

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 February 2004 (19.02.2004)

PCT

(10) International Publication Number
WO 2004/015753 A1

(51) International Patent Classification⁷: H01L 21/3065, B23K 26/36

(74) Agents: WANT, clifford, J. et al.; 11Th Floor, Tower 3, Clements Inn, London, WC2A 2AZ (GB).

(21) International Application Number:
PCT/EP2003/008706

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(22) International Filing Date: 6 August 2003 (06.08.2003)

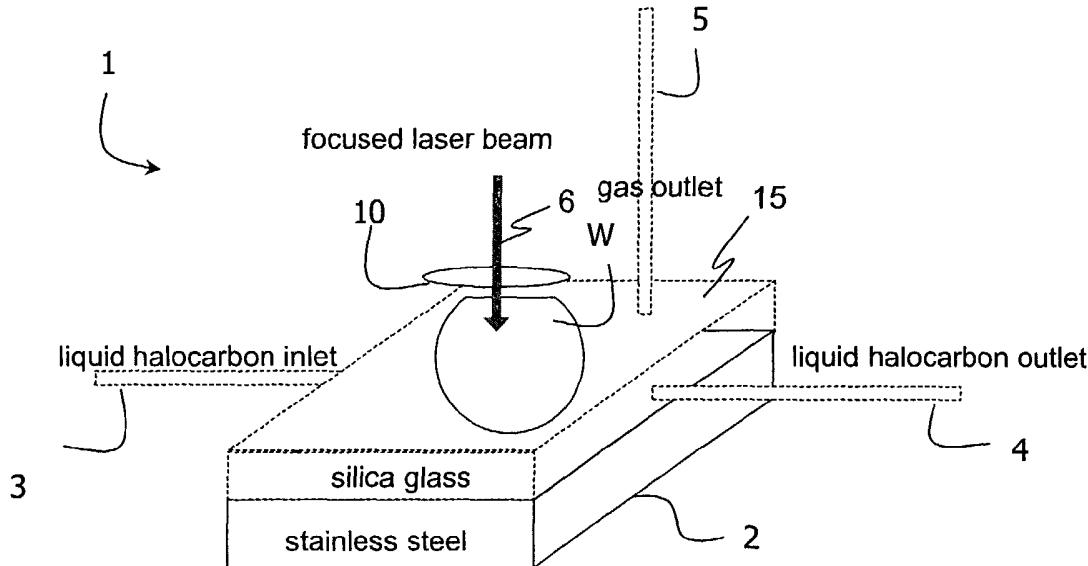
(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

English

(26) Publication Language: English

English


(30) Priority Data:
2002/0655 6 August 2002 (06.08.2002) IE
0224585.0 22 October 2002 (22.10.2002) GB

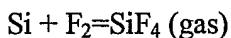
Published:

— with international search report

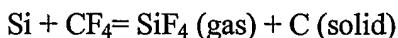
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: LASER MACHINING

WO 2004/015753 A1


(57) Abstract: A silicon body W is machined with a UV or green laser beam 6 in a refrigerated liquid halide compound environment. Local heating with the laser beam of the liquid halide compound in the vicinity of a machining location is sufficient to cause a chemical reaction between the silicon body and the liquid halide compound which accelerates machining, enhances machining quality and reduces laser machining generated debris.

- 1 -


LASER MACHINING

The present invention relates to laser machining, particularly of bodies containing at least a significant proportion of silicon.

Silicon reacts vigorously with all the halogens to form silicon tetrahalides. Thus, 5 silicon reacts with fluorine, F_2 , chlorine, Cl_2 , bromine, Br_2 , and iodine, I_2 , to form respectively silicon fluoride, SiF_4 , silicon chloride, $SiCl_4$, silicon bromide, $SiBr_4$, and silicon iodide, SiI_4 . The reaction with fluorine takes place at room temperature but the other reactions require heating to over 300 °C.

It is also known from US5266532A and US5322988A that the presence of halocarbons accelerates the ablation of silicon. An example of a halocarbon-silicon reaction is

15 The reaction between halocarbons and silicon is not spontaneous. The reaction occurs only at energies above the melting threshold of silicon, and therefore is very localized and suitable for one-step silicon micro-machining applications such as wafer dicing, vias and surface patterning.

