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ABSTRACT

Systems and methods for diagnosing and testing fairness of machine learning models
based on detecting individual violations of group definitions of fairness, via adversarial
attacks that aim to perturb model inputs to generate individual violations. The systems and
methods employ auxiliary machine learning models using a local surrogate for identifying
group membership and assess fairness by measuring the transferability of attacks from
this model. The systems and methods generate fairness indicator values indicative of
discrimination risk due to the target predictions generated by the machine learning model,
by comparing gradients of the machine learning model to gradients of an auxiliary machine
learning model.
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System and Method for Machine Learning Fairness Testing
CROSS-REFERENCE

[0001] This application is a non-provisional of, and claims all benefit, including priority to,
US Application No. 63/089302, filed October 8, 2020, entitled “System and Method for

Machine Learning Fairness Testing”, incorporated herein by reference in its entirety.

FIELD

[0002] Embodiments of the present disclosure relate to the field of machine learning, and
more specifically, embodiments relate to devices, systems and methods for automatically

assessing fairness of machine learning data model architectures.

INTRODUCTION

[0003] The risks associated with algorithmic bias are causing increasing consternation as
accelerating adoption of machine learning exposes critical dangers of such bias, if left
unresolved. Bias can lead to highly unfair discriminatory outcomes and can perpetuate
unfairness and inequity in society. For example, a machine learning model used to
determine creditworthiness may inadvertently facilitate discrimination by unfairly denying
loans based primarily on a loan applicant’s race, gender, zip code, or other factors that may
be (non-causally) correlated with economic status. Such biases may reinforce existing

disparities and thus marginalized sections of society are particularly vulnerable.

[0004] These biases are technically very difficult to track in machine learning models due
to the training approaches for machine learning models as it is difficult to reconcile the

influence of various factors that yielded a particular output.

[0005] The risks of algorithmic bias has made fairness testing an increasingly important
aspect of model auditing and validation. In particular, detecting unfair bias in machine
learning models before they go into production is of critical importance. In an example
design process, a candidate machine learning model is tested (unfairness testing) for
potential unfair bias and, if unfairness is detected, is reworked to generate another candidate
machine learning model, e.g. by retraining using a cleaned, balanced, or more extensively
supported data set. This iterative design process can entail a large overhead in terms of
labor and computational resources, particularly if the method of detecting bias is not
-1-
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sufficiently comprehensive or is computationally expensive. In some cases, unfair bias may

go undetected if the system used to detect bias is designed around an aggregate metric.

[0006] Fairness testing using only statistical metrics to measure aggregate disparities may
be insufficient for preventing discrimination at the individual level. Thus, many fairness
evaluation methods aim to flag discriminatory model behaviour at the individual level.
Existing methods often incur substantial model overhead, which makes them impractical for

large-scale applications.

[0007] Unfair treatment of different populations by a machine learning models can result
in undesired social impact (Rajkomar et al. 2018; Berk et al. 2017; Yucer et al. 2020). There

are three main research challenges associated with this problem.

[0008] The first is to identify the source of the bias and understand how this influences

machine learning models (e.g., Mehrabi et al. 2019; Sun, Nasraoui, and Shafto 2020).

[0009] The second challenge is to modify the ML model training strategy to prevent unfair
predictions (e.g., Zemel et al. 2013; Yurochkin, Bower, and Sun 2019; Liu et al. 2019; Lahoti,
Gummadi, and Weikum 2019a; Ruoss et al. 2020; Yurochkin and Sun 2021).

[0010] The final challenge, which is addressed in this paper, is to test the fairness of
existing ML models. To test that a model is fair, Applicants must first agree on what is meant
by ‘fairness’. For all definitions, fairness is defined with respect to protected variables such
as race, gender, or age. However, the literature distinguishes between group fairness
(equivalent aggregate treatment of different protected groups) and individual fairness
(equivalent treatment of similar individuals regardless of their protected group). This paper
addresses individual fairness, but even here there are multiple, potentially conflicting criteria
(Verma and Rubin 2018).

[0011] For example, a common definition (see (Gajane and Pechenizkiy 2017)) is fairness
through unawareness (FTU) in which the model should behave as though the protected
variable is not present. Conversely, (Dwork et al. 2012) proposed fairness through
awareness (FTA), which requires that similar individuals have similar prediction outcomes.

(Kusner et al. 2017) emphasized counterfactual fairness (CFF).
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[0012] This takes a data example and synthesizes a counterfactual example in which the
protected variable and its descendants are changed. It requires that the original predictions
and those for the counterfactual should be similar. There exist methods to test models with
all of these definitions. (Agarwal et al. 2018) and (Galhotra, Brun, and Meliou 2017) use the
FTU definition, (John, Vijaykeerthy, and Saha 2020) and (Wachter, Mittelstadt, and Russell
2017) concentrate on the FTA definition, and (Black, Yeom, and Fredrikson 2019) use the
CFF principle.

[0013] However, each approach has limitations. Features can act as surrogates of a
protected variable, which FTU ignores. Using FTA needs domain-specific knowledge to
define similarity metrics for inputs and outputs. Using CFF requires building a generative
model to produce counterexamples. Moreover, Applicants show experimentally that methods

based on FTA can exhibit low precision.

SUMMARY

[0014] Rapid progress in machine learning has brought increasing attention to its potential
impact on society, especially with respect to algorithmic unfairness. While models may
appear to satisfy an imposed performance metric, in reality they may be exploiting
unanticipated biases in the dataset. This can be seen, for instance, in racial bias of
COMPAS recidivism prediction, and gender bias of hiring models used in particular
industries. Fairness testing is becoming an increasingly important aspect of model auditing.
Unfairness and bias incorporated into machine learning models can led to discrimination and
reinforces historical prejudices, as well as societal inequities. Access to financial services
and products is critical for socioeconomic mobility, which itself is a key ingredient for
alleviating injustice and addressing. As machine learning models are more widely adopted
to reduce cost of financial services—itself important for accessibility—it is desirable that the
models do not cause greater harm. Such discrimination may be subtle and, over time, may
have devastating cumulative effects on an individual without their cognizance. Diagnostic
tools (systems and methods) for fairness and fairness testing are very important to prevent
harm. Such systems and methods may be part of a model audit and/or validation process or
system. However, evaluating machine learning models for fairness is a non-trivial technical
problem as it is not easy to conduct such determinations consistently, and at scale for
enterprise-level machine learning models, especially given finite amounts of computational

resources, computing time, data storage, and processing resources.
-3-
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[0015] Tests for fairness used in various systems and methods may be divided according
to their granularity. Group fairness employs statistical metrics to measure aggregate
disparities between different populations, and mandates they be small. Individual fairness
mandates that models offer similar treatment to similar individuals. Tests of group fairness
are often included in open-source toolboxes. However, tests of group fairness offer model
developers relatively little insight into the underlying mechanism of discrimination. This is
especially important in light of an individual's right to demand an explanation and particularly
because an individual may not realize they are being discriminated against, e.g. if an
individual is subject to racial discrimination due to machine learning model in deployment
that does not discriminate based on an aggregate statistical metric but may very well inflict
harm on individuals (e.g. flagging users to issue non-waivers with respect to various
penalties and fees). In contrast, while tests of individual fairness can assess who is being
discriminated against, they often require substantial overhead, in the form of task specific
metrics, aligned datasets (also Fairness Through Awareness), or generative models. The
total global computational overhead associated with fairness testing of machine learning
models may be very high, especially taken cumulatively over time, and may grow with
increasing machine learning adoption. This will lead to increased global energy consumption
and attendant greenhouse gas emissions. It is therefore important to improve computation to
reduce overhead. The additional components, which often involve unsupervised modelling,
may also necessitate further, and less well defined, auditing (i.e. a cascade of audits), with

attendant risks.

