Title: METHOD FOR DETERMINING TRANSMITTABLE TORQUE OF A CLUTCH IN AN AUTOMATIC TRANSMISSION OF A MOTOR VEHICLE

Bezeichnung: VERFAHREN ZUR ERMITTlung ÜBERTRAGBAREN DREHMOMENTES EINER KUPPLUNG EINES AUTOMATISCHEN GETRIEBES EINES KRAFTFAHRZEUGES

Abstract: The invention relates to a method for determining transmittable torque of a clutch (2) in an automatic transmission (1) of a motor vehicle, particularly an automated manually shifted transmission (1a), torque being transmittable from an engine shaft (3) to a transmission input shaft (4) by means of a clutch (2). The transmission (1) comprises at least one gear step (Z1), preferably several gear steps (Z1 to Z5), and at least one synchronizing device (S1, S2, S3) for engaging and/or disengaging a gear step (Z1) within the transmission (1). A control device (10) is provided for controlling shifting of the transmission (1), the clutch (2), and/or engine torque while the rotational speeds of the engine shaft (3) and the transmission input shaft (4) are measured. The control effort is reduced by the fact that a gear step (Z1 to Z5) is pre-synchronized in the transmission (1) by means of the synchronizing device (S1 to S3), i.e. the synchronizing device (S1 to S2) is impinged upon by a certain synchronizing force (F₁, F₂) without the gear step (Z1 to Z5) being engaged, whereupon the torque transmitted by the clutch (2) is determined via a comparison of the rotational speeds of the engine shaft (3) and the transmission input shaft (4) by taking into account the actual synchronizing force (F₁, F₂).

Zusammenfassung: Die Erfindung betrifft ein Verfahren zur Ermittlung eines übertragbaren Drehmomentes einer Kupplung (2) eines automatischen Getriebes (1) eines Kraftfahrzeuges, insbesondere eines automatisierten Schlachtgetriebes (1a), wobei ein Drehmoment von einer Motorwelle (3) mit Hilfe einer...
Kupplung (2) auf eine Getriebeeingangswelle (4) übertragbar ist, wobei das Getriebe (1) mindestens eine Gangstufe (Z1), vzw. mehrere Gangstufen (Z1 bis Z5) und zumindest eine Synchronisiervorrichtung (S1, S2, S3) zum Ein- und/oder Auskuppeln einer Gangstufe (Z1) innerhalb des Getriebes (1) aufweist, wobei ein Steuergerät (10) zur Steuerung der Schaltungen des Getriebes (1), der Kupplung (2) und/oder des Motorzulemmomentes vorgesehen ist, und wobei die Drehzahlen der Motorwelle (3) und der Getriebeeingangswelle (4) gemessen werden. Der Steueraufwand ist daher verringert, dass mit Hilfe der Synchronisiervorrichtung (S1 bis S3) eine Gangstufe (Z1 bis Z5) im Getriebe (1) synchronisiert wird, nämlich die Synchronisiervorrichtung (S1 bis S2) mit einer bestimmten Synchronisierkraft (F1, F2) beaufschlagt wird, ohne dass jedoch die Gangstufe (Z1 bis Z5) eingelegt wird, und dass dann über einen Vergleich der Drehzahlen der Motorwelle (3) und der Getriebeeingangswelle (4) unter Berücksichtigung der aktuellen Synchronisierkraft (F1, F2) das von der Kupplung (2) übertragene Drehmoment bestimmt wird.
„Verfahren zur Ermittlung eines übertragbaren Drehmomentes einer Kupplung eines automatischen Getriebes eines Kraftfahrzeuges“

Das bekannte Verfahren ist noch nicht optimal ausgebildet, da das von einer Kupplung übertragene Drehmoment hiermit noch nicht optimal ermittelt werden kann. Auch nimmt das Messverfahren eine bestimmte Zeidauer in An-

BESTÄTIGUNGSKOPIE
spruch, da als Referenz für das Kupplungsmoment jeweils zwei Drehzahlgradienten \(\frac{dn}{dt} \) zunächst erst mal ermittelt werden müssen. Zudem ist der Steueraufwand relativ hoch und damit kostenaufwendig.