20 It is an object of the present invention to provide enhanced machining of silicon compared with that of the prior art.

According to a first aspect of the invention, there is provided a method of machining a silicon body with a laser beam, comprising the steps of: providing a liquid halide compound environment in at least a machining location of the silicon body; directing the laser beam at the machining location of the silicon body in the liquid halide 25 compound environment; locally heating the liquid halide compound with the laser beam in the vicinity of the machining location of the silicon body sufficiently to cause a chemical reaction between the silicon body and the liquid halide compound at the

- 2 -

machining location; and machining the silicon body at the machining location with the laser beam thereby causing the chemical reaction to take place at the machining location.

Advantageously, the step of providing a liquid halide compound environment comprises providing a liquid halocarbon environment.

5 Conveniently, the step of directing the laser beam comprises directing an UV wavelength laser beam.

Alternatively, the step of directing the laser beam comprises directing a green visible light wavelength laser beam.

Conveniently, the step of providing a liquid halide compound environment 10 comprises providing an environmental chamber for containing the liquid halide compound.

Preferably, the step of providing a liquid halide compound environment comprises providing a refrigerated liquid halide compound.

Advantageously, the step of providing a refrigerated liquid halide compound 15 comprises controlling a temperature of the refrigerated liquid halide compound before, during and after machining.

Alternatively, the step of providing a liquid halide compound environment comprises providing aerosol nozzle means for delivering the liquid halide compound to at least the machining location.

20 Conveniently, the step of providing a liquid halide compound environment comprises providing a halocarbon containing a halogen selected from the group of fluorine, chlorine, bromine and iodine.

Advantageously, the step of machining the silicon body comprises controlling a 25 temperature of the silicon body substantially to prevent thermal damage to the silicon body by controlling thermal loading of the silicon body.

According to a second aspect of the invention, there is provided a laser machining apparatus comprising: a laser; means for directing a laser beam from the laser onto a

- 3 -

machining location; and means for providing a controlled liquid halide compound environment around at least the machining location.

Advantageously, the means for providing a controlled liquid halide compound environment is arranged to provide a controlled liquid halocarbon environment.

5 Conveniently, the means for providing a controlled liquid halide compound environment comprises environmental chamber means.

Preferably, the environmental chamber means comprises bath means for a refrigerated liquid halide compound.

Conveniently, the environmental chamber means comprises an inlet port and an 10 outlet port for the liquid halide compound, and a gas vent.

Preferably, the environmental chamber means comprises a window transparent to the laser beam for entry of the laser beam into the environmental chamber means.

Advantageously, the window is anti-reflection coated.

15 Preferably, the laser machining apparatus further comprises refrigeration means for providing a refrigerated liquid halide compound to the environmental chamber means.

Advantageously, the refrigeration means is arranged for controlling a temperature of the liquid halide compound before, during and after machining.

20 Preferably, the means for providing a controlled liquid halide compound environment comprises aerosol nozzle means for delivering the liquid halide compound at least to the machining location.

Conveniently, the laser emits at ultraviolet wavelengths.

Alternatively, the laser emits at green visible light wavelengths.

25 Preferably, the laser machining apparatus further comprises temperature control means for controlling a temperature of a body to be machined at the machining location, arranged substantially to prevent thermal damage of the body by controlling thermal loading of the body.

- 4 -

Conveniently, the laser machining apparatus further comprises telecentric lens means for directing the laser beam, wherein a flow of the refrigerated liquid halide compound substantially fills a field of view of the telecentric lens means.

The invention will be more clearly understood from the following description of 5 some embodiments thereof, given by way of example only with reference to the accompanying drawings in which:-

Fig. 1 is a perspective schematic view of a laser machining apparatus according to the invention; and

Fig. 2 is a plan view of the apparatus of Fig. 1.

