
| HAI LALA AT MAI UT WANT TAKIMATA HATI US009760365B2

(12) United States Patent
Johansson et al .

(10) Patent No . : US 9 , 760 , 365 B2
(45) Date of Patent : * Sep . 12 , 2017

(54) SYSTEMS , METHODS , AND COMPUTER
PROGRAM PRODUCTS FOR A SOFTWARE
BUILD AND LOAD PROCESS USING A
COMPILATION AND DEPLOYMENT
SERVICE

(52) U . S . CI .
CPC G06F 8 / 65 (2013 . 01) ; G06F 8 / 67

(2013 . 01) ; G06F 8 / 68 (2013 . 01) ; G06F 8 / 70
(2013 . 01)

(58) Field of Classification Search
CPC G06F 8 / 65

(Continued)
. (71) Applicant : TELEFONAKTIEBOLAGET L M

ERICSSON (PUBL) , Stockholm (SE)

(72) Inventors : Bengt Johansson , Vastra Frolunda
(SE) ; Per Andersson , Montreal (CA) ;
Abdallah Chatila , Montreal (CA) ;
Anders Franzen , Trangsund (SE) ;
Tarik Hammam , Kista (SE) ; Jon
Maloy , Montreal (CA) ; Tord Nilsson ,
Bohus - Bjorko (SE) ; Sten Rune
Pettersson , Torslanda (SE) ; Richard
Tremblay , Rosemere (CA)

(56) References Cited
U . S . PATENT DOCUMENTS

5 , 940 , 623 A * 8 / 1999 Watts GO6Q 20 / 20
453 / 31

6 , 385 , 766 B1 5 / 2002 Doran , Jr . et al .
(Continued)

FOREIGN PATENT DOCUMENTS
CN CN 101212759 A 7 / 2008 (73) Assignee : TELEFONAKTIEBOLAGET LM

ERICSSON (PUBL) , Stockholm (SE)
OTHER PUBLICATIONS

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 51 days .
This patent is subject to a terminal dis
claimer .

Muller et al , “ Virtualization Techniques for Cross Platform Auto
mated Software Builds , Tests and Deployment ” , IEEE , pp . 73 - 77 ,
2009 . *

(Continued)

(21) Appl . No . : 14 / 843 , 272
(22) Filed : Sep . 2 , 2015

Primary Examiner — Anil Khatri
(74) Attorney , Agent , or Firm — Rothwell , Figg , Ernst &
Manbeck , p . c .

(65) Prior Publication Data
US 2015 / 0378718 A1 Dec . 31 , 2015

Related U . S . Application Data
(63) Continuation of application No . 14 / 105 , 694 , filed on

Dec . 13 , 2013
(Continued)

(57) ABSTRACT
Systems , methods , and computer program products for a
software build and load process using a compilation and
deployment service . A method for a software build and load
process using a compilation and deployment service
includes receiving , at the service , new software . The method
further includes comparing , at the service , the received new
software with data in a database , wherein the data comprises
active software . The method further includes merging , at the
service said new software and active software into one or
more load modules based on the comparison . The method

(Continued)

(51) Int . Ci .
G06F 9 / 44
G06F 9 / 445

(2006 . 01)
(2006 . 01)

Receive new software
$ 600

Compare received new software with data in a database
S610

Merge new software and active software into one or more
load modules based on the comparison

$ 620

Deploy the load modules to target processing units
$ 630

US 9 , 760 , 365 B2
Page 2

8 , 627 , 309 B2 * 1 / 2014 Scheidel further includes deploying the one or more load modules to
one or more target processing units .

G06F 8 / 61
717 / 172

8 , 701 , 102 B2
8 , 788 , 569 B2 *

4 / 2014 Appiah
7 / 2014 Griffiths 24 Claims , 7 Drawing Sheets

8 , 826 , 265 B2 * 9 / 2014 Vedantham

8 , 849 , 717 B2 * 9 / 2014 Cooper

G06F 9 / 5055
707 / E17 . 055
G06F 8 / 665

717 / 170
G06F 21 / 12

705 / 51
G06F 8 / 61
717 / 126

G06F 8 / 61
717 / 169

Related U . S . Application Data
8 , 869 , 140 B2 * 10 / 2014 Todorova
8 , 972 , 974 B2 * 3 / 2015 McCurdy (60) Provisional application No . 61 / 737 , 605 , filed on Dec .

14 , 2012 .
(58) Field of Classification Search

. 717 / 168 – 178 ; 709 / 203
See application file for complete search history .

9 , 189 , 227 B2
2009 / 0300580 A1

11 / 2015 Johansson et al .
12 / 2009 Heyhoe et al . USPC

OTHER PUBLICATIONS
(56) References Cited

U . S . PATENT DOCUMENTS

.

6 , 397 , 385 B1 5 / 2002 Kravitz
6 , 438 , 743 B18 / 2002 Boehm et al .
6 , 591 , 272 B1 * 7 / 2003 Williams GO6F 17 / 30607
6 , 598 , 223 B17 / 2003 Vrhel et al .
6 , 748 , 380 B2 * 6 / 2004 Poole . G06F 21 / 6218

707 / 785
7 . 055 . 149 B2 5 / 2006 Birkholz et al .
7 , 096 , 465 B1 * 8 / 2006 Dardinski GO5B 19 / 0426

717 / 121
7 , 246 , 351 B2 * 7 / 2007 Bloch G06F 8 / 61

715 / 700
7 , 430 , 610 B2 * 9 / 2008 Pace G06F 8 / 60

707 / 999 . 01
7 , 577 , 948 B2 * 8 / 2009 Zomaya GO6F 8 / 65

717 / 168
7 , 607 , 126 B2 * 10 / 2009 Read . . G06F 8 / 67

717 / 120
7 , 774 , 772 B2 8 / 2010 Tal et al .
7 , 793 , 280 B2 9 / 2010 De Boer et al .
7 , 865 , 888 B1 * 1 / 2011 Qureshi . . GOON 5 / 048

