发明名称

机器人设备、用于控制机器人设备运动的方法以及用于控制机器人设备运动的系统

摘要

一种主机器人设备在命令生成状态(ST2)下生成音阶命令，进入主机器人设备等待副机器人设备响应的响应等待状态(ST3)。当副机器人设备响应由主机器人设备生成的音阶命令而输出情感表达声音时，主机器人设备识别该情感表达声音，并且输出相同的情感表达声音。主机器人设备根据作为响应动作状态(ST4)下的响应计数的变量(NumResponse)值，选择动作(NumResponse)，从而实现动作。
权利要求书

1. 一种具有动作部件的移动机器人装置，包括：
 动作检测装置，用于检测包含在由其它机器人装置输出的动作中的信息；
 动作部分控制装置，用于根据由所述动作检测装置检测的信息，控制所述动作部件；以及
 测量装置，用于测量由所述动作部件输出的动作所对应的所述其它机器人装置的反应次数；
 所述动作部件控制装置根据所述其它机器人装置的反应次数，通过所述动作部件输出动作。

2. 如权利要求1所述的机器人装置，其中，所述信息是所述其它机器人装置的情感信息。

3. 如权利要求1所述的机器人装置，其中，所述信息是有关所述动作的意义的信息。

4. 如权利要求1所述的机器人装置，其中，输出动作是输出声音信号的输出动作。

5. 如权利要求1所述的机器人装置，其中，机器人装置根据外部环境和/或内部状态改变情感，并且根据所述情感执行自动行为。

6. 如权利要求1所述的机器人装置，其中，所述其它机器人装置根据外部环境和/或内部状态改变情感，并且在所述动作中表达情感，以输出所述动作；并且其中
 所述动作检测装置检测在所述动作中表现的情感，作为所述信息。

7. 如权利要求1所述的机器人装置，进一步包括：
 通信装置，用于与所述其它机器人装置进行信息发送/接收；
 所述通信装置发送与由所述动作部分控制装置输出的动作相关联的有关所述动作意义的信息。

8. 如权利要求7所述的机器人装置，其中，机器人装置将可以由所述其它机器人装置检测的所述意义信息作为数据库进行保存。

9. 如权利要求7所述的机器人装置，其中，机器人装置通过所述通信装置，接收与由所述其它机器人装置输出的动作相关联的由所述其它机器人装置发送的所述动作意义信息；
所述动作检测装置检测由所述通信装置接收的所述意义信息，作为包含在所述动作中的信息。

10. 如权利要求9所述的机器人装置，其中，机器人装置将由所述其他机器人装置发送的所述意义信息作为数据库进行保存；
所述动作检测装置从由所述通信装置接收的信号中根据所述数据库选择所述意义信息，以检测所选意义信息作为包含在所述动作中的信息。

11. 如权利要求7所述的机器人装置，其中，所述通信装置通过音阶声音执行通信。

12. 如权利要求7所述的机器人装置，其中，所述通信装置通过红外线信号执行通信。

13. 如权利要求1所述的机器人装置，其中，动作部分控制装置当处于预设状态时输出预设动作。

14. 如权利要求1所述的机器人装置，其中，机器人装置根据外部环境和/或内部状态改变情感；并且
其中当作为预设状态情感级别处于预设级别时，所述动作部分控制装置在它的动作中表达情感，以输出结果动作。

15. 如权利要求14所述的机器人装置，其中，当作为所述预设状态检测到存在所述其他机器人装置时，输出所述预设动作。

16. 如权利要求1所述的机器人装置，其中，所述动作检测装置检测包含在所述其他机器人装置处于预设状态时输出的动作中的信息。

17. 如权利要求1所述的机器人装置，其中，所述动作部分控制装置对由所述动作检测装置检测的所述信息进行响应，调整与由所述动作检测装置检测的信息相关联的前面动作，以输出经过调整的前面动作，其中，前面动作已引起所述其他机器人装置的动作。

18. 如权利要求17所述的机器人装置，其中，所述前面动作是输出音阶声音的动作，并且其中
所述动作部分控制装置对所述音阶声音进行调整，以输出经过调整的音阶声音。

19. 一种机器人装置的动作控制方法，用于控制具有动作部件的移动机器人装置，该方法包括：
动作检测步骤，检测包含在由所述其他机器人装置输出的动作中的信息；
动作部件控制步骤，根据由所述动作检测步骤检测的信息，控制所述
动作部件；以及

测量步骤，用于测量由所述动作部件输出的动作对应的所述其它机器人装置的反应次数；

所述动作部件控制步骤根据所述其它机器人装置的反应次数，通过所述动作部件输出动作。

20. 如权利要求19所述的机器人装置的动作控制方法，其中，所述信息是所述其它机器人装置的情感信息。

21. 如权利要求19所述的机器人装置的动作控制方法，其中，所述信息是有关所述动作意义的信息。

22. 如权利要求19所述的机器人装置的动作控制方法，其中，输出动作是输出声音信号的输出动作。

23. 如权利要求19所述的机器人装置的动作控制方法，进一步包括：

发送步骤，发送与在所述动作部分控制步骤输出的动作相关联的有关所述动作意义的信息。

24. 如权利要求19所述的机器人装置的动作控制方法，进一步包括：

接收步骤，接收与由所述其它机器人装置输出的动作相关联的由所述其它机器人装置发送的有关所述动作的意义的信息；

所述动作检测步骤检测在所述接收步骤接收的所述意义信息，作为包含在所述动作中的信息。

25. 如权利要求19所述的机器人装置的动作控制方法，其中，所述信息是有关所述动作意义的信息。

26. 如权利要求19所述的机器人装置的动作控制方法，其中，

所述机器人装置根据外部环境和/或内部状态改变情感；

所述机器人装置当处于作为预设状态的预设情感级别时，在动作中表达‘悲伤’情感，以输出结果动作。
机器人设备，用于控制机器人设备运动的方法
以及用于控制机器人设备运动的系统

技术领域

本发明涉及一种机器人装置，用于控制机器人装置动作的动作控制方法以及用于控制多个机器人装置动作的动作控制系统，特别涉及一种便于执行自动动作的机器人装置以及这种机器人装置的动作控制方法和动作控制系统。

背景技术

最近，外表像动物如狗或猫的机器人装置已投向市场。在这些机器人装置中，存在一种响应外界信息或该机器人装置的内部状态而自动行动的装置。例如，该机器人装置设计为根据作为外界信息的用户命令，或根据表示其内部状态的情感级别进行行动。

下面是响应表示机器人装置内部状态的情感级别而工作的机器人装置功能。

如图 1 所示，机器人装置具有可变状态 A 到 D，并且设计为在预设条件下或者在预定时刻在这些状态之间进行变换。状态 A 到 D 由相关状态下所采取的姿势或由装置执行的动作来定义。

