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Abstract

An efficient lapped transform is realized using pre- and post-filters (or reversible
overlap operators) that are structured of unit determinant component matrices. The pre-
and post-filters are realized as a succession of planar rotational transforms and unit
determinant planar scaling transforms. The planar scaling transforms can be
implemented using planar shears or lifting steps. Further, the planar rotations and planar
shears have an implementation as reversible/lossless operations, giving as a result, a

reversible overlap operator.
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Technical Field

The invention relates generally to digital media (e.g., video and image)

compression using lapped transforms.

Background

Lapped Transforms

The lapped transform is a powerful signal processing technique that is used in
data compression. See, e.g., H. S. Malvar, Signal Processing with Lapped Transforms.
Boston, MA: Artech House, 1992. However, to date, efficient lapped transforms with
linear phase have neither been formulated nor been applied for lossless (reversible)
compression of data.

As discussed in more detail below, it is known that a lapped transform can be
formulated as a pre filter followed by a data transform (and its inverse as the inverse data
transform followed by a post filter). See, e.g., H. S. Malvar, “A pre- and post-filtering
technique for the reduction of blocking effects,” in Proc. Picture C oding Symposium,
Stockholm, Sweden, Jun. 1987; and T.D. Tran, J. Liang, and C. Tu, “Lapped Transform
via Time-Domain Pre- and Post-Filtering”, IEEE Trans. on Signal Processing, vol.51,
no.6, June 2003. A lossless data transform can be used in this formulation to achieve a
good measure of reversibility. So far, it was believed that only a certain restricted variety
of pre and post filters could be chosen for reversibility. This restricted set is very limited
in its compression (rate vs. distortion, or R-D) performance. In arecent article (W. Dai
and T. Tran, “Regularity-constrained pre- and ﬁost—ﬁltering for block DCT-based
systems,” JEEE Trans. on Signal Processing, vol. 51, pp. 2568-2581, Oct. 2003),5
construction in which most elements are reversible and which has good compression

properties was presented.
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In audio compression, several constructions for reversible lapped transforms were
introduced. See, e.g., R. Geiger, J. Herre, J. Koller, and K. Brandenburg, “IntMDCT - A
link between perceptual and lossless audio coding,” in Proc. IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, Orlando, FL, May 2002; and J. Li, “Reversible
FFT and MDCT viva matrix lifting.” in Proc. IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing, Montreal, Canada, May 2004. However, these constructions are
applicable only to the modulated lapped transform (MLT), also known as modified
discrete cosine transform (MDCT), whose basis functions are orthogonal and are not
symmetric (that is, the basis functions are not linear phase). These transforms are not
applicable to data compression applications where linear phase (symmetric) functions are
required, such as in digital picture compression.

For picture (image) compression, one of the best-performing transforms in terms
of R-D performance is the lapped biorthogonal transform (LBT). See, H. S. Malvar,
“Biorthogonal and nonuniform lapped transforms for transform coding with reduced
blocking and ringing artifacts,” IEEE Trans. on Signal Processing, vol. 46, pp. 1043
1053, Apr. 1998. Unlike the MLT, the LBT basis functions are symmetric, and are not
exactly orthogonal (in the LBT, the analysis basis functions are orthogonal to the
synthesis basis functions, hence the term biorthogonal). LBTs have been successfully
used in image compression applications, but they have not yet been used in lossless

image compression, because integer-reversible constructions were not known.

Overview of Block Transform-Based Coding

Transform coding is a compression technique used in many audio, image and
video compression systems. Uncompressed digital image and video is typically
represented or captured as samples of picture elements or colors at locations in an image
or video frame arranged in a two-dimensional (2D) grid. This is referred to as a spatial-
domain representation of the image or video. For example, a typical format for images
consists of a stream of 24-bit color picture element samples arranged as a grid. Each
sample is a number representing color components at a pixel location in the grid within a
color space, such as RGB, or YIQ, among others. Various image and video systems may

use various different color, spatial and time resolutions of sampling. Similarly, digital

2
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audio is typically represented as time-sampled audio signal stream. For example, a
typical audio format consists of a stream of 16-bit amplitude samplcs of an audio signal
taken at regular time intervals.

Uncompressed digital audio, image and video signals can consume considerable
storage and transmission capacity. Transform coding reduces the size of digital audio,
images and video by transforming the spatial-domain representation of the signal into a
frequency-domain (or other like transform domain) representation, and then reducing
resolution of certain generally less perceptible frequency components of the transform-
domain representation. This generally produces much less perceptible degradation of the
digital signal compared to reducing color or spatial resolution of images or video in the
spatial domain, or of audio in the time domain.

More specifically, a typical block transform-based codec 100 shown in Figure 1
divides the uncompressed digital image’s pixels into fixed-size two dimensional blocks
(X4, ... X,), each block possibly overlapping with other blocks. A linear transform 120-
121 that does spatial-frequency analysis is applied to each block, which converts the
spaced samples within the block to a set of frequency (or transform) coefficients
generally representing the strength of the digital signal in corresponding frequency bands
over the block interval. For compression, the transform coefficients may be selectively
quantized 130 (i.e., reduced in resolution, such as by dropping least significant bits of the
coefficient values or otherwise mapping values in a higher resolution number set to a
lower resolution), and also entropy or variable-length coded 130 into a compressed data
stream. At decoding, the transform coefficients will inversely transform 170-171 to
nearly reconstruct the original color/spatial sampled image/video signal (reconstructed
blocks X,, ... X, ).