10 In the figures, like reference numerals represent like parts.

Referring to Figs. 1 and 2, a laser machining apparatus 1 comprises a stainless steel enclosure 2 having a liquid inlet 3, a liquid outlet 4, and a gas vent 5. An optical system 10 is mounted above the enclosure. An enclosed liquid bath is completed by an anti-reflection coated window 15 transparent to the laser beam to allow access of a UV 15 laser beam to a silicon wafer W in the bath. Alternatively, a laser emitting green visible light may be used.

In use, the wafer W is placed in the enclosure 2 and a refrigerated liquid halide compound such as tetrafluoroethane is pumped into the bath via the inlet 3. Alternatively, some other liquid halide compound, in particular a liquid halocarbon, producing a 20 halogen such as fluorine, chlorine, bromine or iodine, may be used. The inlet 3 and the outlet 4 are in a refrigeration circuit so that the liquid temperature is maintained at or below the gas transition temperature of the particular liquid halide compound. The bath is at least partially filled with the liquid.

The temperature of the substrate W to be machined and the temperature of the 25 active fluid may be controlled before, during and after machining in order to improve the efficiency of machining and also to improve the quality of machining.

- 5 -

The temperature of the wafer substrate W in an ambient environment may be varied in order to permit greater thermal control during laser machining by reducing thermal loading in the substrate and thus preventing thermal damage to the substrate.

The UV beam 6 is directed at the desired machining site on the wafer W for the 5 desired machining operation. Locally, at the machining site, the laser beam heats the silicon so that the immediately surrounding liquid is both heated above the gas transition temperature, and the temperatures of both the silicon and the gas are sufficient for a reaction to take place. In this situation most of the by-products are gases and are vented away through the gas outlet 5. Those which are solid particles are dispersed in the liquid 10 and are not re-deposited onto the wafer surface.

The advantage of this system is that the system permits distribution of the liquid halide compound over a relatively large area of the surface of the substrate to be machined, thus permitting efficient and uniform machining. For laser machining of via structures, dice lanes or scribe lanes in a wafer substrate using a galvanometer based 15 scanner, telecentric lens and linear XY motorised table, the flow of refrigerant halide compound can be optimised so as to fill completely the field of view of the telecentric lens (for example this may typically be 50 mm x 50 mm in size). All features to be machined within the field of view can be machined very efficiently as refrigerated halide compound is present across the entire field of view and the XY stage does not need to be 20 moved. Also, all features within the field of view are machined uniformly (i.e. they are of similar depth and quality) due to the even distribution of refrigerant halide compound within the field of view.

Thus, it will be appreciated that the invention provides for very efficient and high quality laser machining.

25 The invention is not limited to the embodiments described but may be varied in construction and detail. For example, the liquid may comprise mixtures of halocarbons and other liquids. Also, the environmental chamber may be partly filled with a refrigerated halocarbon liquid and the remainder filled with a gas. Also not only UV, but

- 6 -

instead green lasers can be used. Also there can be more than one inlet, to allow the insertion of other liquids or gases into the environmental chamber.

Although the invention has been described for machining a silicon body, the invention has application at least for machining any body containing a significant proportion of silicon. An example of such a body is a multilayer structure which may contain several layers of semiconductor, metal, interlayer dielectric and ceramic materials. The multilayer structure can be partially or totally machined in the environmental chamber, with the fluid type and laser wavelength selected for the most effective machining of the individual material layers. Between machining of different layers the fluid type can be replaced with an alternative fluid, best suited to machining of the next layer.

Subsequent to laser machining in the environmental chamber, the substrate is removed and, if required, is cleaned using conventional techniques such as spin-rinse-dry, ultrasonic and megasonic cleaning.