Der Erfindung liegt daher die Aufgabe zugrunde, das eingangs genannte Verfahren derart auszugestalten und weiterzubilden, dass der Steueraufwand verringert und das von einer Kupplung übertragbare Drehmoment auf relativ einfache Art und Weise mit bereits im System vorhandenen Steuerkomponenten ermittelt werden kann.

Die zuvor aufgezeigte Aufgabe ist nun dadurch gelöst, dass mit Hilfe der Synchronisiervorrichtung eine Gangstufe im Getriebe ansynchronisiert wird, nämlich die Synchronisiervorrichtung mit einer bestimmten Synchronisierungskraft beaufschlagt wird, ohne das jedoch die Gangstufe eingelegt wird, und dass dann über einen Vergleich der Drehzahlen der Motorwelle und der Getriebeeingangs- welle unter Berücksichtigung der aktuellen Synchronisierungskraft das von der Kupplung übertragene Drehmoment bestimmt wird.

Zur Steuerung der Schaltungen des Getriebes, sowie der Kupplung bzw. der Steuerung des Motors ist ein Steuergerät vorgesehen, dass entsprechende elektrische und/oder elektronische Baueinheiten aufweist. Diesem Steuergerät werden die Drehzahlen der jeweiligen Wellen, also die Drehzahl der Motorwelle sowie die Drehzahl der Getriebeeingangswelle gemeldet. Das Steuergerät steuert aufgrund der dem Steuergerät zugeführten Eingangsdaten die entsprechenden

Es gibt nun unterschiedliche Möglichkeiten das erfindungsgemäße Verfahren in vorteilhafter Art und Weise auszugestalten und weiterzubilden. Hierfür darf zunächst auf die dem Patentanspruch 1 nachgeordneten Patentansprüche verwiesen werden. Im folgenden soll nun ein bevorzugtes Ausführungsbeispiel der Erfindung anhand der nachfolgenden Zeichnung und der zugehörenden Beschreibung näher erläutert werden. In der Zeichnung zeigt:

Fig. 1 in einer schematisch vereinfachten Darstellung ein automatisiertes Handschaltgetriebe mit entsprechenden einzelnen Komponenten.

Im folgenden soll nun das erfindungsgemäße Verfahren näher erläutert werden:

Fig. 1 zeigt in schematischer Darstellung ein automatisches Getriebe 1 eines nicht im einzelnen dargestellten Kraftfahrzeuges. Das hier dargestellte Getriebe
1 ist als automatisiertes Handschaltgetriebe 1a ausgeführt und wird vzw. - so wie hier dargestellt - im sogenannten „3-Liter-Auto“ verwendet.

Gut zu erkennen in Fig. 1 ist hier das automatisierte Handschaltgetriebe 1a und die Kupplung 2 sowie der Motor M. Das Drehmoment ist nun bei laufendem Motor von einer Motorwelle 3 mit Hilfe der Kupplung 2 auf eine Getriebeeingangswelle 4 übertragbar. Das hier dargestellte automatisierte Handschaltgetriebe 1a weist mehrere Gangstufen, nämlich die erste Gangstufe Z1, die zweite Gangstufe Z2, die dritte Gangstufe Z3, die vierte Gangstufe Z4 und eine fünfte Gangstufe Z5 auf. Jeweils eine Gangstufe Z1 bis Z5 wird durch zwei separate hier nicht näher bezeichnete Zahnräder gebildet, wovon eines jeweils auf der Getriebeeingangswelle 4 und ein anderes auf der Getriebeausgangswelle 5 angeordnet ist.

Es ist gut zu erkennen, dass hier die Getriebeausgangswelle 5 mit dem Achsantrieb 6, der die Kraft auf die Achse 7 bzw. die Räder 8 und 9 überträgt wirksam verbunden ist.

