00 OO 0

/02955 A1l

o

o

W

(12) DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION
EN MATIERE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété
Intellectuelle
Bureau international

(43) Date de la publication internationale
11 janvier 2001 (11.01.2001)

0 00 OO0

(10) Numéro de publication internationale

WO 01/02955 A1l

(51) Classification internationale des brevets”: GO6F 9/45
(21) Numéro de la demande internationale:
PCT/FR00/01815

(22) Date de dépét international: 28 juin 2000 (28.06.2000)

(25) Langue de dépét: frangais

(26) Langue de publication: francais
(30) Données relatives a la priorité:

99/08460 1 juillet 1999 (01.07.1999) FR

(71) Déposants (pour tous les Etats désignés sauf US):
BULL CP8 [FR/FR]; 68, route de Versailles, f-78430

Louveciennes (FR). INSTITUT NATIONAL DE
LA RECHERCHE EN INFORMATIQUE ET EN
AUTOMATIQUE [FR/FR}; Domaine de Voluceau, Roc-
quencourt, F-78153 Le Chesnay Cedex (FR). CENTRE
NATIONAL DE LA RECHERCHE SCIENTIQUE
(CNR S) [FR/FR]; 3, rue Michel-Ange, F-75794 Paris
Cedex 16 (FR).

(72)
(75)

Inventeurs; et

Inventeurs/Déposants (pour US seulement): GOIRE,
Christian [FR/FR}; 8, allée du Mail, F-78340 Les
Clayes-sous-Bois (FR). JENSEN, Thomas [FR/FR];
IRISA/INRIA, Campus Universitaire de Beaulieu,
F-35042 Rennes Cedex (FR). FRADET, Pascal [FR/FR];
IRISA/INRIA, Campus Universitaire de Beaulieu, F-35042
Rennes Cedex (FR). LE METAYER, Daniel [FR/FR];
IRISA/INRIA, Campus Universitaire de Beaulieu, F-35042

[Suite sur la page suivante]

(54) Title: METHOD FOR VERIFYING CODE TRANSFORMERS FOR AN INCORPORATED SYSTEM, IN PARTICULAR

IN A CHIP CARD

(54) Titre: PROCEDE DE VERIFICATION DE TRANSFORMATEURS DE CODES POUR UN SYSTEME EMBARQUE, NO-

TAMMENT SUR UNE CARTE A PUCE

1J

/

B 7

(57) Abstract: The invention concerns a method for verifying a transformer of source code into a transformed code designed for an
incorporated system (7). The method comprises at least steps which consist in: determining a single virtual machine factoring the
behaviour of said two codes (1, 3); determining for each of said source (1) and transformed (3) codes a plurality of functions called
& auxiliary functions representing residual differences between said source (1) and transformed (3) codes; and a step which consists
in verifying a property of correspondence between the auxiliary functions, the code transformer (2) verification resulting from the
latter step. The invention is particularly applicable to chip cards (7).

[Suite sur la page suivante]

woO 01/02955 A1 | MEUINLA] 0000 R A O

Rennes Cedex (FR). DENNEY, Ewen [FR/FR]; IRISA/IN- Publiée:
RIA, Campus Universitaire de Beaulieu, F-35042 Rennes — Avec rapport de recherche internationale.
Cedex (FR).

En ce qui concerne les codes a deux lettres et autres abrévia-
tions, se référer aux "Notes explicatives relatives aux codes et
abréviations” figurant au début de chaque numéro ordinaire de

(81) Etats désignés (national): BR, CA, CN, JP, US. la Gazette du PCT.

(74) Mandataire: ROGER PETIT, Georges; Office Bletry,
94, rue Saint Lazare, F-75010 Paris (FR).

(84) Etats désignés (régional): brevet européen (AT, BE, CH,
CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE).

(57) Abrégé: L'invention concerne un procédé de vérification d’un transformateur de code source en un code transformé destiné a
un systeme embarqué (7). Le procédé comprend au moins les étapes de détermination d’une machine virtuelle unique factorisant
le comportement de ces deux codes (1, 3), la détermination, pour chacun desdits codes source (1) et transformé (3), d’une pluralité
de fonctions dites auxiliaires représentant des différences résiduelles entre lesdits codes source (1) et transformé (3) et une étape
consistant a vérifier une propriété de correspondance entre les fonctions auxiliaires, la vérification du transformateur de code (2)
étant obtenue a partir de cette derniere étape. Application notamment aux cartes a puce (7).

WO 01/02955 PCT/FR00/01815

10

15

20

25

PROCEDE DE VERIFICATION DE TRANSFORMATEURS DE CODES POUR
UN SYSTEME EMBARQUE, NOTAMMENT SUR UNE CARTE A PUCE

L'invention concerne un procédé de vérification de transformateurs de
codes pour un systeme embarqué.

L'invention concerne aussi l'application d'un tel procéde a un
transformateur pour générer un code destiné a une carte a puce.

Dans le cadre de l'invention, le terme "systéme embarqué" doit étre
considéré dans son acception la plus générale. |l concerne notamment des
systemes destinés a une carte a puce, ce qui constitue |'application préférée
de l'invention, mais également tout systeme destiné a un dispositif portable ou
mobile comportant des moyens propres de traitement de données informatisés,
que I'on appellera ci-apres "ressources de traitement".

Les systemes embarqués modernes sont munis de ressources de
traitement des données permettent de remplir des fonctions de plus en plus
complexes et de plus en plus nombreuses. Cependant, malgré la mise sur le
marché de technologies et de composants de plus en plus performants, une
caractéristique distinctive des systemes embarqués, par rapport a des
systemes informatiques conventionnels (micro-ordinateur, station de travail,
etc.), concerne les limitations qu'ils imposent en matiere de ressources (taille
meémoire et puissance des microprocesseurs notamment). Pour satisfaire ces
contraintes, il est nécessaire de transformer le code destiné a étre exécuté sur
un systéme embarqué. Les transformations ont pour but de produire un code
plus efficace et plus économe en ressources.

