(54) Title: VITREOUS OR VITREOUS-CRYSTALLINE, RAPIDLY DISSOLVING MATERIAL AND PROCESS FOR ITS PRODUCTION

(54) Bezeichnung: GLASIGES ODER GLASIG-KRISTALLINES MATERIAL MIT SCHNELLER LÖSCHLICHKEIT UND VERFAHREN ZU SEINER HERSTELLUNG

(57) Abstract

A vitreous or vitreous-crystalline, rapidly dissolving material has the following composition (wt.%): before combustion: 20 - 55 CaO, 5 - 25 Na₂O, 0.01 - 15 K₂O, 0 - 15 MgO, 30 - 50 P₂O₅, 0 - 15 SiO₂, 0 - 40 Na₂SO₄ and/or K₂SO₄. The new material can be obtained in vitreous or vitreous-crystalline form, depending on the cooling conditions. As a spontaneously crystallized glass ceramic, it contains the rhenanite phase, "A" phase, "X" phase and/or their mixed crystals. The material is both bioactive and biocompatible and dissolves rapidly. It can be used directly and with other materials as an implant for temporary bone replacement and to induce growth of connective tissue, and as a fertilizer and fodder material.

(57) Zusammenfassung

Die Erfindung betrifft ein glasiges oder glasgkrystallines Material, das vor dem Brennen folgende Zusammensetzung (Massanteile in %) aufweist: 20 - 55 CaO, 5 - 25 Na₂O, 0.01 - 15 K₂O, 0 - 15 MgO, 30 - 50 P₂O₅, 0 - 15 SiO₂, 0 - 40 Na₂SO₄ und/oder K₂SO₄. Das neue Material kann je nach Abkühlbedingungen glasig oder glasig-kristallin erhalten werden. Es weist als spontan kristallisierte Glaskeramik die Phase Rhenanit, Phase "A", Phase "X" und/oder deren Mischkristalle auf. Das Material ist sowohl bioaktiv als auch biokompatibel und besitzt kurze Lösungszeiten. Es kann als Implantat zum temporären Knochensatz bis zur Nachbildung körperreigenen Materials stufenlos auch mit anderen Materialien eingesetzt werden sowie als Düng- und Futtermittel.
<table>
<thead>
<tr>
<th>Code</th>
<th>Land</th>
<th>Land in deutscher Sprache</th>
<th>Land in spanischer Sprache</th>
<th>Land in englischer Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Österreich</td>
<td>Österreich</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
<td>Australien</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>Barbados</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
<td>Belgien</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>Burkina Faso</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
<td>Bulgarien</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>Benin</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
<td>Brasilien</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
<td>Kanada</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>CF</td>
<td>Zentrale Afrikanische Republik</td>
<td>Zentrale Afrikanische Republik</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
<td>Kongo</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
<td>Schweiz</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>Côte d’Ivoire</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
<td>Kamerun</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
<td>Deutschland</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
<td>Dänemark</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>ES</td>
<td>Spanien</td>
<td>Spanien</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>FI</td>
<td>Finnland</td>
<td>Finnland</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>FR</td>
<td>Frankreich</td>
<td>Frankreich</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>Gabon</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>GB</td>
<td>Vereinigtes Königreich</td>
<td>Vereinigtes Königreich</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>GR</td>
<td>Griechenland</td>
<td>Griechenland</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>HU</td>
<td>Ungarn</td>
<td>Ungarn</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>IT</td>
<td>Italien</td>
<td>Italien</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
<td>Japan</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>KG</td>
<td>Demokratische Volksrepublik Korea</td>
<td>Demokratische Volksrepublik Korea</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>KR</td>
<td>Republik Korea</td>
<td>Republik Korea</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>LI</td>
<td>Liechtenstein</td>
<td>Liechtenstein</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
<td>Sri Lanka</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>LU</td>
<td>Luxemburg</td>
<td>Luxemburg</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
<td>Monaco</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>MG</td>
<td>Madagaskar</td>
<td>Madagaskar</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
<td>Mali</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritaniyen</td>
<td>Mauritaniyen</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
<td>Malawi</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>NL</td>
<td>Niederlande</td>
<td>Niederlande</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>NO</td>
<td>Norwegen</td>
<td>Norwegen</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>PL</td>
<td>Polen</td>
<td>Polen</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>RO</td>
<td>Rumänien</td>
<td>Rumänien</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
<td>Sudan</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>SE</td>
<td>Schweden</td>
<td>Schweden</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td>Senegal</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>SU</td>
<td>Sowjetunion</td>
<td>Sowjetunion</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>TD</td>
<td>Tschad</td>
<td>Tschad</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>Togo</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
<tr>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
<td>Vereinigte Staaten von Amerika</td>
<td>Spanien</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
Glasiges oder glasig-kristallines Material mit schneller Löslichkeit und Verfahren zu seiner Herstellung

Anwendungsgebiet der Erfindung

Charakteristik der bekannten technischen Lösungen

Technische Lösungen für den Düngemittelbereich, die eine Depotwirkung für diese Anwendung einschließen, gründen sich
auf Materialien, die sehr hohe Phosphatgehalte aufweisen und als Metaphosphat-Gläser einzuordnen sind (vergl. hierzu: KNOTT, P., Glasses - Agricultural applications, Glastechn. Ber. 62 (1989)[1], 29-34; GB-P 2099702 A). Dies gilt ebenso für die Futtermittel, speziell jedoch für Materialien, die subkutan implantiert in der Tierproduktion angewendet werden können, obwohl in diesem Fall die löslichen Stoffe vorzugsweise als Trägermaterialien dienen, um Mangelerscheinungen auszugleichen, und zwar besonders an Magnesium, Kupfer, Kobalt und/oder Selen.