Weiterhin sind mehrere Synchronisiervorrichtung S1 bis S3 innerhalb des Getriebes 1 vorgesehen. So wird über die Synchronisiervorrichtung S1 entweder die erste Gangstufe Z1 oder die zweite Gangstufe Z2 eingelegt bzw. über die zweite Synchronisiervorrichtung S2 die dritte Gangstufe Z3 oder die vierte Gangstufe Z4 eingelegt, wobei schließlich über die dritte Synchronisiervorrichtung S3 die fünfte Gangstufe Z5 einlegbar ist. Die hier dargestellten Synchronisiervorrichtungen S1 bis S3 sind in der üblichen Weise realisiert, weisen also die entsprechenden Synchronringe bzw. Synchronkörper und auch die entsprechenden Schiebemuffen-Einheiten auf. Die einzelnen Synchronisiervorrichtungen S1 bis S3 sind jeweils entsprechend ansteuerbar, was durch die entsprechenden Pfeile A dargestellt sein soll.

Ist bspw. die erste Synchronisiervorrichtung S1 nach rechts gerückt, so dass die zweite Gangstufe Z2 eingelegt ist, so läuft der Kraftfluß dann vom Motor M über die Motorwelle 3 über die vzw. geschlossene Kupplung 2 dann auf die Getriebeeingangswelle 4 und über die zweite Gangstufe Z2 auf die Getriebeausgangswelle 5, von hier auf den Achsantrieb 6 bzw. schließlich auf die Räder 8 und 9.
Weiterhin ist aus der Fig. 1 ersichtlich, dass ein Steuergerät 10 vorgesehen ist, das über Signalleitungen 11 mit dem Motor M sowie den Aktuatoren für die Kupplung 2 und die Synchronisiervorrichtungen S1 bis S3 entsprechend wirksam verbunden ist. Die entsprechenden Aktuatoren sind hier nicht im einzelnen dargestellt. Weiterhin ist das Steuergerät 10 über entsprechende weitere Signalleitungen 11 mit entsprechenden Drehzahlsensoren wirksam verbunden, näm-lich insbesondere mit einem ersten Drehzahlsensor 12 und mit einem zweiten Drehzahlsensor 13. Hierbei misst der erste Drehzahlsensor 12 die Drehzahl der Motorwelle 3 und der zweite Drehzahlsensor 13 die Drehzahl der Getriebeeingangswelle 4. Da das Steuergerät 10 die entsprechenden Steuerungen des erfindungsgemäßen Verfahrens realisiert, weist es elektrische und/oder elektronische Baueinheiten, insbesondere einen Mikroprozessor auf.

Die Synchronisiervorrichtung S1 bis S3 sowie die Kupplung 2 sind nun entweder elektrisch und/oder hydraulisch betätigbar. Folglich sind die Betätigungen der Kupplung 2 sowie die Realisierung der Ein- und Ausrückvorgänge der Synchronisiervorrichtungen S1 bis S3, also die jeweiligen Kupplungsstellkräfte bzw. Synchronisierkräfte hier über hydraulische oder elektrische Aktuatoren einstellbar. Zur Einstellung der entsprechenden Synchronisierkräfte sendet das Steuergerät 10 die entsprechenden Signale, also die entsprechenden Synchronisierstellgrößen bzw. zur Realisierung der Kupplungsstellkräfte die entsprechenden Kupplungsstellgrößen. Ob nun zur Realisierung der Kupplungsstellkraft bzw. der Synchronisierkraft z.B. Hydraulikkreisläufe realisiert werden oder elektrisch ansteuerbare Aktuatoren verwendet werden, ist abhängig vom jeweiligen Anwendungsfall.

Die eingangs beschriebenen Nachteile sind dadurch vermieden, dass mit Hilfe der Synchronisiervorrichtung eine Gangstufe im Getriebe 1 ansynchronisiert wird, nämlich die Synchronisiervorrichtung mit einer bestimmten Synchronisierkraft beaufschlagt wird, ohne dass jedoch die Gangstufe eingelegt wird und dass dann über einen Vergleich der Drehzahlen der Motorwelle 3 und der Getriebeeingangswelle 4 unter Berücksichtigung der aktuellen Synchronisierkraft das von der Kupplung 2 übertragene Drehmoment bestimmt wird. Vzw. wird
hier bspw. mit Hilfe der Synchronisiervorrichtung S1 die Gangstufe Z2 im Getriebe 1 ansynchronisiert. Es ist auch denkbar, dass die Gangstufe Z1 synchronisiert wird oder mit den anderen Synchronisiervorrichtungen S2 und S3 die übrigen Gangstufen Z3 bis Z5 ansynchronisiert werden. Dies ist unter Umständen insbesondere auch abhängig von der aktuellen Motordrehzahl bzw. der Fahrgeschwindigkeit des Kraftfahrzeuges. Im folgenden soll die Erfindung daher beispielhaft im wesentlichen für vzw. eine zu betätigung Synchronisiervorrichtung erläutert werden. Anders ausgedrückt, eine der Synchronisiervorrichtungen S1 bis S3 wird als „Momenten-Sensor“ eingesetzt, insbesondere der entsprechende Synchronkörperrbzw. Synchronring der jeweiligen Synchronisiervorrichtung S1 bis S3 wird als „Momenten-Sensor“ verwendet.