Claims

1. A method of machining a silicon body (W) with a laser beam (6), comprising the steps of:
 - a. providing a liquid halide compound environment in at least a machining location of the silicon body;
 - b. directing the laser beam at the machining location of the silicon body in the liquid halide compound environment;
 - c. locally heating the liquid halide compound with the laser beam in the vicinity of the machining location of the silicon body sufficiently to cause a chemical reaction between the silicon body and the liquid halide compound at the machining location; and
 - d. machining the silicon body at the machining location with the laser beam thereby causing the chemical reaction to take place at the machining location.
- 15 2. A method as claimed in claim 1, wherein the step of providing a liquid halide compound environment comprises providing a liquid halocarbon environment.
3. A method as claimed in claims 1 or 2, wherein the step of directing the laser beam comprises directing an UV wavelength laser beam.
4. A method as claimed in claim 1 or 2, wherein the step of directing the laser beam comprises directing a green visible light wavelength laser beam.
- 20 5. A method as claimed in any of the preceding claims, wherein the step of providing a liquid halide compound environment comprises providing an environmental chamber (2) for containing the liquid halide compound.
6. A method as claimed in any preceding claim, wherein the step of providing a liquid halide compound environment comprises providing a refrigerated liquid halide compound.

- 8 -

7. A method as claimed in claim 5, wherein the step of providing a refrigerated liquid halide compound comprises controlling a temperature of the refrigerated liquid halide compound before, during and after machining.
8. A method as claimed in any of the preceding claims, wherein the step of providing a liquid halide compound environment comprises providing aerosol nozzle means for delivering the liquid halide compound to at least the machining location.
9. A method as claimed in any of the preceding claims, wherein the step of providing a liquid halide compound environment comprises providing a halocarbon containing a halogen selected from the group of fluorine, chlorine, bromine and iodine.
10. A method as claimed in any of the preceding claims, wherein the step of machining the silicon body comprises controlling a temperature of the silicon body substantially to prevent thermal damage to the silicon body by controlling thermal loading of the silicon body.
11. A laser machining apparatus (1) comprising: a laser; means (10) for directing a laser beam (6) from the laser onto a machining location; and means (2) for providing a controlled liquid halide compound environment around at least the machining location.
12. A laser machining apparatus as claimed in claim 11, wherein the means for providing a controlled liquid halide compound environment is arranged to provide a controlled liquid halocarbon environment.
13. A laser machining apparatus as claimed in claims 11 or 12, wherein the means for providing a controlled liquid halide compound environment comprises environmental chamber means.
14. A laser machining apparatus as claimed in claim 13, wherein the environmental chamber means comprises bath means for a refrigerated liquid halide compound.

15. A laser machining apparatus as claimed in claims 13 or 14, wherein the environmental chamber means comprises an inlet port (3) and an outlet port (4) for the liquid halide compound, and a gas vent (5).
16. A laser machining apparatus as claimed in any of claims 13 to 15, wherein the environmental chamber means comprises a window (15) transparent to the laser beam for entry of the laser beam (6) into the environmental chamber means.
- 5 17. A laser machining apparatus as claimed in claim 16, wherein the window is anti-reflection coated.
18. A laser machining system as claimed in any of claims 13 to 17, comprising refrigeration means for providing a refrigerated liquid halide compound to the environmental chamber means.
- 10 19. A laser machining system as claimed in claim 18, wherein the refrigeration means is arranged for controlling a temperature of the liquid halide compound before, during and after machining.
- 15 20. A laser machining apparatus as claimed in any of claims 11 to 19, wherein the means for providing a controlled liquid halide compound environment comprises aerosol nozzle means for delivering the liquid halide compound at least to the machining location.
21. A laser machining apparatus as claimed in any of claims 11 to 20, wherein the 20 laser emits at ultraviolet wavelengths.
22. A laser machining apparatus, as claimed in any of claims 11 to 20, wherein the laser emits at green visible light wavelengths.
23. A laser machining system as claimed in any of claims 11 to 22 comprising temperature control means for controlling a temperature of a body (W) to be 25 machined at the machining location, arranged substantially to prevent thermal damage of the body by controlling thermal loading of the body.

- 10 -

24. A laser machining system as claimed in any of claims 18 or 19, further comprising telecentric lens means for directing the laser beam, wherein a flow of the refrigerated liquid halide compound substantially fills a field of view of the telecentric lens means.