The block transform 120-121 can be defined as a mathematical operation on a
vector x of size N. Most often, the operation is a linear multiplication, producing the
transform domain output y = M x, M being the transform matrix. When the input data is
arbitrarily long, it is segmented into N sized vectors and a block transform is applied to
each segment. For the purpose of data compression, reversible block transforms are
chosen. In other words, the matrix M is invertible. In multiple dimensions (e.g., for

image and video), block transforms are typically implemented as separable operations.
3
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The matrix multiplication is applied separably along each dimension of the data (i.e., both
rows and columns).

For compression, the transform coefficients (components of vector y) may be
selectively quantized (i.e., reduced in resolution, such as by dropping least significant bits
of the coefficient values or otherwise mapping values in a higher resolution number set to
a lower resolution), and also entropy or variable-length coded into a compressed data
stream.

At decoding in the decoder 150, the inverse of these operations
(dequantization/entropy decoding 160 and inverse block transform 170-171) are applied
on the decoder 150 side, as show in Fig. 1. While reconstructing the data, the inverse
matrix M (inverse transform 170-171) is applied as a multiplier to the transform domain
data. When applied to the transform domain data, the inverse transform nearly
reconstruets the original time-domain or spatial-domain digital media.

In many block transform-based coding applications, the transform is desirably
reversible to support both lossy and lossless compression depending on the quantization
factor. With no quantization (generally represented as a quantization factor of 1) for
example, a codec utilizing a reversible transform can exactly reproduce the input data at
decoding. However, the requirement of reversibility in these applications constrains the
choice of transforms upon which the codec can be designed.

Many image and video compression systems, such as MPEG and Windows
Media, among others, utilize transforms based on the Discrete Cosine Transform (DCT).
The DCT is known to have favorable energy compaction properties that result in near-
optimal data compression. In these compression systems, the inverse DCT (IDCT) is
employed in the reconstruction loops in both the encoder and the decoder of the
compression system for reconstructing individual image blocks. The DCT is described
by N. Ahmed, T. Natarajan, and K.R. Rao, “Discrete Cosine Transform,” IEEE

Transactions on Computers, C-23 (January 1974), pp. 90-93. An exemplary
implementation of the IDCT is described in “IEEE Standard Specification for the
Implementations of 8x8 Inverse Discrete Cosine Transform,” JEEE Std. 1180-1990,
December 6, 1990.
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While compressing a still image (or an intra coded frame in a video sequence),
most common standards such as MPEG-2, MPEG-4 and Windows Media partition the
image into square tiles and apply a block transform to each image tile. The transform
coefficients in a given partilion (commonly known as block) are influenced only by the
raw data components within the block. Irreversible or lossy operations on the encoder
side such as quantization cause artifacts to appear in the decoded image. These artifacts
are independent across blocks and produce a visually annoying effect known as the
blocking effect. Likewise for audio data, when non-overlapping blocks are
independently transform coded, quantization errors will produce discontinuities in the

signal at the block boundaries upon reconstruction of the audio signal at the decoder. For

"audio, a periodic clicking effect is heard.

Several techniques are used to combat the blocking effect — the most popular
among these are the deblocking filter that smoothes inter block edge boundaries, and
spatial extrapolation that encodes differences between the raw input data and a prediction
from neighboring block edges. These techniques are not without their flaws. For
instance, the deblocking filter approach is “open loop™, i.e. the forward transform process
does not take into account the fact that deblocking is going to be performed prior to
reconstruction on the decoder side. Besides, both these techniques are computationally
expensive.

In order to minimize the blocking effect, cross block correlations can be
exploited. One way of achieving cross block correlation is by using a lapped transform
as described in H. Malvar, “Signal Processing with Lapped Transforms,” Artech House,
Norwood MA, 1992, A lapped transform is a transform whose input spans, besides the
data elements in the current block, a few adjacent elements in neighboring blocks.
Likewise, on the reconstruction side the iﬁverse transform influences all data points in the
current block as well as a few data points in neighboring blocks.

For the case of 2-dimensional (2D) data, the lapped 2D transform is a function of
the current block, together with select elements of blocks to the left, top, right, bottom
and possibly top-left, top-right, bottom-left and bottom-right. The number of data points
in neighboring blocks that are used to compute the current transform is referred to as the

overlap.
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Overview Of The Spatial Domain Lapped Transform

The lapped transform can be implemented in the transform domain, as a step that
merges transform domain quantities after a conventional block transform. Else, it can be
implemented in the spatial-domain by a pre-processing stage that is applied to pixels
within the range of overlap. These two implementations are mathematically related and
therefore equivalent.

Figure 2 shows an example of a conventional spatial-domain lapped transform. In
the example shown, the overlap is 2 pixels, and two pixels each from the two adjacent
blocks shown are pre-processed in pre-processing stage 210. Two pre-processed outputs
are sent to each of the blocks for block transform-based coding by codec 100 as in Fig. 1.
An inverse of the pre-processing stage is applied at post-processing stage 220 after
decoding. With a judicious choice of pre-processing and block transform, a wide range
of lapped transforms can be realized.

A key advantage of the spatial domain realization of the lapped transform is that

an existing block transform-based codec can be retrofitted with a pre- and post-

- processing stage to derive the benefits of the lapped transform, i.e., reduced block effect

and better compression, using an existing codec framework. Pre-processing 210 and
post-processing can be represented as a matrix multiplication as shown in Fig. 3.
Conventionally, the pre-processing and post-processing matrices are inverses of each
other, i.e., pre-processing matrix (Py) and the inverse or post-processing matrix (P;)

multiplied together equal the identity matrix /.

Definitions

In general, the length N of a transform is the number of transform coefficients in a
certain transform block.

The support K of a transform is the number of input data points that influence
coefficients of the transform block. Likewise, it is the number of output data points that
are influenced by each transform coefficient, by the process of inverse transformation.