Die in DD 248351 bzw. DE-05 3306648 beschriebenen bioaktiven Materialien vom CaO-P₂O₅-SiO₂-Typ zeigen in granulierter Form
eine stärkere Freisetzung von Calcium-, Natrium-, Kalium- und Magnesiumionen, jedoch werden dabei gleichzeitig auch größere Mengenanteile an Silicium freigesetzt, so daß eine Verwendung dieser Materialien nur in kompakter Form möglich ist.
Bisher nicht entwickelt wurde ein Material mit definiert schneller Löslichkeit, das gerade jenen Bereich abdeckt, der auf der einen Seite eine Depotwirkung bei Düngemitteln und bei o.g. subkutaner Implantation bei der Tierproduktion garantiert und auf der anderen Seite die (noch) zu geringe Resorptionsfähigkeit bei Knochenersatzmaterialien überwinden hilft. Dieses Material sollte aus der Sicht der Düngemittel wie auch ebenso der Knochenersatzmaterialien etc. nicht zu hohe Phosphorgehalte aufweisen, wie es den Metaphosphat-Gläsern eigen ist. Dennoch sollte das Material gut sinterbar, besser noch schmelzbar und gießbar sein, was einen weiteren Vorteil insbesondere hinsichtlich der Verarbeitbarkeit und der Homogenität des Produktes darstellt.
Es ist das Ziel der Erfindung, die geschilderten Nachteile des Standes der Technik zu überwinden.

Wesen der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, ein Material bereitzustellen, das sowohl in als auch ex vivo definiert schnell löslich ist und sich gut sintern oder schmelzen, vergießen und in Granulatform herstellen läßt.
Erfindungsgemäß wurde ein Material mit diesen Merkmalen entwickelt, das darüber hinaus noch weitere vorteilhafte Eigenschaften aufweist, die weiter unten näher beschrieben werden.
Schmilzt man Gemenge der Zusammensetzung von (Angaben in Massenteile in %):
\[
\begin{align*}
22 &- 45 \text{ CaO} \\
8 &- 20 \text{ Na}_2\text{O} \\
0 &- 14 \text{ K}_2\text{O}, \text{ vorzugsweise } 0,1 &- 14;
\end{align*}
\]
0 - 15 MgO, vorzugsweise 0,1 - 15;
30 - 55 P₂O₅
0 - 15 SiO₂, vorzugsweise 0,1 - 15;
0 - 40 Na₂SO₄ und/oder K₂SO₄, vorzugsweise 0,1 - 35

.. eine, vergießt oder frittet sie, so erhält man spontan kristallisierte Glaskeramiken, die überraschenderweise eine bislang in der ASTM-Kartei sowie in der einschlägigen Fachliteratur nicht ausgewiesene kristalline Phase enthalten, die im Rahmen dieser Beschreibung mit "X" bezeichnet wird, bzw. man erhält Mischkristalle dieser Phase "X".

Röntgendiffraktometrisch wird diese Phase "X" bzw. werden Mischkristalle von dieser Phase in etwa durch folgende d-Werte und Intensitäten charakterisiert:

Zusammensetzungsbeispiel c
d-Wert: 3,945 3,660 3,384 3,199 2,885 2,717 2,552 2,351 2,239 2,164 1,980 1,827 1,597 1,569 1,517
Intensitäten: 20 20 2 8 30 10 10 10 20 8 40 8 10 10 10

Zusammensetzungsbeispiel a
d-Wert: 3,904 3,618 3,347 3,189 2,851 2,579 2,529 2,221 2,209 2,141 1,953 1,808 1,578 1,547 1,498
Intensitäten: 20 20 2 8 90 100 10 10 20 8 40 8 10 10 10

Zusammensetzungsbeispiel d
d-Wert: 3,892 3,611 3,338 3,15 2,844 2,667 2,523 2,310 2,199 2,135 1,945 1,804 1,571 1,539 1,495
Intensitäten: 15 20 2 8 90 100 10 10 20 8 40 8 10 10 10

Zusammensetzungsbeispiel b
d-Wert: 3,875 3,600 3,325 3,12 2,835 2,663 2,514 2,303 2,195 2,131 1,941 1,800 1,569 1,537 1,491
Intensitäten: 20 20 2 8 90 100 10 10 20 8 40 8 10 8 8

Tieftemperaturform des CaNaPO₄ als alpha- bzw. beta-Rhenanit bezeichnet und die bloße Formulierung Rhenanit folglich beide Formen einschließt. Diesem Sprachgebrauch bzw. dieser Definition des Rhenanits schließen wir uns in der vorliegenden Beschreibung an.

Dem Strukturtyp von "A" ist auch die Phase "X" zuordnen, wobei allem Anschein nach bis über die Hälfte des Natriums durch Kalium ersetzt werden kann und auch Calcium teilweise durch Magnesium in dieser Struktur substituiert werden kann. Diese Substitutionen werden im allgemeinen, so auch hier, als Mischkristallbildung bezeichnet.

Die diese Phase enthaltenen Materialien zeigen nun auch die gewünschten Eigenschaften hinsichtlich einer definiert schnellen Löslichkeit, insbesondere im Hinblick auf die Knochensubstitution. In tierexperimentellen Studien wurde zudem überraschenderweise gefunden, daß ein bestimmter Teil dieser Stoffe wiederum die Bindegewebsbildung induziert.

Die neuen Materialien liegen im abgekühlten Zustand bei Raumtemperatur als Glas oder glaskristallines Material vor, können jedoch prinzipiell in den glaskristallinen Zustand überführt werden und weisen im wesentlichen an sich physiologische Bestandteile auf. Die Lösungsgeschwindigkeit der Materialien wird entsprechend der Anwendung in weiten Grenzen, wie weiter unten genau beschrieben, so eingestellt, daß keine toxischen Reaktionen bzw. Überkonzentrationen von jedweden Bestandteilen impliziert werden.