例如，当机器人在状态 A 下处于‘气愤’时，它相应发出例如‘pi-ro-li-ro-li’的声音，并且当机器人在状态 B 下处于‘高兴’时，它相应发出‘pi-po-pa’的声音。

而且，通过机器人装置根据用户命令进行工作的功能，发生机器人装置与用户之间的交互。这些功能可以列举为例如对外界用户的接触作出反应的功能和根据外界命令进行行动的功能。

例如，通过向机器人装置提供检测其与外界的接触的触摸传感器，并且通过使用触摸传感器使机器人装置的动作响应对其的接触，实现机器人装置对外界如用户的接触作出反应的功能。触摸传感器例如可以安装在机器人装置的头部。
对于机器人装置根据外界命令进行工作的功能，可以使用如下技术。

例如，可以采用输出音阶 (scale) 命令作为外界命令的设备。音阶命令是指通过音阶声音使机器人装置表达预设动作的命令。机器人装置识别由外部控制设备输出的音阶命令，并且执行音阶命令对应的动作。输出的音阶命令的外部通信设备可以列举为例如声音命令器。同时，最近已开始建立采用音阶命令的装置控制系统的技术。

通过作为外界信息的接触或者音阶命令，处于待命状态的机器人装置通过头部触碰传感器上的轻微触碰，检测到‘被轻拍’，或者通过触碰传感器上的强烈触碰，检测到‘被击打’，如图 2 所示。作为对其的反应，在检测到‘被轻拍’时，机器人装置发出‘pi-po-pa’声音来表示气愤，而在检测到‘被击打’时，机器人装置发出‘pi-ro-li-ro-li’声音来表示悲伤。如果使用音阶命令，例如音阶语言，机器人装置发出例如‘pi-ro-li’作为识别音阶命令对应的动作。

通过外界接触刺激或者音阶命令，影响机器人装置的动作，从而允许用户与机器人装置间的交互。

同时，传统机器人装置的动作仅根据它自己的情感或者用户给出的信息进行确定。如果多个机器人装置可以通过通信彼此进行交互，并且因此多个机器人装置可以相互作出反应并且进行工作，机器人装置的娱乐性将得以进一步的提高。

而且，如果希望多个机器人装置相互进行对话，可能会出现多个机器人装置不属于同一机器类型这种情况。例如，一个机器人装置可能是原始型号 (original model) 的装置，而另一个可能是一般型号 (generic model) 的产品，或者多个机器人装置可能由不同的制造商提供。在这种情况下，对于机器人装置彼此相互作出反应是困难的。

一般型号的机器人装置可能提供有原始型号机器人装置的功能。换句话说，在某些情况下，原始型号的机器人装置不提供一般型号机器人装置所拥有的功能。因此，在某些情况下，交互功能受限于具有同一机器类型的机器人装置。

然而，通过允许具有不同交互功能的多个机器人装置之间的交互，可以增强机器人装置的娱乐性。另外，可以这样说，各种机器人装置间的这种交互使得可以有效利用机器人装置的资源。
发明内容

鉴于本技术领域的上述现状，本发明的目的是提供一种可以与其它机器人装置进行对话的机器人装置，用于控制机器人装置动作的方法以及用于控制机器人装置的系统。

为完成上述目的，根据本发明的机器人装置包括：动作检测装置，用于检测包含在由其它机器人装置输出的动作中的信息；动作部分控制装置，用于根据由所述动作检测装置检测的信息，控制所述动作部件；以及测量装置，用于测量所述动作部件输出的动作所对应的所述其它机器人装置的反应次数；所述动作部件控制装置根据所述其它机器人装置的反应次数，通过所述动作部件输出动作。

如上构造的机器人装置通过动作检测装置检测包含在由其它机器人装置输出的动作中的信息，并且通过动作部件控制装置控制动作部件，以输出一个动作。此时，动作部件控制装置控制动作部件，以响应由用于测量反应次数的装置测量的其它机器人装置的反应次数。这允许机器人装置响应其它机器人装置的动作进行行动。

为完成上述目的，根据本发明的机器人装置还包括：动作检测装置，用于检测包含在由其它机器人装置输出的动作中的信息；以及动作输出装置，用于输出由动作检测装置检测的信息对应的动作。

如上构造的机器人装置检测包含在由其它机器人装置输出的动作中的信息，以通过动作输出装置输出由动作检测装置检测的信息对应的动作。这允许机器人装置响应其它机器人装置的动作进行行动。

为完成上述目的，根据本发明的一种具有动作部件的机器人装置的动作控制方法包括：动作检测步骤，检测包含在由其它机器人装置输出的动作中的信息；动作部件控制步骤，根据由所述动作检测步骤检测的信息，控制所述动作部件；以及测量步骤，用于测量由所述动作部件输出的动作对应的所述其它机器人装置的反应次数；所述动作部件控制步骤根据所述其它机器人装置的反应次数，通过所述动作部件输出动作。

为完成上述目的，根据本发明的机器人装置动作控制方法包括：动作以及动作输出步骤，使一个机器人装置输出由动作检测步骤检测的信息对应的动作。

为完成上述目的，根据本发明的机器人装置动作控制系统包括多个机
机器人装置，该机器人装置包括：动作检测装置，用于检测包含在由对方机器人装置输出的动作中的信息；以及动作输出装置，用于输出由动作检测装置检测的信息对应的动作。

使用该机器人装置动作控制系统，机器人装置通过动作检测装置检测包含在由对方机器人装置输出的动作中的信息，以通过动作输出装置输出由动作检测装置检测的信息对应的动作。该机器人装置动作控制系统允许机器人装置响应其它机器人装置的动作进行行动。

为完成上述目的，根据本发明的机器人装置动作控制方法包括：动作输出步骤，当一个机器人装置处于预设状态时，一个机器人输出预设动作；以及响应动作输出步骤，其它机器人装置输出由那个机器人输出的预设动作对应的动作。该机器人装置动作控制方法允许机器人装置响应其它机器人装置的动作进行行动。

通过阅读如附图所示的本发明实施例，本发明的其它目的、特性和优点将会变得更加清楚。

附图简述
图 1 示出设计用于根据情感改变发音的传统机器人装置；
图 2 示出通过例如音阶命令控制其动作的传统机器人装置；
图 3 示出实施本发明的机器人装置外形的透视图；
图 4 示出机器人装置电路结构的方框图；
图 5 示出机器人装置软件结构的方框图；
图 6 示出机器人装置软件结构中的中间件层结构的方框图；
图 7 示出机器人装置软件结构中的应用层结构的方框图；
图 8 示出应用层行为模型库结构的方框图；
图 9 示出作为机器人装置行为决策信息的有限概率自动机；
图 10 示出为有限概率自动机的每个节点提供的状态变换表；
图 11 示出允许与具有不同对话功能的其它机器人装置进行对话的机器人装置；
图 12 示出在机器人装置上提供的音阶命令数据库的说明性结构；
图 13 示出能够通过相同对话功能进行对话的机器人装置；
图 14 示出在主机器人装置和接收机器人装置都处于高兴情况下的对话交换；
图 15 显示在主机器人装置处于气愤而接收机器人装置处于高兴情况下的对话交换；