For typical block tra'nsforms such as the discrete cosine transform (DCT), the
length and support are identical. However, lapped transforms (LTs) are an important
class of transforms for which the support K is greater than the length N. The notation

6
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KxN is used to denote the support and length of a lapped transform. (Transforms for
which K < N are expansive and therefore not used in data compression)

As an example 300, a 6x4 LT 310 shown in Figure 3 is a transform with six inputs
and four outputs. Since the transform is invertible, two of the inputs are shared with
adjacent transform blocks. The inverse lapped transform (ILT) 320 produces six outputs
from its four inputs. Output data points near the block boundary (in this case one point at
each end of the block) are reconstructed by summing the corresponding responses of two

adjacent inverse transform blocks.

Constraints On Lapped Transforms Used In Compression Systems

In the mathematical sense, lapped transforms are invertible structures, when we
consider the input and output signals, as well as intermediate computation results, as real
numbers. Ifinfinite precision could be achieved, the input data could be perfectly
recovered from its lapped transform coefficients. However, infinite precision is not
possible in practice; for lossless compression of data, the requirement is to design a
transform that operates on integer or fixed-precision arithmetic, yet perfectly reconstructs
the data given the integer representation of transform coefficients. This is a stronger
condition than mathematical invertibility, and such a transform is referred to here as a
“lossless” transform. Moreover, it is required that the lossless transform be efficient for
data compression (both lossless and lossy) as well. That efficiency can be measured by
the entropy of the transformed data; the lower that entropy, the more the transformed data
can be compressed by standard entropy coding technigues, such as context-based

arithmetic coding or adaptive run-length coding.

11-
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Summary

In one particular form there is provided a method of encoding and/or decoding
digital media data tiled in blocks, the method comprising: applying a reversible overlap
operator across at least some of the boundaries between blocks, the reversible overlap
operator being unit determinant; and applying a reversible block transform to the blocks,
wherein the applying the reversible overlap operator and the reversible block transform are

invertible between encoding and decoding the digital media data.

In another particular form there is provided a method of decoding picture data tiled
in blocks, the method comprising: retrieving the blocks of picture data from a compressed
bitstream; applying a reversible block transform to the blocks; applying a reversible
overlap operator across at least some of the boundaries between blocks, the reversible
overlap operator being unit determinant; and producing a picture from the picture data for

presentation on a display.

In another particular form there is provided a digital media encoder and/or decoder
comprising: a data storage buffer for storing digital media data to be encoded and/or decoded; a
processor programmed to: tile the digital media data into blocks; apply a reversible overlap
operator across at least some of the boundaries between blocks, the reversible overlap
operator being unit determinant; and apply a reversible block transform to the blocks,
wherein application of the reversible overlap operator and the reversible block transform

are invertible between encoding and decoding the digital media data.

In another particular form there is provided at least one computer-readable
recording medium carrying a computer- executable digital media processing program
thereon for performing a method of processing digital media tiled in blocks, the method
comprising: applying a reversible overlap operator across at least some of the boundaries
between blocks, the reversible overlap operator being unit determinant; and
applying a reversible block transform to the blocks, wherein the applying the reversible
overlap operator and the reversible block transform are invertible between encoding and

decoding the digital media data.

-12-
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Various realizations are described herein of an efficient lapped transform that is
reversible in integer arithmetic, and can be used as the basis of an efficient and lossless
data compression/decompression system.

5 It can be shown that the most efficient lossless transform designs (that is, those
with minimum entropy of the transformed data) require the transform matrix be unit

determinant (i.e., the determinant of the transform matrix is +1). In the following

2005237164 09 Aug 2010
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description, it is assumed that the transform can be represented as a matrix multiplication,
although it is recognized that there may be minor nonlinear phenomena such as data
rounding. Thus, when we refer to the determinant, truncation or rounding aspects are not
considered.

The efficient lapped transform is realized using pre- and post-filters that are
referred to herein as “overlap operators”. Thisrealization is reversible, yet very R-D
efficient. Among other applications, these new overlap operators allow the
implementation of reversible LBTs, which can be used for lossless image compression,
The pre- and post-filters use reversible operations. Further, the described overlap
operators include simplifications for computational efficiency.

One realization of the pre and post filtering operations is as a succession of planar
rotational transforms and unit determinant planar scaling transforms. Further, the planar
rotations and planar shears have an implementation as reversible/lossless operations,
giving as a result, a reversible overlap operator.

An exemplary application is in an 8x4 one-dimensional lapped transform realized
using computationally efficient approximations of the reversible overlap operators.

Additional features and advantages of the invention will be made apparent from
the following detailed description of embodiments that proceeds with reference to the

accompanying drawings.

Brief Description Of The Drawings

Figure 1 is a block diagram of a conventional block transform-based codec in the
prior art.

Figure 2 is a block diagram of a spatial-domain lapped transform implemented as
pre and post processing operations in combination with the block transform-based codec
of Figure 1, also in the prior art.

Figure 3 is a block diagram illustrating a lapped transform and inverse lapped
transform pair on 1-dimensional data.

Figure 4 is a flow diagram of an encoder based on a lapped transform utilizing a
reversible overlap operator.

Figure 5 is a flow diagram of an decoder based on the lapped transform.

8
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Figure 6 is a block diagram illustrating a lapped transform and inverse lapped
transform pair on 1-dimensional data using pre- and post-filtering operations (or
reversible overlap operator) in conjunction with a block transform.

Fi gﬁre 7 is a signal flow graph illustrating a structure of a linear phase pre- (or
post-) filter for use as the reversible overlap operator in the lapped transform of Figure 6.