Das Verfahren hierzu soll im folgenden noch näher erläutert werden: Dem Steuergerät 10 liegen die entsprechenden Daten für die aktuelle Drehzahl der Motorwelle 3 bzw. für die aktuelle Drehzahl der Getriebeeingangswelle 4 vor. Im Schubbetrieb des Kraftfahrzeuges ist vzw. die Kupplung 2 des Kraftfahrzeuges vollständig geöffnet und im Getriebe 1 der Leerlauf realisiert, also eben im Getriebe 1 keine Gangstufe Z1 bis Z5 eingelegt, also die Synchronisiervorrichtungen S1 bis S3 weisen vzw. ihre Neutralstellung auf. Das Kraftfahrzeug „segelt“, es liegt also kein Antriebsmoment an den Rädern 8 und 9 an.

In dieser Betriebsphase des Kraftfahrzeugs wird nun ein bestimmter Gang, bspw. die zweite Gangstufe Z2 mit Hilfe der Synchronisiervorrichtung S1 ansynchronisiert. Gleichzeitig werden die Drehzahlen der Motorwelle 3 und der Getriebeeingangswelle 4 gemessen, also während der Betätigung der Synchronisiervorrichtung S1, also während die Synchronisierkraft der Synchronisiervorrichtung S1 in Richtung der Gangstufe Z2 ansteigt. Anders ausgedrückt, während des Einrückens der Synchronisiervorrichtung S1 in Richtung der Gangstufe Z2, die aber nur ansynchronisiert und eben nicht eingelegt wird, werden permanent die Drehzahlen der Motorwelle 3 und der Getriebeeingangswelle 4 miteinander verglichen. Aufgrund von insbesondere bei nasslaufenden Kupplungen, wie hier auch in der Kupplung 2 vorhandenen Schleppmomenten, wird – auch bei vollständig geöffneter Kupplung 2 – die Getriebeeingangswelle 4 von der Motorwelle 3 entsprechend „mitgeschleppt“ und deren Drehzahldifferenz steigt.
an. Wenn nun die Synchronisiervorrichtung S1 mit einer bestimmten anstei-
genden Synchronisierkraft beaufschlagt wird, „reißt“ irgendwann dann in einem
bestimmten Zeitpunkt die aktuelle Drehzahl der Motorwelle 3 von der Drehzahl
der Getriebeeingangswelle 4 „ab“. Anders ausgedrückt, die aktuellen Drehzah-
len der Motorwelle 3 und der Getriebeeingangswelle 4 sind dann in diesem be-
stimmten Zeitpunkt entsprechend stark unterschiedlich. Für diesen Zeitpunkt
wird dann die aktuelle Synchronisierkraft F1 der Synchronisiervorrichtung S1
festgestellt.

Aufgrund der in Steuergerät 10 vorliegenden Daten, aufgrund der bekannten
Geometriedaten des Getriebes 1 sowie – bei hydraulischen Steuerungen – auf-
grund der bekannten Drücke bzw. – bei elektrischen Steuerungen – aufgrund
der bekannten entsprechenden Ansteuerung/Einstellungen der elektrischen Ak-
tuatoren kann dann das Steuergerät 10 aufgrund der für diesen Zeitpunkt er-
mittelten Synchronisierkraft F1 der Synchronisiervorrichtung S1 das aktuelle
durch die Kupplung 2 übertragende Schleppmoment ermitteln bzw. berechnen.