1/1



Fig. 1

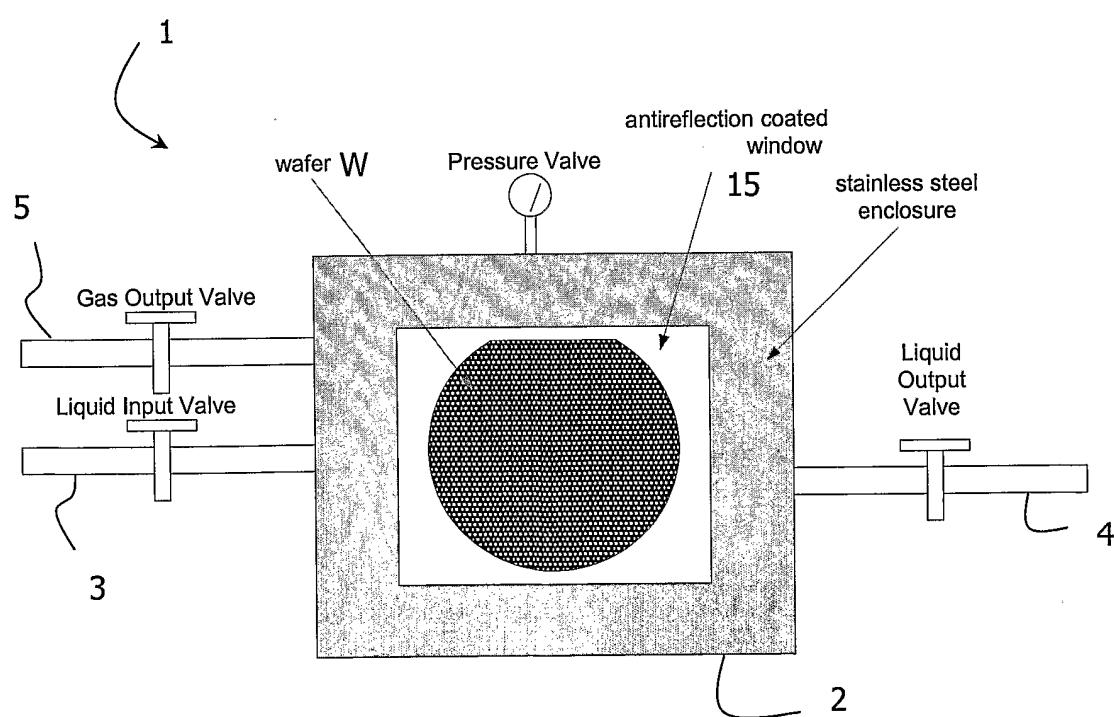


Fig. 2

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 03/08706

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 H01L21/3065 B23K26/36

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 H01L B23K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

PAJ, EPO-Internal, WPI Data, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P, X	WO 03 000456 A (SEPELT KONRAD ;POPKOVA VERA YAKOVLEVNA (RU); SHAFEEV GEORGII AYRA) 3 January 2003 (2003-01-03) page 4 -page 6 ---	1-3, 5, 8-13, 16, 20, 21, 23
P, X	WO 03 028943 A (LAMBDA PHYSIK APPLIC CT L L C) 10 April 2003 (2003-04-10) the whole document ---	11-13, 20-22
P, X	WO 03 028941 A (SCAGGS MICHAEL J) 10 April 2003 (2003-04-10) the whole document ---	11-13, 20-22 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