Figure 8 is a signal flow graph of lossless scaling as four lifting steps for use in
the reversible overlap operator.

Figure 9 is a signal flow graph of lossless scaling as five lifting steps for use in
the reversible overlap operator.

Figure 10 is a signal flow graph of a cascade of 2-point scaling applied to a larger
dimension matrix to realize lossless unit determinant scaling.

Figure 11 is a signal flow graph of a reversible overlap operator (or pre-/post-
filter) having the structure shown in Figure 7 and using the lossless unit determinant
scaling of Figure 10.

Figure 12 is a flow chart of the operation of the reversible overlap operator of
Figure 11.

Figure 13 is a signal flow graph illustrating an example of a reversible lapped
transform implementation using the reversible overlap operator of Figure 11.

Figure 14 is an impulse response graph of the DC coefficient of the example
lapped transform of Figure 13.

Figure 15 is a block diagram of a suitable computing environment for
implementing the block transform-based codec with improved spatial-domain lapped

transform of Figures 4 and 5.

Detailed Description

The following description relates to a digital media compression system or codec,
which utilizes a reversible overlap operator for a lapped transform. For purposes of
illustration, an embodiment of a compression system incorporating the reversible overlap
operator is an image or video compression system. Alternatively, the reversible overlap

operator also can be incorporated into compression systems or codecs for other 2D data.

-15-
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The reversible overlap operator does not require that the digital media compression

system encodes the compressed digital media data in a particular coding format.

1. © Encoder/Decoder

Figures 4 and 5 are a generalized diagram of the processes employed in a
representative 2-dimensional (2D) data encoder 400 and decoder 500 based on a lapped
transform using the reversible overlap operator. The diagrams present a generalized or
simplified illustration of the use and application of this reversible overlap operator in a
compression system incorporating the 2D data encoder and decoder. In alternative
encoders based on this reversible overlap operator, additional or fewer processes than
those illustrated in this representative encoder and decoder can be used for the 2D data
compression. For example, some encoders/decoders may also include color conversion,
color formats, scalable coding, lossless coding, macroblock modes, etc. The compression
system (encoder and decoder) can provide lossless and/or lossy compression of the 2D
data, depending on the quantization which may be based on a quantization parameter
varying from lossless to lossy.

The 2D data encoder 400 produces a compressed bitstream 420 that is a more
compact representation (for typical input) of 2D data 410 presented as input to the -
encoder. For example, the 2D data input can be an image, a frame of a video sequence,
or other data having two dimensions. The 2D data encoder tiles 430 the input data into
macroblocks, which are 16x16 pixels in size in this representative encoder. The 2D data
encoder further tiles each macroblock into 4x4 blocks 432. A “forward overlap” operator
440 is applied to each edge between blocks, after which each 4x4 block is transformed
using a block transform 450. This block transform 450 can be the reversible, scale-free
2D transform described by Srinivasan, U.S. Patent Application entitled, “Improved
Reversible Transform For Lossy And Lossless 2-D Data Compression,” filed
concurrently herewith, the disclosure of which is hereby incorporated by reference.
Alternatively, the discrete coéine transform or other block transforms can be used with
the reversible overlap operator described herein. Subsequent to the transform, the DC
coefficient 460 of each 4x4 transform block is subject to a similar processing chain

(tiling, forward overlap, followed by 4x4 block transform). The resulting DC transform

10
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coefficients and the AC transform coefficients are quantized 470, entropy coded 480 and
packetized 490.

The decoder performs the reverse process. On the decoder side, the transform
coefficient bits are extracted 510 from their respective packets, from which the
coefficients are themselves decoded 520 and dequantized 530. The DC coefficients 540
are regenerated by applying an inverse transform, and the plane of DC coefficients is
“inverse overlapped” using a suitable smoothing operator applied across the DC block
edges. Subsequently, the entire data is regenerated by applying the 4x4 inverse transform
550 to the DC coefficients, and the AC coefficients 542 decoded from the bitstream.
Finally, the block edges in the resulting image planes are inverse overlap filtered 560.

This produces a reconstructed 2D data output.

2. Lapped Transform Realized Using Overlap Operators

More generally, the overlap operator 440 and block transform 450 of the encoder
400 (Figure 4) is an example of a large class of lapped transforms 600 that can be
factorized into a pre filtering operation 610, followed by a block data transform 620 as
illustrated in Figure 6. Figure 6 illustrates a generalized example of such factorized
lappéd transforms. In this illustrated case, the 6x4 lapped transform 310 shown in Figure
3 is factorized into pre-filter operation 610 and block transform 620 stages. The pre .
filtering operation 610 and block transform 620 are evenly staggered over the data points.

In this illustrated 6x4 lapped transform 600 example, each pre filter is a length 2

transformation of the data points straddling adjacent blocks. On the decode side, a post

filter 640 is applied after the inverse block transform 630 across block boundaries.
Likewise, for the general KxN casc, the pre filter is applied to the (K-N)/2 data points of
each block adjacent to a block boundary.