Gemäß dem – oben geschilderten ersten Schritt – des Verfahrens wird also mit
Hilfe einer Synchronisiervorrichtung ein bestimmtes Drehmoment an der Ge-
triebeeingangswelle 4 durch das Ansynchronisieren eines Ganges mit der Syn-
chronisiervorrichtung angelegt und durch eine steigende Synchronisierkraft der
Synchronisiervorrichtung S1 wird dieses Drehmoment so lange erhöht, bis die
Drehzahl der Motorwelle 3 von der Getriebeeingangswelle 4 „abreißt“. Aufgrund
der bekannten Geometrie des Getriebes 1 kann das Steuergerät 10, das dann
aktuell auf die Getriebeeingangswelle 4 übertragene Drehmoment ermitteln, da
die Synchronisierkraft F1 der Synchronisiervorrichtung S1 dann für diesen Zeit-
punkt bekannt ist.

Durch diesen – ersten Schritt – des Verfahrens wird im wesentlichen das durch
die Kupplung 2 übertragene Schleppmoment ermittelt bzw. auch die noch ge-
ingfügig vorhandenen anderen Verlustleistungen wie bspw. Reibungen in Kol-
ben bzw. in Lagern können dann entsprechend eliminiert werden. D.h. mit dem
ersten Schritt des Verfahren können insbesondere die Schleppmomente der
Kupplung 2 (einschließlich der geringfügigen anderen Verlustleistungen) ermit-
telt und als bekannte Größen für den folgenden Verfahrensschritt als Ausgangsgrößen verwendet werden, was im folgenden erläutert werden wird.

In einem dann weiteren – zweiten – Schritt des Verfahrens wird dann nach der Ermittlung des aktuellen Schleppmomentes in der Kupplung 2 nunmehr ebenfalls im Schubbetrieb des Kraftfahrzeuges, allerdings bei leicht geschlossener Kupplung vzw. einer realisierten Kupplungsstellkraft von 2 bis 10 Nm, und im Getriebe nach wie vor realisiertem Leerlauf die aktuellen Drehzahlen der Motorwelle 3 und der Getriebeeingangswelle 4 während der Betätigung der Synchronisiervorrichtung S1, nämlich während des Realisierens einer bestimmten zweiten Synchronisierkraft F₂ ermittelt und miteinander verglichen. Die zweite Einrückkraft F₂, bei der die Drehzahl der Motorwelle 3 und der Getriebewelle 4 dann wieder „abreißen“, ist um einen bestimmten Betrag, also um ein bestimmtes ΔF größer als die erste Einrückkraft F₁. Im wesentlichen gilt F₂ = F₁ + ΔF, wobei im zweiten Verfahrensschritt die bestimmte zweite Synchronisierkraft F₂ durch eine inkrementale Erhöhung der ersten Synchronisierkraft F₁ um den Betrag ΔF realisiert wird. Während der Erhöhung der entsprechenden Synchronisierkraft – im zweiten Verfahrensschritt – werden die aktuellen Drehzahlen der Motorwelle 3 und der Drehzahl der Getriebeeingangswelle 4 miteinander verglichen, sobald diese „abreißen“, wird die aktuelle Synchronisierkraft F₂ der Synchronisiervorrichtung S1 festgestellt, wobei das Steuergerät 10 hieraus dann einen Punkt auf der Kupplungskennlinie nahe dem unteren Kennlinienpunkt der Kupplung 2 ermitteln kann. Wiederum wird hierfür durch das Steuergerät 10 aufgrund der bekannten zweiten Synchronisierkraft F₂ dann auf das tatsächlich an der Getriebeeingangswelle 4 anliegende, mit Hilfe der Synchronisiervorrichtung aufgebrachte Drehmoment bzw. dann auf das an der Kupplung 2 anliegende Moment rückgeschlossen.