Pour fixer les idées, et a titre d'exemple non limitatif de code, on
considérera dans ce qui suit un programme écrit dans la machine virtuelle du
langage "JAVA" (marque déposée par SUN MICROSYSTEMS) qui présente
I'intérét de pouvoir étre exécuté dans de nombreux environnements. Les
domaines d'application de ce langage se sont en effet multipliés notamment
avec le développement important du réseau Internet. De nombreuses
applications logicielles de petite taille, dites "applets", sont écrites dans ce

langage et exécutables par un navigateur de type "WEB"

WO 01/02955 PCT/FR00/01815

10

15

20

25

30

2

On se placera egalement dans le cadre de I'application préférée de
I'invention, a savoir I'exécution d'un code de ce type par les ressources
informatiques propres d'une carte a puce. Comme il a été rappelé ci-dessus,
malgré des progrés technologiques importants, la capacité mémoire de la carte
a puce, ainsi que la puissance du microprocesseur qui l'équipe restent
relativement limités. Il est également important que le code soit résident dans
la carte a puce, car les transmissions entre celle-ci et un terminal hote, quel
qu'il soit, s'effectuent a basse vitesse. Les standards actuels ne prévoient que
des transmissions de type série. Le besoin se fait donc sentir de disposer d'un
code que I'on pourrait qualifier "d'allégé"”, en tout cas optimisé pour cet usage.
Pour ce faire, il a été proposé d'utiliser un langage dérivé de "JAVA" se
présentant sous la forme d'une restriction de ce langage, a savoir le langage
"JAVA CARD" " (marque déposée également par SUN MICROSYSTEMS).

Une complication supplémentaire vient du fait que les systémes em-
barqués sont généralement utilisésvdans des environnements qui requiérent
les plus hautes garanties en matiére, a la fois de fiabilité et de sécurité. On
peut citer a titre d'exemple les nouvelles versions de cartes a puce sur
lesquelles on souhaite installer des applications logicielles multiples qui
doivent coopérer harmonieusement sans révéler d'informations confidentielles.
En effet, a priori, ces multiples applications peuvent concerner des utilisateurs
distincts. Maigré la coopération precitée, on doit conserver un cloisonnement
rigoureux, pour que les informations concernant un utilisateur donné restent
confidentielles, pour le moins ne puissent pas étre mises a la disposition d'un
utilisateur non habilité a les connaitre (lecture) et/ou a les manipuler (écriture
et opérations connexes : effacement, modification). En dehors de I'aspect
"confidentialité", d'autres exigences sont a prendre en compte, notamment
I'exigence dite "d'intégrité" : pertes de données, modifications non conformes,
etc.

Si on considére le code "source", dans le sens de "code initial", tel que
par exemple le "byte code" du langage "JAVA" précité, ce dernier présente
toutes les garanties nécessaires et remplit les exigences preécitées, le "byte

code" étant un programme écrit dans la machine virtuelle du langage "JAVA".

WO 01/02955 PCT/FR00/01815

10

15

20

25

30

3

En effet, de nombreux tests ont pu étre effectués, ce pendant de longues
périodes de temps.

Le code dit "transformé” est obtenu a partir du "code source" a l'aide
d'un transformateur de code, généralement extérieur au systéme embarqué,
mais qui peut également étre résident dans celui-ci. Il est donc nécessaire de
montrer |'équivalence entre le code source et le code transformé.

Cela peut s'effectuer en garantissant que les transformations
effectuées sur le code ne changent en rien son comportement (d'un point de
vue externe) et n'introduisent pas de failles de sécurité. En d'autres termes, le
code initial (avant transformation) doit étre d'un point de vue logique équivalent
au code résuitant (aprés transformation).

Il est particulierement difficile de garantir cette propriété en général,
car les transformations ont un effet global sur le code et sur les représentations
des données qu'il manipule. De fagon pratique, la complexité impliquée par
cette opération ne permet pas une mise en ceuvre dans des conditions
économiques et/ou technologiques réalistes. En outre, on doit bien comprendre
que de tels besoins ne sont apparus que tres récemment, notamment en
conjonction avec le développement des technologies précitées de cartes a
puce multi-applications et/ou multi-utilisateurs.

L'invention vise a répondre a ces besoins, sans nécessiter des
procédures extremement longues et colteuses.

Le procédée selon linvention permet de vérifier de maniére
systématique et modulaire la correction des transformations de codes.

Dans le cadre de l'invention, deux formalismes, bien connus en soi,
seront utilisés de fagon essentielle : les sémantiques opérationnelles et les
relations logiques. Pour une description plus détaillée de ces formalismes, on
se reportera avec profit, pour le premier, au livre de : H. R. Nielson, et F.
Nielson, intitulé : "Semantics with Applications: A formal Introduction”. Wiley,
1992, et, pour le second, au livre de J. Mitchell | “Foundations for Programming
Languages", MIT Press, 1996.

Selon une caractéristique essentielle de l'invention, le procédé de

vérification des transformateurs de codes consiste a spécifier le sens de deux

WO 01/02955 PCT/FR00/01815

10

15

20

25

30

4
codes a l'aide d'une machine virtuelle commune paramétrée par des fonctions

que I'on appellera "fonctions auxiliaires". Les différences entre les deux codes
sont exprimées et regroupées dans les fonctions auxiliaires précitées. Chaque
fonction auxiliaire possede deux versions : une version dans le code source et
une version dans le code transformé. Les premiers modules étant identiques,
pUisque communs aux deux codes, il n'y a pas lieu de vérifier s'ils sont
équivalents. Pour montrer I'équivalence des deux codes, il suffit donc de
montrer que les fonctions dites auxiliaires, considérées deux a deux, sont
équivalentes. Ces deux sous-ensembles peuvent étre rendus beaucoup moins
complexes que les deux ensembles représentés par les deux codes, source et
transformé, considérés dans leur intégralité. Il s'ensuit que, selon le procédé
de l'invention, la difficulté inhérente au processus de vérification est tres
fortement reduite, et de fagon corrélative, le processus de vérification devient
economiquement et technologiquement réalisable.