Eine Aufweitung des Schmelzbereiches führt über die Phase "X" hinaus zu weiteren, an sich bekannten kristallinen Phasen. Es können zusätzlich oder jeweils für sich allein die Phase "A" bzw. deren Mischkristalle, Rhenanit bzw. dessen Mischkristalle in dem erfindungsgemäß erzeugten Material vorhanden sein. Diese Zusammensetzungsvariationen eignen sich ebenso zur Applikation in den genannten Anwendungsgebieten im Sinne der Zielstellung, wie auch die Einbeziehung der an sich bekannten Isomorphiebeziehungen der Sulfate des Kaliums und Natriums.

Dieses erweiterte Zusammensetzungsgebiet erstreckt sich damit
auf die bereits eingangs genannten Komponenten in ihren Masseanteilen in %:
20 - 55 CaO
5 - 25 Na₂O
0,01-15 K₂O
0 - 15 MgO
30 - 50 P₂O₅
0 - 15 SiO₂
0 - 40 Na₃SO₄ und/oder K₂SO₄

Eine weitere Erhöhung des Calciumorthophosphatanteils führt jedoch zu zunehmend schwerer bzw. nicht schmelzbaren und nicht gließbaren Materialien, die sich damit sowohl von ihrem Herstellungsumfang als auch in ihren Eigenschaften (Löslichkeit) den bekannten Materialien nähern bzw. sich von den Erfindungszielen der vorliegenden Schrift entfernen.
Besonders vorteilhafte Ausführungsformen liegen daher in den Konzentrationsbereichen (Masseanteile in %)
21 - 50 CaO, insbesondere 23 - 50
5 - 20 Na₂O, insbesondere 6 - 20
0,1 - 14 K₂O, insbesondere 2 - 14
0,1 - 12 MgO, insbesondere 0,5 - 10
32 - 48 P₂O₅, insbesondere 35 - 48
0,1 - 15 SiO₂, insbesondere 1 - 10
0,1 - 35 Na₃SO₄ und/oder K₂SO₄, insbesondere 0,1 - 20

Weitere bevorzugte, erfindungsgemäße Ausführungsformen sind:
22 - 55 CaO, 6 - 12 Na₂O, 3 - 14 K₂O, 2 - 8 MgO, 37 - 43 P₂O₅,
0,5 - 10 SiO₂, 0,5 - 20 Na₃SO₄ und/oder K₂SO₄.

Das erfindungsgemäße Material ist weiterhin dadurch gekennzeichnet, daß es sich leicht sintern läßt bzw. bei einer Temperatur im Bereich von 1200 bis 1550 °C in eine gießfähige Schmelze überführt werden kann. Weitere Kennzeichen des Materials bestehen darin, daß im Falle der Schmelzbildung die Schmelze bei einer Abkühlgeschwindigkeit von größer als etwa 150 °C pro Minute in den glasigen Zustand bei Raumtemperatur überführt werden kann und daß die Schmelze bei Abkühlung unter normaler Abkühlgeschwindigkeit bzw. unter
einer Abkühlgeschwindigkeit, die langsamer als etwa 35 °C pro Minute erfolgt, spontan kristallisiert. Dabei bildet sich ein feinkristallines Gefüge aus.

Desweiteren wurde gefunden, daß spontan kristallisiertes Material gleicher chemischer Zusammensetzung wie das (unter extremen Abkühlbedingungen erhaltene) entsprechende Glas oder das aus dem Glas durch Temperung erzeugtes kristallines Material jeweils unterschiedliche Löslichkeiten aufweisen.

Es wurde weiterhin gefunden, daß die spontan kristallisierte Glaskeramik als kristalline Hauptbestandteile mindestens eine der Phasen des Rhenanits, Mischkristalle des Rhenanits, die Phase "A", Mischkristalle der Phase "A", die bereits oben genannte neue Phase "X" und/oder Mischkristalle der Phase "X" enthält. Das Material kann zusätzlich noch Glaserit und/oder kristallines Kaliumsulfat enthalten.

Wenn das Material als kristalline Hauptbestandteile Rhenanit bzw. Mischkristalle des Rhenanits enthält, so liegt die Zusammensetzung des Materials im Gemenge wie folgt vor (in Masseanteile in % und auf Oxidbasis berechnet):

30 - 40 CaO; 15 - 20 Na₂O; 0 - 1 K₂O, vorzugsweise 0,01 - 0,1 K₂O; 0 - 5 MgO, vorzugsweise 0,1 - 5 MgO; 40 - 55 P₂O₅; 0 - 15 SiO₂, vorzugsweise 0,1 - 8 SiO₂; 0 - 30 Na₂SO₄ und/oder K₂SO₄, vorzugsweise 0,1 - 25 Na₂SO₄ und/oder K₂SO₄.

Unter "kristalliner Hauptbestandteil" wird verstanden, daß der prozentuale Anteil der Komponente höher liegt als der Anteil anderer im Material vorhandener Komponenten.

Wenn das Material als kristalline Hauptbestandteile die Phase "A" enthält, so liegt die Zusammensetzung des Materials im Gemenge wie folgt vor (in Masseanteile in % und auf Oxidbasis berechnet):

40 - 50 CaO; 8 - 20 Na₂O; 0 - 1 K₂O, vorzugsweise 0,1 - 1 K₂O; 0 - 5 MgO, vorzugsweise 0,1 - 5 MgO; 40 - 50 P₂O₅; 3 - 20 SiO₂; 0 - 30 Na₂SO₄ und/oder K₂SO₄, vorzugsweise 0,1 - 25 Na₂SO₄ und/oder K₂SO₄.