For invertibility, the pre-filter 610 and post filter 640 are inverses of each other.
For realizing a lossless lapped transform, however, this condition is not sufficient. This
further constrains the pre and post filters 610, 640 to be lossless transforms as well, in
addition to the block (core) transform 620 to be realized in a lossless manner. The DCT
can be realized in a lossless manner, using ladder, lattice-, or lifting-based methods,

among others. See, e.g., A. A. M. L. Bruekens and A. W. M. van den Enden, “New

11
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networks for perfect inversion and perfect reconstruction”, IEEE J. Selected Areas
Communications, vol.10, no.1, 1992; and 1. Daubechies and W. Sweldens, “Factoring
wavelet transform into lifting steps”, J. Fourier Anal. Appl., vol. 4, pp. 247-269, 1998. A
reversible, scale-free 2-dimensional transform also is described by Srinivasan, U.S.
Patent Application entitled, “Improved Reversible Transform For Lossy And Lossless 2-
D Data Compreésion," filed concurrently herewith and incorporated by reference herein.
Lifting-based reversible approximations to the DCT in one dimension also are known.
See, e.g., 1. Liang and T. D. Tran, “Fast multiplierless approximations of the DCT with
the lifting scheme,” IEEE Trans. Signal Processing, vol. 49, pp. 3032-3044, Dec. 2001.
Efficient reversibility further requires that both steps, viz. the pre/post filter and

the block transform, be unit determinant.

3. Reversible Overlap Operator

An efficient reversible overlap operator for use as the pre-filter 610 (Figure 6) of
the lossless lapped transform 600 on which the encoder 400/decoder 500 (Figures 4 and
5) is based can be realized as a linear phase pre-filter, which is factorized into the '
structure 700 shown in Figure 7. An inverse of this pre-filter (i.e., the post-filter 640)
also has the same structure but with different coefficients.

This linear phase filter structure 700 has multiple orthogonal components,
including a cross-over Hadamard network 710 at its input and output. The internal
arrows in thc'illustraled Hadamard network 710 denote negation in this diagram. The
structure 700 further includes orthogonal matrices U1, U2, V1 and V2. These
components can be implemented in a lossless manner by using lattice/lifting based
methods.

In addition, the structure 700 has the nonzero scale factors s; through sy. The unit

determinant constraint implies that []s, = +1. When all scale factors are +1, the pre/post

i
filters can be realized as a lossless transform where the component matrices Ul, U2, V1
and V2 are implemented as lossless lattice/lifting steps. However, when scale factors are
not all 1, the lossless realization remains a challenge that is addressed as discussed more

fully below.

18-




25 Nov 2005

2005237164

15

20

With this linear phase pre-filter structure 700, the problem of realizing a lossless
pre-/post-filter pair is reduced to the following three steps:

1. Decomposing the filter F into the following form, for orthogonal matrices U1,

U2, V1 and V2:
. o n
. [1 J][U,- o) 5 [u, o][% 1]
=J/ - " _
A A 0 Vl s 0 VZ "2 1
" m
0 01
J=0 - 10
0 . .
. . . . 1 0 0).
where / is the identity matrix and ;

2. Deriving lossless realizations for U1, U2, V1 and V2; and
3. Deriving a lossless realization for the scaling matrix.

As to step 1, the first and last matrices on the right hand side, which define 2 point
Hadamard transforms, incorporate the factor of % in some terms to make these stages unit
determinant. The rest is re-arranged to a block diagonal form with two blocks, each of
half the linear dimensions of F. The singular value decomposition or SVD of each block
provides the orthogonal matrices U1, U2, V1 and V2, as well as the scales.

The lossless realizations of the component matrices can be derived in Step 2 using
standard lifting-based techniques, such as those described by A. A. M. L. Bruekens and
A. W. M. van den Enden, “New networks for perfect inversion and perfect
reconstruction”, IEEE J. Selected Areas Communications, vol.10, no.1, 1992,

The lossless realization of the scaling matrix in Step 3 is addressed as follows.
For simplicity, let us assume that we have a certain 2 input 2 output component that is (a)
lossless and (b) realizes scaling by s (0 < s < 1) for the first component and by 1/s for the
second component (other cases can be obtained by reverting the sign of one or both

output signals). In other words, we have the input-output relationship given by
o)
y= 1/ |*
0
% @

13
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The determinant of the transformation matrix in equation (2) is s/s = 1. This
matrix can be realized in four lifting steps procedure 800 or five lifting steps procedure
900 as shown in Figures 8 and 9. We usually approximate all the lifting steps in the form
of y = (a.x +1) >> b, where x is the input and y is the output, and a, b, and r are integers
and r is used for rounding error control, to get a division—lesS integer implementation.
The transform defined by equation (2) is referred to here as the unit determinant scaling
transform, abbreviated as the scaling transform.

Interestingly, the scaling transform is closely related with the shear operation, as

defined below:

ye [a bjx
b a 3)

Under the constraint a’-b =1 (a>0,b>0), the shear operation has unit

determinant and can be realized with three lifting steps:
[a bj 1 a-1 (1 OJ 1 a-l
= a+l a+l |
b a 0 1 b1 0 1
Therefore,
a+b 0 ] [1 1/2]Ty2 ofa b]2 0]Y2 -1/2
0 a-b| |-1 y2]0 1]b alo 1|1 1
_ _ ¢
1 011[0_1“) 1 011{"’_1_1]10 )
= 2{Va+l 2{Va+1
-1 11
0 1 0 1

Q)

1 2 1

Here the scaling factors % and 2 in the matrices sandwiching the shear matrix are
distributed to the shear lifting steps, and the last lifting step of the first matrix is
combined with the first shear lifting step while the first lifting step of the last matrix is
combined with the first shear lifting step. The five step realization as procedure 900 of
the scaling transform shown in Figure 9 is based on equation (5). Simplifications to the
structure may be possible by canceling inverse operations, where possible, between the 3

groups in equation (1), viz the Hadamard networks, the orthogonal matrices, and the
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scaling operations (which may in turn be decomposed into Hadamard and shear
operations).