717 / 168
7 , 913 , 246 B2 * 3 / 2011 Hammond G06F 8 / 65

340 / 538
7 , 937 , 685 B2 * 5 / 2011 Weil . GO6F 8 / 71

705 / 323
7 , 996 , 814 B1 * 8 / 2011 Qureshi GOON 5 / 048

717 / 100
8 , 060 , 871 B2 * 11 / 2011 Bernabeu - Auban G06F 8 / 65

717 / 120
8 , 185 , 576 B2 5 / 2012 Rose
8 , 272 , 972 B2 * 9 / 2012 Sato A63B 53 / 02

473 / 288
8 , 327 , 351 B2 12 / 2012 Paladino et al .
8 , 341 , 622 B1 * 12 / 2012 Eatough G06F 8 / 61

717 / 172
8 , 438 , 541 B2 * 5 / 2013 Abrams . G06F 8 / 71

717 / 120
8 , 533 , 704 B2 9 / 2013 Wookey
8 , 543 , 998 B2 * 9 / 2013 Barringer GOOF 117 3004 G06F 11 / 3664

717 / 169
8 , 584 , 113 B2 * 11 / 2013 McCurdy GO6F 8 / 68

717 / 168

Hudic et al , “ Towards a Unified Secure Cloud Service Development
and Deployment Life - cycle ” , IEEE , pp . 428 - 436 , 2016 . *
Tyndall , “ Building an Effective Software Deployment Process ” ,
ACM , pp . 109 - 114 , 2012 . *
Rellermeyer et al , “ Building , Deploying , and Monitoring Distrib
uted Applications with Eclipse and R - OSGi ” , ACM , pp . 50 - 54 ,
2007 . *
Galik et al , “ Generating Connectors for Heterogeneous Deploy
ment ” , ACM , pp . 54 - 61 , 2005 . *
Celik et al , “ Build System with Lazy Retrieval for Java Projects ” ,
ACM , pp . 643 - 654 , 2016 . *
Cosmo et al , “ Automated Synthesis and Deployment of Cloud
Applications ” , ACM , pp . 211 - 221 - 2014 . *
Liu et al , “ A Formal Framework for Component Deployment ” ,
ACM , pp . 325 - 343 , 2006 . *
Bloom et al , “ IT - Management Software Deployment : Field Find
ings and Design Guidelines ” , ACM , pp . 1 - 2 , 2008 . *
Office Action dated May 9 , 2016 , issued in Mexican Patent Appli
cation No . MX / a / 2015 / 006815 , 2 pages .
International Search Report and the Written Opinion of the Inter
national Searching Authority dated Feb . 13 , 2014 , in International
Application No . PCT / EP2013 / 076506 , 10 pages .
Melling et al . “ Comparing Android Applications to find Copying ” ,
The Journal of Digital Forensics , Security and Law , vol . 7 , No . 1 ,
2012 , 108 pages .
Mens , “ A State - of - the - Art Survey on Software Merging ” IEEE
Transactions on Software Engineering , vol . 28 , No . 5 , 2002 , pp .
449 - 462 .
Shridhar et al . “ A Qualitative Analysis of Software Build System
Changes and Build Ownership Styles " ACM , pp . 1 - 10 , 2014 .
Burg et al . “ Tracing Software Build Processes to Uncover License
Compliance Inconsistencies " ACM , pp . 731 - 741 , 2014 .
Elsner et al . “ An Infastructure for Composing Build Systems of
Software Product Lines " ACM , pp . 1 - 8 , 2011 .
Unphon , “ Making Use of Architecture throughout the Software Life
Cycle — How the Build Hierarchy can Facilitate Product Line
Development ” IEEE , pp . 41 - 48 , 2009 .
Office Action dated May 24 , 2017 , issued in Chinese Patent Appli
cation No . 201380065346 . 3 , 15 pages .
Duvall , “ This DZone Refcard is brought to you by : Visit rfcardz .
com to browse and download the entire DZone Refcardz collection
Continuous Integration : Patterns and Anti - patterns ” 2010 , 7 pages .

* cited by examiner

_
U . S . Patent _ Sep . 12 , 2017 _ sheet10f7 _ US 9 , 760 , 365 B2

_
Config
Files Generator 120

100

Source
Files

110

Source
Files

Compiler pler ?? 130 7 130

Object
Files

Archiver Load
Modules

150
160

FIo . 1

U . S . Patent Sep . 12 , 2017 Sheet 2 of 7 US 9 , 760 , 365 B2

140 140

Load
Module Load Module

N

Processing unit

200

FIG . 2

U . S . Patent Sep . 12 , 2017 Sheet 3 of 7 US 9 , 760 , 365 B2

Source
Files 1 ? 2010 310 Source

Files N) 2010 310
=

Pre - compiler | Pre - compler

Container Container
N

320 320

Deployment service
300

Load
Module

Load
Module

N

330 330

Processing unit
340

FIG . 3

U . S . Patent Sep . 12 , 2017 Sheet 4 of 7 US 9 , 760 , 365 B2

Packets entering
and exiting the

system .

Load Balancers 400

Application
processor

Application
processor

The Set of
Web servers

The Set of
SIP servers 410 410

FIG . 4

U . S . Patent Sep . 12 , 2017 Sheet 5 of 7 US 9 , 760 , 365 B2

SGSN software
bundle . 520
510 Load

balancer
rules .