L'invention a donc pour objet un procédé de veérification d'un
transformateur de code dit source en un code dit transformé destiné a un
systeme embarqué, lesdits codes source et transformé étant associés a des
machines virtuelles, caractérisé en ce qu'il comprend au moins les étapes
suivantes :

- la détermination, pour chacun desdits codes source et transformé, d'un
premier sous-ensemble commun, constituant une machine virtuelle unique
factorisant le comportement de ces deux codes ;

- la détermination, pour chacun desdits codes source et transformé, d'un
second sous-ensemble constitué d'une pluralité de fonctions dites
auxiliaires, lesdites fonctions auxiliaires représentant des différences
résiduelles entre lesdits codes source et transformé ;

- l'association par paire desdites fonctions auxiliaires, une premiere
fonction auxiliaire de chaque paire appartenant audit second sous-ensemble
associé audit code source et une seconde fonction auxiliaire de chaque
paire appartenant audit second sous-ensemble associé audit code

transformé ;

WO 01/02955 PCT/FR00/01815

10

15

20

25

30

5

- la vérification d'une propriété de correspondance déterminée entre
lesdites fonctions auxiliaires de toutes lesdites paires ; et

- la vérification que ladite transformation du code source en code
transformé par ledit convertisseur respecte ladite propriété de
correspondance déterminée.

L'invention a encore pour objet I'application d'un tel procédé a un
transformateur pour la génération d'un code destiné a étre enregistré dans une
carte a puce.

L'invention va maintenant étre décrite de fagon plus détaillée en se
référant aux dessins annexés, parmi lesquels :

- la figure 1 illustre schématiquement le processus de

transformation d'un code source en un code transformé final ;

- les figures 2A et 2B illustrent schématiquement une des

caractéristiques essentielles du procédé selon l'invention ; et

- lafigure 3 illustre schématiquement I'application du procédé selon

l'invention a une carte a puce ;

On va maintenant décrire de fagon détaillée le procédé de vérification
de transformateurs de codes selon l'invention.

La figure 1 illustre schématiquement le processus de transformation
d'un code 1, que I'on appellera "code source”, dans le sens de code origine ou
initial, en un code final 3, dit "code transformé", a I'aide d'un transformateur de
code 2. Ce dernier organe peut étre un moyen informatique ou une piéece de
logiciel spécifique. De fagon habituelle, le code transformé est destiné a étre
résident dans le systéme embarqué 4 (en trait plein). Le transformateur 2 peut
également étre résident ou téléchargé dans le systeme embarqué : référence 4'
(en traits pointillés).

Aprés chargement ou enregistrement dans le systeme embarqué 4-4',
le code transformé 3 permet I'exécution d'une ou plusieurs taches en tant que
de besoin, représentées sous la reférence unique 5. On suppose que le
systéme embarqué 4 dispose de ressources informatiques autonomes

classiques (non représentées).

WO 01/02955 PCT/FR00/01815

10

15

20

25

30

6

A priori, la transformation de code est effectuée une fois pour toutes
par un transformateur donné 2 ou dans de rares occasions : modification de
version du code d'origine ou code source 1, par exemple.

Il est donc nécessaire que I'on puisse établir la preuve formelie que le
code transformé 3 est équivalent au code source 1. Ce processus permet de
vérifier si le transformateur 2 fonctionne de fagon correcte.

Cependant, comme il a été rappelé, si on considére, dans leur
globalité, les deux ensembles formés par les codes, source et transformé, la
théorie montre qu'une telle détermination n'est généralement pas possible de
facon réaliste.

Une caractéristique essentielle du procédé selon linvention va
consister a trouver pour chacun des deux codes deux sous-ensembles, que
I'on appellera premier et second sous-ensembles. Selon une caractéristique
importante du procédé selon l'invention, les premiers sous-ensembles forment
une machine virtuelle commune aux deux codes, source et transformé. De ce
fait, il n'est donc pas nécessaire de vérifier I'équivalence des premiers sous-
ensembiles.

Les seconds sous-ensembles, constitués des fonctions auxiliaires,
sont par contre distincts d'un code a l'autre. La détermination de I'équivalence
des codes, source et transformé, se réduit alors a la détermination de
I'équivalence de toutes les paires de fonctions auxiliaires des seconds sous-
ensembles. Or, la complexité résiduelle des fonctions auxiliaires peut étre tres
réduite. |l s'ensuit que la détermination d'équivalence précitée devient possible.

Les figures 2A et 2B illustrent trés schématiquement le procéde selon
l'invention.

Comme le montre plus particulierement la figure 2A, les premiers
sous-ensembles du code source 1 et du code transformé 3 forment une
machine virtuelle commune 13. Les seconds sous-ensembles, 10 et 30, sont
constitués chacun par une série de fonctions dites auxiliaires, dont
I'équivalence devra étre vérifiée. Ces fonctions auxiliaires, 10 et 30,

parameétrent la machine virtuelle commune 13.

WO 01/02955 PCT/FR00/01815

10

15

20

25

30

7

L'équivalence des deux codes, source 1 et transformé 2, se réduit
donc a veérifier I'équivalence des fonctions auxiliaires, 10 et 30, prises deux a
deux, comme il le sera montre ci-aprés en regard de la figure 2B.

Les étapes du procédé vont maintenant étre décrites de fagcon plus
détaillée.

Les codes source et transformé sont associés a des premiére et
seconde machines dites virtuelles, respectivement.