Wenn das Material als kristalline Hauptbestandteile die Phase "X" bzw Mischkristalle der Phase "X" enthält, so liegt die
Zusammensetzung des Materials im Gemenge wie folgt vor (in Masseanteile in % und auf Oxidbasis berechnet):
22 - 45 CaO; 8 - 20 Na₂O; 0 - 14 K₂O, vorzugsweise 0,1 - 14 K₂O; 0 - 15 MgO, vorzugsweise 0,1 - 15 MgO; 30 - 55 P₂O₅; 0 - 15 SiO₂, vorzugsweise 0,1 - 15 SiO₂; 0 - 40 Na₂SO₄ und/oder K₂SO₄, vorzugsweise 0,1 - 35 Na₂SO₄ und/oder K₂SO₄.
Ein besonderer Vorteil der Erfindung ist es, daß das Material biokompatibel ist, teilweise sogar bioaktiv im Sinne einer direkten Knochenanlagerung oder unter ständigem Lösung die Bildung neuen Knochengewebes ermöglicht. Es fördert andererseits auch die Bindegewebsbildung. Das Material kann beispielsweise als Granulat eingesetzt werden mit einer Körnung im Bereich von 63 - 500 μm.

Gegenstand der Erfindung ist weiterhin ein Verfahren zur Herstellung eines glasigen oder glasigkristallinen Materials mit schneller Löslichkeit, das darin besteht, daß man ein Gemenge, bestehend aus (in Masseanteile in % und auf Oxidbasis berechnet):
20 - 55 CaO; 5 - 25 Na₂O; 0 - 15 K₂O; 0 - 15 MgO; 30 - 55 P₂O₅; 0 - 15 SiO₂; 0 - 40 Na₂SO₄ und/oder K₂SO₄ mindestens 10 Minuten lang bei einer Temperatur von etwa 1200 bis 1580 °C sintert oder schmilzt und die Schmelze abkühlt. Bevorzugt einsetzbar sind die bereits weiter oben genannten bevorzugten Zusammensetzungen.
Wie bereits weiter oben dargestellt, kann die Abkühlung mit einer sehr hohen Abkühlgeschwindigkeit von wenigstens 150, besser jedoch 5*10² °C pro Minute erfolgen und dabei ein glasiges Material erhalten werden.
Doch der Hauptweg der Herstellung von erfindungsgebäusen schnell löslichen Materialien besteht im Schmelzen mit nachfolgender spontaner Kristallisation. Daher sollen im weiteren alle Ausführungen vorzugsweise auf diesen Verfahrensweg ausgerichtet sein. Dabei wird die Schmelze mit einer Geschwindigkeit von kleiner als ca. 35 °C pro Minute abgekühlt, wobei die spontane Kristallisation auftritt.

Für das erfindungsgemäße Verfahren vorteilhaft ist es, P₂O₅ in Form von Phosphorsäure einzusetzen.

Eine vorteilhafte Materialform ist die Granulatform, so daß das aus der Schmelze abgekühlte und gegebenenfalls getemperte Material mittels üblicher Verfahren zerkleinert und klassiert wird.

Wenn der Gehalt an Na₂SO₄ und/oder K₂SO₄ etwa gleich oder größer als 3 Massanteile in % im Ausgangsgemenge beträgt, ist es vorteilhaft, das Granulat einer Behandlung mit destilliertem Wasser über einen Zeitraum von 0,1 bis 10 Stunden bei erhöhter Temperatur, vorzugsweise bei ca. 80 bis 100 °C auszusetzen. Dadurch wird eine Erhöhung der inneren Oberfläche des Materials erreicht, was sich in einer Erhöhung der Löslichkeit ausdrückt, und der Sulfatanteil kann, - wenn er nicht erwünscht ist -, reduziert werden. Darüber hinaus kann das auf diese Weise zurückgewonnene Sulfat dem Verarbeitungsprozeß wieder zugeführt werden.

Wie bereits ausgeführt, kann das neue schnell lösliche Material als resorbierbares Knocheneratzmaterial eingesetzt werden oder auch zur Bindegewebsinduktion.

Hierbei ist es zweckmäßig, Granulat in gewünschter Körnung in die entsprechenden Körperregionen, z.B. postoperative Hohlräume im menschlichen oder tierischen Körper,
gelegentlich auch an Schwefel mangelt.
Da es üblich ist, Schwefel als sog. "Kopfdünger" einzusetzen, kommt die im erfindungsgemäßen Material vorliegende Form des Schwefels, die Möglichkeit einer schnellen Freisetzung, besonders der schwefelhaltigen Kaliumkomponente, dem Anwendungsgebrauch entgegen. (Bei Implantation von derartigen Materialien in lebende Organismen ist hingegen, die Natriumkomponente bevorzugt einzusetzen.)
Die Anwendung als Düngemittel konzentriert sich auf Kleingärten, Wein- und Obstanbau, jedoch wäre es ebenso günstig für Ackerbohnen und Roggen, da hier vergleichsweise viel Calcium dem Boden entzogen wird und calciumreiche Düngemittel ebenfalls aus dem erfindungsgemäßen Zusammensetzungsfeld ableitbar sind.
Obwohl vorzugsweise lediglicher Grunddünger vor der Aussaat ausgebracht wird, empfiehlt es sich auch, den erfindungsgemäßen Depotdünger so anzuwenden. Die auszubringenden Mengen lassen sich auf der Basis der jeweiligen Bodenanalyse im Zusammenhang mit den getesteten Löschlichkeiten der Materialien ermitteln (vergl. auch die unten folgenden Analysewerte der Schnellmethode zur Bestimmung der Löschlichkeit).
Weiterhin wurde gefunden, daß die erfindungsgemäßen Materialien mit schneller Löschlichkeit in der eingangs beschriebenen Zusammensetzung einschließlich der vorteilhaften Zusammensetzungsbereiche erfolgreich als Futtermittelzusatz eingesetzt werden können. Gegenüber herkömmlichen Futtermittelzusatz auf Basis von Metaphosphatgläsern werden durch verringerten aber ausreichenden Phosphatgehalt, der langsam im tierischen Körper umgesetzt wird, vorteilhafte Wirkungen erzielt. Insbesondere günstig ist die Form des Subkutan-Implantatkörpers, der zusätzlich noch die Spurenelemente wie Kupfer, Kobalt und/oder Selen in gewünschter Menge enthält, d.h., die Konzentration dieser Bestandteile kann im Implantatkörper durchaus höhere Werte im Prozentbereich einschließen.