Deployment Service

A22 SGSN software Load balancer software
XX

L
- 21 : : : :

W Existing
LB rules .

525
:

" - * . .

, YWYYNMENT SA !
. * . . :

" Sivili -

. . .

*

+ * !
1

. . . : . . ! . . . : : : : : : . . .
1

. WWW . ID
. :

.

.

.

SGSN checkers and
compilers 540a

Load balancer checkers
and compilers 540b

/ . . .

SGSN load modules LB load modules . . .

. . .

.

:

550b
550a 550a SGSN

load
modules ,
oesten Load

balancer
modules .

*

SUN * * Views R !
11 : 21 YANI 1

WWW 22

FIG . 5

U . S . Patent Sep . 12 , 2017 Sheet 6 of 7 US 9 , 760 , 365 B2

Receive new software
5600

Compare received new software with data in a database
5610

Merge new software and active software into one or more
load modules based on the comparison

S620

Deploy the load modules to target processing units
S630

FIG . 6

U . S . Patent Sep . 12 , 2017 Sheet 7 of 7 US 9 , 760 , 365 B2

Service
300

Data Storage System
725 Data Processing System

700

CRPC

Computer readable
medium Network Interface

720

Network
730

FIG . 7

US 9 , 760 , 365 B2

SYSTEMS , METHODS , AND COMPUTER Format (“ ELF) archive , a JAR (Java ARchive) TM or TAR
PROGRAM PRODUCTS FOR A SOFTWARE (Tape ARchive) file , a Debian (“ DEB ”) or RPM package , or
BUILD AND LOAD PROCESS USING A other containers .
COMPILATION AND DEPLOYMENT Once the load modules are built for a software applica

SERVICE 5 tion , the type of the software application may determine how
the load modules are sent from the building site to be loaded

CROSS - REFERENCE TO RELATED onto a processing unit . Currently , when sending the load
APPLICATION (S) units to the processing unit , it is often assumed that the new

load - units do not interfere with the existing software on the
This application is a continuation of U . S . application Ser . on Ser 10 processing unit . Additionally , it is often assumed that the

new load module is compatible with underlying software No . 14 / 105 , 694 , filed Dec . 13 , 2013 , which claims the
benefit of U . S . Provisional Application Ser . No . 61 / 737 , 605 , frameworks on the processing units , such as middle - wares

and operating systems . In some instances , a new load filed Dec . 14 , 2012 , and of PCT Application Serial No . module may be tested in a sand box on a processing unit . PCT / EP2013 / 076506 , filed Dec . 13 , 2013 . The entire con 15 Sand boxes allow a new load module to be tested against the tents of each of the referenced applications are incorporated actual processing unit environment without the risk of
by reference herein . interfering with the operation of the actual equipment .

FIG . 2 is a flow chart illustrating load modules loaded TECHNICAL FIELD onto a processing unit . In a typical load process , the worst
20 case is that no checks are performed when the load modules

The present invention relates generally to improving 160 are loaded onto the processing unit 200 . In other
software build and load processes , and more particularly , to cases such as when a package manager , like apt or yum is
systems , methods , and computer program products for a used — rudimentary dependency checks are performed when
software build and load process using a compilation and new packages are loaded onto a processing unit 200 or
deployment service . 25 existing ones are updated . Packages that violate one or more

dependencies may not be loaded .
BACKGROUND The above build and load processes , illustrated in FIGS .

1 and 2 , may function well in static environments where
Typically , after a software application is built , the source software changes are relatively infrequent . For example ,

code , configuration files , and other artifacts are generated , 30 current processes may be sufficient in a desktop setting or in
compiled , and packed into load modules . Once these load a small server farm . However , in modern environments , the
modules are built , the load modules may be shipped to an above build and load processes present problems . For
execution environment where they are loaded and possibly example , in large data - centers and cloud deployments , ordi
linked to a processing unit . nary containers or package systems are not sufficient . Addi

FIG . 1 is a flow chart illustrating a typical build process . 35 tionally , since the state changes frequently in data - centers
Source files 110 may be provided or automatically created and cloud environments , frequent load module deployments
using a generator 120 . A generator 120 may use configura are required . Furthermore , especially in a cloud environ

ment , one must be able to package functioning software and tion files 100 to automatically generate source files 110 deploy it on dynamically allocated virtual machines . using , for example , generic frames , classes , prototypes , 40 Complex applications also often stretch over several templates , aspects , or other ontological models . Generator processing units 200 . It is common for applications to span 120 may also include one or more programming tools , such several processing units 200 , so installation and upgrade as a template processor or an integrated development envi must be coordinated across several processing units 200 . For
ronment (“ IDE ”) . example , software may need to be loaded onto processing

The source files 110 may be compiled by a compiler 130 45 units 200 that perform specific tasks , and as a result ,
into object files 140 . The compiler 130 may be a computer different pieces of software must work together when loaded
program , or a set of programs , that transforms source code onto the processing unit . Processing units 200 and services
written in one programming language into another computer may also be shared between users that have different require
language . For example , the compiler 130 may translate ments . Additionally , the new software may interfere with
source code from a high - level programming language to a 50 existing software , and thereby cause errors and down - time
lower level language , such as assembly language or machine when executed on a processing unit .
code . Accordingly , there exists a need to overcome the defi

In a typical build process , as illustrated in FIG . 1 , a ciencies of current software build and load processes .
compiler 130 may translate source files 110 into object files
140 . Object files 140 may contain , for example , relocate - 55 SUMMARY
able format machine code . Since object files 140 may not be
directly executable , they may be inputted into an archiver Particular embodiments are directed to systems , methods ,
150 . The archiver 150 may be a linker , or link editor , that and computer program products for a software build and
takes one or more object files generated by a compiler 130 load process using a compilation and deployment service .
and combines them into a single executable program , or load 60 In certain embodiments , software is loaded onto a server
module 160 . A computer application may comprise several (or service) arranged to provide a compilation and deploy
modules 160 , and all of the modules are not necessarily ment service . The service provides a database configured to
contained in a single object file 140 . For example , the object permit storing of all of the active software employed by
files 140 may contain symbols that are resolved by an target processing units , for example . The active software
archiver 150 , which links the object files into a unified 65 may be in source form or an intermediate form . For example ,
executable program , or load modules 160 . As a result , the the intermediate format may be native object code for the
load modules 160 may comprise an Executable and Linkable target environment .