[0016] Aspects disclosed herein provide for efficient computer-based systems and
methods that provide for computationally efficient (e.g., in view of finite computing resources)
methods for quantifying or estimating fairness (or an opposite, discrimination risk) of a
machine learning model configured to generate target predictions based on an input
variable. The approaches herein are directed to a computer implemented approach and
computer implementation of a mechanism for testing individual fairness via gradient
alignment. A novel criterion for evaluating individual fairness and a practical testing method

is proposed based on this criterion which Applicants describe faux (pronounced fox).

[0017] An approach is thus proposed using fax, a technical framework for individual

fairness testing which avoids certain difficulties of prior approaches. This approach is a

technical solution based on comparing the derivatives of the predictions of the model to be
-4-
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tested with those of an auxiliary model, which predicts the protected variable from the
observed data. Applicants demonstrate that the proposed method effectively identifies
discrimination on both synthetic and real-world datasets, and has quantitative and qualitative

advantages over contemporary methods.

[0018] The contributions are as follows: first, there is proposed a simple criterion for
individual fairness testing: for a fair model, the derivative of the model prediction with respect
to the protected variable should be small. Second, Applicants introduce an auxiliary model
which describes the relationship between the input features and the protected variable and
show how to use this to help evaluate this criterion. This auxiliary model can be separately
maintained and used for adversarial analysis, such that fairness testing data values can be
output from an automated fairness testing computing device or service. This is useful for
evaluating machine learning models for potential re-training / re-engineering, flagging for

unfairness, or selecting among multiple candidate machine learning models.

[0019] Applicant specifically focus on unfair treatment that is created by the presence of
historical bias in datasets (Suresh and Guttag 2019). Third, to evaluate fairness testing
effectiveness, Applicants present a novel synthetic data generation method that merges
multiple real datasets through the probabilistic graphical model to flexibly simulate realistic

data with controllable bias levels.

[0020] The method does not require explicit identification of features sensitive to the
protected variable, nor does it require a generative model for the data. In particular, the
proposed method does not rely on similarity metrics specified by a domain expert. Instead,

the metrics are derived in a principled fashion from a Local Independence Criterion.

[0021] Applicants show that the performance of the approach is superior on both synthetic
and real datasets, and is more computationally efficient than alternatives. Validation and
experimental considerations are described to assess how successfully a proposed fairness
testing system performs in flagging individual discrimination. Tests were conducted against
selected datasets (e.g., coloured MNIST), and unfairness was evaluated by aggregating
counterexamples. As shown in validation, the proposed auxiliary model f; / faux that is
adapted to approximate local changes in group membership is effective, and that the
auxiliary approach is more precise relative to certain alternate approaches and simpler to

implement than other alternate approaches.
-5-
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[0022] The target predictions may be associated with or lead to discrimination. The
systems and methods may provide fairness quantification that is fine-grained or as fine-
grained as desired. For example, a separate unfairness or bias indicator value may be

computed for each individual separately, i.e. for each input to the machine learning model.

[0023] An auxiliary model, e.g. an auxiliary machine learning model having a supervised
learning architecture and trained using an existing dataset, is configured to generate
predictions of one or more protected attributes (e.g. race or gender) based on the input
variable is used as an adversary model that attempts to predict protected attributes. In
particular, the auxiliary model is adapted for adversarial attacks to predict protected
variables. The adversarial attacks can be used, for example, to identify individual violations,
and the maintained auxiliary model acts as a local surrogate for identifying group
membership, and a proxy for estimating fairness can be obtained from measuring the
transferability of attacks from this model. The use of auxiliary models is useful as Applicants
found that the proposed framework was not only able to flag individual discrimination, it also

incurred relatively little modelling overhead.

[0024] In some embodiments, unfairness or the bias indicator increases when the
gradient of the auxiliary model is more aligned with the gradient of the machine learning
model. When the alignment exceeds a predetermined threshold, the model may be flagged
as unfair. When there is orthogonal alignment, the machine learning model is said to be
completely fair, as the ability of the auxiliary model to predict a protected variable is
hampered: small perturbations in the input variable lead to target predictions that are not
associated with changes in the protected attribute. A heat map may be generated for the

input space showing the bias indictator values.

[0025] Additionally, aggregate metrics may be generated, e.g. L-p norms of the bias
indicator values, to assess an overall fairness of the (machine learning) model. For example,
bounding the L-infinity norm may ensure all bias indicators are below a given predetermined
threshold.

[0026] In some embodiments, the auxiliary machine learning model is a supervised
learning model trained at least partially based on known values of the one or more protected
attributes. The auxiliary machine learning model therefore incurs low computational

overhead and can be widely deployed quickly and at low cost.
-6-
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[0027] Aspects disclosed herein provide for computer-implemented systems and methods
that aim to detect individual violations of group definitions of fairness, by using adversarial
attacks that aim to perturb model inputs to generate individual violations, i.e., local in the
space of model inputs. In this respect, fair attacks require perturbations that are only
associated with changes in group membership, which is a strong check on bias, as it does

not rely on aggregate metrics.

[0028] In various embodiments, an auxiliary model is used as a local surrogate for
identifying group membership, and fairness is assessed by measuring the transferability of
attacks from this model. In various embodiments, the auxiliary model may be trained using
only supervised learning. Various embodiments of systems and methods are demonstrably
able to accurately and precisely flag individual discrimination while incurring little modelling

overhead, thus providing a powerful tool to prevent unfair bias in machine learning models.

[0029] In aspects disclosed herein, systems and methods are provided that enforce group
measures of fairness locally by leveraging an auxiliary model to support model fairness
estimation. In various embodiments, efficient fairness testing is achieved by estimating a
target or candidate model's sensitivity against protected variables using an adversarial
attack on the auxiliary model that predicts protected variables (attributes). Various
embodiments of systems and methods are demonstrably effective for both group and
individual fairness testing, e.g. as demonstrated by empirical results on both real and

synthetic datasets.

[0030] Aspects disclosed herein redefine fairness testing in a way that is compatible with
tools for testing adversarial robustness. There are several advantages apparent in various
embodiments, e.g. flagging of unfair behavior at the individual level, and a more fine grained
understanding of the mechanism of discrimination via counterexamples generated by the
system. There are other approaches which aim to offer a similar level of granularity, but they
may require sophisticated generative models. By contrast, the present approach is
amenable and only requires supervised learning methods. A framework for quantifying bias

inside of machine learning datasets may be employed for a variety of purposes.