La premiére étape consiste en la définition d'une machine virtuelle (ou
semantique opérationnelle) unique permettant de factoriser le comportement
du code source et du code transformé. Les difféerences entre les deux codes
apparaissent alors a travers des fonctions auxiliaires qui seront interprétées ou
mises en oeuvre différemment dans les deux codes.

Une machine virtuelle peut se représenter par un ensemble de régles

de la forme ;

prémisse 1

prémisse n

etat1[Instruction1] = état2 (1).

Les prémisses sont, soit des conditions d'application d'une regle, c'est-
a-dire des expressions booléennes, soit des affectations a des variables
utilisées pour exprimer un changement d'état. Les prémisses font appel a des
fonctions auxiliaires pour extraire des informations de I'état ou exprimer des
conditions. Chaque regle indiqgue comment I'état de la machine évolue lorsque
les prémisses sont vérifiées et l'instruction "Instruction1" est rencontrée. On
définit une ou plusieurs regles de cette forme pour chaque type d'instruction du

code.

10

15

20

25

30

WO 01/02955 PCT/FR00/01815

8

La seconde étape consiste en la définition de types ou structures de
données utilisés dans les deux codes. On définit des types basiques comme,

par exemple :
Basique ::= Nat | Bool| Nom... (2),
et des types construits comme, par exemple :

Environnement ;= Nom — Valeur

Instructions :: = Instruction1 | Instruction2 | ... (3),

La troisieme étape consiste en l'interprétation de types, référencés 6,
utilisés dans les machines virtuelles. Pour chaque type 6 on définit une
interprétation pour le code source [[9]]Set une interprétation pour le code
transformé, [[8]),, plus une relation R, entre les deux interprétations [[JJ, et
[l Ces relations, appelées relations logiques, respectent la structure des

types. Pour des types simples, elles doivent étre définies explicitement ; pour
des types structurés, elles sont déduites des types des composants de la

structure.

Par exemple, pour les paires :

(@, b) Rerez2(a@', b) <>aRg @ A b Rgb' (4),
relation dans laquelle &1 et 62 sont des types et a, b, &' et b' des éléments de

type.
Il en est de méme pour les fonctions :

fF\)m_,gg fe vV a, a'.a R91 a'=fa Rgz fa' (5)

Les relations logiques doivent étre la relation "identité" pour les types

observables, c'est a dire des types pour lesquels on veut montrer que les deux

WO 01/02955 PCT/FR00/01815

10

15

20

25

30

9

codes rendent le méme résultat. Il s'agit habituellement de types imprimables
et/ou affichables sur un écran informatique. Cela peut étre des types basiques,
mais également des types structurés représentant, par exemple, une pile ou
des variables d'un programme donné.

La quatrieme étape consiste en linterprétation des fonctions
auxiliaires utilisées dans les machines virtuelles. Pour chaque fonction

auxiliaire f, on donne sa définition pour le code source, notée [[f]], et sa
définition pour le code transformé, notée [[7]l, .

La détermination de [I'équivalence consiste & montrer que les
définitions des fonctions auxiliaires respectent les relations logiques. Plus

précisément, pour chaque fonction auxiliaire f: 8 - ¢, on montre

71 Reso’ L7 11 6).

Il s'ensuit que les deux machines virtuelles sont en relation, c'est-a-

dire que :
[état]ly Rypectat [[érat]]; 7).

Comme les relations sont l'identité pour les types observables, les
codes source et transformé sont observationellement identiques.

La derniere étape consiste a montrer qu'il existe un transformateur I
(figure 1 : 2) qui satisfait les relations logiques. Cela peut étre fait en vérifiant
qu'un transformateur donné I' : S — T satisfait la relation logique associée au
type de son argument, avec S code source (figure 1 : 1) et T code transformé

(figure 1 : 3). Pour ce faire il est nécessaire qu'il obéisse a la relation suivante :
vx [I6]ls - x Ro Ix) (8).

Il vient d'étre montré que les relations logiques spécifient un ensemble

de contraintes. On peut donc en extraire un transformateur 2 correct par

WO 01/02955 PCT/FR00/01815

10

15

20

25

30

10

construction, en appliguant des techniques de raffinement ou d'extraction, en
faisant appel & un des assistants de preuve appropriés..

Le procédé selon l'invention présente donc un avantage important car
il permet une grande mécanisation du processus de vérification, et surtout
permet de le conduire a bien, car cette vérification est menée sur des sous-
ensembles moins complexes.

Si la transformation du code source 1 peut se décrire comme une
succession de transformations plus simples, cette méthode peut s'appliquer
pour montrer chaque transformation indépendamment. Il s'ensuit qu'elle
présente un grand avantage de modularité.

La vérification ne doit étre effectuée que sur les sous-ensembles de
fonctions auxiliaires 10 et 30, comme illustré par la figure 2B, & I'aide d'un
organe 6, matériel ou logiciel. On a supposé qu'il existe n fonctions auxiliaires,
referencées 10, 10, ..., 10; ..., 10,4 10, et 20,, 20,, ..., 20, ...20,1, 20,
respectivement. Si l'organe 6 est matériel, il comporte autant de circuits
vérificateurs, 60,, 60,, ..., 60, ..., 60,4, 60, (représentés arbitrairement sur la
figure 2B par le symbole d'un comparateur), que de paires de fonctions
auxiliaires a vérifier, par exemple le circuit vérificateur 60; pour la paire de
fonctions 10; et 30, La ou les sortie(s) de cet organe 6, sous la reférence
unique 61, indique(nt) que la relation logique entre toutes les paires possibles
de fonctions auxiliaires correspondantes des codes source 1 et transformé 3
est satisfaite. Cette série d'opérations est suffisante pour apporter la preuve
formelle de I'équivalence des deux codes, dans leur globalité.