Folglich kann im wesentlichen der untere Kennlinienpunkt der Kupplung 2 möglichst kurzfristig ermittelt werden, wobei der erste und zweite Verfahrensschritt kurz hintereinander durchgeführt werden und das gesamte Verfahren in bestimmten zeitlichen Perioden wiederholt wird.
Im Endeffekt ist nach der entsprechenden Ermittlung des aktuellen Schleppmomentes und des entsprechenden Kennlinienpunktes die Kupplungskennlinie der Kupplung 2 entsprechend adaptierbar, so dass mit Hilfe des Steuergerätes die aktuelle Kupplungskennlinie der Kupplung 2 erstellt und abgespeichert werden kann. Dies ermöglicht eine schnelle und genaue Ansteuerung der entsprechenden Schaltabläufe innerhalb des Getriebes 1.

Wenn das Getriebe 1 vzw. als Doppelkupplungsgetriebe ausgeführt ist, kann mit Hilfe der jeweiligen Synchronisiervorrichtung auch bspw. die vom Motor M an das Steuergerät rückgemeldeten Motormomente überprüft werden, was bspw. wiederum einen anderen Anwendungsfall als den oben beschriebenen darstellt. So kann mit Hilfe einer Synchronisiervorrichtung ein definiertes Störmoment an einer bestimmten Gangstufe des als Doppelkupplungsgetriebe ausgeführten Getriebes, nämlich an einer Gangstufe des sogenannten freien Teilgetriebes auch bei entsprechend geschlossener Kupplung aufgebracht werden. Vzw. ist die Kupplungskapazität dann größer als das eingestellte Störmoment über die Synchronisiervorrichtung, so dass die Kupplung nach wie vor in Haftung bleibt bzw. arbeitet. Der Motor muß nun das durch die Synchronisiervorrichtung aufgebrachte zusätzliche Moment ausregeln und meldet die entsprechende Änderung des Motordrehmomentes dem Steuergerät, das für die Ausregelung dann entsprechend zuständig ist bzw. diese realisiert. Bei entsprechender Rückmessung mehrerer Betriebspunkte lässt sich dann der tatsächliche Verlauf der Motormomente für bestimmte kleine Momente ermitteln.

Obwohl das Verfahren hier im wesentlichen mit Hilfe der Synchronisiervorrichtung S1 beschrieben worden ist, kann es auch mit Hilfe anderer Synchronisiervorrichtungen S2 und S3 bzw. weiterer, hier nicht dargestellter Synchronisiervorrichtungen durchgeführt werden. Entscheidend ist, dass die jeweilige Synchronisiervorrichtung im wesentlichen als „Momenten-Sensor“ eingesetzt wird, also die Synchronisiervorrichtung mit einer Synchronisierkraft F beaufschlagt wird, ohne dass der jeweilige Gang im Getriebe eingelegt wird, also der jeweilige Gang nur „ansynchronisiert“ wird. In dem Moment, wo die Drehzahlen der Motorwelle 3 und der Getriebewingangswelle 4 voneinander abreifen, also eben ungleich voneinander sind und „auseinanderlaufen“, kann das Steuergerät 10 auf-
grund der von der in diesem Zeitpunkt aufgebrachten bestimmten Synchronisierkraft F_1 bzw. F_2 – im Endeffekt – auf das an der Kupplung 2 anliegende Moment rückschließen bzw. kann dieses ermitteln.
Bezugszeichenliste:

1 Getriebe
1a automatisiertes Handschaltgetriebe
5 2 Kupplung
3 Motorwelle
4 Getriebeeingangswelle
5 Getriebeausgangswelle
6 Achsantrieb
10 7 Achse
8 Rad
9 Rad
10 Steuergerät
11 Signalleitungen
15 12 1. Drehzahlensor
13 2. Drehzahlensor