[0031] The approach described herein is practically implemented using computers and
computing devices, and in an embodiment, is provided as a specialized computing system

that is configured to receive input data sets representative of models (e.g., trained models),
-7-

Date Recgue/Date Received 2021-10-08



10

15

20

25

30

and generate output values or control signals based on an estimated fairness score. For
example, an output value could be a data value (e.g., from 0 to 1) indicating a estimated
level of fairness that is provided to a downstream computing system for coupling to the
model (e.g., as metadata). The system is useful as, although data provided to a model
does not directly include discriminatory data as a feature set, the discrimination may
nonetheless still be present as the model is developing conditions through proxy features
(e.g., neighborhood data or postal codes). The proposed system is useful as it allows for a

mechanism to assess otherwise “opaque” machine learning models.

[0032] The downstream computing system, for example, could be a model selector
subsystem that is configured to control routing or selection of various models for use, and it
may be configured to not route or not select models having a fairness score greater than a
pre-defined threshold if there is another option. In a variant embodiment, the downstream
computing system could be configured to always select a most fair option from a set of

candidate models.

[0033] In another variant embodiment, the model selector subsystem is a computing
module that is also provided by the specialized computing system and the specialized
computing system instead generates output control signals indicating which model to use or
which model is most fair, and uses the model to generate an output (e.g., a classification

output).

[0034] The specialized computing system can be provided as a specialized computing
system operable within a data center, such as a computing appliance that is coupled to other
computing systems using a message bus or a message broker middleware. The models
themselves can be provided, or in other embodiments, access to the models can be

provided if the models reside on coupled data storage.

[0035] As a non-limiting practical example, the specialized computing system can be
implemented for use at a financial institution, where machine learning models are utilized to
aid in decision making in respect of banking decisions, such as holistic considerations for
assessing loan decisions (e.g., approval / disapproval decisions, interest rate setting based
on risk profiles), credit scores, among others. The system can aid in supporting anti-

discrimination policies to promote models that are more fair.

-8-
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[0036] In an alternate embodiment, the specialized computing system is utilized as an
auditor or adjudicator subsystem that receives input models, and is configured to
automatically flag or cause the models to be re-trained, re-engineered, or removed from
service for an estimated fairness violation. Fairness violations can be assessed for
individual grounds of unfairness through the setting of variables, such as age, race, ethnicity,

disability, refugee status, among others.

[0037] Re-training can include resetting or randomizing model weights and re-conducting
training, training with different training sets, among others (e.g., re-training a model using
training set B instead of training set A). Re-engineering can include changing the structures
of the models or removing features or nodes from analysis from the models (e.g., changing
the possible input feature sets or removing nodes from the latent space). Removal from
service can include flagging a model as unfair such that downstream systems are restricted

from using the model (e.g., setting a Model.isFair variable to FALSE).

[0038] Other potential uses can include models for determining eligiblity or premiums for
insurance, determining eligiblity for social programs, scholarships, job interviews, predictive

policing, credit cards, among others.

[0039] Corresponding machine-interpretable instruction sets for implementing the
specialized computing system are contemplated, the machine-interpretable instruction sets
being stored on non-transitory computer readable media and executable on one or more

computer processors.

DESCRIPTION OF THE FIGURES

[0040] In the figures, embodiments are illustrated by way of example. It is to be expressly
understood that the description and figures are only for the purpose of illustration and as an

aid to understanding.

[0041] Embodiments will now be described, by way of example only, with reference to the

attached figures, wherein in the figures:

[0042] FIG. 1A and FIG. 1B are pictorial representations of a target model and an

auxiliary model, according to some embodiments.

-9-
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[0043] FIGS. 1C, 1D, and 1E are graphical models provided to show how historical bias

causes unfairness.
[0044] FIGS. 1F-1G show data set bias viewed as probabilistic graphical models.

[0045] FIG. 2A is a graphical representation of a dataset with two populations in

concentric circles, denoted by circles and triangles.

[0046] FIG. 2B is a graphical representation of gradients of a (candidate) model having

unfair bias and that of an auxiliary model configured to predict membership in a population.

[0047] FIG. 2C is a graphical representation of gradients of a fair (candidate) model and

that of the auxiliary model.

[0048] FIG. 3A is a visual representation of an example zero perturbation input of
machine learning models configured to generate target predictions of the digit in the input, as

either 0 or 9, and where color is a protected attribute.

[0049] FIG. 3B is a visual representation of an example perturbation of the input of FIG.
3A along a gradient of an example fair machine learning model, where the gradient is

relatively less aligned with a gradient of an auxiliary machine learning model.

[0050] FIG. 3C is a visual representation of an example perturbation of the input of FIG.
3A along a gradient of an example unfair machine learning model, where the gradient is

relatively less aligned with a gradient of an auxiliary machine learning model.

[0051] FIG. 4A are example histograms of values of an unfairness indicator for the

example fair and unfair machine learning models, in accordance with an embodiment.

[0052] FIG. 4B are example histograms of values of an unfairness indicator for the

example fair and unfair machine learning models, in accordance with another embodiment.

[0053] FIG. 5A is an example square neighborhood diagram of an actual input in a two-
dimensional input variable space with superimposed isocontours of target predictions (such
as outputs or scores), showing a counterfactual input obtained by maximizing distance of the

counterfactual target prediction from the actual target prediction.

-10 -
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[0054] FIG. 5B is the example square neighborhood diagram of FIG. 5A now with
superimposed isocontours of (the score of) predictions of the protected attribute, showing a
counterfactual input obtained by maximizing both distance of the counterfactual target
prediction from the actual target prediction and distance of the counterfactual (score of the)
prediction of the protected attribute from the actual (score of the) prediction of the protected

attribute.

[0055] FIG. 6A are graph representations of example generative models of unbiased

datasets.

[0056] FIG. 6B is a graph representation of a synthetic bias pipeline fusing the unbiased

datasets of FIG. 6A to generate a dataset with synthetic historic bias.
[0057] FIG. 7A is schematic block diagram of an exemplary machine learning model.

[0058] FIG. 7B is schematic block diagram of an exemplary auxiliary machine learning

model.

[0059] FIG. 8 is schematic block diagram of an exemplary system for diagnosing fairness

of a machine learning model.

[0060] FIG. 9 is an exemplary GUI of a system for diagnosing fairness of a machine

learning model.

[0061] FIG. 10A is an exemplary algorithm for fairness testing, showing an approach for a

local independence test using supervised learning and a trained auxiliary model fc / faux .

[0062] FIG. 10B is an exemplary algorithm for fairness testing, , showing an approach for

an iterative FGSM independence test.
[0063] FIG. 11 is an example computing device, according to various embodiments.

[0064] FIG. 12 is a process diagram of an exemplary method for diagnosing fairness of a

machine learning model.

[0065] FIG. 13 is a process diagram of an exemplary method for fairness testing of a

machine learning model using adversarial attack.

-11 -
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[0066] FIG. 14 are bar charts showing predicted unfairness scores, according to some

embodiments, for the two data sets, Adult Income Data Set, and Bank Marketing Dataset.

[0067] FIG. 15 is a set of graphs that chart recall against precision, according to some

embodiments.
[0068] FIG. 16 is an illustration that is adapted to show an inverse of a linear function.

[0069] FIG. 17 is a set of histograms that illustrate approaches for controlling

discrimination with a tunable bias parameter.
[0070] FIG. 18 shows the complete experimental result plots on the three datasets.