Il est a noter que le procédé selon l'invention est utilisable aussi bien,
a posteriori, c'est-a-dire pour vérifier un transformateur existant, qu'a prior,
comme une aide au développement d'un nouveau transformateur. Elle permet
notamment, dans ce dernier cas, d'en déterminer les caractéristiques, pour qu'il
fonctionne correctement, en d'autres termes pour que le code transformé qui
sera généré par ce transformateur a partir du code source satisfasse I'exigence
d'équivalence précitée.

On va maintenant se placer dans le cadre des cartes a puce. La

figure 3 illustre schématiquement I'architecture d'une carte a puce, référencée

WO 01/02955 PCT/FR00/01815

10

15

20

25

30

11

7. On n'a représenté sur cette figure que les éléments essentiels a la bonne
compréhension du procédé selon l'invention.

La carte a puce 7 comprend notamment un organe d'entrée-sortie 70
permettant des communications avec le monde extérieur, un premier organe de
mémoire 71, fixe ou programmable (de type "ROM", "PROM", "EPROM" ou
"EEPROM"), et un organe de mémoire vive 72. La carte & puce 7 comprend
enfin un microprocesseur ou un microcontréleur 73 dialoguant par
I'intermédiaire de bus avec les autres composants de la carte a puce 7.

L'architecture logicielle d'une telle carte a puce 7 obéit & la norme I1SO
7816-3, se traduisant par une couche protocolaire allant des couches les plus
basses associées aux organes d'entrée-sortie 70, jusqu'aux couches les plus
hautes associées aux applications logicielles enregistrées dans la carte a
puce 7. Ces normes prévoient que les transmissions s'effectuent en mode
série.

Le code source 1, une fois transformé par le transformateur de code 2,
est transmis a la carte a puce 7 pour y étre enregistré, généralement dans
l'organe de mémoire 71, fixe ou "semi-fixe", via I'organe d'entrée-sortie 70. La
ou les applications logicielles traitées par la carte a puce 7 peuvent étre
enregistrées a demeure dans la carte a puce 7, c'est-a-dire dans |'organe de
meémoire 71, ou de fagon transitoire dans la mémoire vive 72. Dans ce dernier
cas les applications sont téléchargees via I'organe d'entrée-sortie 70. Dans
I'exemple décrit, il a été supposé que la carte a puce 7 est d'un type multi-
applications, voire multi-utilisateurs. Il a donc été également supposé que la
carte a puce 7 traite m applications logicielles, A, a A,, écrites dans le langage
transformé 3.

Un des langages couramment utilisés pour les cartes a puce est,
comme il a été rappelé, le langage "Java Card". Il s'agit d'un langage dédié a la
programmation des cartes a puce, tangage qui constitue une restriction du
langage "Java".

La carte 7 peut également stocker un convertisseur supplémentaire

effectuant des conversions in situ au chargement sur des parties de codes.

WO 01/02955 PCT/FR00/01815

10

15

20

25

30

12

Les étapes du procédé selon l'invention qui viennent d'étre décrites
dans un cadre général, vont étre illustrées plus particulierement dans ce cadre
d'application préféree.

Comme il est connu, une implantation du langage "Java Card" fait
appel a un convertisseur qui transforme des fichiers dits "de classes" en
fichiers "CAP". Un fichier de classe est une unité de compilation et de
représentation du code objet d'un programme "Java". Un fichier CAP regroupe
toutes les classes d'un méme "package Java Card" et ne comporte qu'un
unigue "constant pool". Un "package Java Card" est une construction "Java"
pour regrouper des classes et créer des espaces de noms. Pour sa part, un
"constant pool" est une table associée a chaque fichier de classe pour "Java"
et a chaque fichier "CAP" pour "Java Card". Cette table regroupe des
constantes (chaines de caractéres, entiers, ...). Elle est utilisée dans les
machines virtuelles de "Java" et "Java Card". La transformation est non triviale
et globale : elle remplace tous les noms (de packages, de classes, de champs,
de méthodes) par des entités appelées "tokens", c'est-a-dire des nombres
entiers de 7 ou 8 bits. Ces "tokens" servent d'index pour accéder a des tables.
De plus, la transformation regroupe tous les fichiers de classes d'un méme
package en un fichier CAP (avec fusion des "constant poois" et réorganisation
des tables de méthodes).

Le langage "Java Card" est notamment destiné a étre utilisé sur des
cartes & puce bancaires. Il est donc impératif de vérifier la correction de la
transformation d'un programme (ou "byte code") écrit dans la machine virtuelle
du langage "Java" en un programme écrit dans la machine virtuelle du langage
"Java Card", c'est-a-dire d'apporter la preuve de l'équivalence de ces deux
programmes.

Cette preuve formelle va étre apportée en exécutant les étapes du
procédé selon l'invention.

La premiére étape consiste en la définition d'une sémantique
opérationnelie.

On associe a chaque instruction du "byte code" une ou plusieurs

regles semantiques. Le "byte code" est un code assembleur portable. C'est le

WO 01/02955 PCT/FR00/01815

10

15

20

25

30

13

code objet pour les machines virtuelles "Java" ou "Java Card" Par exemple, la
regle sémantique associée a l'une des instructions de ce code, l'instruction

"getfield" peut se décrire ainsi:

f_ref := constant_pool (c)(/)
(c_ref, iv) .= h(z)

v = iv(f_ref)

(getfield j; be, r - ops, I, ¢, h> = (bc, v::ops, 1, ¢, h) (9).

Dans I'exemple, I'état se compose du code exécuté avec l'instruction

courante en téte (getfield j; bc), d'une pile d'opérandes (r :: ops) , des variables
locales (/), d'une référence a la classe courante (c) et du tas (h). La regle

spécifie les opérations effectuées lors de I'exécution de getfield /:

- La fonction auxiliaire "constant_pool" utilise l'index /i pour obtenir la
référence f_ref du champ (une signature ou un "token", selon qu'il s'agit du
code source ou transformé) dans le "constant pool" approprié.
- Laréférence r a l'objet dont le champ doit étre lu est trouvée en sommet
de pile. Cette référence permet de trouver dans le tas (h(r)) la classe
dynamique de l'objet c_ref (un nom qualifié ou une paire de tokens selon
gu'il s'agit du code source ou transformé) et la liste des champs de I'objet
(iv).
- En utilisant la référence précédemment calculée et la liste des champs,
le champ est lu (v :=iv(f_ref)).
- L'instruction getfield change ['état en replagant la référence a I'objet par
la valeur du champ et I'exécution se poursuit avec la suite du code (bc).

