</th>
<th>共毒系数</th>
</tr>
</thead>
<tbody>
<tr>
<td>螺虫乙酯</td>
<td>——</td>
<td>Y=3.4002X+1.7118</td>
<td>0.9731</td>
<td>8.8069</td>
<td>——</td>
</tr>
<tr>
<td>噻虫啉</td>
<td>——</td>
<td>Y=3.5329X+2.0287</td>
<td>0.9751</td>
<td>5.9351</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 1:50</td>
<td>Y=3.2047X+2.5984</td>
<td>0.9844</td>
<td>5.6158</td>
<td>124.01</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 1:40</td>
<td>Y=3.3164X+2.5556</td>
<td>0.9824</td>
<td>5.4578</td>
<td>127.73</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 1:30</td>
<td>Y=3.1102X+2.7313</td>
<td>0.9834</td>
<td>5.3616</td>
<td>130.24</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 1:20</td>
<td>Y=3.1975X+2.6987</td>
<td>0.9859</td>
<td>5.2610</td>
<td>133.17</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 1:10</td>
<td>Y=3.1696X+2.7698</td>
<td>0.9842</td>
<td>5.0538</td>
<td>139.93</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 1:9</td>
<td>Y=3.1995X+2.8836</td>
<td>0.9833</td>
<td>4.5955</td>
<td>154.49</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 1:8</td>
<td>Y=2.8841X+3.1337</td>
<td>0.9845</td>
<td>4.4373</td>
<td>160.07</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 1:7</td>
<td>Y=2.8582X+3.1874</td>
<td>0.9831</td>
<td>4.3011</td>
<td>165.41</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 1:6</td>
<td>Y=2.9756X+3.1391</td>
<td>0.9845</td>
<td>4.2211</td>
<td>169.44</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 1:5</td>
<td>Y=3.2375X+2.9838</td>
<td>0.9846</td>
<td>4.1955</td>
<td>171.37</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 1:4</td>
<td>Y=3.1198X+3.0866</td>
<td>0.9845</td>
<td>4.1051</td>
<td>176.44</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 1:3</td>
<td>Y=3.2289X+3.0409</td>
<td>0.9843</td>
<td>4.0441</td>
<td>181.11</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 1:2</td>
<td>Y=2.8499X+3.2269</td>
<td>0.9845</td>
<td>4.1918</td>
<td>178.06</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 1:1</td>
<td>Y=2.9239X+3.1167</td>
<td>0.9839</td>
<td>4.4067</td>
<td>176.09</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 2:1</td>
<td>Y=3.1202X+2.9277</td>
<td>0.9784</td>
<td>4.6150</td>
<td>175.06</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 3:1</td>
<td>Y=2.9038X+3.0303</td>
<td>0.9812</td>
<td>4.7678</td>
<td>173.04</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 4:1</td>
<td>Y=3.0612X+2.8989</td>
<td>0.9789</td>
<td>4.8640</td>
<td>171.79</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 5:1</td>
<td>Y=3.1456X+2.8168</td>
<td>0.9832</td>
<td>4.9447</td>
<td>170.44</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 6:1</td>
<td>Y=3.0234X+2.8560</td>
<td>0.9779</td>
<td>5.1223</td>
<td>165.55</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 7:1</td>
<td>Y=3.0544X+2.8373</td>
<td>0.9803</td>
<td>5.1304</td>
<td>166.06</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 8:1</td>
<td>Y=3.0278X+2.8125</td>
<td>0.9829</td>
<td>5.2777</td>
<td>162.01</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 9:1</td>
<td>Y=3.0293X+2.7392</td>
<td>0.9772</td>
<td>5.6027</td>
<td>153.06</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 10:1</td>
<td>Y=3.2923X+2.4094</td>
<td>0.9835</td>
<td>6.1216</td>
<td>140.42</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：噻虫啉 20:1</td>
<td>Y=3.0639X+2.5427</td>
<td>0.9853</td>
<td>6.3390</td>
<td>137.17</td>
<td>——</td>
</tr>
</tbody>
</table>

从表中可以看出，按有效成分螺虫乙酯与噻虫啉比例为 1:50～50:1 稀释时其共毒系数均大于 120，表现出一定的增效作用，其中螺虫乙酯与噻虫啉为 1:10～10:1 的增效作用最明显。试验结果表明，在室内条件下螺虫乙酯与噻虫啉复配对蓟马均有较高的活性，建议对适宜配比 1:10～10:1 左右混配制剂进行进一步的田间药效试验，以评价其田间实际应用效果。