[0071] FIG. 19A and FIG. 19B are plots showing correlation between GAN evaluation

metrics and fairness test performance, according to some embodiments.

DETAILED DESCRIPTION

[0072] Aspects disclosed herein provide an individual definition of fairness, which
assesses the change in a model's outputs based on perturbations to a surrogate model,

which may be related to concepts of adversarial robustness and individual fairness.

[0073] An improved, computer implemented approach is described that utilizes an
axuiliary model that is adapted to support model fairness estimation of a target model. The
auxiliary model is a machine learning model that is specifically adapted to utilize adversarial
attacks that predict protected variables, being adapted to estimate the target model’s
sensitivity against protected variables, which yields efficient fairness testing. Bias may be
obtained from different sources, such as representation bias, historical bias, measurement

bias, among others.

[0074] The approaches described herein are practically implemented in the form of
computing devices or servers that include computer processors, memory, and data storage,
and methods that operate thereon or are residing as machine readable instruction sets
stored in non-transitory computer readable media. The computing devices or servers
establish an auxiliary model as a local surrogate for identifying group membership, and it is

trained using supervised learning as described in various embodiments herein.

-12 -
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[0075] A target model is provided as an input, and the system is configured to generate a
computational output (e.g., a data set or downstream re-training or modification instructions)
based on a determination of fairness using the auxiliary model. The auxiliary model utilizes
technical features of adversarial robustness as it relates to a constrained optimization
problem, and can be utilized to evaluate fairness, espescially at the level of an individual.
An auxiliary model is utilized because the access to the full generative model is not
available. The auxiliary model is a model that is trained to predict group membership from
inputs, and it acts as a technical surrogate as a useful approximation of a true derivative of

the data generating model.

[0076] FIG. 1A and FIG. 1B are pictorial representations of a target model and an
auxiliary model, according to some embodiments. At the heart of the approach is a
consideration where if one adjust the model input so that the predicted protected variable
changes, then the model output should not change. FIG. 1A is a pictorial representation
100A of a target model predicts y from inputs x. In this example, one would aim to test model

fairness at points 1, 2, 3, and 4.

[0077] To do so, it is proposed to construct an auxiliary model shown in pictorial
representation 100B on FIG. 1B that predicts protected variable ¢ from inputs Xx. fau
compares gradients of the two models (arrows illustrated on the drawings). Point 2 is unfair
because the target and auxiliary model gradients are large and parallel; the model prediction
changes as the protected variable changes. The other points are fair since the gradients are

orthogonal (point 1) or one or other gradient is small (points 3, 4).

[0078] The technical approach is to determine, that the model output for a given example
does not vary rapidly as a funciton of a particular protected variable. Examples are provided
below of types of discriminatory model behaviours which can be automatically caught by the
approach described herein. Variants are described in relation to potential extensions of the
approach. An extension, can include further computing aggregate covariance matrices for

flagging problematic correlations.

[0079] For example, a specialized machine learning fairness testing server could be
coupled to a message bus of an enterprise data center, and the specialized machine
learning fairness testing server is configured to evaluate machine learning models and, in a

variant embodiment, automatically toggle whether a model should be deployed for
-13-
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production use, or flag a model for downstream re-training or non-use. This is particularly
useful for sensitive models, such as those used for loan provisioning, grant awarding, hiring
decisions, etc. Experimental approaches relating to coloured MNIST are described an an

example.

[0080] In this section, Applicants introduce notation, review definitions of individual
fairness and summarize their limitations. The definition of fairness is described in a view that
connects the earlier ones and forms the basis for a novel fairness test that is introduced and
evaluated using corresponding computer implemented systems as proposed in various

embodiments herein.
[0081] The following notation is adopted:

[0082] - X: Feature (input) variables. When features are observed, Applicants use x to

represent the feature vector.

[0083] - Y : Prediction (output) variables. When a label is observed, Applicants use y to
represent the label as a scalar. As Applicant can conduct fairness testing on binary

classification tasks, for example the prediction y can be a probability.

[0084] - C: Protected variables (e.g., gender). Applicants use c to represent the observed

values.

[0085] - ¢: Distance metric. ¢Zn( ? ) denotes a metric of input space, and

Qbout ( y ) a metric of output space.

[0086] - far Target function for fairness testing. This takes features x as input and

~

produces a prediction y

[0087] - faux: Auxiliary model. This takes features x as input and produces predictions ¢ for

protected attributes C. In this disclosure, sometimes this auxiliary model is denoted as f..

[0088] For consistency, the following notation is employed throughout unless otherwise

stated or indicated:

-14-
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[0089] Let C be a (or one more) protected attribute(s), e.g. a sensitive attribute indicating
membership in a certain population, and let X denote the attributes (input variables to the

machine learning model), e.g. observable attributes of a given individual.

[0090] Individual fairness describes the tolerable discrepancy of model predictions at an
individual level (i.e., for one data point). This can reveal hidden unfairness that can’'t be

identified at an aggregate level using a group fairness criterion.

[0091] Furthermore, let Z refer to a collection of latent or separate variables, e.g.
unobserved latent variables, and Y a variable which may serve as the target of a supervised
learning problem, i.e. the machine learning model may generate target predictions based on
the input variables. To this end, using a machine learning algorithm, a machine learning
model fy, may be trained to infer the value of Y given X. Such a model may be referred to as

the task predictor, and it may output a score S, that may be turned into a prediction for Y.

[0092] To facilitate discussion of the bias in machine learning models, a running example
is introduced that models if an individual should be hired for a programming job. Here, the
targets Y may denote the candidate's knowledge, and Z may denote latent factors of
personality, like degree of introversion. The candidate may identify as a member of a certain

race, which defines the sensitive attribute C.

[0093] Applicants now describe the three definitions of individual fairness (see Mehrabi et
al. 2019, for others).

[0094] Fairness Through Unawareness (FTU) states that: A predictor is said to achieve
fairness through unawareness if protected attributes are not explicitly used in the prediction
process. A model can satisfy the FTU definition by either excluding the protected attributes C

as input during training or by ensuring that perturbations to C do not affect predictions.

[0095] Fairness Through Awareness (FTA) states that: Similar individuals should be
treated similarly. Given two observations (xi; yi) and (Xj ; yj), a model ftar satisfies this

definition when the Lipschitz property holds:

¢aut (‘ftar(xi)y ftm*(xj)) g Qb?jn (X'h Xj)

[0096]
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[0097] where ¢"Z?’L( ’ ) and ¢0Ut('7 ')are distance metrics in the input and

output spaces.

[0098] Counterfactual Fairness (CFF) stipulates that prediction variables Y should not
causally depend on protected variables C when holding other features X constant. Given

observed feature x, prediction y and protected variables ¢, counterfactual fairness holds if:
[0099] P(y HX,, C) — PC'&mdc)(c’) (‘yﬂx;, C)

[00100] where the dO() operation (Pearl et al. 2009) changes protected attributes
from c to ¢’ during inference. To apply this operation, one would need a generative model

that explicitly describes the causal structure of the variables.