US 9 , 760 , 365 B2

In one particular embodiment , a method for a software server . The processor is configured to receive new software .
build and load process using a compilation and deployment The processor is further configured to compare the received
service is provided . The method includes receiving , at the new software with data in a database , wherein the data
service , new software . The method further includes com - includes active software . The processor is further configured
paring , at the service , the received new software with data in 5 to merge the new software and active software into one or
a database , wherein the data comprises active software . The more load modules based on the comparison . Additionally ,
method further includes merging , at the service , the new the processor is further configured to deploy the load mod
software and active software into one or more load modules ules to target processing units .
based on the comparison . Additionally , the method further In certain embodiments , new software is source code
includes deploying the one or more load modules to one or 10 packaged into a container , and the processor may be further
more target processing units . m configured to check the source code on a source level against

In certain embodiments , the new software may be source previously defined restraints and the active software . The
code packaged into a container . In this embodiment , the processor may also be further configured to merge and
comparing step further includes checking the source code on compile the source code with the active software .
a source level against previously defined restraints and the 15 In other embodiments , the new software is compiled
active software . Additionally , the merging step further source code packaged into a container with a new manifest
includes merging and compiling the source code with the describing the properties of the compiled source code . In this
active software at the service . embodiment , the data in the database may comprise one or

In certain embodiments , the new software may be com - more existing manifest files associated with the active
piled source code packaged into a container with a new 20 software . Additionally , the processor may be further config
manifest describing the properties of the compiled source ured to extract the new manifest and check the new manifest
code . In this embodiment , the data in the database includes against predefined constraints and one or more existing
one or more existing manifest files associated with the active manifests .
software . The comparing step further includes extracting the In some embodiments , the new software is intermediate
new manifest and checking the new manifest against pre - 25 format source code and the processor is further configured to
defined constraints and the one or more existing manifests . check the intermediate format source code against pre

In some embodiments , the new software is intermediate defined constraints and the active software . The processor
format source code . In this embodiment , the method com may be further configured to fully compile the intermediate
paring step further includes checking the intermediate for - format source code . In some embodiments , the processor
mat source code against predefined constraints and the 30 may be further configured to merge the intermediate format
active software . Additionally , the merging step further source code with the active software on a statement and
includes fully compiling the intermediate format source expression level .
code . In some embodiments , the merging step may further In some embodiments , the system further includes a
comprise merging the intermediate format source code with processor that is further configured to receive one or more
the active software on a statement and expression level . 35 code characteristics of the received new software , wherein

In some embodiments , the method further includes the database data includes stored characteristics of the active
receiving , at the service , one or more code characteristics of software . The processor may be further configured to com
the received new software , wherein the database data pare the received new software code characteristics with the
includes stored characteristics of the active software . The stored active software code characteristics as part of the data
method further includes comparing , at the service , the 40 comparison .
received new software code characteristics with the stored In other embodiments , the target processing units com
active software code characteristics as part of the data prise one or more SGSN - nodes and load balancers , the new
comparison . software includes SGSN software and new load balancer

In other embodiments , the target processing units com rules , and the data includes existing load balancer rules . In
prise one or more SGSN - nodes and load balancers , the new 45 some embodiments , the system may include a processor
software includes SGSN software and new load balancer further configured to check the new load balancer rules
rules , and the data includes existing load balancer rules . against the existing load balancer rules . The processor may

In some embodiments , the method comparing step further be further configured to merge parts of the new load balancer
includes checking , using one or more load balancer checks rules that are common with the existing load balancer rules .
and compliers , the new load balancer rules against the 50 The processor may also be further configured to report the
existing load balancer rules . The method merging step new load balancer rules that conflict with the existing load
further includes merging parts of the new load balancer rules balancer rules . In some embodiments , the system may
that are common with the existing load balancer rules , and further comprise one or more SGSN checkers and compilers ,
reporting the new load balancer rules that conflict with the wherein the processor is further configured to check the new
existing load balancer rules . 55 SGSN software using the one or more SGSN checkers and

In some embodiments , the method comparing step further compilers .
includes checking the SGSN software at one or more SGSN According to another embodiment , a non - transitory com
checkers and compilers . puter program product comprising a computer readable

In some embodiments , the target processing units are medium storing computer readable program code embodied
classified by one or more of processor architecture , operat - 60 in the medium is provided . The computer program product
ing system , and / or intended use of the new software . includes program code for causing a device to receive new
According to particular embodiments , a system for a software . The computer program product includes program

software build and load process using a compilation and code for causing a device to compare the received new
deployment service is provided . The system includes a software with data in a database , wherein the data contains
compilation and deployment service including a server , a 65 active software . The computer program product includes
processor coupled to the server , a memory coupled to the program code for causing a device to merge the new
processor , and a database coupled electronically to the software and active software into one or more load modules