Um einen Vergleich zur In-vitro-Löslichkeit verschiedener Substanzen ziehen zu können, wurden zwei verschiedene Wege beschritten, einmal die Löslichkeit in einer Differenzialkreislaufzelle und zum anderen eine Schnellmethode, die hier zur Kenntnis gegeben werden soll:

\[(\text{Einwaage in mg} - \text{Auswaage in mg}) \times \frac{1000}{\text{Einwaage in mg}}\]

Ergebnis in mg Substanzverlust/ g Einwaage

Sodann wird die Standardabweichung berechnet.

Nach dieser Methode ergeben sich folgende Werte:
<table>
<thead>
<tr>
<th>Material bzw.</th>
<th>mg Substanzverlust / g Einwaage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca₃(PO₄)₂</td>
<td></td>
</tr>
<tr>
<td>Charge 1</td>
<td>3,1 ± 0,39</td>
</tr>
<tr>
<td>Charge 2</td>
<td>3,0 ± 0,63</td>
</tr>
<tr>
<td>Charge 3</td>
<td>2,9 ± 0,60</td>
</tr>
<tr>
<td>Charge 4</td>
<td>2,2 ± 0,16</td>
</tr>
<tr>
<td>4CaO*P₂O₅</td>
<td></td>
</tr>
<tr>
<td>Charge 1</td>
<td>1,8 ± 0,72</td>
</tr>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Charge 1</td>
<td>5,9 ± 0,27</td>
</tr>
<tr>
<td>Charge 2</td>
<td>6,6 ± 0,55</td>
</tr>
<tr>
<td>Charge 3</td>
<td>6,2 ± 0,28</td>
</tr>
<tr>
<td>b</td>
<td>5,7 ± 0,84</td>
</tr>
<tr>
<td>c</td>
<td>14,7 ± 0,77</td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>Charge 1, unbehandelt</td>
<td>93,6 ± 3,57</td>
</tr>
<tr>
<td>Charge 2, unbehandelt</td>
<td>87,6 ± 1,22</td>
</tr>
<tr>
<td>Charge 1, behandelt</td>
<td>23,1 ± 1,23</td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>unbehandelt</td>
<td>36,6 ± 1,68</td>
</tr>
<tr>
<td>behandelt</td>
<td>3,8 ± 0,77</td>
</tr>
<tr>
<td>f</td>
<td>(glasig, abgeschreckt)</td>
</tr>
<tr>
<td></td>
<td>54,9 ± 7,12</td>
</tr>
<tr>
<td>g</td>
<td>9,8 ± 1,98</td>
</tr>
<tr>
<td>o</td>
<td></td>
</tr>
<tr>
<td>Charge 10, unbehandelt</td>
<td>188,0 ± 0,99 (n = 5)</td>
</tr>
<tr>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Charge 10, unbehandelt</td>
<td>244,9 ± 0,5 (n = 6)</td>
</tr>
</tbody>
</table>

* Zusammensetzungen siehe Tabelle 1
Nach den Ergebnissen der Schnellmethode zur Bestimmung der Löslichkeit zeichnet es sich ab, daß man eine Grobeinteilung der Materialien nach den Hauptkristallphasen vornehmen kann: Rhenanit bzw. Mischkristalle des Rhenanits ca. 3...10 mg/g Phase "A" bzw. Mischkristalle der Phase "A" ca. 1...4 mg/g Phase "X" bzw. Mischkristalle der Phase "X" ca. 7...15 mg/g. Unter dem Zusatz der Sulfatanteile bzw. nach Durchführung einer entsprechenden Behandlung (Ausläugung) von Materialien mit hohen Sulfatanteilen, besitzt diese Einteilung dann natürlich keine Gültigkeit mehr; diese Werte werden dann wunschgemäß noch erheblich übertroffen.

Festzustellen bleibt jedoch generell, daß insbesondere Materialien, die die (neue) Phase "X" bzw. Mischkristalle der Phase "X" enthalten, sich für die Herstellung der reinen und der mit Sulfatanteilen versehenen Mischschmelzen und daraus gewonnenen Produkten besonders gut eignen. Dies drückt sich u.a. in der guten Gießbarkeit der Schmelzen, der Homogenität der Materialien, der Auslaugfähigkeit bei Anwesenheit von Sulfaten etc. aus.