[00101] There are many reasons why models exhibit discriminatory behaviour (Mehrabi et
al. 2019; Suresh and Guttag 2019), but one of the most common is the mishandling of
historical bias in the training data (Fuchs 2018). Here, preexisting prejudices create a
misalignment between the collected data and the goals of the model (Suresh and Guttag

2019) and models may learn to propagate this bias via their decisions.

[00102] FIGS. 1C, 1D, and 1E are graphical models provided to show how historical bias
causes unfairness. FIG. 1C shows a generation process of a biased training dataset 100C.
The dashed line denotes that Y and C may have correlations due to historical bias. In FIG.
1D, a fair model 100D is shown to learn to infer Y while cancelling the impact from protected
variables C. Solid arrows show generative dependence. Dashed arrow shows learned
inference mapping. In FIG. 1E, an exampple unfair model 100E infers the protected

variables to support the prediction.

[00103] FIG. 1C shows the potential data generation graph, where the label Y and
protected attributes C may (or may not) correlate due to the historical bias. A fair model
(FIG. 1D) would learn to infer label Y by disentangling the impact from the protected
variables C. In contrast, an unfair model (FIG. 1E) implicitly infers the protected variables to
support its prediction of the label Y. The limitations of the FTU and FTA approaches are

easily understood in terms of this graphical model. Models that meet the FTU definition are
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not guaranteed to be fair (Barocas, Hardt, and Narayanan 2019) since they overlook
correlation between features X and protected variables C. Discrimination persists when the
feature becomes a surrogate for the protected variables. One might expect tests based on
the FTU to have low recall since they are insensitive both to the protected variable and to

discrimination induced by these surrogates.

[00104] Tests based on FTA potentially have the opposite problem; they are sensitive to
both unfairness induced directly by the protected variable and indirectly via surrogate
features. However, since these tests are based on distance metrics, they are also sensitive
to other changes such as adversarial examples in which a small change in the input can

create a large change in the prediction.

[00105] Hence, one might expect them to have low precision. Applicants illustrate these
limitations in a below section describing use cases. With access to a causal generative
model, CFF can recognize surrogate features and the decisions that result from them.
However, training such models with unsupervised learning is hard (Salimans et al. 2016;
Srivastava et al. 2017) and the testing procedure can produce misleading conclusions if the

generative model is ill-defined or inaccurate.

[00106] Applicants now describe a refined definition of individual fairness that connects the
three definitions described above. Assume that the observed features x were generated from

underlying latent variables z, and z; by a unknown function f;:
[00107] X = fq(z1,7y),

[00108] where z, denotes latent vectors with no correlation with the protected variables c,

and z; is influenced by the protected attributes € through a unknown function z; = y(c).

[00109] Definition 1 A model f;,, is individually fair, if it produces exactly identical

outcomes when given input feature vectors x; and x; which share the same latent vector z, :
[00110] frar %) = frar (X)),

[00111] where x; = f,(z,,¥(c)) and x; = f;(z., P(c")).
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[00112] While the Ilatent variables or generative functions may not be
observable/recognizable in general, the above definition holds in practice whenever x can be

partially influenced by protected attributes c.
[00113] This connects the three earlier notions of individual fairness:

[00114] + Fairness through unawareness: The refined definition is related to FTU in that
it stipulates models be insensitive to changes in protected variables. However unlike FTU, it

is aware of the influence of the protected variables on the features.

[00115] » Fairness through awareness: The refined definition belongs to the family of
FTA as it provides concrete input and output similarity metrics; it states that an arbitrary

change in the latent variable z; should result in a negligible change in the output f;,,(x;).

[00116] » Counterfactual fairness: The refined definition leverages a generative model,
and tests model fairness by modifying latent variables that are correlated with the protected

variable.

[00117] Applicants propose a novel fairness testing method that is based on Definition 1
and show that it does not suffer from the limitations described previously. The approach
starts by using the graphical model in FIGS. 1C-1E to propose a criterion for individual
fairness based on conditional independence of the target and protected variables given the
observed data. This is used to motivate the Local Independence Criterion (LIC) which
examines whether a model suffers from historical bias, and show that this satisfies Definition
1. Finally, Applicants introduce the Auxiliary Model as a technical solution which can be used

to create a practical test.

[00118] A sufficient condition for a model to violate the individual fairness definition

described in Definition 1 is if its prediction depends on the protected attribute c.

[00119] Applicants, therefore, consider revealing such prediction dependence through a

local condition such that:

[00120] e e,
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[00121] which indicates the potentially discriminating prediction, seeing as the prediction is
sensitive to a small perturbation of protected attributes c. Considering the inevitable noise
introduced by the machine learning model and data, Applicants may relax the above

expression with a pre-defined tolerance & in practice.

[00122] Theorem 1. Assuming there exists a generative model f, that influences features
X with protected variables € such that x = f,(z,, ¥(¢)), if a machine learning model fq

violates Local Independence Criterion (LIC)

[00123] |—"f ter 00

<6,

[oe]

[00124] with a pre-defined threshold &, then the model f,,, violates the individual fairness

criteria in Definition 1. A simple proof is provided further in this description.

[00125] To use the LIC, one needs to estimate the derivative df,,-(x)/dc. The chain rule is

used to yield:

<é.

o]

[00126] |—"f f;;(")%

[00127] Unfortunately, the term dx/dc is undefined without accessing the underlying
generative model that maps protected variables € to the features X and this is rarely
available. Note, the protected variables C are not necessarily continuous as Applicants will

model the mapping through an auxiliary model later.

[00128] An approximation of dx/dc is thus suggested that requires neither generative

model nor attempts to model the latent representations z € Z.

[00129] One approach would be to build a model to predict x from ¢ and use the derivative
of this model to approximate dx/dc. However, the number of protected variables is often far
smaller than the feature size, and so this would lead to a poor approximation. Instead,
Applicants build a model in the opposite direction; Applicants describe the mapping from

features X to the protected variables € using an auxiliary model ¢ = f 4, (X).

[00130] In this approach, this model is then inverted in a local neighbourhood around a

given point x,, to approximate the desired derivative. While this approximation can
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potentially yield low-fidelity reconstructions of x, additional fidelity may require modelling

factors of x that are independent of c. Hence, this approach avoids the need for high-fidelity

since the end goal is estimating the partial derivative of % only.

[00131] To this end, given this auxiliary model f,,, the proposed approach applies the
Taylor expansion around (X, €g):
a aux T
[00132] ¢ faun(xo) ~ (F220) (x —xo)
[00133] where Applicants replaced ¢, with its prediction f,,..(Xg). The left-hand side

denotes the change in the space of protected attributes. The right hand side is a Jacobian

vector product.

[00134] Applicants then apply the Moore-Penrose pseudo-inverse to find the minimum

norm solution for x:

[00135] fl;&x(c) =Xo +(c— faux(XO))(Vqufoaux)_lvqux

[00136] where one usees Vf,,, to denote df,,.(X¢)/8x,y. This allows the approach to

approximate dx/dc by

x  faur -
[00137]  Z~ O (VfL Vf ) IV L

[00138] Finally, by combining two of the earlier Equations, one can approximate the LIC
with:

[001 39] |Vftar(vf2uxvfaux)_1Vf;1rux|oo <4
[00140] where Applicants use Vf,,, to denote af,,-(x¢)/0Xg-

[00141] While the basic fax described above is sufficient for an individual fairness test, it
depends heavily on the behaviour of Vf,,., which may be ill-conditioned. Applicants

introduce several variant embodiments of the basic faux method.