US 9 , 760 , 365 B2

based on the comparison . Additionally , the computer pro - modules to processing units . In some embodiments , the
gram product includes program code for causing a device to service is a server that contains a database . The database
deploy the load modules to one or more target processing may contain all of the active software that is currently
units . executed on target processing units , software that was pre

In certain embodiments , the new software is source code 5 viously received by the service and deployed to target
packaged into a container . The computer program product processing units , and / or other information , such as con
further includes program code for causing the device to straints , about target processing units . The active software
check the source code on a source level against previously may be stored in several different formats , including , for
defined restraints and the active software . The computer example , source form or an intermediate format . In some
program product further includes program code for causing 10 embodiments , the intermediate format may be native object
the device to merge and compile the source code with the code for the target processing unit environment .
active software . In some embodiments , the service may receive new

In other embodiments , the new software is compiled software either in source form or in some pre - compiled
source code packaged into a container with a new manifest intermediate code . In an exemplary embodiment , the inter
describing the properties of the compiled source code . 15 mediate code allows the service to inspect and check the
Additionally , the data in the database includes neo or more code for compliance with target processing units . Once
existing manifest files associated with the active software . checked for compliance , the service can merge the new
The computer program product further includes program software with the software previously uploaded to the ser
code for causing the device to extract the new manifest and vice and stored in the database . In some embodiments , new
check the new manifest against predefined constraints and 20 load units can be generated from the merged software and
the one or more existing manifests . deployed to target processing units .

In some embodiments , the new software is intermediate Referring now to FIG . 3 , a flow chart illustrating deploy
format source code . The computer program product may ment using a deployment service according to exemplary
further include program code for causing the device to check embodiments is shown . In an exemplary embodiment , the
the intermediate format source code against predefined 25 service 300 receives new software to be deployed on a
constraints and the active software . The computer program processing unit 340 . In some embodiments , the new soft
product may further include program code for causing the ware , which may be source files and / or intermediate code
device to merge the intermediate format source code with 310 , may be packaged by a pre - compiler into one or more
the active software on a statement and expression level . containers 320 . The service 300 may receive one or more

30 containers 320 . In exemplary embodiments , any uploaded
BRIEF DESCRIPTION OF THE DRAWINGS container 320 contains code 310 in a form suitable for the

deployment service 300 to inspect and check the code inside
The accompanying drawings , which are incorporated the container 320 for compliance with the active software

herein and form part of the specification , illustrate various and target processing unit information , which may be stored
embodiments of the present disclosure and , together with the 35 in a database .
description , further serve to explain the principles of the In an exemplary embodiment , the service 300 ensures that
disclosure and to enable a person skilled in the pertinent art the received new software works together with the active , or
to make and use the embodiments disclosed herein . In the existing , software . One advantage is that it is possible to
drawings , like reference numbers indicate identical or func - ensure that the new software works with the active software
tionally similar elements . 40 before it is deployed to processing units 340 . Another

FIG . 1 is a flow chart illustrating a typical build process . advantage is that it is possible to check software from
FIG . 2 is a flow chart illustrating load modules loaded different suppliers for compatibility with existing software

onto a processing unit . on processing units 340 without having to disclose the
FIG . 3 is a flow chart illustrating deployment using a source code .

deployment service in accordance with exemplary embodi - 45 There are several possibilities when creating the new
ments . intermediate code and checking the intermediate code with

FIG . 4 is a flow chart illustrating load balancers serving the active software . In one embodiment , for example , the
application processors in accordance with exemplary source code 310 may be packaged into a container 320
embodiments . before being received by the service 300 . The service 300

FIG . 5 is flow chart illustrating checking and final stage 50 may check or compare the source code against predefined
of building of the new SGSN related software in accordance constraints and / or the active code in the database . If all of the
with exemplary embodiments . constraints are met , the new code may be compiled and

FIG . 6 is a flow chart illustrating a method of deployment merged with the other active software into load modules
using a deployment service , in accordance with exemplary 330 . The compiled form may include , for example , native
embodiments . 55 object code or an intermediate virtual machine code , such as

FIG . 7 is a functional block diagram that schematically for a JavaTM Virtual Machine (“ JVM ”) .
illustrates a service , in accordance with exemplary embodi - In some embodiments , the source code 310 may be
ments . compiled and packaged into a container 320 , and a manifest

describing the code in the container may be transmitted with
DETAILED DESCRIPTION 60 the container 320 . Generally , characteristics about code ,

including source and intermediate code , may be received by
Particular embodiments are directed to systems , methods , the service 300 . The service 300 may receive the code inside

and computer program products for a software build and the container 320 and the manifest describing the properties
load process using a compilation and deployment service . of the code (i . e . , code characteristics) inside the container . In
New software may be loaded onto a service that manages 65 some embodiments , when the service 300 receives the code

the creation and deployment of load modules . The service inside the container 320 , the service 300 extracts and checks
may act as an intermediary that deploys new software load the manifest describing the code against predefined con