La deuxieme étape consiste en la définition des types.

Dans le cas du langage "Java Card", on définit le type Word pour

représenter I'unité de stockage :

Word = Object_ref + Null + Boolean + Byte + Short (10),

WO 01/02955 PCT/FR00/01815

10

16

20

25

14
Comme exemple de type construit, le type d'un constant pool est :

Constant_pool = CP_index —»CP_inf o (11),
avec:
CP_info = Class_ref + Method_ref + Field_ref (12).

Dans I'exemple, un "constant pool" est vu comme une fonction prenant
un index (le type CP_index est considéré comme basique) et rendant une
entrée (ici une référence a une classe, une méthode ou un champ).

Le type du "byte code" est :

Bytecode = Instruction + Bytecode; Bytecode

Instruction = getfieldCP_index + Invokevirtual Cp_index + ... (13).

Le "byte code" est une séquence d'instructions. Le type Instruction

énumere toutes les instructions utilisées dans le "byte code" de "Java Card".

La troisiéme étape consiste en l'interprétation des types
Dans le cas de "Java Card", l'interprétation pour le code source, sous

la forme de fichiers de classe (qui utilise des noms), est notée [[]... et

nanie

l'interprétation pour le code transformé sous la forme de fichiers CAP (qui

utilise des "tokens") est notée [[]],, .

A titre d'exemple, le type [[CP_index]] . est vérifié pour le code

source :

[CP_index].. . = Class_name x index (14).

WO 01/02955 PCT/FR00/01815

10

15

20

25

30

Dans le modele a base de ?1§ms, un index de "constant pool” est
constitué d'un nom de classe (pour indiquer le "constant pool" auquel on fait
référence) et d'un index.

Le type [[CP_index]] est vérifié pour le code transformé :

tok

[[CP_index]|, = Package_token x Index (15).

Un index de "constant pool" est constitué d'un "token" de "package"
(dans l'exemple décrit, il existe un "constant pool" unique par "package" ou

fichier CAP) et d'un index.

La relation Ree_index est définie comme une bijection telle que : (16)

(c_name,i) Rcp_index (p_tok, i') = pack_name(c_name) Rpackage ref

p_tok

Le nom du "package" de la classe contenant le "constant pool" auquel
il est fait référence dans le modéle a base de noms doit étre en relation avec le
"token" du "package" contenant le "constant pool" auquel il est fait référence
dans le modéle a base de "tokens". La seule contrainte sur les index i et /" est
que R, ineex doit &tre une bijection (les entrées des "constant pools" peuvent
donc étre regroupées et réordonnées).

La quatrieme étape consiste en linterprétation des fonctions
auxiliaires

Par exemple, la version de la fonction auxiliaire "constant_pool" pour
le modele a base de noms est :
= cp_hame (17),

[[constant _pool]]

nanie

avec:

cp_name c = let (..., cp, ...) = env_name(pack_name(c))(c) (18).

‘WO 01/02955 PCT/FR00/01815

10

15

20

25

30

16

incp

La fonction pack_name prend un nom de classe et rend un nom de
"package"” et |la fonction env_name prend un nom de package et un nom de
classe et trouve dans la hiérarchie de classes la structure représentant le
fichier de classe désigné. Le constant pool est extrait du fichier de classe.

Pour le modéle a base de "tokens", la version de la fonction auxiliaire

[[constant _pool]]mk est:

[[constant_pool]],,, = cp_tok (19),

avec :

cp_tokc=let(..., cp, ...) = env_tok(p) | (20).

in cp

Le "constant pool" est trouvé dans l'environnent (c'est-a-dire les
fichiers CAP) a I'aide de la fonction env_tok et du token de package.
La cinquieme étape consiste a prouver que les fonctions auxiliaires

respectent des relations logiques.

Si on se reporte de nouveau a I'exemple de la fonction d'accés au

"constant pool”, il est nécessaire de déterminer que :

[[constant_pool]].. . Rep_index - cp_into [[constant _pool]].,, (21).

La relation Rcp index - cpinfe €5t completement définie en fonction des
relations Rep ingex © Rcp inte. EN se servant de cette définition, on montre qu'il

suffit de verifier que :

Y(c_name, i)(p_tok, i') tels que (c_name, i) Rep index (P_tok, i')
cp(i) Rep_into CP'(i') : (22),

WO 01/02955 PCT/FR00/01815

10

15

20

25

30

17

avec :

(..., cp, ...) =env_name(pack_name(c_name))(c_name)
(..., cp', ...) = env_tok(p_tok) (23).

La preuve se fonde sur la définition de Rcp ino et la propriété rappelée
ci-dessus : (24)

(c_name, i) Rep index {P_tOK, I') = pack_name(c_name) Rpackage rer P_tOK

La sixieme et derniére étape du procédé consiste a déterminer un
transformateur tel que la transformation du code et des données par ce con-
vertisseur respecte des relations logiques determinées. Par exemple, les
références a des "packages" sont, soit des noms, soit des "tokens" suivant le
modele. La relation logique associée Rpackage rer €St définie simplement comme
une bijection entre les noms de "package” et les "tokens" de "package". Il suffit
de veérifier que la fonction du convertisseur réalisant la transformation des
noms de package en "tokens" est effectivement une bijection.

A la lecture de ce qui precéde, on constate aisément que l'invention
atteint bien les buts qu'elle s'est fixés.