[00142] Normalization of Gradient (fAux+NG): Different features may have very different

valid ranges and so the gradient of either the target or the auxiliary model could be biased
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towards a subset of features. To mitigate this problem, one can use an I, normalization of

the gradients to give the criterion:
[00143] [norm(Vf,q) norm(Vf >, )l < 8.
[00144] where the inverse term is removed as this normalization is longer needed.

[00145] Integrated Gradient (fAux+IG): In this variant, the approach substitutes the raw
gradients Vf.,, and Vf,,,, for integrated gradients (Sundararajan, Taly, Yan 2017) that

provide a smoothed gradient signal.

[00146] At a high level, many existing tests of individual fairness have the following general

form:
[00147] 1. Select metrics on the input and output space ¢;, and ¢ .

[00148] 2. For each test point x; in the validation set, search for a point x; that satisfies

¢in(xi; x]) <E€.

[00149] 3. The maximum value of @ey:(frar(Xi), frar(x;)) measures the amount of

discrimination experienced by x; under f;,,-.

[00150] One may thus compare tests according to how they approach steps (1) and (2).
With respect to the first step, the original FTA paper (Dwork et al. 2021) requires task-
specific metrics. In the absence of domain knowledge, several works describe data-driven
alternatives. For example, (llvento 2020) uses an expert to classify certain pairs of inputs as
similar, and then uses a metric-learning algorithm. Alternatively, Lahoti, Gummadi, and
Weikum 2019b and Mukherjee et al. 2020 proposed to use Metric learning. Some works
make use of unweighted I, norms (Wachter, Mittelstadt, and Russell 2018; John,
Vijaykeerthy, and Saha 2020), though others obtain weights from a linear model trained to
predict the protected variable ¢ from the input x (Ruoss et al. 2020; Yurochkin, Bower, and
Sun 2020). While faux also learns its own metric, it does so in a principled fashion; its metric
is derived directly from the LIC. Moreover, the auxiliary model used by fawx is more

expressive than the linear models used by earlier works. Thus, the weights learned by fauwx
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are non-uniform, and capture non-linear relationships between x and c. In the experiments,

Applicants show the benefit of the non-linearity.

[00151] For the second step, one line of work considers generating test points using
adversarial techniques (Wachter, Mittelstadt, and Russell 2018; Ustun, Spangher, and Liu
2019; Maity et al. 2021). Unfortunately, these approaches have the potential to construct
unrealistic, out-of-distribution samples, which may generate misleading conclusions. An
alternative technique is to use the metric ¢;,, to compute the pairwise-similarity between all
individuals, and then use Optimal Transport (OT) to define a mapping between protected
groups (Dwork et al. 2012; Gordaliza et al. 2019). The resulting map can then be used to
produce test inputs x; for a given input x;. This approach has the advantage that the pairs
considered are always real samples that come from the validation dataset. However, for
large, high-dimensional datasets, OT can be computationally demanding, and also unstable.
To this end, approximate methods, based on dual-formulations (Chiappa and Pacchiano
2021) and Generative Adversarial Networks (Black, Yeom, and Fredrikson 2019) have also
been explored.. However, stochastic approximations may still be unstable, and may also
inadvertently generate out-of-distribution samples. fax, in contrast, avoids many of these
disadvantages; it uses only supervised learning to train the auxiliary model, and only a single
backward pass is required to perform the test. Thus, it scales well to high-dimensional

problems. Moreover, it is a local test that is conducted only on in-distribution points.

[00152] An illustrative example, a mid-size software company with a small human
resources (HR) department may publish a job post online to fill a programming job. Several
thousands of applications, including resumes and cover letters, may be submitted in
response. For efficiency sake, the HR department may only invite 5-10 candidates to
interview. Because of the large applicant pool, the first 10 candidates may be chosen or
candidates may be filtered based on ad-hoc criteria until the applicant pool is of a
manageable size, following which a more in-depth analysis may be carried out to select
candidates. Such manually or minimally automated processes for selecting candidates is
time-consuming, prone to error, likely to miss good candidates and include poor candidates

(false negative and positives), and subject to hidden bias itself.

[00153] In order to automate the process, a system employing a machine learning model

may be used to automatically select the top 10 candidates or at least prune out ill-suitable
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candidates. For example, the machine learning model may be a supervised learning model
configured to classify or rank candidates based on input variables utilizing information

submitted by applications (e.g. features generated from resume information).

[00154] The machine learning model may be configured to generate target predictions (e.g.
predicted performance data) based on input variables. Performance data may include
metrics such as supervisors’ evaluation, average number of code revisions required to
achieve production-ready code, gross number of programming lines written, or other such
ostensibly objective criteria (to avoid bias). Input variables may be objective criteria
associated with the applicant profile, e.g. degrees earned, where earned, GPA, GitHub
presence, programming contests won, involvement in extracurricular activities, and as well
as other criteria which may be arguably used to infer soft skills (e.g., colours, fonts, words, or

syntax used in the cover letter and resume).

[00155] The model may be trained using performance data (targets of the machine learning
model) of existing staff (input variables of the machine learning model) at the company. The
performance data may be correlated with the staff person’s profile, either current or historical

(e.g., when the staff person applied for the job).

[00156] Despite best efforts to prevent unfairness against underrepresented groups
(women, or persons of colour), discrimination against such protected groups may yet occur

and in fact the risk of discrimination may be very high.

[00157] As an instance, while the HR department may be diligent in removing any variables
representing protected attributes such as gender and race in datasets used for training, it
may retain input variables that are non-causally correlated with a target via an unknown
mechanism involving the protected attributes and possibly other latent variables. Note that:
an input variable may be a vector comprising one or more variables, each of which may be

an input variable by itself.

[00158] For example, words used to describe prior experience may be correlated with
gender: for the same experience and achievements, male applicants may claim broader or
more thorough skills than female applicants. As another example, while the choice of font for
the resume (input variable) may be found to be a good indicator of communication sKkills (the

target), it may also be correlated with socioeconomic status, and hence race. For instance,
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high schools in affluent may have access to high-end computers and software, which may
habituate individuals from affluent backgrounds to use visually-appealing fonts, while their
counterparts educated at schools in poorer neighborhoods may be habituated to standard
fonts or conservative fonts presumed to impart more credibility. The machine learning model
may thus be inadvertently be trained to use choice of font as a proxy for race (a protected

attribute), and infer communication skills based on race.

[00159] In addition, the dataset itself may be inherently unbalanced because of the staff
make-up, leading to erroneous correlations. For example, the company may only have a
single programmer who graduated from a school in a poor neighborhood or is a woman. In
this case, the machine learning model may become highly sensitive to race or gender
(protected attributes), e.g. by using choice of font as a proxy, if the single programmer
happens to have considerably better or poorer performance metrics, and unfairly

discriminate against individuals in the applicant pool.