US 9 , 760 , 365 B2

straints (i . e . , code characteristics) as well as the other and / or updated applications . In some embodiments , and
manifests of the active , or previously uploaded , code stored according to the setup in FIG . 4 , the system may be currently
in the database . If all of the constraints are met , the service running both Web and SIP servers on processing units 410 .
300 may merge the compiled new software , or the code It may be desirable , for example , to reconfigure some of the
inside the container 320 , with the other active software 5 processing units 410 to run as a SGSN - node . Consequently ,
stored in the database to form one or more load modules 330 . SGSN software would need to be installed on some of the In certain embodiments , the source code 310 may be processing units 410 . Additionally , the software on the
compiled into an intermediate format which is not human load - balancers 400 may need to be upgraded so that the readable but can be inspected programmatically . The semi load - balancers 400 may distribute connections from the compiled code 310 may be packaged inside a container 320 10 " radio network to specific application processors that handle and be received by the service 300 . The service 300 may them . check the semi - compiled code against predefined constraints
(i . e . , code characteristics) as well as the active code stored FIG . 5 is flow chart illustrating checking and final stage

of building of the new SGSN related software according to in the database for compatibility . If all of the constraints are
met , the code may be compiled to its final form and merged 15 exemplary embodiments . As described in the example
with the other active software into load modules 330 . The above , it may be desirable to reconfigure certain processing
compiled form may include , for example , native object code units to run an SGSN - node in a system with only web
or an intermediate virtual machine code , such as for a JavaTM servers and SIP servers . According to some embodiments ,
Virtual Machine (“ JVM ”) . service 300 may receive a new SGSN software bundle 510 ,
One advantage of the above embodiments and others is 20 or new software , and load balancer rules 520 associated with

that the new software 310 , 320 is not required to be uploaded the new SGSN software bundle 510 .
in source form and therefore cannot be easily inspected by In some embodiments , the service 300 may run the new
humans . However , the new software is available in all of its SGSN software bundle 510 through an SGSN checker and
complexity to a consistency checker implemented on service compiler 540a . In some embodiments , the SGSN checker
300 . For example , the new software may be checked by the 25 and compiler 540a may compare the new SGSN software
service ' s consistency checker down to the statement and with , for example , active SGSN software or processing unit
expression level for any possible inconsistencies or con constraints stored in a database accessible by server 300 . If
straints . Another advantage may be that it is possible to the SGSN software bundle 510 successfully completes the
intricately merge semi - compiled code with the other , active , comparisons performed by the SGSN checker 540a , then the
code down to the statement and expression level . Therefore , 30 new SGSN software bundle 510 may be compiled into code
it may be possible for service 300 to receive parts of an that can be understood by one or more processing units and
application and to merge it completely with the whole loaded into SGSN load modules 550a .
application once checked for compatibility and other con - In some embodiments , the load balancer rules 520 are
straints . Furthermore , it is possible that the service 300 may pre - compiled into a format which is not human readable but
merge software parts from different suppliers into one appli - 35 can be parsed by the next stage of the rule compiler on
cation . service 300 . In exemplary embodiments , the new load

In some embodiments , the database contains classifica - balancer rules 520 are checked against the existing load
tions of target processing units 340 including , for example , balancer rules 525 . The existing load balancer rules 525
processor architecture , operating system , etc . The database may , for example , be stored in a database accessible by
may also contain classification information concerning the 40 service 300 . In some embodiments , there is a load balancer
intended use of a processing unit 340 or active software , so checker and compiler 540b that compares and compiles the
that a processing unit 340 may only receive new software new load balancer rules 520 . The comparison performed by
that is intended for that processing unit . These classifications the load balancer checker and compiler 540 may include
and the classification information can be included as part of determining which parts of the new load balancer rules 520
the code characteristics associated with the new software or 45 and existing load - balancer rules 525 are common . The
the active software . comparison may also include determining and reporting

Furthermore , in some embodiments , the service 300 may conflicting parts of the new load balancer rules 520 and
deploy the load modules 330 to processing units 340 . Once existing load balancer rules 520 . These load balancer rules
the building process starts , service 300 may generate or can be included as part of the code characteristics associated
rebuild load modules 330 for target processing units 340 that 50 with the new software or the active software .
are affected by the new software change . The service 300 , In some embodiments , the load balancer checker and
after rebuilding or building the load modules 330 , loads and compiler 540 may merge all of the new load balancer rules
activates the load modules 330 onto target processing units 520 with the existing load balancer rules 525 , or it may only
340 . merge a subset of the rules , such as the common rules .

Referring now to FIG . 4 , a flow chart illustrating load 55 Additionally , the merged rules may be compiled into code
balancers serving application processors , according to some that can be understood by the load balancers and are pack
embodiments , is shown . In some embodiments , some of the aged into load modules 550b . In some embodiments , should
processing units act as load balancers 400 for some other an error occur — for instance if some new load balancer rules
processing units running applications 410 . The applications 520 will conflict with existing load balancer rules 525 — the
may include any application that accepts packets from a 60 old software version will not be removed from the target
network , including , for example , web - servers , sip - servers , processing units . Furthermore , an error report may be sent
Mobility Management Entity (“ MME ”) nodes , home sub - back to the user that initiated the transaction .
scriber sever (“ HSS ”) nodes , etc . Referring now to FIG . 6 , a flow chart illustrating a method

The configuration of the application processors 410 are of deployment using a deployment service , according to
dynamic and may change over time . In some embodiments , 65 exemplary embodiments , is shown . In some embodiments ,
when the configuration is changed , the software of the according to step 8600 , the service receives new or modified
load - balancers 400 is updated in order to accommodate new software . As explained above , the received software may be

US 9 , 760 , 365 B2
10

in many different formats , including source code form , an processor for controlling operation of the server device 300 ,
intermediate form , a compiled form with a manifest describ and a data storage system 725 for storing computer readable
ing the code , etc . instructions (. e . , software) and data . The network interface