Il doit étre clair cependant que I'invention n'est pas limitée aux seuls
exemples de réalisations explicitement décrits, notamment en relation avec les
figures 2 et 3.

Enfin, bien que le procédé ait éte décrit de fagon détaillée dans le cas
de la transformation d'un programme de la machine virtuelle du langage "Java"
en un programme de la machine virtuelle du langage "Java Card"
particulierement intéressant pour les applications de type carte a puce ou
similaire, I'invention n'est en aucun cas limité a cette application particuliere.

L'invention peut trouver application a chaque fois que le dispositif
impliqué ne dispose que de ressources informatiques relativement limitées,

notamment en ce qui concerne la capacité mémoire (vive ou fixe) et/ou la

WO 01/02955 PCT/FR00/01815

18

puissance de calcul du processeur utilisé. On peut citer a titre d'exemple des
livres électroniques, par exemple du type dit "e-book", destinés a télécharger et
stocker des données en provenance de sites Internet, des calculateurs de
poche, par exemple du type dit "organiser”, certains téléphones mobiles
5 pouvant étre connectés au réseau Internet, etc. Dans tous ces cas, il est
necessaire de disposer d'un langage optimisé pour utiliser au mieux les

ressources informatiques intégrées.

WO 01/02955

1.

PCT/FR00/01815

19

REVENDICATIONS

Procédé de vérification d'un transformateur de code dit source en un code

dit transformé destiné a un systéme embarqué, lesdits codes source et

transformé étant associés a des machines virtuelles, caractérisé en ce qu'il

5 comprend au moins les étapes suivantes :

10

15

20

25 2.

— la détermination, pour chacun desdits codes source (1) et transformé

(3), d'un premier sous-ensemble (13) commun constituant une machine
virtuelle unique factorisant le comportement de ces deux codes (1, 3) ;
la détermination, pour chacun desdits codes source (1) et transformé
(3), d'un second sous-ensemble (10, 30) constitué¢ d'une pluralité de
fonctions dites auxiliaires (10; - 30,) utilisées par ladite machine
virtuelle unique, lesdites fonctions auxiliaires (10; - 30,) représentant
des différences résiduelles entre lesdits codes source (1) et transformé
(3);

I'association par paire desdites fonctions auxiliaires, une premiére
fonction auxiliaire (10;) de chaque paire appartenant audit second
sous-ensemble (10) associé audit code source (1) et une seconde
fonction auxiliaire (30;) de chaque paire appartenant audit second
sous-ensemble (30) associé audit code transformé (3) ;

la vérification (6) d'une propriété de correspondance déterminée entre
lesdites fonctions auxiliaires de toutes lesdites paires (10; - 30)) ; et

la vérification que ladite transformation du code source (1) en code
transformé (3) par ledit convertisseur (2) respecte ladite propriété de

correspondance déterminée.

Procédé selon la revendication 1, caractérisé en ce que ladite propriété

de correspondance est une relation logique, de maniére a ce que lesdites

fonctions auxiliaires de chacune desdites paires (10, - 30), lors de leur

exécution, générent des résultats liés par ladite relation logique, et en ce

que cette relation est la relation identité pour des entités dites observables

WO 01/02955 PCT/FR00/01815

10

15

20

de chacun desdits codes, source et transforme, pour toute paire de fonctions
auxiliaires, de maniere a ce que les fonctionnalités dudit code source (1)
soient préservées lors de ladite transformation dans ledit code transformé

(3), et ladite vérification de transformateur de code (2) réalisée.

Application du procédé de vérification selon |'une des revendications 1 ou
2 a un transformateur de code (2) générant, a partir dudit code source (1) un
code transformé (3) destiné a étre enregistré dans des moyens de mémoire

(71) d'une carte a puce (7).

4. Application selon la revendication 3, caractérisé en ce que, ledit code

transformé étant un programme écrit dans la machine virtuelle d'un langage
informatique déterminé, ladite carte a puce (7) est une carte a puce
enregistrant une pluralité d'applications logicielles (A, a A,) écrites dans ce

code transformé (3).

Application selon les revendications 3 ou 4, caractérisé en ce que ledit
code source (1) est un programme écrit dans la machine virtuelle du langage
"JAVA" (marque déposée) et ledit code transformeé (3) est un programme

écrit dans la machine virtuelle du langage "JAVA CARD" (marque déposée).

PCT/FR00/01815

WO 01/02955

1/2

r————

FIG.T

43

FIG.2A

30

)

\

13
a

==l

=]

8 @)
= N
v =,
S 3 S S & LW
m m m m M
L S
!] K ¥
it y
f\.l - T T T ;|
"1y
| |2 S| |
_ Y ,AQW_
—
Aﬂw;, Aﬁwv Y >
«
_% S . _
O O n.w
L 42 I
A y] 1
,/ ||||||| N A
a 7 - S
S & S S
- — - C
4

PCT/FR00/01815

WO 01/02955

2/2

L

€Dl

~+

INTERNATIONAL SEARCH REPORT

Interne.. .aal Application No

PCT/FR 00/01815

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 GO6F9/45

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F GO6N

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC, PAJ

Electronic data base consulted during the intemational search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

KAUFMANN M ET AL: "“AN INDUSTRIAL STRENGTH
THEOREM PROVER FOR A LOGIC BASED ON COMMON
LISP"

TIEEE TRANSACTIONS ON SOFTWARE
ENGINEERING,US,IEEE INC. NEW YORK,

vol. 23, no. 4, 1 April 1997 (1997-04-01),
pages 203-213, XP000720014

1,2

ISSN: 0098-5589
the whole document

3 July 1998 (1998-07-03)
claims 1,6,7

A FR 2 757 970 A (GEMPLUS CARD INT) 1,4

-/—

m Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

A document defining the general state of the art which is not
considered to be of particular relevance

“E" eardier document but published on or after the intemational
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*0O" document referfing to an oral disclosure, use, exhibition or
other means

P document published prior to the intemationai filing date but
tater than the prionity date claimed

*T" later document published after the intemational filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
ments, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actuai completion of the intemational search

1 September 2000

Date of mailing of the intemational search report

08/09/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 eponi,
Fax: (+31-70) 340-3016

Authorized officer

Kingma, Y

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

internw.. ..1al Application No

PCT/FR 00/01815

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages

Relevant to ciaim No.