图 16 显示在主机器人装置发出一个命令并且接收机器人装置响应该命令而进行工作的情况下的对话交换。

最佳实施方式

将参照附图对本发明的优选实施例进行详细说明。本实施例面向响应外界信息、周围环境(外因)或者内部状态(内因)而自动行动的自动机器人装置。

在本实施例中，首先对该机器人装置的结构进行说明，然后对本发明在该机器人装置中的应用部分进行详细的说明。

(1) 本实施例的机器人装置结构

如图 3 所示，机器人装置就是模拟一个动物如‘狗’的所谓宠物机器人，并且分别由连接在躯干单元 2 左右两边的前后方上的腿部单元 3A、3B、3C 和 3D 和连接到躯干单元 2 前后端的头部单元 4 和尾部单元 5 进行构成。

参照图 4，躯干单元 2 包括控制器单元 16，由通过内部总线 15 相互连接在一起的 CPU(central processing unit，中央处理单元) 10、DRAM(Dynamic Random Access Memory，动态随机存取存储器)11、闪存 ROM(read-only memory，只读存储器)12、PC(personal computer，个人计算机)卡接口电路 13 和信号处理电路 14，以及用作机器人装置 1 电源的电池 17 组成。躯干单元 2 还安装有用于检测机器人装置 1 姿态和运动加速的加速度传感器 18 和加速度传感器 19。

在头部单元 4 上，在适当的位置上安装有用于对外界状态进行摄像的 CCD(charge coupled device，电荷耦合器件)摄像机 20、用于检测由于物理动作如用户的‘抚摸’或‘轻拍’而产生的压力的触摸传感器 21、用于测量前方对象距离的距离传感器 22、用于采集外部声音的麦克风 23、用于输出声音如悲啼的扬声器 24 以及相当于机器人装置 1‘眼睛’的多个 LED(light emitting diode，发光二极管)。

腿部单元 3A 到 3D 的关节部分、腿部单元 3A 到 3D 与躯干单元 2 的连接部分、头部单元 4 与躯干单元 2 的连接部分以及尾部单元 5 的尾巴 5A 的连接部分提供有大量对应于自由度数目的调节器 25a 到 25n 和电位计 26a 到 26n。例如，调节器 25a 到 25n 包括伺服马达。通过驱动伺服马达来控制腿部
单元 3A 到 3D，以变换到目标姿态或运动。

传感器，如加速度传感器 18、加速度传感器 19、触角传感器 21、地面接触传感器 23R/L、姿态传感器 24、距离传感器 25、麦克风 26、距离传感器 22、麦克风 23、扬声器 24 和电位计 25 到 25n 通过相关集线器 27 到 27n 连接到控制器单元 16 的信号处理电路 14，而 CCD 摄像机 20 和电池 17 直接连接到信号处理电路 14。

信号处理电路 14 顺序捕获从上述各个传感器提供的传感器数据、图像数据或语音数据，以使数据通过内部总线 15 顺序存储在 DRAM 11 的预设位置中。另外，信号处理电路 14 顺序捕获表示电池 17 提供的剩余电池电量的剩余电池电量数据，以将此捕获的数据存储在 DRAM 11 的预设位置中。

随后当 CPU 10 执行机器人的装置 1 的动作控制时，使用存储在 DRAM 11 中的各个传感器数据、图像数据、语音数据和剩余电池电量数据。

实际上，在机器人装置 1 的初始加电阶段，CPU 10 直接或通过 PC 卡接口电路 13，读出插在躯干单元 2 的 PC 卡插槽（未示出）中的存储器卡 28 或者存储在闪存 ROM 12 中的控制程序，以在 DRAM 11 中进行存储。

然后 CPU 10 根据从信号处理电路 14 顺序存储到 DRAM 11 的传感器数据、图像数据、语音数据或剩余电池电量数据，检查它自己的状态和周围状态以及可能出现的用户命令或动作。

CPU 10 还根据检查结果和存储在 DRAM 11 中的控制程序，确定下一后续动作，同时根据所确定的结果，在必要时驱动调节器 25 到 25n，以产生行为，如上下或左右摆动手臂单元 4 或者移动腿部单元 3A 到 3D 进行行走或跳跃。

CPU 10 在必要时生成语音数据，并且通过信号处理电路 14 将所生成的数据作为语音信号发送到扬声器 24，以将从语音信号得来的语音输出到外界或者打开/关闭或闪烁多个 LED。

采用这种方式，本机器人装置 1 能够自动行动，以响应它自己的状态和周围状态，或者用户的命令或动作。

(2) 控制程序的软件结构

图 5 显示出机器人装置 1 中上述控制程序的软件结构。图 5 中，设备驱动程序层 30 位于控制程序的最低层，并且形成为由多个设备驱动程序构成的设备驱动程序集 31，每个设备驱动程序是一个允许直接访问在常规计算机中使
用的硬件如 CCD 摄像机 20(图 4)或计时器，并且执行处理以响应相关硬件中断的对象。

机器人服务器对象 32 由如下部件组成：虚拟机器人 33；电源管理器 34，包括一组负责开关电源的软件项；设备驱动程序管理器 35，包括一组管理各种其它设备驱动程序的软件项；以及设计机器人 36，包括一组管理机器人装置 1 的机构的软件项。虚拟机器人 33，位于设备驱动程序层 30 的最低层，包括一组提供用于访问硬件项（包括上述各种传感器和调节器 251 到 25n）接口的软件项。

管理器对象 37 由对象管理器 38 和服务管理器 39 构成。对象管理器 38 是一组软件项，用于管理包括在机器人服务器对象 32、中间件层 40 和应用层 41 中的各个软件项的引导和结束，而服务管理器 39 是一组软件项，用于根据存储在存储器卡 28（图 4）中的连接文件所表述的各个对象间的连接信息管理各个对象的连接。

中间件层 40 位于机器人服务器对象 32 的高层，并且由一组提供机器人装置 1 基本功能如图象处理或语音处理的软件项构成。应用层 41 位于中间件层 40 的高层，并且是一组用于根据构成中间件层 40 的软件项的处理结果决定机器人装置 1 行为的软件项。