Ausführungsbeispiele

Im folgenden werden nun Beispiele zu einigen Untersuchungen im Hinblick auf die Anwendung gegeben.
<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>CaO</th>
<th>MgO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>P₂O₅</th>
<th>SiO₂</th>
<th>Zusätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>24.0</td>
<td>5.4</td>
<td>8.3</td>
<td>13.3</td>
<td>40.1</td>
<td>8.9</td>
<td>-</td>
</tr>
<tr>
<td>b</td>
<td>25.11</td>
<td>5.52</td>
<td>13.70</td>
<td>6.94</td>
<td>41.48</td>
<td>7.38</td>
<td>-</td>
</tr>
<tr>
<td>c</td>
<td>31.5</td>
<td>-</td>
<td>8.3</td>
<td>13.3</td>
<td>40.1</td>
<td>8.9</td>
<td>-</td>
</tr>
<tr>
<td>d</td>
<td>24.0</td>
<td>5.4</td>
<td>8.3</td>
<td>13.3</td>
<td>40.1</td>
<td>8.9</td>
<td>10 Na₂SO₄</td>
</tr>
<tr>
<td>e</td>
<td>25.11</td>
<td>5.52</td>
<td>13.70</td>
<td>6.94</td>
<td>41.48</td>
<td>7.38</td>
<td>10 Na₂SO₄</td>
</tr>
<tr>
<td>f</td>
<td>25.63</td>
<td>6.04</td>
<td>9.27</td>
<td>14.12</td>
<td>34.05</td>
<td>9.05</td>
<td>-</td>
</tr>
<tr>
<td>g</td>
<td>18.68</td>
<td>6.73</td>
<td>10.32</td>
<td>15.64</td>
<td>38.63</td>
<td>10.00</td>
<td>-</td>
</tr>
<tr>
<td>h</td>
<td>25.76</td>
<td>4.64</td>
<td>11.27</td>
<td>17.48</td>
<td>40.85</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>i</td>
<td>25.76</td>
<td>4.64</td>
<td>11.27</td>
<td>17.48</td>
<td>40.85</td>
<td>-</td>
<td>8 Na₂SO₄</td>
</tr>
<tr>
<td>j</td>
<td>32.75</td>
<td>-</td>
<td>13.7</td>
<td>6.94</td>
<td>41.48</td>
<td>7.38</td>
<td>-</td>
</tr>
<tr>
<td>k</td>
<td>32.75</td>
<td>-</td>
<td>13.7</td>
<td>6.94</td>
<td>41.48</td>
<td>7.38</td>
<td>4 Na₂SO₄</td>
</tr>
<tr>
<td>l</td>
<td>24.35</td>
<td>5.52</td>
<td>8.84</td>
<td>13.54</td>
<td>40.54</td>
<td>7.21</td>
<td>-</td>
</tr>
<tr>
<td>m</td>
<td>24.35</td>
<td>5.52</td>
<td>8.84</td>
<td>13.54</td>
<td>40.54</td>
<td>7.21</td>
<td>4 K₂SO₄</td>
</tr>
<tr>
<td>n</td>
<td>24.35</td>
<td>5.52</td>
<td>8.84</td>
<td>13.54</td>
<td>40.54</td>
<td>7.21</td>
<td>10 K₂SO₄</td>
</tr>
<tr>
<td>o</td>
<td>24.35</td>
<td>5.52</td>
<td>8.84</td>
<td>13.54</td>
<td>40.54</td>
<td>7.21</td>
<td>30 Na₂SO₄</td>
</tr>
<tr>
<td>p</td>
<td>24.0</td>
<td>5.4</td>
<td>8.3</td>
<td>13.3</td>
<td>40.1</td>
<td>8.9</td>
<td>20 Na₂SO₄</td>
</tr>
<tr>
<td>q</td>
<td>24.0</td>
<td>5.4</td>
<td>8.3</td>
<td>13.3</td>
<td>40.1</td>
<td>8.9</td>
<td>10 Na₂SO₄ und 10 K₂SO₄</td>
</tr>
<tr>
<td>r</td>
<td>24.35</td>
<td>5.52</td>
<td>8.84</td>
<td>13.54</td>
<td>40.54</td>
<td>7.21</td>
<td>4.5 Na₂SO₄ und 4.5 K₂SO₄</td>
</tr>
<tr>
<td>s</td>
<td>25.76</td>
<td>4.64</td>
<td>11.27</td>
<td>17.48</td>
<td>40.85</td>
<td>-</td>
<td>3 Na₂SO₄ und 18 K₂SO₄</td>
</tr>
</tbody>
</table>
Beispiel 1
Ein Material der Zusammensetzung \(g \) wurde nach dem Schmelzen und Abkühlen unter normalen Bedingungen zerkleinert. Eine Kornfraktion von 200 bis 500 \(\mu m \) wurde ausgewählt für die nachfolgenden Tierversuche. Das Material wurde sowohl subkutan als auch in den Knochen von Ratten und Kaninchen implantiert. Nach 4, 8 und 12 Wochen Liegezeit war das Material in beiden Fällen noch nachweisbar, obwohl der Mengenanteil bzw. die Korngröße beträchtlich abgenommen hatten. Im Knochengerüst wurde das Material direkt von Knochengerüst kontaktiert, während bei der Subkutanimplantation eine feste bindegewebige Einscheidung impliziert worden war.

Beispiel 2
Ein Material der Zusammensetzung \(f \) wurde geschmolzen, zu einer Platte vergossen und nach dem langsamen Abkühlen im Ofen zerkleinert. Das Granulat der Kornfraktion von 200 bis 500 \(\mu m \) wurde analog zum Beispiel 1 implantiert. Die histologischen Untersuchungen ergaben, daß das Material wie alle implantierten Materialien überhaupt — entzündungsfrei — einheilte. In diesem Falle zeigte sich ferner, daß das Material im Knochengerüst nach 12 bzw. 20 Wochen vollständig resorbiert war. Hingegen konnten Partikelreste im Bindegewebe nach Subkutanimplantation nachgewiesen werden.

Beispiel 3
Analog zu Beispiel 2 wurde Material der Zusammensetzung \(a \) hergestellt und implantiert. Während im Knochen noch Reste des implantierten Granulats nach 15 Wochen nachweisbar waren, waren es im Subkutanerüst nach dieser Zeit bereits vollständig resorbiert worden.

Beispiel 4
Ein Material der Zusammensetzung \(d \) wurde bei 1500 °C geschmolzen, zu einer Platte vergossen, die anschließend nach
dem Abkühlen zerkleinert wurde. Das daraus hergestellte Granulat der Kornfraktion von 200 - 500 μm wurde einmal vorbehandelt, d.h., bei 90 °C 30 min lang in dest. Wasser gekocht, und zum anderen unbehandelt in Versuchsschweine in den Knochen implantiert.