18 November 2003

02/12/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Szarowski, A

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 03/08706

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	PATENT ABSTRACTS OF JAPAN vol. 009, no. 100 (M-376), 2 May 1985 (1985-05-02) -& JP 59 225896 A (HANDOUTAI ENERUGII KENKYUSHO:KK), 18 December 1984 (1984-12-18) abstract paragraphs '0008!, '0009!, '0011!; figures 1,2B ---	1,2,5,9, 11-13,16
X	LIM P ET AL: "LASER-ASSISTED LIQUID FILM ETCHING" APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 62, no. 25, 21 June 1993 (1993-06-21), pages 3345-3347, XP000380997 ISSN: 0003-6951 page 3345 ---	1,4,5, 10-13, 16,22,23
X	WO 97 24768 A (PACIFIC SOLAR PTY LTD ; YOUNG TREVOR (AU)) 10 July 1997 (1997-07-10) page 4 -page 5 page 10 ---	1,3-5, 11,13, 21,22
X	DATABASE WPI Section Ch, Week 198637 Derwent Publications Ltd., London, GB; Class L03, AN 1986-240798 XP002261883 -& JP 61 053731 A (ANRITSU ELECTRIC CO LTD), 17 March 1986 (1986-03-17) abstract; figure 1 ---	1,3,5, 11-13, 16,21
X	SVORCIK V ET AL: "LASER-STIMULATED ETCHING OF N-SI IN AQUEOUS SOLUTIONS" MATERIALS LETTERS, NORTH HOLLAND PUBLISHING COMPANY. AMSTERDAM, NL, vol. 9, no. 5/6, 1 March 1990 (1990-03-01), pages 204-206, XP000127337 ISSN: 0167-577X the whole document ---	1,5, 11-13
X	EP 0 450 313 A (IBM) 9 October 1991 (1991-10-09) column 4 -column 5; figure 1 ---	11-14, 16,18, 22,24
X	US 2002/050489 A1 (HAYASAKA NOBUO ET AL) 2 May 2002 (2002-05-02) paragraph '0050! - paragraph '0066!; figure 2 ---	11-13, 16,21,22
		-/-

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 03/08706

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 95 07152 A (HOLLMAN RICHARD F ; ELLIOTT DAVID J (US); SINGER DANIEL K (US); UVT) 16 March 1995 (1995-03-16) page 35; figure 12 page 54; figure 19 ---	11-13, 16,20,21
X	PATENT ABSTRACTS OF JAPAN vol. 012, no. 330 (E-655), 7 September 1988 (1988-09-07) -& JP 63.094657 A (NEC CORP), 25 April 1988 (1988-04-25) abstract ---	11-13
A	US 5 266 532 A (RUSSELL STEPHEN D ET AL) 30 November 1993 (1993-11-30) cited in the application the whole document -----	1-24

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 03/08706

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 03000456	A	03-01-2003	DE WO	10130349 A1 03000456 A2	02-01-2003 03-01-2003
WO 03028943	A	10-04-2003	WO WO US	03028941 A1 03028943 A1 2003062126 A1	10-04-2003 10-04-2003 03-04-2003
WO 03028941	A	10-04-2003	US WO WO	2003062126 A1 03028941 A1 03028943 A1	03-04-2003 10-04-2003 10-04-2003
JP 59225896	A	18-12-1984	JP JP	1653790 C 3004319 B	13-04-1992 22-01-1991
WO 9724768	A	10-07-1997	AU WO	1133197 A 9724768 A1	28-07-1997 10-07-1997
JP 61053731	A	17-03-1986		NONE	
EP 0450313	A	09-10-1991	US DE DE EP JP JP	5057184 A 69113845 D1 69113845 T2 0450313 A2 2785842 B2 4228284 A	15-10-1991 23-11-1995 30-05-1996 09-10-1991 13-08-1998 18-08-1992
US 2002050489	A1	02-05-2002	JP JP	2003031466 A 2002224878 A	31-01-2003 13-08-2002
WO 9507152	A	16-03-1995	AU WO US US AU AU AU AU EP JP WO WO WO	7682594 A 9507152 A1 5669979 A 5814156 A 3374195 A 3418295 A 3460895 A 0802835 A1 10506201 T 9606692 A1 9606693 A1 9606694 A1	27-03-1995 16-03-1995 23-09-1997 29-09-1998 22-03-1996 22-03-1996 22-03-1996 29-10-1997 16-06-1998 07-03-1996 07-03-1996 07-03-1996
JP 63094657	A	25-04-1988		NONE	
US 5266532	A	30-11-1993	US US US US US US US US	5385633 A 5348609 A 5493445 A 5354420 A 5688715 A 5164324 A 5362450 A 5322988 A	31-01-1995 20-09-1994 20-02-1996 11-10-1994 18-11-1997 17-11-1992 08-11-1994 21-06-1994