[00160] Systems and methods are provided which may allow testing and diagnosing a
machine learning model for fairness and which may generate a fairness indicator value
representing how fair the machine learning model is. Thus, the HR department may use
such a system to evaluate a candidate machine learning model for fairness and reject unfair
models to reduce discrimination risk. In some embodiments, the candidate machine learning
models may be built into the system. In some embodiments, the candidate machine learning
models may be input into the system by the HR department. The system may generate
output data representative of the fairness indicator value. The fairness indicator value may
be indicative of discrimination risk due to the target predictions generated by the machine

learning model.

[00161] The fairness indicator value may be used to pass or fail the machine learning
model, or may be used in an automated tool for machine learning model generation. Thus,
the system may facilitate the HR department to efficiently (with low computational overhead)
screen machine learning models and deploy only ones that meet a predetermined threshold
of fairness. Thus, the applicant pool may then be efficiently whittled down in a fair manner
without resorting to discrimination or the risk of hidden bias eliminating good candidates
because of their background. In particular, when challenged by a rejected applicant, the HR

department may perform an audit of the model or use a prior audit of the model to
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demonstrate fairness of the recruitment process. Thus, machine learning models and

automation may become a tool to ensure fair and equal treatment.

[00162] The system generates the fairness indicator value by relying on an auxiliary
(machine learning) model. In some embodiments, the system compares a gradient of the
machine learning model to a gradient of the auxiliary model to generate a fairness indicator
value, e.g. by comparing a first vector indicative of the former gradient to a second vector
indicative of the latter gradient. The auxiliary model may be adversarial and trained to predict
one or more protected attributes (race, gender, etc.) based on the input variables of the
machine learning model, such as choice of font. A gradient of a machine learning model may
be a gradient of the target prediction, e.g. performance data here, with respect to the input
variables and a gradient of the auxiliary model may be a gradient of the prediction of the
protected attributes (or a score representing the quality of the prediction) with respect to the

input variables.

[00163] In various embodiments, the machine learning model is said to be completely fair if
its gradient is orthogonal to the gradient of the auxiliary model. Change in predicted
performance (data) requires moving orthogonal to the gradient of the machine learning
model because lines of constant machine learning model gradient in the space of input
variables are lines of constant performance. Similarly, change in the prediction of the one or
more protected attributes (or a score of the prediction used as a surrogate; referred to herein
as indicative of the one or more protected attributes) requires moving orthogonal to the
gradient of the auxiliary model because lines of constant auxiliary model gradient in the
space of input variables are lines of constant predictions of race and gender. Thus, if the two
gradients are orthogonal, efficiently changing performance (in terms of perturbations to the

input variable) is not associated with a change in race or gender.

[00164] In some embodiments, the machine learning model is said to be completely fair if
for each value of the input variable (choice of font), the variation in the target prediction
(performance data) generated by the machine learning model is less than a variation in the
prediction of the protected attributes (race and gender) by the auxiliary model. In some
embodiments, such a method to determine fairness may be a relaxation of the gradient-
based test described above to account for noisy inputs. Consider an e-neighbourhood of an

actual input associated with actual prediction of the protected attributes (predicted race and
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gender by the auxiliary model when fed the actual input) and a 6-neighborhood of an actual
target prediction (predicted performance data generated by the machine learning model
when fed the actual input), and each “counterfactual” value of the input variable
(counterfactual values of the choice of font) within the ¢-neighbourhood. The machine
learning model is fair if, for each “counterfactual” value, the metric distance of a
counterfactual target prediction (predicted performance data generated by the machine
learning model when fed the counterfactual value) away from the actual target prediction is
less than a distance of a counterfactual prediction of the protected attributes (race or gender
predictions generated by the auxiliary machine learning model when fed the counterfactual

value of the input variable) from the actual prediction of the protected attributes.

[00165] FIGS. 1F-1G show data set bias viewed as probabilistic graphical models. FIG. 1F
is a schematic graph representation of a generative model 100F for a data set with distinct
populations. The variables Z, Y, and C are independent, so that there is no bias. FIG. 1G is
a schematic graph representation of a generative model 100G for a data set with distinct
populations and historical biases. Historical biases introduce a correlation between Y and C.
Models may learn to exploit patterns in the data strongly correlated with different protected

groups, violating fairness definitions based on independence.

[00166] Several operational and socioeconomic mechanisms may be used to explained
how bias becomes present in datasets. These may be grouped according to which stages of
the machine learning pipeline they affect. For present purposes, mechanisms that affect data
collection may be relevant. Models are proposed which mimic the effect of these sources of
bias. By comparing these biases with the usual assumptions about dataset, it may be

considered how they lead, spontaneously, to different mechanisms for disparate treatment.

[00167] Representation bias arises in the process of defining and sampling a development
population. For example, data may only be collected from a portion of a population, if at all,
leading to partial representation (as seen, for example, in iImagenet's geographic biases in
[citation]). The generalization ability of machine learning models is known to suffer in the
presence of skewed data. In the absence of regularization, data augmentation, or the
adjustment of sample weights, a model trained on data with representation bias will fail to
generalize well on some population at deployment. The partial representation may be

accounted for by placing an asymmetric prior:
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[00168] c ~ Pr(C) (1

[00169] In such a way, discrimination is not an active mechanism, but a consequence of

generalization errors.

[00170] Measurement bias occurs when choosing, collecting, or computing features and
labels to use in a prediction problem. Available, measurable data is often a noisy proxy for
the features and labels of interest. For instance, in predicting an college admissions, a
developer may use GPA as a surrogate for a "knowledge" variable. Unfortunately, since
minority communities may have less access to educational resources, a model trained with
this surrogate may be inadverdently being trained to reconstruct a bias. Note, accuracy is
may be at odds with fairness, because a fair model may not be one which accurately
reconstructs the target. Rather than having access to the true target Y, an estimate with

group-dependent label noise is:
[00171] Vbias ~ Pr(Ybias|Y; C) (2)
[00172] This justifies metrics that emphasize balance, such as equal opportunity.

[00173] Historical bias may refer to different socioeconomic factors that influence the “state
of the world”. Mechanically it is distinct from measurement bias (which is an operational
consideration), but in practice the effects overlap. To distinguish them, historical bias is
defined to be bias that persists even with clean labels. To revist the college example, even
with a clean "knowledge" label, the resulting dataset may still reflect historical factors leading

to lower education in poorer neighbourhoods.

[00174] It was previously assumed that Z, C, and Y were sampled independently.
Socioeconomic circumstances, or faulty data collection protocols, introduce a relation
between C and Y Pr(C,Y). Such correlation is not necessarily causal, but could be induced

through rejection sampling, or mediated via another latent variable.

[00175] Observing the graphical model in FIG. 1G, the mechanism of discrimination
becomes clear: a model trained on X to infer Y now has two paths to do so. In particular if
the relationship between C and Y is more amenable than the relation between X and Y, a

model may exploit the C-dependence of X in order to satisfy its learning task. This
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mechanism is commonly observed in image classification problems where models learn to
exploit the background to make their predictions—for instance, classifying boats because of

water in the background.

[00176] In this case, it is seen that accuracy may not be at odds with fairness but rather,
fairness may act as a regularizer that encourages a model to use its capacity correctly.
Other forms of regularization may limit the model's capacity, encouraging it to exploit more

amenable relationships, and thus predisposing it to unfair behaviour.