图 6 和图 7 显示中间件层 40 和应用层 41 的特定软件结构。

参照图 6，中间件层 40 包括：识别系统 60，具有信号处理模块 50 到 58 以及输入语义转换器模块 59，其中信号处理模块 50 到 58 分别用于噪声、温度或亮度检测、音阶识别、距离或姿态检测，用于触摸传感器，用于运动检测以及用于颜色识别；和输出系统 69，具有输出语义转换器模块 68 以及信号处理模块 61 到 67，其中信号处理模块 61 到 67 分别用于姿态管理、跟踪、运动再现、行走、从跌倒状态恢复、LED 发光以及用于声音再现。

识别系统 60 的信号处理模块 50 到 58 从由机器人服务器对象 32 的虚拟机器人 33 从 DRAM 11（图 4）读出的传感器数据、图象数据和语音数据中捕获相关数据，以对数据进行处理并且将处理结果发送到输入语义转换器模块 59。注意，虚拟机器人 33 构造为，用于根据预设通信协议对信号进行交换或转换的组件。

输入语义转换器模块 59 识别自己的状态、周围状态、用户命令或动作，如“烦恼”、“闷热”、“光”、“检测到一个球”、“检测到跌倒”、“被抚摸”、
“被轻拍”、“听到 do-mi-so(多-米-索)音阶”、“检测到一个运动对象”或“检测到一个障碍”，以将识别结果输出到应用层 41(图 5)。

如图 7 所示，应用层 41 由五个模块构成，即行为模型库 70、行为开关模块 71、学习模块 72、情感模型 73 和本能模型 74。

如图 8 所示，在行为模型库 70 中，提供有与多个预选条件项，如“剩余电池电量少”、“从跌倒状态恢复”、“规避障碍”、“表达情感”或“检测到一个球”相关联的各个独立行为模型 701 到 70n。

当从输入语义转换器模块 59 提供识别结果，或者从提供最后一次识别结果的时间开始超过预设时间时，行为模型 701 到 70n 参考由情感模型 73 保存的情感参数值和由本能模型 74 保存的相应欲望参数值，决定下一行为，以将决定结果发送到行为开关模块 71。

在本实施例中，行为模型 701 到 70n 使用称作有限概率自动机的算法作为决定下一行为的技术。该算法根据为相互连接各个节点 NODE0 到 NODEn 的弧 ARCi 到 ARCn 设置的变换概率值 P1 到 Pn，从概率上确定从节点 NODE0 到 NODEn 中的哪个节点(状态)变换到这些节点 NODE0 到 NODEn 中的哪个节点。

具体地说，针对每个节点 NODE0 到 NODEn，每个行为模型 701 到 70n 包括图 10 所示的状态变换表 80，形成与这些节点 NODE0 到 NODEn 相关联的各自行为模型 701 到 70n。

在状态变换表 80 中，作为节点 NODE0 到 NODEn 中变换条件的输入事件(识别结果)以优先级次序列在“输入事件名称”列中，并且用于变换条件的进一步条件在“数据名称”和“数据范围”列的相关行中进行表述。

因此，在图 10 的状态变换表 80 所示的节点 NODE100 中，“检测到球”(BALL)识别结果、与识别结果一起给出的球大小(SIZE)为‘0 到 1000’表示用于变换到另一节点的条件。类似地，“检测到一个障碍(OBSTACLE)识别结果、与识别结果一起给出的障碍距离(DISTANCE)的范围为‘0 到 100’表示用于变换到另一节点的条件。

另外，在当前节点 NODE100 中，如果没有输入任何识别结果，但是周期性地由行为模型 701 到 70n 进行参考的参数值中，保存在情感模型 73 中的各个情感和欲望参数值中的参数值“快乐”(JOY)、“惊奇”(SURPRISE)或“悲伤”(SADNESS)中的任何一个在‘50 至 100’的范围内，也可以变换到另一节点。
而且，在状态变换表 80 中，可以从节点 NODE_0 到 NODE_n 进行变换的目标节点名称在‘到其它节点的变换概率’列的‘变换目标节点’行中示出。另外，当满足在‘输入事件名称’、‘数据名称’和‘数据范围’列中表述的所有条件时，可以变换到其它节点 NODE_0 到 NODE_n 的变换概率输入在‘到其它节点的变换概率’列的相应位置中。在变换到节点 NODE_0 到 NODE_n 的时候要输出的行为在‘到其它节点的变换概率’列的‘输出行为’行中表示。同时，在‘到其它节点的变换概率’列中，每一行的概率值总和为 100%。

因此，在由图 10 的状态变换表 80 表示的节点 NODE_100 中，如果识别结果为‘检测到球’并且球的大小(SIZE)在‘0 至 1000’的范围内，可以变换到‘节点 NODE_120(节点 120)’的概率为 30%，并且然后输出“动作 1”行为。

在每个行为模型 70_1 到 70_n 中，每个均表示为该状态变换表 80 的多个节点 NODE_0 到 NODE_n 集合串联在一起，从而根据来自输入语义转换器模块 59 的识别结果，通过使用节点 NODE_0 到 NODE_n 的状态变换表从概率上确定下一行为，并且将决定结果输出到行为开关模块 71。

图 7 所示的行为开关模块 71 将一个命令发送到中间件层 40 的输出语义转换器模块 68，以从行为模型库 70 的各个行为模型 70_1 到 70_n 输出的行为中选择具有预设高优先级的从行为模型 70_1 到 70_n 的其中之一输出的行为，并且执行该行为。该命令下面称作行为命令。在本实施例中，图 8 所示的行为模型 70_1 到 70_n 优先级次序如下给定：行为模型在图 8 中的排位越低，它的优先级就越高。

行为开关模块 71 在行为结束之后根据从输出语义转换器模块 68 提供的行为完成信息，向学习模块 72、情感模型 73 和本能模型 74 通知行为完成这一结果。

学习模块 72 从输入语义转换器模块 59 提供的识别结果中，输入作为用户动作如‘轻拍’或‘抚摸’接收的指令识别结果。

学习模块 72 根据识别结果和来自行为开关模块 71 的通知修改行为模型库 70 中行为模型 70_1 到 70_n 的变换概率，从而当动作为‘轻拍’(‘斥责’)或‘抚摸’(‘表扬’)时，当前行为的出现概率将分别增大或减小。

另一方面，情感模型 73 保存表示六种情感类型中每种情感强度的参数，这六种情感类型为快乐(JOY)、悲伤(SADNESS)、气愤(ANGER)、惊奇(SURPRISE)、厌恶(DISGUST)和恐惧(FEAR)。情感模型 73 根据由输入语义
具体地说，情感模型 73 根据下面方程 (1) 计算下一周期的当前情感类型的参数值 E_{t+1}:

$$E_{t+1} = E_t + ke \times \Delta E_t$$

... (1)