A ALBERDA M I ET AL: "Using formal methods
to cultivate trust in smart card operating
systems”

FUTURE GENERATIONS COMPUTER
SYSTEMS,NL,ELSEVIER SCIENCE PUBLISHERS.
AMSTERDAM,

vol. 13, no. 1, 1 July 1997 (1997-07-01),
pages 39-54, XP004081708

ISSN: 0167-739X

page 53, left-hand column, line 2 - line
33

abstract

1-4

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Intormation on patent tamily members

Interna al Application No

PCT/FR 00/01815

Patent document Publication _ Patent family Publication
cited in search report date member(s) date
FR 2757970 A 03-07-1998 AU 5769598 A 31-07-1998
CN 1247609 A 15-03-2000
EP 1012710 A 28-06-2000
Wo 9829803 A 09-07-1998

Form PCT/ISA/210 (patent family annex) (July 1992)

RAPPORT DE RECHERCHE INTERNATIONALE

Dema. Internationale No

PCT/FR 00/01815

CLASSEMENT DE L'OBJET DE LA DEMANDE

ST T R06F9/45

Selon la classification intemationale des brevets (CIB) ou a la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (systeme de classification suivi des symboles de classement)

CIB 7 GO6F GO6N

Documentation consuitée autre que la documentation minimale dans la mesure ou ces documents relévent des domaines sur lesquels a porté la recherche

Base de données électronique consuitée au cours de (a recherche intemationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EPO-Internal, INSPEC, PAJ

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie °| Identification des documents cités, avec, le cas échéant, I'indication des passages pertinents no. des revendications visées

A KAUFMANN M ET AL: "AN INDUSTRIAL STRENGTH 1,2
THEOREM PROVER FOR A LOGIC BASED ON COMMON
LISP"

IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING,US,IEEE INC. NEW YORK,

vol. 23, no. 4, 1 avril 1997 (1997-04-01),
pages 203-213, XP000720014

ISSN: 0098-5589

le document en entier

A FR 2 757 970 A (GEMPLUS CARD INT) 1,4
3 juillet 1998 (1998-07-03)
revendications 1,6,7

-/—

Voir la suite du cadre C pour la fin de la liste des documents Les documents de familles de brevets sont indiqués en annexe

° Catégories spéciales de documents cités: . . . Lo .

"T" document uitérieur publié aprés |a date de dépot intemationai ou la
date de priorité et n'appartenenant pas a l'état de la
technique pertinent, mais cité pour comprendre le principe
ou la théorie constituant ia base de I'invention

"A* document définissant |'état général de la technique, non
considéré comme particulierement pertinent
"E" grieur, mai i€ a la date de dépot i i N R .) L,
E dgﬁu:;gst zgtt:englaj{e is publié 2 la intemational "X" document particulierement pertinent; I'inven tion revendiquée ne peut
étre considérée comme nouvelle ou comme impliquant une activité

L document pouvant jeter un doute sur une revendication de inventive par rapport au document considéré isolément

pri;)rité_?té C"'Zﬁour ??:ﬁ:"r::;‘asdaélcei;g f’t:ﬁgca&?: did ﬂ'?e *Y" document particulierement pertinent; I'inven tion revendiquée
autre citaton ou pour 50N 5p ® quindiquée) ne peut étre considérée comme impliquant une activité inventive
*0" document se référant a une divulgation orale, aun usage, a lorsque le document est associé a un ou plusieurs autres

une exposition ou tous autres moyens documents de méme nature, cette combinaison étant évidente
"P* document publié avant la date de dépét international, mais pour une personne du métier

postérieurement a |a date de priorité revendiquée "&" document qui fait partie de la méme famille de brevets
Date a laquelie la recherche intemationale a été effectivement achevée Date d’expédition du présent rapport de recherche intemationale

1 septembre 2000 08/09/2000

Nom et adresse postale de I'administration chargée de la recherche intemationale Fonctionnaire autorisé

Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, .
Fax: (+31-70) 3403016 Kingma, Y

Formulaire PCT/ISA/210 (deuxiéme feuille) (juillet 1992}

page 1 de 2

RAPPORT DE RECHERCHE INTERNATIONALE

Dema. Internationale No

PCT/FR 00/01815

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

FUTURE GENERATIONS COMPUTER
SYSTEMS,NL,ELSEVIER SCIENCE PUBLISHERS.

AMSTERDAM,

vol. 13, no. 1,

1 juillet 1997 (1997-07-01), pages 39-54,
XP004081708

ISSN: 0167-739X

page 53, colonne de gauche, Tigne 2 -
ligne 33

abrégé

Catégorle 9| Identification des documents cités, avec,le cas échéant, I'indicationdes passages pertinents no. des revendications visées
A ALBERDA M I ET AL: "Using formal methods 1-4

to cultivate trust in smart card operating

systems”

Formulaire PCT/ISA/210 (suite de la deuxieme feuilie} (juillet 1992)

page 2 de 2

RAPPORT DE RECHERCHE INTERNATIONALE

Demar nternationale No

PCT/FR 00/01815

Renseignements relatifs aux membresde tamilles de brevets

Document brevet cité Date de Membre(s) de la Date de
au rapport de recherche publication famille de brevet(s) publication
FR 2757970 A 03-07-1998 AU 5769598 A 31-07-1998
CN 1247609 A 15-03-2000
EP 1012710 A 28-06-2000
Wo 9829803 A 09-07-1998

Formulaire PCT/ISA/210 (annexe families de brevets) (juillet 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