[0038] 3. 田间试验防治西花蓟马、棉花蚜虫的实验结果

3.1 田间实验防治西花蓟马试验
3.1.1 试验方法

试验于陕西省咸阳市礼泉辣椒地内，施药盛发期进行。使用 WF-16 型背负式手动喷雾器，喷头为单个扇形喷头，工作压力为 0.2～0.4Mpa，喷雾量为 0.36～0.48L/min，进行常规喷雾，喷药时力求均匀周到。

[0039] 试验期间天气良好，日平均气温为 17.8～25.4℃。施药当天无雨。

[0040] 3.1.2 调查方法

施药前调查虫口基数，每小区 5 点取样，每点随机调查植株中上部 10 枚花内的蓟马总数，同样方法在施药后 1d, 5d 10d 检查残余活虫数，计算虫口减退率和防治效果。

[0041] 3.1.3 虫效计算方法

虫口减退率（%）=（药前幼虫数 - 药后幼虫数）/ 药前幼虫数 × 100

防效（%）=（处理区虫口减退率 - 对照虫口减退率）/（100 - 对照区虫口减退率）× 100。

[0042] 3.1.4 虫害调查方法

在药后 1, 5, 10 天观察辣椒生长情况，目测药剂对辣椒无药害。

[0043] 3.1.5 田间药效试验结果

从表 2 可以看出，不同比例的混配药剂，按不同的用量进行大田试验，药后其对蓟马的防治效果优于对照药剂，以螺虫乙酯＋嗪虫啉以 1:3 比例复配防治蓟马见效快，持效时间长，防治效果好，杀虫效果随着用量的增加而递增。这一混配，可以有效的控制蓟马对寄主的侵害，对蔬菜品质的提高和增产具有重要意义，有较强的推广应用价值。

[0044] 3.2 田间实验防治棉花蚜虫试验

3.2.1 试验方法

试验于成武县苟村镇张吴庄棉花种植区，土壤为粘土，肥力中等，各小区的栽培条件、水肥管理均匀一致。棉花品种为转基因抗虫棉鲁棉研 15 号。

[0045] 3.2.2 调查方法

试验小区内对角线五点取样，每点固定 4 株，每株固定上、中、下 3 片叶，共固定调查 20 株 60 片叶，药前及施药后 1d, 3d, 7d 检查残余活虫数，计算虫口减退率和防治效果。

[0046] 3.2.3 药效计算方法

虫口减退率（%）=（药前幼虫数 - 药后幼虫数）/ 药前幼虫数 × 100
防效(%)=(处理区虫口减退率-对照区虫口减退率)/(100-对照区虫口减退率)×100。

3.2.4 药害调查方法
在药后7天观察棉花生长情况，目测药剂对棉花无药害。

3.2.5 田间药效试验结果

<table>
<thead>
<tr>
<th>药剂</th>
<th>剂量 (g/亩)</th>
<th>虫口基数</th>
<th>有效率</th>
<th>效率</th>
<th>防效</th>
</tr>
</thead>
<tbody>
<tr>
<td>蝶虫乙酯</td>
<td>15</td>
<td>114</td>
<td>109</td>
<td>31</td>
<td>74.49</td>
</tr>
<tr>
<td>噪虫CS</td>
<td>20</td>
<td>113</td>
<td>30</td>
<td>28</td>
<td>77.94</td>
</tr>
<tr>
<td>25% 噪虫乙酯</td>
<td>20</td>
<td>119</td>
<td>37</td>
<td>37</td>
<td>72.33</td>
</tr>
<tr>
<td>25% 噪虫CS</td>
<td>30</td>
<td>117</td>
<td>44</td>
<td>36</td>
<td>73.06</td>
</tr>
<tr>
<td>CK</td>
<td>-</td>
<td>115</td>
<td>126</td>
<td>38</td>
<td>71.13</td>
</tr>
</tbody>
</table>

从表3中可以看出不同比例的混配药剂，按不同的用量进行试验，药后其对蚜虫的防治均优于对照药剂。蝶虫乙酯与噪虫CS的杀虫效果随剂量的增加而递增。根据田间目测，在试验剂量范围内，作物生长正常，各处理药剂均未出现对棉花的药害现象，说明其对棉花是安全的。建议与作用机理不同的杀虫剂混合使用以延缓害虫抗药性的产生。

综上室内生测和两次大田试验结果所述，本发明所述的以蝶虫乙酯与噪虫CS为有效成分进行两元复配的杀虫组合物，对蚜马、蚜虫等害虫表现出很好的防治效果，对靶标作物安全，与单剂相比，本发明杀虫组合物具有作用机理独特，单位用量少，速效性好、持效期长，作用领域更加宽泛等诸多优点，对植株害虫都能有较好防治，所以，在本发明的研讨及推广应用会产生很大的经济价值，对广大蔬菜、果树产区的农户的增产增收以及当地生态环境的保护具有十分重要的意义。