其中，ΔE_t 是根据例如由输入语义转换器模块 59 提供的识别结果、在相关时间的机器人装置 1 行为、或者从前一更新事件开始过去的时间，通过预设方程计算得出的情感类型变化量，E_t 是情感类型的当前参数值，并且 ke 是表示情感类型敏感度的系数。情感模型 73 将情感类型的当前参数值 E_t 替换为所计算的值，以更新情感类型的参数值。采用类似的方式，情感模型 73 更新全部情感类型的参数值。

预先确定各个识别结果和来自输出语义转换器模块 68 的通知将对各个情感类型的参数值变化 ΔE_t 具有什么影响，从而“被轻拍”识别结果将大大影响“气愤”情感类型参数值的变化量 ΔE_t，同时“被轻拍”识别结果将大大影响“快乐”情感类型参数值的变化量 ΔE_t。

来自输出语义转换器模块 68 的通知是所谓的行为反馈信息 (行为结束信息) 和有关行为出现结果的信息。情感模型 73 还根据该信息改变情感。例如，通过“呼叫”可以降低气愤的情感级别。同时，来自输出语义转换器模块 68 的通知还输入到学习模块 72，然后学习模块 72 根据该通知修改行为模型 70，到 70o 的相应变换概率。

同时，可以通过行为开关模块 71 的输出 (带情感的行为) 作出行为结果的反馈。

另一方面，本能模型 74 保存表示四种相互独立欲望强度的参数，这四种欲望为“锻炼欲”、“喜爱欲”、“食欲”和“好奇心”。本能模型 74 根据从输入语义转换器模块 59 提供的识别结果、所过去的时间以及来自行为开关模块 71 的通知，周期性地更新这些欲望的参数值。

具体地说，对于“锻炼欲”、“喜爱欲”和“好奇心”，本能模型 74 在预设周期，根据下面方程 (2) 计算下一周期的这些欲望参数值 I_{k+1}:

$$I_{k+1} = I_k + ki \times \Delta I_k$$

... (2)
其中，ΔI[k]是根据识别结果、所过去的时间和输出语义转换器模块 68 的通知通过预设方程计算得出的在相关时间的当前欲望变化量，I[k]是欲望的当前参数值，并且 ki 是表示当前欲望敏感度的系数，并且将当前参数值 I[k]替换为所计算的值，以更新该欲望参数值。本能模型 74 更新除‘食欲’之外的各个欲望参数值。

预先设定识别结果和来自输出语义转换器模块 68 的通知对各个欲望参数值变化量ΔI[k]的影响，从而例如，来自输出语义转换器模块 68 的通知大大影响‘疲劳’参数值的变化量ΔI[k]。

在本实施例中，各个情感类型和各个欲望(本能)的参数在 0 至 100 的范围内进行变化，同时还为各个情感类型和各个欲望单独设置系数值 kc 和 k1。

如图 6 所示，中间件层 40 的输出语义转换器模块 68 将如上所述由应用层 41 的行为开关模块 71 提供的抽象行为命令，如‘向前走’、‘快乐’、‘哭泣’和‘跟踪 (追球) ’发送到输出系统 69 的信号处理模块 61 到 67。

给定一个行为命令，信号处理模块 61 到 67 根据该行为命令，生成要提供给相关调节器 25, i 到 25, n(图 4)用来执行行为的伺服命令值，要从扬声器 24 (图 4)输出的声音语音数据和/或要提供给‘眼睛’LED 的驱动数据，并且按照该次序通过机器人服务器对象 32 的虚拟机器人 33 和信号处理电路 14(图 4)将这些数据发送到相关调节器 25, i 到 25, n、扬声器 24 或 LED。

因此，机器人装置 1 能够根据控制程序执行自动行为，以响应它自己的内部状态、周围状态(外部状态)或者来自用户的命令或动作。

在下面说明中，首先对机器人装置的结构进行说明，然后对本发明的相关部分进行说明。

(3) 通过应用本发明而实现的结构
通过应用本发明，具有上述结构的机器人装置能够响应另一机器人装置的动作而进行工作。这使得多个机器人装置可以相互进行对话。而且，该机器人装置可以与具有不同对话功能的另一机器人装置进行对话。首先，对根据本发明能够与具有不同对话功能的机器人装置进行对话的本发明机器人装置进行说明，随后对能够进行基于相同对话功能的对话的本发明机器人装置进行说明。

(3-1) 与具有不同对话功能的机器人装置进行对话的机器人装置
本发明的机器人装置能够与具有不同对话功能的另一机器人装置进行对
话。

具有不同对话功能的机器人装置例如是不同机器类型的机器人装置、从不同制造商提供的机器人装置以及由同一制造商生产但是类型号码或型号不同的机器人装置。在本实施例中，假定与具有通过音阶命令进行控制的对话功能的其它机器人装置进行对话，作出说明。在这种情况下，作为对话对方的其它机器人装置在其待命状态下，当识别出由音阶声音组成的音阶命令时，发出例如‘pi-ro-lin’作为预设动作。

通过本发明的本实施例机器人装置，它具有这种音阶命令输出功能，并且例如通过同步动作对机器人装置的动作作出反应，并且通过音阶命令控制它的动作，用户能够欣赏机器人装置间的反应动作，作为机器人装置的对话。

本发明的机器人装置以在下面说明中将要阐明的方式实现与其它机器人装置的对话。在本说明中，本实施例的机器人装置称作主机器人装置，并且具有与主机器人装置不同对话功能的机器人装置称作副机器人装置。

主机器人装置包括：动作检测装置，用于检测包含在由作为其它机器人装置的副机器人装置输出的动作中的信息；以及动作输出装置，用于输出由动作检测装置检测的信息对应的动作。具体地说，主机器人装置包括如上所述的 CPU 10。具体地说，CPU 10 将上述装置实现为具有如下功能：动作检测功能，检测包含在由副机器人装置输出的动作中的信息；以及动作输出功能，输出由动作检测装置检测的信息对应的动作。也就是，CPU 10 通过各种信号处理模块实现上述功能。

主机器人装置还包括用于与副机器人装置交换信息的通信装置。在此的信息是通过音阶声音来交换的信息。因此，通信装置通过扬声器 24 实现信息发送/接收。该信息也是表示动作意义的意义信息。例如，该信息可以是表示动作本身或包含在动作中的情感的意义信息。

具有上述结构的主机器人装置通过一系列处理动作如所谓的对话模式，实现与副机器人装置的对话功能。具体地说，主机器人装置通过图 8 所示的行为模型之一，例如对话行为模型，实现对话功能。

具有这种功能的主机器人装置识别‘情感表达声音’，如‘pi-ro-lin’，这是副机器人装置在如图 11 所示的空闲状态 ST1 下发出的声音信号。这时，主机器人装置检测副机器人装置的存在，从而获悉副机器人装置处在附近的位
置。该识别表示主机器人装置处于准备开始或发起对话功能的预设条件和预设状态下（例如，对话行为模型）。