Nach 20 Wochen Liegedauer waren beide Materialien vollständig resorbiert. Es wurde jedoch keine Knochenbildung an diesen Stellen impliziert, wodurch sich das Material zur Auffüllung von Hohlräumen eignet, bei denen lediglich Bindegewebe induziert werden soll.

Beispiel 5

Die Materialherstellung und die tierexperimentelle Testung erfolgte exakt nach Beispiel 4.

In beiden Fällen wurde jedoch 55 Masse-% des erfindungsgemäßen Materials mit 45 Masse-% eines oberflächenmodifizierten Tricalciumphosphat (TCP)-Granulats (entsprechend WP-DD 258713 A 3) vermischt und implantiert.

In diesen Fällen zeigte sich eine Knochenbildung in den künstlich gesetzten Defekten, wobei noch Reste des TCP nach diesem Zeitraum von 20 Wochen noch nachweisbar waren. Allerdings sind diese Implantatreste vergleichsweise extrem gering als im Falle der Auffüllung der Knochendefekte mit reinem oberflächenmodifizierten TCP.

Durch diese kombinierte Anwendung ist der Knochen nach einer entsprechenden Einheilphase voll funktionsfähig.
Patentansprüche

1. Glasiges oder glasig-kristallines Material mit schneller Löslichkeit, dadurch gekennzeichnet, daß das Gemenge vor dem Brennen des Materials folgende chemische Zusammensetzung (in Masseteile in % und auf Oxidbasis berechnet) aufweist:
 - 20 bis 55 % CaO
 - 5 bis 25 % Na₂O
 - 0,01 bis 15 % K₂O
 - 0 bis 15 % MgO
 - 30 bis 50 % P₂O₅
 - 0 bis 15 % SiO₂
 - 0 bis 40 % Na₂SO₄ und/oder K₂SO₄
 und daß das glasig-kristalline Material als kristalline Hauptbestandteile mindestens eine der Phasen des Rhenanits, Mischkristalle des Rhenanits, die Phase "A", Mischkristalle der Phase "A", die Phase "X" und/oder Mischkristalle der Phase "X" enthält.

2. Material nach Anspruch 1, dadurch gekennzeichnet, daß es besteht aus 20 - 55 % CaO, vorzugsweise 21 - 50, insbesondere 23 - 50
 - 5 - 25 % Na₂O, vorzugsweise 5 - 20, insbesondere 6 - 20
 - 0,1 - 15 % K₂O, vorzugsweise 0,1 - 14, insbesondere 2 - 14
 - 0,1 - 15 % MgO, vorzugsweise 0,1 - 12, insbesondere 0,5 - 10
 - 30 - 50 % P₂O₅, vorzugsweise 32 - 48, insbesondere 35 - 48
 - 0,1 - 15 % SiO₂, vorzugsweise 2 - 15, insbesondere 3 - 15
 - 0,1 - 35 % Na₂SO₄ und/oder K₂SO₄, vorzugsweise 0,1 - 20, insbesondere 0,1 - 15.

4. Material nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als kristalline Hauptbestandteile Rhenanit bzw. Mischkristalle des Rhenanits vorliegen, die folgende chemische Zusammensetzung aufweisen (in Masseanteile in % und auf Oxidbasis berechnet):
5. Material nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als kristalline Hauptbestandteile die Phase "A" bzw. Mischkristalle der Phase "A" vorliegen, die folgende chemische Zusammensetzung aufweisen:

 40 - 50 % CaO; 8 - 20 % Na₂O; 0 - 1 % K₂O, vorzugsweise 0,1 - 1 %
 0 - 5 % MgO, vorzugsweise 0,1 - 5 %; 40 - 50 % P₂O₅;
 3 - 20 % SiO₂; 0 - 30 % Na₂SO₄ und/oder K₂SO₄, vorzugsweise 0,1 bis 25 %.

6. Material nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als kristalline Hauptbestandteile die Phasen "X" bzw. Mischkristalle der Phase "X" vorliegen, die folgende chemische Zusammensetzung aufweisen:

 22 - 45 % CaO; 8 - 20 % Na₂O; 0 - 14 % K₂O, vorzugsweise 0,1 - 14 %;
 0 - 15 % MgO, vorzugsweise 0,1 - 15 %; 30 bis 55 % P₂O₅;
 0 - 15 % SiO₂, vorzugsweise 0,1 bis 15 %; 0 - 40 % Na₂SO₄ und/oder K₂SO₄, vorzugsweise 0,1 - 35 %.

7. Material nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß es einen Arzneimittelwirkstoff trägt und/oder in einer Trägerfolie vorliegt.

8. Verfahren zur Herstellung eines glasigen oder glasigkristallinen Materials mit schneller Löslichkeit, dadurch gekennzeichnet, daß ein Gemenge, bestehend aus (in Masseanteilen in % und auf Oxidbasis berechnet)

 20 bis 55 % CaO; 5 bis 25 % Na₂O; 0 bis 15 % K₂O; 0 bis 15 %
 MgO; 30 bis 50 % P₂O₅; 0 bis 15 % SiO₂; 0 bis 40 % Na₂SO₄
 und/oder K₂SO₄

 mindestens 10 Minuten bei einer Temperatur von 1200 bis 1580 °C gesintert oder geschmolzen wird und a) das gesinterte Material abgekühlt wird, oder b) die Schmelze entweder mit einer Abkühlgeschwindigkeit von größer etwa 5 · 10² °C pro Minute in den
glasigen Zustand bei Raumtemperatur überführt wird, oder bei Abkühlung unter normaler Abkühlgeschwindigkeit oder unter einer Abkühlgeschwindigkeit, die langsamer als etwa 35 °C pro Minute erfolgt, spontan kristallisiert wird; und gegebenenfalls c) das spontan kristallisierte Material einem üblichen Temperungsprozeß unterzogen wird im Temperaturbereich von ca. 600 bis 1200 °C in Abhängigkeit von der chemischen Zusammensetzung, um den kristallinen Anteil noch weiter zu erhöhen, wobei die Kristallphasen des Rhenanits, Mischkristalle des Rhenanits, der Phase "A", Mischkristalle der Phase "A", der Phase "X", Mischkristalle der Phase "X", Glaserit und/oder kristallines Kaliumsulfat in Erscheinung treten, in der Regel jedoch der Anteil der Hauptkristallphase weiter erhöht wird.