In some embodiments , in accordance with step S610 , the 720 and data storage system 725 are coupled to and com
service compares the received new software with data in a 5 municate with the data processing system 700 , which con
database . The data may include , for example , active soft - trols their operation and the flow of data between them .
ware that is currently deployed on target processing units , The methods described herein can be implemented in the
software that has been previously received at the service , service 300 described above . In such embodiments , the
constraints about the software and / or target processing units , method actions are realized by means of computer readable
code characteristics about the software and / or target pro - 10 program code that is stored in the computer readable
cessing units , etc . The comparison may include , for medium of data storage system 725 and is executable by the
example , checking for inconsistencies between the received data processing system 700 . Such computer readable pro
new software and the active software , checking for compat - gram code can be realized and provided in any suitable way ,
ibility , e . g . , operating system requirements , in addition to e . g . installed during manufacturing , uploaded at a later time ,
evaluating other constraints and code characteristics . 15 etc . , as the skilled person will appreciate . Moreover , the data

In accordance with step S620 , in some embodiments the storage system 725 , the data processing system 700 , as well
service merges the new software and active software into as the network interface 720 comprise software and / or
one or more load modules based on the comparison of step firmware that , in addition to being configured such that it is
S610 . As explained above , the new software may be in capable of implementing the methods to be described , is
source code form or an intermediate form and may addi - 20 configured to control the general operation of the service
tionally need to be compiled in order to be merged with the when operating in a network . However , for the purpose of
active software into load modules . Furthermore , based on avoiding unnecessary detail , no further description will be
the comparison , the new software in its entirety or a subset , made in the present disclosure regarding this general opera
such as only the components that are common between the tion .
new and active software , may be merged with the active 25 The above described embodiments pose several advan
software and built into load modules . tages . For example , by using a service to automate the

In some embodiments , in accordance with step S630 , the resolution of complex dependencies between software pack
one or more load modules may be deployed to one or more ages , the number or errors are reduced when software is
target processing units . The deployment may be based , for deployed in complex data - center and / or cloud environments .
example , on data contained in the database about the pro - 30 Additionally , the use of a service may simplify software
cessing units . management and deployment by automating the deployment
Now referring to FIG . 7 , a functional block diagram that of new software by a common set of rules automatically

schematically illustrates a service , according to exemplary mapping the new software onto specific processing units .
embodiments , is shown . The service 300 may include a Furthermore , the use of a service may introduce new
processor or other processing means , a memory or other 35 possibilities in software integration . For example , new soft
storage means and a network interface or other networking ware can be checked against a set of constraints that ensure
means . In an exemplary embodiment , the device includes a that the software is applicable for the intended system and
data processing system 700 (e . g . , one or more of the that the intended operating environment is compatible with
following : microprocessors , application specific integrated the software . Additionally , the use of a service may allow
circuits ASICs , Field - programmable gate arrays (FPGAs) , 40 intricate merging of software , thereby creating a synthesis of
logic circuits , and other circuits) , a data storage system 725 the existing software and the new version .
(e . g . , non - volatile memory such as hard disk , flash memory While various embodiments of the present invention have
or other storage unit) , and a network interface 720 . been described above , it should be understood that they have

Data storage system 725 may include one or more non been presented by way of example only , and not limitation .
volatile storage devices and / or one or more volatile storage 45 Thus , the breadth and scope of the present invention should
device (e . g . , random access memory (RAM)) . In instances not be limited by any of the above - described exemplary
where service 300 includes data processing system 700 and embodiments . Moreover , any combination of the above
a microprocessor , computer readable program code may be described elements in all possible variations thereof is
stored in a computer readable medium , such as , but not encompassed by the invention unless otherwise indicated
limited to , magnetic media (e . g . a hard disk) , optical media 50 herein or otherwise clearly contradicted by context .
(e . g . , a DVD) , memory devices (e . g . , random access Additionally , while the processes described above and
memory) , etc . In some embodiments , computer readable illustrated in the drawings are shown as a sequence of steps ,
program code is configured such that when executed by a this was done solely for the sake of illustration . Accordingly ,
processor , the code causes the device to perform the steps it is contemplated that some steps may be added , some steps
described above . In other embodiments , the device is con - 55 may be omitted , the order of the steps may be re - arranged ,
figured to perform steps described above without the need and some steps may be performed in parallel .
for code . The invention claimed is :

Furthermore , network interface 720 may provide means 1 . A method for a software build and load process using
to connect to network 730 . The network interface 720 is a compilation and deployment service comprising :
configured to enable communication with a communication 60 receiving , at said service , new software ;
network 730 , using a wired and / or wireless connection . In an comparing , at said service , said received new software
exemplary embodiment , processing units are also connected with data in a database , wherein the data comprises
to network 730 . Network 730 may be , for example , a GPRS active software and previously defined constraints
core network , the Internet , etc . about one or more target processing units and

In embodiments where the service is a server , the server 65 wherein the comparing comprises checking that the new
300 may include a network interface 720 for transmitting software is compatible with said active software and
and receiving data , a data processing system 700 with a meets said previously defined constraints ;

10

US 9 , 760 , 365 B2
12

merging , at said service said new software and active 11 . A system for a software build and load process using
software into one or more load modules based on said a compilation and deployment service comprising :
comparison , a server ;

wherein said merging step comprises at least one of a processor coupled to said server ;
combining or compiling said new software with said 5 a memory coupled to said processor ; and ,
active software ; and , a database coupled electronically to said server ;

deploying said one or more load modules to said one or wherein the processor is configured to :
more target processing units . receive new software ;

2 . The method of claim 1 , wherein said new software is compare said received new software with data in a
source code packaged into a container , database , wherein the data comprises active software
wherein said comparing step further comprises checking and previously defined constraints about one or more

said source code on a source level against said previ target processing units and
ously defined constraints and said active software , and wherein the comparing comprises checking that said new

said merging step further comprises compiling said source 15 software is compatible with said active software and
code with said active software at said service . meets said previously defined constraints ;