空闲状态 ST1 是主机器人装置自动行动的状态，也就是机器人装置根据外部环境或响应其自己的情感状态而自动行动的状态。

当识别出由副机器人装置发出的情感表达声音时，主机器人装置使副机器人装置变换到‘坐下’姿态。需要说明的是，主机器人装置不一定非要使副机器人装置变换到‘坐下’姿态，而可以使副机器人装置变换到其它姿态或者继续它的自动行为。

主机器人装置然后变到命令产生状态 ST2，以产生由音阶声音组成的音阶命令。例如，主机器人装置随机生成音阶命令。

具体地说，主机器人装置包括由各种音阶命令组成的数据库。需要说明的是，各种音阶命令与要由副机器人装置执行的各个不同动作内容相关联，并且这些音阶声音对应于声音名称的不同组合。形成主机器人装置数据库的音阶命令是所谓音阶命令器的音阶命令，以控制例如副机器人装置。

例如，主机器人装置包括由音阶命令的音阶声音模式和命令内容构成的数据库，如图 12 所示。命令内容是动作内容，如由副机器人装置在识别出相应音阶模式时执行的发音动作。同时，通过音阶命令实现的命令不限于发音命令，而是可以包括例如姿势变换命令。

主机器人装置采用这种方式所拥有的音阶命令可以在生产时进行登记，也可以在以后进行重新登记或更新。主机器人装置随机选择例如数据库中的音阶命令，并且输出所选择的音阶命令。

主机器人装置还可以输出与动作相关联的音阶命令。通常，音阶命令保持为用于控制机器人装置的信号模式，并且以对机器人装置有意义的方式进行处理。然而，对于人而言，这些命令是没有意义的。因此，通过使主机器人装置输出与音阶命令相关联的动作，用户能够理解音阶命令的意义。

在输出音阶命令的时候，主机器人装置进入等待副机器人装置反应的状态 ST3。主机器人装置在预设时间内保持它的反应等待状态 ST3。

当识别出由主机器人装置发出的音阶命令时，副机器人装置根据音阶命令输出情感表达声音。然而，副机器人装置是否必定响应音阶命令是不能确定的。原因是副机器人装置可能已通过它自己的自动行为移到某远处，或者由于例如环境噪音不能检测到音阶命令。为了解决这一问题，主机器人装置
提供各种动作来响应副机器人装置的反应。

当副机器人装置已输出情感表达声音以响应由主机器人装置发出的音阶命令时，主机器人装置识别出该情感表达声音，并且输出相同的情感表达声音。例如，主机器人装置读出并输出副机器人装置的情感表达声音，该情感表达声音从一开始就由主机器人装置保存在数据库中。

用户能够欣赏在主机器人装置与辅机器人装置之间所执行的动作，作为这些机器人装置间的对话。

当识别出情感表达声音（音阶反应声音）时，主机器人装置对变量 NumResponse 加 1，同时将变量 NumTimup 设为 0。需要说明的是，变量 NumResponse 是表示副机器人装置反应次数的变量。当进入对话功能处理或模式时，该变量 NumResponse 设为初始值 0。另一方面，变量 NumTimup 是表示副机器人装置不能对主机器人装置发出的音阶命令作出反应的次数。该值在下面称作无反应次数。例如，根据在预设时间范围内没有出现副机器人装置的反应，确定副机器人装置不能对命令作出反应。当进入对话功能处理或模式时，该变量 NumTimup 也设为初始值 0。

副机器人装置的情感识别是通过提供显示音阶反应声音和对应情感的表并且对所检测的音阶反应声音参考该表来实现的。不提供这种表也是可能的，在这种情况下，根据对音阶反应的检测声音进行基音、功率等的分析，对情感进行识别。

当副机器人装置 1 已作出反应时，主机器人装置执行预设动作作为下一反应动作。

主机器人装置根据上述 NumResponse 的值执行动作。主机器人装置使用该变量 NumResponse 作为决定动作的变量。具体地说，主机器人装置具有各种动作，如动作 (1)、动作 (2)、动作 (3)…，并且通过动作 (NumResponse) 确定其中之一作为副机器人装置的动作。

变量 NumResponse 表示由主机器人装置识别出的副机器人装置反应次数。因此，该数越大，副机器人装置的反应次数就越多。大体上，如在交谈或对话的情况下，对于别人表达高兴的动作，反应一般都是给他或她高兴的表情。基于这种考虑，动作 (1)、动作 (2)、动作 (3)…这些动作定义为表示‘高兴’的动作以这一次序逐渐加强这种方式。

在反应动作状态 ST4 下，主机器人装置根据当前变量 NumResponse，从
如上定义的动作中选择动作(NumResponse)，以执行动作。也就是说，如果变量
NumResponse 为 1 到 5，主机器人装置使得执行相应动作(NumResponse)，再
次变到命令发出状态 ST2，以随机选择音阶命令来输出所选的音阶命令。在
反应等待状态 ST3 下，主机器人装置等待副机器人装置的反应。作为例子，
如果副机器人装置作出反应，主机器人装置使得再次执行预设动作，以响应
副机器人装置的反应动作，将变量 NumResponse 加 1。主机器人装置然后执
行表示更高兴的动作，以响应已加 1 的变量 NumResponse。

d 当变量 NumResponse 超过 5 时，主机器人装置执行动作 ‘万岁’ (‘好
哇’) 作为动作(6)，然后返回到空闲状态 ST1。也就是说，主机器人装置完成与
副机器人装置进行对话的处理或模式，然后返回到自动行为模式。

因此，主机器人装置响应副机器人装置的反应，根据反应次数执行可变
动作。用户能够欣赏在主机器人装置与副机器人装置之间所交换的动作，作
为机器人装置间的对话。

需要说明的是，主机器人装置表示 ‘高兴’ 的动作随着副机器人装置的
反应次数的增加，变得更加强烈。对此，我们可以称之为 “动作调整”

如果在反应等待状态 ST3 的预设时间范围内不能识别出副机器人装置的
反应，主机器人装置执行表示 ‘悲伤’ 的动作。机器人装置还将表示无反应
次数的变量 NumTimup 加 1。没有副机器人装置的反应的情况可能是这样的
情况：副机器人装置已通过它自己的自动行为移到某远处，或者副机器人装
置由于例如环境噪音不能检测到音阶命令。