More particularly, the effective transform matrix of the four lifting step realization

-2
of lossless scaling as procedure 800 is 7= [C 02], where ¢? =1-5%. On the other
0 ¢

hand, the effective transform matrix of the five lifting step realization in procedure 900 is
Ls

T=| € , where ¢? =1-5%.
1-s
0 —
(4

Although the scaling procedure 800 shown in Figure 8 has one fewer lifting step
than the one in Figure 9, the latter procedure 900 has only three non-trivial lifting steps as
opposed to four in the former. For the reason stated in the above paragraph, the first or
last trivial lifting step in Figure 9 may be merged with prior or subsequent transform
steps (for instance, with the Hadamard network 710 at either end of Figure 7) under
certain conditions (for instance when U1, U2 and V1 are identities).

The scaling procedure can be easily extended to larger matrices. This is

" illustrated in Figure 10, where M possibly different scale factors s; through sy, are applied

1o the M data paths as a cascade 1000 of scaling transforms. In order to achieve thisina
reversible manner, M — | reversible scaling transforms are needed in general.

One useful special case is when the M scale factors s; through sy,can be grouped
into M/2 groups of form (s, 1/5). In this case, only M/2 reversible scaling transforms are
needed. One example is 5,= 5;=...= syo= 5 and Sp2+1= w2 + 2=...= sy=1/s. A preferred
way of grouping is to maintain symmetry across the central axis, in other words each
group scales the coefficients s; and sy .. If Mis odd, the one scale factor not grouped is
1, corresponding to the data path along the axis. )

On signal boundaries where pre / post filters need to extend outside of the signal,
one solution is to extend the signal symmetrically and then apply pre / post filters. This is
not a lossless operation in general because of the scaling. Another solution is to skip pre /
post filtering on boundaries. There is no notable difference between the two solutions in
terms of R-D performance as well as perceptual quality (for instance, if used for lossy
image/video compression).

15
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Turning now to Figure 11, the reversible overlap operator having the desired R-D
efficient (i.e., unit determinant) property is then realized as a linear phase pre-filter
structure 700 (Figure 7) that includes reversible, unit-determinant Hadamard networks
710, reversible orthogonal rotations 1110 (for component matrices U1, U2, V1 and V2),
and reversible unit-determinant scaling 1120 (e.g., using the lifting step procedures 800,
900 or cascade 1100). The post filter is analogous to the pre filter and is built using the
same construction, albeit with inverse lifting steps in the reverse order. This is illustrated
in Figure 7, where the number of data values M in the block is in general any natural
number. Although the illustration is for even valued M, odd values are also possible by
noting that the “1 point Hadamard” transform of the center data value is itself. This
procedure can be generalized to higher dimensional data.

In summary, the operation of the reversible overlap operator is illustrated in
Figure 12. In a first step 1210, the input 2-dimensional digital media data is tiled into
blocks (as also shown for the encoder 400 in Figure 4). The reversible overlap operator
applies a Hadamard network 710 across adjacent tiles at step 1220. The operator then
applies reversible rotations to sums and differences at step 1230, followed by the
reversible scaling operator at step 1240. This is followed by another reversible block
rotation (step 1250), and reversible inverse Hadamard network (step 1260).

With reference now to Figure 13, the matrix representations of the reversible
block rotations and scaling operators depend upon the desired lapped operator using for
instance the arithmetic described in equation (1). Figure 13 shows an example of a post-
filter having the structure 700 shown in Figures 7 and 11, which is preceded by a
reversible block transform (4 point Hadamard transform in this case). The transfer
function of the post-filter is:

0.9885 0.1553 -0.1553 0.2183
-0.1499 0.9885 0.2183 0.1499
0.1502 02167 0.9884 -0.1502
0.2167 -0.1556 0.1556 0.9884 ©)

The low pass component of the Hadamard produces the impulse response shown

in the graph in Figure 14.
16
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4, Computing Environment

The above described codec based on a lapped transform using a reversible overlap
operator can be performed on any of a variety of devices in which digital media signal
processing is performed, including among other examples, computers; image and video
recording, transmission and receiving equipment; portable video players; video
conferencing; and etc. The digital media coding techniques can be implemented in
hardware circuitry, as well as in digital media processing software executing within a
computer or other computing environment, such as shown in Figure 15.

Figure 15 illustrates a generalized example of a suitable computing environment
(1500) in which described embodiments may be implemented. The computing
environment (1500) is not intended to suggest any limitation as to scope of use or
functionality of the invention, as the present invention may be implemented in diverse
general-purpose or special-purpose computing environments.

With reference to Figure 15, the computing environment (1500) includes at least
one processing unit (1510) and memory (1520). In Figure 15, this most basic
configuration (1530) is included within a dashed line. The processing unit (1510)
executes computer-executable instructions and may be a real or a virtual processor. Ina
multi-processing system, multiple processing units execute computer-executable
instructions to increase processing power. The memory (1520) may be volatile memory
(e.g., registers, cache, RAM), non-volatile memory (e.g., ROM, EEPROM, flash
memory, etc.), or some combination of the two, The memory (1520) stores software
(1580) implemenﬁng the described encoder/decoder and transforms.

A computing environment may have additional features. For example, the
computing environment (1500) includes storage (1540), one or more input devices
(1550), one or more output devices (1560), and one or more communication connections
(1570). An interconnection mechanism (not shown) such as a bus, controller, or network
interconnects the components of the computing environment (1500). Typically,
operating system software (not shown) provides an operating environment for other
software executing in the computing environment (1500), and coordinates activities of

the components of the computing environment (1500). '
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The storage (1540) may be removable or non-removable, and includes magnetic
disks, magnetic tapes or cassettes, CD-ROMs, CD-RWs, DVDs, or any other medium
which can be used to store information and which can be accessed within the computing
environment (1500). The storage (1540) stores instructions for the software (1580)
implementing the codec based on a lapped transform using the reversible overlap
operator.