F₁ erste Synchronisierkraft
F₂ zweite Synchronisierkraft

M Motor
Z₁bis Z₅ Gangstufen
S₁ bis S₃ Synchronisiervorrichtungen
A Pfeile
1. Verfahren zur Ermittlung eines übertragbaren Drehmomentes einer Kupplung (2) eines automatischen Getriebes (1) eines Kraftfahrzeuges, insbesondere eines automatisierten Schaltgetriebes (1a), wobei ein Drehmoment von einer Motorwelle (3) mit Hilfe einer Kupplung (2) auf eine Getriebeeingangswelle (4) übertragbar ist, wobei das Getriebe (1) mindestens eine Gangstufe (Z1), vzw. mehrere Gangstufen (Z1 bis Z5) und zumindest eine Synchronisiervorrichtung (S1, S2, S3) zum Ein- und/oder Auskuppeln einer Gangstufe (Z1) innerhalb des Getriebes (1) aufweist, wobei ein Steuergerät (10) zur Steuerung der Schaltungen des Getriebes (1), der Kupplung (2) und/oder des Motordrehmomentes vorgesehen ist, und wobei die Drehzahlen der Motorwelle (3) und der Getriebeeingangswelle (4) gemessen werden, **dadurch gekennzeichnet**, dass mit Hilfe der Synchronisiervorrichtung (S1 bis S3) eine Gangstufe (Z1 bis Z5) im Getriebe (1) ansynchronisiert wird, nämlich die Synchronisiervorrichtung (S1 bis S2) mit einer bestimmten Synchronisierkraft (\(F_1, F_2\)) beaufschlagt wird, ohne dass jedoch die Gangstufe (Z1 bis Z5) eingelegt wird, und dass dann über einen Vergleich der Drehzahlen der Motorwelle (3) und der Getriebeeingangswelle (4) unter Berücksichtigung der aktuellen Synchronisierkraft (\(F_1, F_2\)) das von der Kupplung (2) übertragene Drehmoment bestimmt wird.

2. Verfahren nach dem vorhergehenden Anspruch, **dadurch gekennzeichnet**, dass im Schubbetrieb des Kraftfahrzeuges - also bei vollständig geöffneter Kupplung (2) und im Getriebe (1) realisiertem Leerlauf – die aktuellen Drehzahlen der Motorwelle (3) und der Getriebeeingangswelle (4) während der Betätigung der Synchronisiervorrichtung (S1, S2, S3), nämlich während des Ansteigens der Einrückkraft (\(F\)) ermittelt und miteinander verglichen werden.

3. Verfahren nach Anspruch 3, **dadurch gekennzeichnet**, dass in dem
Zeitpunkt, in dem die aktuellen Drehzahl der Motorwelle (3) zur Drehzahl der Getriebeeingangswelle (4) unterschiedlich ist, die aktuelle erste Synchronisierkraft (F₁) der Synchronisiervorrichtung (S₁, S₂, S₃) festgestellt und hieraus das aktuelle durch die Kupplung (2) übertragene Schleppmoment ermittelt wird.

4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einem weiteren Schritt – nach der Ermittlung des aktuellen Schleppmomentes – im Schubbetrieb des Kraftfahrzeuges, aber bei leicht geschlossener Kupplung (2) und im Getriebe (1) realisiertem Leerlauf, die aktuellen Drehzahlen der Motorwelle (3) und der Getriebeeingangswelle (4) während der Betätigung der Synchronisiervorrichtung (S₁, S₂, S₃), nämlich während des Ansteigens der Synchronisierkraft (F) ermittelt und miteinander verglichen werden und dass in dem Zeitpunkt, in dem die aktuelle Drehzahl der Motorwelle (3) zur Drehzahl der Getriebeeingangswelle (4) unterschiedlich ist, die aktuelle zweite Einrückkraft (F₂) der Synchronisiervorrichtung (S₁, S₂, S₃) festgestellt wird.

5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im wesentlichen insbesondere der untere Kennlinienpunkt der Kupplung (2) mit Hilfe der zweiten Synchronisierkraft (F₂) ermittelt wird.

7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Getriebe (1) als Doppelkupplungsgetriebe ausgeführt ist und dass mit Hilfe der Synchronisiervorrichtung (S₁, S₂, S₃) der Verlauf kleiner Motormomente überprüft wird.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 B00K41/22

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 B00K F16D F16H G01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data bases consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 199 31 160 A (VOLKSWAGENWERK AG) 11 January 2001 (2001-01-11) column 8, line 14 - line 54</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>DE 101 01 597 A (LUK LAMELLEN & KUPPLUNGSBAU) 16 August 2001 (2001-08-16) the whole document</td>
<td>I</td>
</tr>
</tbody>
</table>

X Patent family members are listed in annex.
☐ Further documents are listed in the continuation of box C.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance
C earlier document but published on or after the international filing date
L document which may be useful to establish the publication date of another citation or other special reason (as specified)
O document referring to an oral disclosure, use, exhibition or other means
P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
Z document member of the same patent family