同时，甚至当副机器人装置不能作出反应时，主机器人装置也表达表示
 ‘悲伤’ 的动作。可以这样说，在这种情况下，主机器人装置识别出副机器人
装置不能作出反应动作。

在不能得到副机器人装置的反应时，主机器人装置执行前述动作，并且
再次在命令发出状态 ST2 下随机选择音阶命令，输出所选的音阶命令，然后
再次在反应等待状态 ST3 下等待副机器人装置的反应。如果在该反应等待状
态 ST3 下，主机器人装置在预设次数内最终都不能识别副机器人装置的反应，
也就是，如果无反应次数已达到预设值，它执行更悲伤的动作。在本例中，
当在四次内最终都不能识别副机器人装置的反应时，也就是说，如果表示无反
应次数的变量 NumTimup 超过 3，主机器人装置执行表示 ‘更悲伤’ 的动作，
然后返回到空闲状态 ST1。
因此，在不能得到副机器人装置的反应时，主机器人装置根据无反应次数执行可变动作，从而用户能够欣赏在主机器人装置与副机器人装置之间所交换的动作，作为机器人装置间的对话。

同时，在本实施例中，要从前述反应等待状态 ST3 执行‘更悲伤’的动作的情况是在主机器人装置多次变回的反应等待状态 ST3 下最终都没有检测到副机器人装置的反应这一情况。这是因为当在反应等待状态 ST3 下副机器人装置已作出响应时，将表示无反应次数的变量 NumTimup 初始化为 0。如果，在不能得到副机器人装置对主机器人装置动作的反应时，副机器人装置对主机器人装置的随后动作作出反应，主机器人装置执行‘高兴’动作，并且将表示无反应次数的变量 NumTimup 初始化为 0。

当然，上述处理不是限制性的。例如，可以对无反应次数进行连续计数，而不将变量 NumTimup 初始化为 0 来响应副机器人装置的反应，也就是，不依赖于是否已作出反应。

因此，主机器人装置能够根据副机器人装置对主机器人装置动作的反应动作(包括无反应动作)以及无反应次数，执行各种动作。这使得用户欣赏机器人装置间的反应动作，作为机器人装置间的对话，成为可能。

主机器人装置通过控制原始型号或由其它制造商生产的机器人装置(使用外部控制命令如音阶命令控制其动作)与它自己的动作保持同步来实现这种对话。因此，用户能够欣赏同一制造商的不同型号机器人装置间或者不同制造商的机器人装置间的反应动作，作为机器人装置间的对话。

(3-2) 进行基于相同对话功能的对话的机器人装置

下面将对本发明的根据两个机器人装置间的对话功能所进行的对话进行说明。在此说明的每个装置具有相同的对话功能，这使得两个机器人装置可以相互进行对话。

每个机器人装置包括：动作检测装置，用于检测包含在由对方机器人装置输出的动作中的信息；以及动作输出装置，用于输出由动作检测装置检测的信息对应的动作。具体地说，主机器人装置通过它的 CPU 实现如下功能：动作检测功能，检测包含在由对方机器人装置输出的动作中的信息；以及动作输出功能，输出由动作检测装置检测的信息对应的动作。也就是，CPU 10 通过各种信号处理模块实现这些功能。

两个机器人装置都构造为当处于预设状态时输出预设动作。因此，当处
于预设状态时，一个机器人装置通过动作输出功能输出预设动作，另一机器人装置输出由前述机器人装置输出的动作对应的动作。

这两个机器人装置具有彼此类似的结构，以实现与对方机器人装置的对话。下面将参照图 13 对这两个机器人装置间的对话进行说明。

这两个机器人装置都处于空闲状态 ST11、ST21，如图 13 所示。当处于预设状态时，一个机器人装置执行它的动作，从而开始这两个机器人装置间的对话。其中，处于预设状态下的机器人装置表示例如机器人装置具有情感概率或级别特定值，或者机器人装置识别出其它机器人装置的存在。情感级别是上述情感的参数值。通过以预设采样间距进行监测，可以检测机器人装置是否处于该预设状态。如果在该采样时刻不能检测到预设状态，主机器人装置可以认为这种状态超时，从而返回到空闲状态 ST11。在预设状态下并且首先执行对话动作的机器人装置称作‘主机器人装置’，另一机器人装置则称作‘接收机器人装置’。

当处于预设状态时，每个机器人装置都输出预设动作。因此，根据处于预设状态的时刻，‘另一机器人装置’可以是主机器人装置，剩下的机器人装置则为接收机器人装置。也就是，每个机器人装置根据情况都可以变为‘主机器人装置’或‘接收机器人装置’。

首先在预设状态下开始或发起对话功能从而成为主机器人装置的机器人装置发出‘Yahhoo!’和‘音阶声音(1)’作为动作 ST12。需要说明的是，‘Yahhoo!’是作为语言的发音，而‘音阶声音(1)’是音阶声音，如‘pi-po-paa’，只是一个声音序列。在下面说明中，以音阶声音(2)、(3)和(4)…作为音阶声音的例子。其中每一个都具有不同的音阶模式。音阶声音(2)、(3)和(4)…代表在现有技术中作为音阶命令进行建立的技术。

同时，输出与如‘Yahhoo!’的发音相关联的音阶声音，在这种情况下，作为对话对方的接收机器人装置不能识别语言‘Yahhoo!’发音动作的意义。因此，如果机器人装置能够识别该动作的意义，那么音阶声音就没有必要。也就是说，当对方装置不能理解该动作的意义时，即当发音动作是长文章时，与动作一起同时输出音阶声音。在这种情况下，音阶声音用作机器人装置间的有效对话手段。

接收机器人装置识别主机器人装置的这种发音，以从空闲状态 ST21 变到反应动作 ST22。也就是说，接收机器人装置以主机器人装置的发音作为触发，
启动它的对话功能。

接收机器人装置发出‘Yahhoo!’和‘音阶声音(2)’作为反应动作ST22。
接收机器人装置通过由主机器人装置发出的‘Yahhoo!’和‘音阶声音(1)’中的‘音阶声音(1)’，识别主机器人装置的发音。

如上所述，音阶声音是已经建立为控制机器人装置中音阶命令的技术。通过应用如此建立的音阶识别系统，机器人装置1通过音阶声音的音阶声音模式，准确地识别命令。

主机器人装置识别接收机器人装置的‘音阶声音(2)’发音，并且发出‘高兴’和‘声音(3)’作为它的反应动作ST13。重复对对方动作的反应动作，同时反应动作内容发生改变。

也就是说，接收机器人装置识别主机器人装置的‘音阶声音(3)’发音，并且发出‘冷静’和‘音阶声音(4)’作为反应动作ST23。其中，‘冷静’是表示例如‘要冷静’内容的发音。主机器人装置识别‘音阶声音(4)’发音，并且发出‘高兴!’和‘音阶声音(5)’作为它的反应动作ST14。其中，‘高兴!’只是‘高兴’的强化表达。接收机器人装置识别主机器人装置的‘音阶声音(5)’的发音，并且发出‘高兴’和‘音阶声音(6)’作为它的反应动作ST24。主机器人装置然后识别接收机器人装置的‘音阶声音(6)’发音，并且发出‘满意’作为对话动作的最后动作。与此保持一致，接收机器人装置类似地发出‘满意’，与主机器人装置的发音保持同时性。