The input device(s) (1550) may be a touch input device such as a keyboard,
mouse, pen, or trackball, a voice input device, a scanning device, or another device that
provides input to the computing environment (1500). For audio, the input device(s)
(1550) may be a sound card or similar device that accepts audio input in analog or digital
form, or a CD-ROM reader that provides audio samples to the computing environment.
The output device(s) (1560) may be a display, printer, speaker, CD-writer, or another
device that provides output from the computing environment (1500).

The communication connection(s) (1570) enable communication over a
communication medium to another computing entity. The communication medium
conveys information such as computer-executable instructions, compressed audio or
video information, or other data in a modulated data signal. A modulated data signal is a
signal that has one or more of its characteristics set or changed in such a manner as to
encode information in the signal. By way of example, and not limitation, communication
media include wired or wireless techniques implemented with an electrical, optical, RF,
infrared, acoustic, or other carrier.

The digital media processing techniques herein can be described in the general
context of computer-readable media. Computer-readable media are any available media
that can be accessed within a computing environment. By way of example, and not
limitation, with the computing environment (1500), computer-readable media include
memory (1520), storage (1540), communication media, and combinations of any of the
above.

The digital media processing techniques herein can be described in the general
context of computer-executable instructions, such as those included in program modules,
being executed in a computing environment on a target real or virtual processor.
Generally, program modules include routines, programs, libraries, objects, classes,

18
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components, data structures, etc. that perform particular tasks or implement particular
abstract data types. The functionality of the program modules may be combined or split
between program modules as desired in various embodiments. Computer-executable
instructions for program modules may be executed within a local or distributed
computing environment.

For the sake of presentation, the detailed description uses terms like “determine,”
“generate,” “adjust,” and “apply” to describe computer operations in a computing
environment. These terms are high-level abstractions for operations performed by a
computer, and should not be confused with acts performed by a human being. The actual

computer operations cotresponding to these terms vary depending on implementation.

5. Variations And Extensions Of the Reversible OQerlap Operator

Various modifications and extensions of the above described reversible overlap
operator can be made. Although the descriptions presented above are for one
dimensional data, the same procedure may be applied separably, or non-separably to
multiple data dimensions.

The orthogonal rotations in the above described reversible overlap operator
implementation may be replaced by approximations thereof, or by other transforms which
may not be orthogonal.

Furthermore, although the primary focus in the above description has been on the
lossless recovery of input data, the same transform may be used for lossy data
compression as well. In this case, the loss may occur either in the quantization process,
or due to a limited precision/approximate implementation of either pre filter or post filter,
or due to other inaccuracies, or a combination of multiple factors.

The reversible overlap operator described here may be applied to domains outside
of data-compression. The lapped transform using the reversible overlap operator may
itself be expansive.

The reversible overlap operator may be applied, in appropriately modified form,
to implement multirate filter banks, wavelets, lapped transforms with support spanning

more than 2 block widths (K> 2 N).
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The reversible overlap operator may be applied in a spatially varying manner, in

which the extent and shape of overlap filter may vary across the spatial extent of the data.

In view of the many possible embodiments to which the principles of our
invention may be applied, we claim as our invention all such embodiments as may come
within the scope and spirit of the following claims and equivalents thereto.

Throughout this specification and the claims which follow, unless the context
requires otherwise, the word "comprise", and variations such as "comprises” or
"comprising", will be understood to imply the inclusion of a stated integer or step or
group of integers or steps but not the exclusion of any other integer or step or group of
integers or steps.

The reference to any prior art in this specification is not, and should not be taken
as, an acknowledgment or any form of suggestion that that prior art forms part of the

common general knowledge in Australia.
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THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method of encoding and/or decoding digital media data tiled in blocks, the
method comprising:

applying a reversible overlap operator across at least some of the boundaries between
blocks, the reversible overlap operator being unit determinant; and

applying a reversible block transform to the blocks,

wherein the applying the reversible overlap operator and the reversible block

transform are invertible between encoding and decoding the digital media data.

2. A method of decoding picture data tiled in blocks, the method comprising:

retrieving the blocks of picture data from a compressed bitstream;

applying a reversible block transform to the blocks;

applying a reversible overlap operator across at least some of the boundaries
between blocks, the reversible overlap operator being unit determinant; and

producing a picture from the picture data for presentation on a display.

3. The method of either of claims 1 or 2, wherein the reversible overlap

operator is structured of a plurality of components each being unit determinant.

4, The method of claim 3, wherein the applying the reversible overlap operator
comprises:

applying a reversible Hadamard network;

applying a reversible block rotation;

applying a reversible scaling operator;

applying another reversible block rotation; and

applying a reversible inverse Hadamard network.

5. The method of claim 4, wherein the applying the reversible scaling operator
comprises performing a four-lifting step procedure comprising:

performing a first lifting step summing a first value with the product of a second
value multiplied by a ratio of a parameter value and one minus the square of the parameter

value;
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performing a second lifting step summing the second value with the product of the
first sum multiplied by the parameter value;

performing a third lifting step summing the first sum with the product of the second
sum multiplied by the negative of the parameter value; and

performing a fourth lifting step summing the second sum with the product of the
third sum multiplied by the negative of the ratio of the parameter value and one minus the

square of the parameter value.

6. The method of claim 4, wherein the applying the reversible scaling operator
comprises performing a five-lifting step procedure comprising:
performing a first lifting step summing a second value with the first value;

performing a second lifting step summing the first value with the product of the first sum
multiplied by %[]—s— - l] , where s is a scaling factor and =15
+c
performing a third lifting step summing the first sum with the product of the second sum
multiplied by 2 ;
c
performing a fourth lifting step summing the second sum with the product of the third sum
. 1{ s
multiplied by —(— + 1] ; and
2\l+c¢
performing a fifth lifting step summing the third sum with the product of the negative of

the fourth sum.