Date of the actual completion of the international search: 26 May 2004

Date of mailing of the international search report: 16/06/2004

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patenten 2 NL - 2280 HV RIJSWIJK
Tel. (+31-70) 240-2040, TX 31 651 epo NL, FAX (+31-70) 240-9176

Authorized officer: Wisnicki, M
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 1067008 A2</td>
<td></td>
<td></td>
<td>10-01-2001</td>
</tr>
<tr>
<td>DE 10101597 A</td>
<td>16-08-2001</td>
<td>DE 10101597 A1</td>
<td>16-08-2001</td>
</tr>
<tr>
<td>AU 4042601 A</td>
<td></td>
<td></td>
<td>27-08-2001</td>
</tr>
<tr>
<td>BR 0108322 A</td>
<td></td>
<td></td>
<td>18-03-2003</td>
</tr>
<tr>
<td>WO 0160651 A1</td>
<td></td>
<td></td>
<td>23-08-2001</td>
</tr>
<tr>
<td>DE 10190489 D2</td>
<td></td>
<td></td>
<td>21-11-2002</td>
</tr>
<tr>
<td>FR 2804911 A1</td>
<td></td>
<td></td>
<td>17-08-2001</td>
</tr>
<tr>
<td>GB 2380775 A</td>
<td></td>
<td></td>
<td>16-04-2003</td>
</tr>
<tr>
<td>IT MI20010308 A1</td>
<td></td>
<td></td>
<td>14-08-2002</td>
</tr>
<tr>
<td>JP 2003522670 T</td>
<td></td>
<td></td>
<td>29-07-2003</td>
</tr>
<tr>
<td>US 2003054920 A1</td>
<td></td>
<td></td>
<td>20-03-2003</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 B60K41/22

Nach der internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprozess (Klassifikationssystem und Klassifikationssymbole)
IPK 7 B60K F16D F16H GOIL

Recherchierte aber nicht zum Mindestprozess gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)
EPO–Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGESAHNE UNTERTALEN

<table>
<thead>
<tr>
<th>Kategorie*</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Beitr. Ansprech Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 101 01 597 A (LUK LAMELLEN & KUPPLUNGSBAU) 16. August 2001 (2001-08-16) das ganze Dokument</td>
<td>1</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind nicht erwähnt.

* Besondere Kategorien von angenommenen Veröffentlichungen:
** Späteste Veröffentlichung, die nach dem internationalen Anmeldetermin oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis der Erfindung zuzurechnende Prinzipien oder der ihr zugrundeliegenden Theories angegeben ist
** Veröffentlichung von besonderer Bedeutung, die bessere Einführung kann allein aufgrund dieser Veröffentlichung nicht als neuer oder auf erfinderischer Tätigkeit beruhend betrachtet werden
** Veröffentlichung von besonderer Bedeutung, die bessere Einführung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
** Veröffentlichung, die Mitglied derselben Patentreihe ist

Datum des Ablaufs der internationalen Recherche: 26. Mai 2004
Abzusendendatum des internationalen Recherchenberichts: 16/06/2004

Name und Postanschrift der internationalen Recherchenbehörde:

Europäisches Patentamt, P.B. 5819 Patentlaan 2 NL – 2280 HV Rijswijk
Tel. (+31-70) 340–2040, Tt. 31 651 opo nl, Fax: (+31-70) 340–3075

Bevollmächtigter Beisprachmitarbeiter:
Wisniki, M
<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 1067008 A2</td>
<td>10-01-2001</td>
</tr>
<tr>
<td>DE 10101597 A</td>
<td>16-08-2001</td>
<td>DE 10101597 A1</td>
<td>16-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4042601 A</td>
<td>27-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0108322 A</td>
<td>18-03-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0160651 A1</td>
<td>23-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10190489 D2</td>
<td>21-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2304911 A1</td>
<td>17-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2380775 A</td>
<td>16-04-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT M120010308 A1</td>
<td>14-08-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003522670 T</td>
<td>29-07-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003054920 A1</td>
<td>20-03-2003</td>
</tr>
</tbody>
</table>