9. Verwendung des Materials nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß man es als resorbierbares Knochenersatzmaterial oder zur Bindegewebsinduktion einsetzt.

INTERNATIONAL SEARCH REPORT

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC

| Int. Cl. | C 03 C 3/16, 10/02, A 61 L 27/00 |

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. Cl. 5</td>
<td>A 61 L; C 03 C; C 05 B</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the extent that such Documents are Included in the Fields Searched *

III. DOCUMENTS CONSIDERED TO BE RELEVANT *

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE, A1, 3142813 (ASAHI GLASS CO. LTD. ET AL) 15 July 1982, see the whole document</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>GB, A, 2031867 (BFG GLASSGROUP) 30 April 1980, see the whole document</td>
<td>1-10</td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 10

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

25 January 1991 (25.01.91)

Date of Mailing of this International Search Report

18 February 1991 (18.02.91)

International Searching Authority

European Patent Office

Signature of Authorized Officer

Form PCT/ISA/210 (second sheet) (January 1985)
ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO. PCT/DE 90/00875

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on 28/11/90
The European Patent office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE-A1- 3142813</td>
<td>15/07/82</td>
<td>FR-A-B- 2492805</td>
<td>30/04/82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A-B- 2087375</td>
<td>26/05/82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-C- 1482081</td>
<td>27/02/89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 57077038</td>
<td>14/05/82</td>
</tr>
<tr>
<td>GB-A- 2031867</td>
<td>30/04/80</td>
<td>BE-A- 878884</td>
<td>20/03/80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A- 2938779</td>
<td>10/04/80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR-A-B- 2437387</td>
<td>25/04/80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL-A- 7907178</td>
<td>01/04/80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4334908</td>
<td>15/06/82</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European patent Office, No. 12/82

EPO FORM P0479
INTERNATIONALER RECHERCHENBERICHT
Internationales Aktenzeichen PCT/DE 90/00875

I. KLASSEIFIKATION DES ANMELDUNGSGENSTANDS (bei mehreren Klassifikationssymbolen sind alle anzugeben)\(^6\)

Nach der internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC
Int.Cl.\(^5\) C 03 C 3/16, 10/02, A 61 L 27/00

II. RECHERCHIERTE SACHGEBIETE

Rechercherter Mindestprüfstoff\(^7\)

<table>
<thead>
<tr>
<th>Klassifikationssystem</th>
<th>Klassifikationssymbole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.Cl.(^5)</td>
<td>A 61 L; C 03 C; C 05 B</td>
</tr>
</tbody>
</table>

Recherche nicht zum Mindestprüfstoff gehörige Veröffentlichungen, soweit diese unter die recherchierten Sachgebiete fallen.\(^8\)

III. EINSCHLÄGIGE VERÖFFENTLICHUNGEN\(^9\)

<table>
<thead>
<tr>
<th>Art</th>
<th>Kennzeichnung der Veröffentlichung(^1), soweit erforderlich unter Angabe der maßgeblichen Titel(^2)</th>
<th>Betr. Anspruch Nr.(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE, A1, 3142813 (ASHI GLASS CO. LTD. ET AL) 15 Juli 1982, siehe Dokument insgesamt</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>GB, A, 2031867 (BFG GLASSGROUP) 30 April 1980, siehe Dokument insgesamt</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Besondere Kategorien von angegebenen Veröffentlichungen\(^1\): Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutend anzusehen ist Veröffentlichung, die die Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelsfrei erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

** Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

*** Veröffentlichung von besonderer Bedeutung, die beanstandete Erfindung kann nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

**** Veröffentlichung von besonderer Bedeutung, die beanstandete Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist

***** Veröffentlichung, die Mitglied derselben Patentfamilie ist

IV. BESCHEINIGUNG

Abschließendes Datum des internationalen Recherchenberichts 18.02.91

Internationale Recherchenbehörde Europäisches Patentamt

Unterschrift des bevollmächtigten Bediensteten miss T. MORTENSEN
ANHANG ZUM INTERNATIONALEN RECHERCHENBERICHT
ÜBER DIE INTERNATIONALE PATENTANMELDUNG NR. PCT/DE 90/00875

<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglieder der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE-A1- 3142813</td>
<td>15/07/82</td>
<td>FR-A-B- 2492805</td>
<td>30/04/82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A-B- 2087375</td>
<td>26/05/82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-C- 1482081</td>
<td>27/02/89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 57077038</td>
<td>14/05/82</td>
</tr>
<tr>
<td>GB-A- 2031867</td>
<td>30/04/80</td>
<td>BE-A- 878884</td>
<td>20/03/80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A- 2938779</td>
<td>10/04/80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR-A-B- 2437387</td>
<td>25/04/80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL-A- 7907178</td>
<td>01/04/80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4334908</td>
<td>15/06/82</td>
</tr>
</tbody>
</table>

Für nähere Einzelheiten zu diesem Anhang: siehe Amtsblatt des Europäischen Patentamts, Nr. 12/82

EPO FORM P0473