采用这种方式，充当主机器人装置和接收机器人装置的两个机器人装置能够对对方的动作作出反应，从而用户能够欣赏机器人装置间的反应动作，作为机器人装置间的对话。

如上所述，通过采用现有技术的音阶声音识别系统，可以识别对方的动作。当然，这不是限制性的，一个机器人装置也可以直接识别由机器人装置发出的有意义的语言。如‘Yahhoo!’以采取反应动作，从而用户能够认为机器人装置的对话是更现实的对话。

在预设时间内不能得到对方机器人装置的反应，该状态可以认为处于超时状态，再次返回到空闲状态。

在图14到16中，按时间发生顺序表示通过上述对话功能实现的机器人装置(主机器人装置和接收机器人装置)之间的反应动作。

图14示出在主机器人装置和接收机器人装置都处于高兴情况下的对话
交换，图 15 示出在主机器人装置处于气愤并且接收机器人装置遭到斥责情况下由对话交换，上述图 16 示出在主机器人装置发出三个命令并且接收机器人装置对该命令进行响应的情况下对话交换。这些可变对话功能可以实现为行为模型。

具体地说，当主机器人装置发出‘Yahhoo!’时，接收机器人装置发出‘Yahhoo!’作为反应动作。其中，如果可能相对容易地理解这种发音，则不需要输出音阶声音。也就是，如果能够容易地识别如‘Yahhoo!’的发音，那么主机器人装置只发出‘Yahhoo!’，而无需输出相应的音阶声音；对方机器人装置然后识别该‘Yahhoo!’。

对于图 16 所示的在主机器人装置发出一个命令并且接收机器人装置对
其进行响应情况下的交换，主机器人装置首先发出‘Yahhoo!’，同时接收机器人装置对其进行响应，并且发出‘Yahhoo!’。主机器人装置抬起他或她的右手(右前肢)，并且发出‘音阶声音(音阶命令)’，以响应接收机器人装置的发音‘Yahhoo!’，同时接收机器人装置对主机器人装置的抬起他或她的右手(右前肢)动作和‘音阶声音(音阶命令)’发音进行响应，识别‘音阶’发音并且执行右转他或她身体的动作。

虽然接收机器人装置能够通过音阶声音向主机器人装置通知动作的结束，但是主机器人装置也可以执行时间管理，以检测接收方动作的结束。例如，主机器人装置可以保存右转接收机器人装置身体的执行时间，测量自从抬起右手或发出音阶声音开始过去的时间，并且将测量时间与它所保存的右转执行时间进行比较，以掌握实际正在进行的接收机器人装置右转躯干动作的结束。

在检测到接收机器人装置右转动作结束之后，主机器人装置执行抬起左手(左前肢)的动作，同时发出‘音阶声音(音阶命令)’。接收机器人装置对主机器人装置的抬起左手(左前肢)动作和‘音阶声音(音阶命令)’进行响应，识别‘音阶声音’发音，并且执行左转其躯干的动作。主机器人装置然后自从抬起左手或发出音阶声音开始过去的时间，并且将其与它所保存的左转执行时间进行比较，以获取实际正在进行的左转接收机器人装置动作的结束。

在检测到接收机器人装置左转动作结束之后，主机器人装置执行抬起双手(两个前肢)的动作，同时发出‘音阶声音(音阶命令)’。接收机器人装置对主机器人装置的抬起双手(两个前肢)动作和发音(音阶命令)进行响应，识别‘音阶声音’发音，并且执行向前移动的动作。

采用这种方式，在主机器人装置发出一个命令并且接收机器人装置对其进行响应的情况下进行交换。

如前面参照图 14 到 16 的说明，机器人装置能够实现与对方机器人的各种对话。

在上述实施例中，通过音阶声音发生机器人装置间的通信。然而，这不是限制性的，例如，可以通过红外线在机器人装置之间发送或接收信息。

同样，在上述实施例中，主要是根据声音输出或发音动作进行机器人装置动作的对话。这也不是限制性的，也可以通过驱动可移动部件如前肢进行对话。在这种情况下，机器人装置通过图象识别装置如 CCD 摄像机 20 识
别对方的动作。如果识别机器人装置的运动仍然相当困难，可以与机器人装置的运动保持一致输出例如音阶声音，以允许通过音阶声音识别运动动作的意义，从而实现机器人装置间的可靠对话。

如果机器人装置自动生成的发音句子难以理解，通过同时输出作为音阶声音的内容信息，对方机器人装置能够可靠地遵循该复杂文本进行行动。

工业可应用性

如上所述，根据本发明，机器人装置能够通过动作检测装置检测包含在由另一机器人装置输出的动作中的信息，使动作输出装置输出由动作检测装置检测的信息对应的动作，从而机器人装置能够响应其它机器人装置的动作进行工作，以提高机器人装置的娱乐性。
图 1

图 2
图 3
图 9
<table>
<thead>
<tr>
<th>节点</th>
<th>输入事件名称</th>
<th>数据名称</th>
<th>数据范围</th>
<th>到其它节点Di的变换概率</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>节点 120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>节点 120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>节点 1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>节点 600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>动作1</td>
<td>动作2</td>
<td>向回移动</td>
<td></td>
<td></td>
</tr>
<tr>
<td>动作4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>球</td>
<td>大小</td>
<td>0.1000</td>
<td>30%</td>
</tr>
<tr>
<td>2</td>
<td>轻拍</td>
<td></td>
<td></td>
<td>40%</td>
</tr>
<tr>
<td>3</td>
<td>击打</td>
<td></td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td>4</td>
<td>运动</td>
<td></td>
<td></td>
<td>50%</td>
</tr>
<tr>
<td>5</td>
<td>障碍</td>
<td>距离</td>
<td>0.1000</td>
<td>100%</td>
</tr>
<tr>
<td>6</td>
<td>快乐</td>
<td></td>
<td>50.100</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>惊奇</td>
<td></td>
<td>50.100</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>悲伤</td>
<td></td>
<td>50.100</td>
<td></td>
</tr>
</tbody>
</table>

图 10
<table>
<thead>
<tr>
<th>音阶模式</th>
<th>命令内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>发出 'PI-P0-PA'</td>
</tr>
<tr>
<td>B</td>
<td>发出 'PI-RO-LI-RO-L1'</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
图 16

主机器人装置

YAHHO

抬起右手
(命令)

等待

抬起左手
(命令)

等待

抬起两只手
(命令)

时间

接收机器人装置

YAHHO

右转

左转

前进

·

·