7 The method of claim 6, wherein one or more of the lifting steps is combined with

or canceled by another step of the reversible overlap operator.

8. The method of claim 6, wherein the applying the reversible scaling operator
comprises scaling M data paths by M scaling factors s, through sy using a cascade of 2-point

scaling.
9. A digital media encoder and/or decoder comprising:

a data storage buffer for storing digital media data to be encoded and/or decoded;

a processor programmed to:
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tile the digital media data into blocks;
apply a reversible overlap operator across at least some of the boundaries
between blocks, the reversible overlap operator being unit determinant; and
apply a reversible block transform to the blocks,
wherein application of the reversible overlap operator and the reversible block

transform are invertible between encoding and decoding the digital media data.

10.  The digital media encoder and/or decoder of claim 9, wherein the reversible
overlap operator is structured of a plurality of component transforms each being unit

determinant.

11. The digital media encoder and/or decoder of claim 10, wherein the processor
realizes the reversible overlap operator by:

applying a reversible Hadamard network;

applying a reversible block rotation;

applying a reversible scaling operator,

applying another reversible block rotation; and

applying a reversible inverse Hadamard network.

12.  The digital media encoder and/or decoder of claim 11, wherein the processor
in applying the reversible scaling operator performs a four-lifting step procedure
comprising:

performing a first lifting step summing a first value with the product of a second
value multiplied by a ratio of a parameter value and one minus the square of the parameter
value,

performing a second lifting step summing the second value with the product of the
first sum multiplied by the parameter value;

performing a third lifting step summing the first sum with the product of the second
sum multiplied by the negative of the paramcter value; and

performing a fourth lifting step summing the second sum with the product of the
third sum multiplied by the negative of the ratio of the parameter value and one minus the

square of the parameter value.
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13, The digital media encoder and/or decoder of claim 11, wherein the
processor in applying the reversible scaling operator performs a five-lifting step procedure
comprising:

performing a first lifting step summing a second value with the first value;

performing a second lifting step summing the first value with the product of the
first sum multiplied by %[ﬁ - 1) , where s is a scaling factor and =1-s

performing a third lifting step summing the first sum with the product of the second sum
multiplied by ?;

performing a fourth lifting step summing the second sum with the product of the third sum
K]

multiplied by l(
2\l+c

+lj;and

performing a fifth lifting step summing the third sum with the product of the negative of

the fourth sum.

14, The digital media encoder and/or decoder of claim 13, wherein one or more
of the lifting steps is combined with or canceled by another step of the reversible overlap

operator.

15.  The digital media encoder and/or decoder of claim 13, wherein the
processor realizes the reversible scaling operator by scaling M data paths by M scaling

factors s; through sy using a cascade of 2-point scaling.

16. At least one computer-readable recording medium carrying a computer-
executable digital media processing program thereon for performing a method of
processing digital media tiled in blocks, the method comprising:

applying a reversible overlap operator across at least some of the boundaries
between blocks, the reversible overlap operator being unit determinant; and

applying a reversible block transform to the blocks,

wherein the applying the reversible overlap operator and the reversible block

transform are invertible between encoding and decoding the digital media data.
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17.  The at least one computer-readable recording medium of claim 16,
wherein the reversible overlap operator is structured of a plurality of components each

being unit determinant.

18.  The at least one computer-readable recording medium of claim 17, wherein
the applying the reversible overlap operator comprises:

applying a reversible Hadamard network;

applying a reversible block rotation;

applying a reversible scaling operator;

applying another reversible block rotation; and

applying a reversible inverse Hadamard network.

19.  The at least one computer-readable recording medium of claim 18, wherein
the applying the reversible scaling operator comprises performing a four-lifting step
procedure comprising:

performing a first lifting step summing a first value with the product of a second
value multiplied by a ratio of a parameter value and one minus the square of the parameter
value;

performing a second lifting step summing the second value with the product of the
first sum multiplied by the parameter value;

performing a third lifting step summing the first sum with the product of the second
sum multiplied by the negative of the parameter value; and

performing a fourth lifting step summing the second sum with the product of the
third sum multiplied by the negative of the ratio of the parameter value and one minus the

square of the parameter value.

20. The at least one computer-readable recording medium of claim 18, wherein the
applying the reversible scaling operator comprises performing a five-lifting step procedure
comprising:

performing a first lifting step summing a second value with the first value;

performing a second lifting step summing the first value with the product of the
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first sum multiplied by %(i - 1) , where s is a scaling factor and =1

performing a third lifting step summing the first sum with the product of the second sum
multiplied by % ;

performing a fourth lifting step summing the second sum with the product of the third sum
multiplied by %[ﬁ + 1) ;and

performing a fifth lifting step summing the third sum with the product of the negative of

the fourth sum.

21, The at least one computer-readable recording medium of claim 20, wherein
the applying the reversible scaling operator comprises scaling M data paths by M scaling

factors s, through sy using a cascade of 2-point scaling.

22. A method of encoding and/or decoding digital media data tiled in blocks,

substantially as hereinbefore described with reference to Figs. 3-15.

23, A method of decoding picture data tiled in blocks, substantially as

hereinbefore described with reference to Figs. 3-15.

24. A digital media encoder and/or decoder, substantially as hereinbefore

described with reference to Figs. 3-15.

25. A computer-executable digital media processing program for performing a
method of processing digital media tiled in blocks, substantially as hereinbefore described

with reference to Figs. 3-15.
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