3 . The method of claim 1 , wherein merge said new software and active software into one or
said new software is compiled source code packaged into more load modules based on said comparison , wherein

a container with a new manifest describing the prop said merging comprises at least one of combining or
erties of said compiled source code , 20 compiling said new software with said active software ;

said data in said database comprises one or more existing and ,
manifest files associated with said active software ; deploy said one or more load modules to said one or more

said comparing step further comprises extracting said new target processing units .
manifest and checking said new manifest against said 12 . The system of claim 11 wherein said new software is
previously defined constraints and said one or more 25 source code packaged into a container , wherein said pro
existing manifests ; and , cessor is further configured to :

said merging step further comprises combining said com check said source code on a source level against said
piled source code with said active software . previously defined constraints and said active software , 4 . The method of claim 1 , wherein said new software is and intermediate format source code , wherein compile said source code with said active software . said comparing step further comprises checking said 13 . The system of claim 11 , wherein said new software is intermediate format source code against said previ compiled source code packaged into a container with a new ously defined constraints and said active software , and

said merging step further comprises fully compiling said manifest describing the properties of said compiled source
code and said data in said databases comprises one or more intermediate format source code .

5 . The method of claim 4 , wherein said merging step existing manifest files associated with said active software ,
further comprises merging said intermediate format source wherein said processor is further configured to :
code with said active software on a statement and expression extract said new manifest and check said new manifest
level . against said previously defined constraints and said one

6 . The method of claim 1 , further comprising : 40 or more existing manifests ; and
receiving , at said service , one or more code characteristics combine said compiled source code with said active

of said received new software , wherein said database software .
data includes stored characteristics of said active soft 14 . The system of claim 11 , wherein said new software is
ware ; and , intermediate format source code , wherein said processor is

comparing , at said service the received new software code 45 further configured to :
characteristics with said stored active software code check said intermediate format source code against said
characteristics as part of said data comparison . previously defined constraints and said active software ,

7 . The method of claim 1 , wherein said target processing
units comprise one or more serving GPRS support nodes fully compile said intermediate format source code .
(" SGSN ") and load balancers , said new software comprises 50 15 . The system of claim 14 , wherein said processor is
SGSN software and new load balancer rules , and said further configured to merge said intermediate format source
previously defined constraints comprise existing load bal - code with said active software on a statement and expression
ancer rules . level .

8 . The method of claim 7 , wherein said comparing step 16 . The system of claim 11 , wherein said processor is
further comprises checking , using one or more load balancer 55 further configured to :
checkers and compliers , said new load balancer rules against receive one or more code characteristics of said received
said existing load balancer rules , wherein said merging step new software , wherein said database data includes
further comprises merging parts of said new load balancer stored characteristics of said active software , and
rules that are common with said existing load balancer rules compare the received new software code characteristics
and reporting said new load balancer rules that conflict with 60 with said stored active software code characteristics as
said existing load balancer rules . part of said data comparison .

9 . The method of claim 7 , wherein said comparing step 17 . The system of claim 11 , wherein said target processing
further comprises checking , at one or more SGSN checkers units comprise one or more serving GPRS support nodes
and compliers , said SGSN software . (“ SGSN ”) and load balancers , said new software comprises

10 . The method of claim 1 , wherein said target processing 65 SGSN software and new load balancer rules , and said
units are classified by one or more of processor architecture , previously defined constraints comprise existing load bal
operating system , and / or intended use of said new software . ancer rules .

and

14
US 9 , 760 , 365 B2

13
18 . The system of claim 17 further comprising one or program code for causing said device to deploy said load

more load balancer checkers and compliers , wherein said modules to said one or more target processing units .
processor is further configured to : 22 . The non - transitory computer program product of

check said new load balancer rules against said existing claim 21 . wherein said new software is source code pack
load balancer rules ; 5 aged into a container , said computer program product further merge parts of said new load balancer rules that are
common with said existing load balancer rules ; and , comprising :

report said new load balancer rules that conflict with said program code for causing said device to check the source
existing load balancer rules . code on a source level against said previously defined

19 . The system of claim 17 , further comprising one or 10 constraints and said active software , and
more SGSN checkers and compliers , wherein said processor program code for causing said device to compile said
is further configured to : source code with said active software .

check said new SGSN software using the one or more 23 . The non - transitory computer program product of
SGSN checkers and compilers . claim 21 , wherein

20 . The system of claim 11 , wherein said target processing 15 said new software is compiled source code packaged into
units are classified by one or more of processor architecture , a container with a new manifest describing the prop
operating system , and / or intended use of said new software . erties of said compiled source code ,

21 . A non - transitory computer program product compris said data in said database comprises one or more existing
ing a computer readable medium storing computer readable manifest files associated with said active software , and
program code embodied in the medium , the computer pro - 20 said computer program product further comprises :
gram product comprising : program code for causing said device to extract said

new manifest and check said new manifest against program code for causing a device to receive new soft
ware ; said previously defined constraints and said one or

program code for causing said device to compare said more existing manifests , and
received new software with data in a database , wherein 25 program code for causing said device to combine said
the data comprises active software and previously compiled source code with said active software .
defined constraints about one or more target processing 24 . The non - transitory computer program product of
units and wherein the comparing comprises , claim 21 , wherein said new software is intermediate format

checking that said new software is compatible with said source code and said computer program product further
active software and meets said previously defined con - 30 comprises :
straints ; program code for causing said device to check said

program code for causing said device to merge said new intermediate format source code against said previ
software and said active software into one or more load ously defined constraints and said active software ; and
modules based on said comparison , program code for causing said device to merge said

wherein said merging comprises at least one of combining 35 intermediate format source code with said active soft

or compiling said new software with said active soft ware on a statement and expression level .
ware ; and , ? ? ? ? ?