[00177] Adversarial robustness may be defined in terms of a threat model based on an
auxiliary model. Given a datapoint (x, y), an adversarial example x' is obtained as a solution

of a constrained optimization problem:
[00178] x' = arg maxq,xx"y<edo, fr (x')) (3)

[00179] Here, d;(-,-) and d,(.,-) denote metrics defined on the inputs and outputs
respectively, and the user specifies tolerances using a parameter €. Together these metrics
and tolerances specify the threat model. In this way, x' is a point in the neighbourhood of x
for which outputs the model f,, change rapidly. Both exhaustive and approximate algorithms

for finding adversarial examples may be obtained.

[00180] Approximate algorithms typically use gradient estimates to find small perturbations
which maximize the deviation of a model's outputs, e.g. single-step attacks, such as the Fast
Gradient Method (FGM) and the Fast Gradient Sign Method (FGSM). Fairness may be

defined using single-step attacks on the auxilliary model.

[00181] To compare definitions of individual fairness with adversarial robustness, the
constrained optimization problem may be reformulated as a logical statement: a model is not

adversarially robust when:
[00182] Ax' s.t (d;(x,x)Y <e)A(do(y, fr(x")) > 8) 4)

[00183] Here, § is a parameter which bounds the deviation of the model's outputs.
Colloquially, the outputs of an adversarially robust model may be said to be insensitive to

small perturbations of its inputs.
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[00184] Definitions of individual fairness may also be phrased as statements of adversarial
robustness with different threat models, e.g., the auxiliary model. The precision and level of

complexity of the auxiliary model may be advantageous.

[00185] A statement about fair treatment at the individual level is that individuals (inputs)
who are similar should be treated similarly by a given model (i.e have similar outputs).
Different definitions may be distinguished by the definition of similarity used. There may be

similarities between individual fairness and robustness.

[00186] Fairness Through Unawareness (FTU) is satisfied if C is not explicitly used by a
model. This may be enforced by either excluding the protected variable C as an input, or, by
ensuring that perturbations to ¢ do not change the output of a model. In the latter approach,
formal methods may be employed to ensure that explicit changes in the protected attribute ¢
does not alter the performance of software. Tests based on FTU may have limited utility, as
they fail to account for correlations between the data X and the protected attribute €. Thus

discrimination may persists as X becomes used as a surrogate for C.

[00187] Fairness Through Awareness (FTA) formalizes the definition of similarity using two
metrics: (1) a statistical metric D on the output-space, which defines "similar treatment," and
(2) a metric d in the input space, which formalizes the "similarity" of individuals. In terms of

these metrics, this statement of individual fairness is the (D, d)-Lipschitz property:

[00188] D(f (x1), f(x2)) < d(x41,%2) (5)

[00189] Formal verification and adversarial attacks may be employed to find violations of
the above property. The applicability of FTA is limited by its need for a task-specific metric,
which is not always straight forward to define. Moreover, for a datapoint (x, y), observe that

FTA is violated when:
[00190] Ax's.t ([, x)Y<e)ADS @), f(xD)) >¢€) (6)

[00191] This is similar to (4). Accordingly, depending on the metric employed, FTA may

flag behaviour which is not robust, as opposed to unfair.

[00192] Counterfactual Fairness (CFF), like FTA, mandates that similar individuals be

treated similarly, but it does so causally. More precisely, given a causal graphical model, a
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counterfactual from x may be generated by performing an intervention on the protected
attribute ¢. This produces an x' from the same value of z, but a different c. CFF mandates

that the model's output should not change for the counterfactual:
[00193] Ax's.t.(di(z,2) < e)A(do(y, f(x'(2',¢)) > §) (7)

[00194] In particular, equation (7) may fit within the more general framework of model-
based robust deep learning, where robustness is enforced in latent spaces as opposed to
the raw inputs. In practice, however, CFF is hard to implement, because it requires access to
a causal graph. FlipTest attempts to relax this requirement by generating counterfactuals

using generative adversarial networks.

[00195] However, both approaches may be limited by their reliance on generative models
of data, which may not available. Since Z is unobserved, these approaches must rely on
unsupervised learning algorithms, which can lead to misleading conclusions if the model is
inaccurate. Compared with supervised learning, generative modelling is a more difficult task,
since it must capture a full high-dimensional data distribution, as opposed to isolating
discriminative components. Moreover, unsupervised learning algorithms require more
expertise to deploy, as they exhibit complex behaviours. In various embodiments, only

supervised learning is required for the auxiliary model.

[00196] In various embodiments, systems and methods are provided to flag discriminatory
model behaviour at the individual level by perturbing group membership to reveal individual
discrimination. Fairness may be demonstrated by showing that the model output for a given

example does not vary rapidly as a function of the protected variable (attribute).

[00197] Various properties of models may cause individuals to be disadvantaged based on
group membership. In various embodiments, systems and methods model a type of
discriminatory model behaviour, which may be caught by fairness tests based on
independence. There are many reasons models exhibit discriminatory behaviour, including
behaviours that originate from biases in datasets. In some embodiments, systems and
methods may be used to detect bias in cases where models fulfill their training task by
exploiting correlations between the targets Y and sensitive attribute C. At the group level, this

may be flagged using tests of statistical independence.
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[00198] In additionto Y and C, the observable features X depend on a set of latent features
Z. Dataset bias may be described by specifying how the distribution Pr(X|Y, Z,C) factors.
The unbiased case is illustrated in FIG. 1F, and it may make three key assumptions: (1)
Each population is equally represented in the training set. (2) The target Y is observable. (3)
The variables Z, Y, and C are independent. Different sources of bias may be considered as
violations of these assumptions. These violations, in turn, provide training algorithms

illegitimate opportunities to perform better on a learning task.

[00199] The focus here is on datasets where assumption (3) is violated. This can occur, for
example, in the presence of historical bias, which reflects historical disadvantages rather
than operational deficiencies, and it is hard to remove. In the example presented above,
even with a perfect "knowledge" label, the dataset may still reflect historical factors leading

to lower education in poorer neighbourhoods.

[00200] FIG. 1G illustrates a model of this situation. In effect, there are now two paths
connecting X and Y. If relationship between C and Y is more amenable than the relation
between X and Y, a model may exploit the C-dependence of X in order to satisfy its learning

task. Thus the model makes illegitimate decisions based on group membership.

[00201] A test for fairness may capture this behaviour. A fair model is one which does not
give preferential treatment to members of different populations. While there are many
metrics that quantify preferential treatment, many of these may be viewed as applications or
relaxations of different fairness criteria, which express constraints on the joint distribution of
the model score S, with ¢ and Y. To catch a model that is exploiting correlations between €
and Y in training, Sy may be required to be independent of C. At the group level, this

statement becomes:

[00202] Independence may be defined as follows: for a fair model, the score Sy should be

statistically independent of the population C:
[00203] Pr(Sy|C) = Pr(Sy). (8)

[00204] A strategy to evaluate independence is to propose a statistic to quantify Pr(Sy) for
a given C, and then check how this varies with C. For example, demographic parity is one

such relaxation, and is given by:
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[00205] IPr(Sy =1|C=0)—Pr(Sy =1|C=1)| < § (9)

[00206] Here, § defines a threshold for the test, above which a model is flagged as

discriminatory.

[00207] Notwithstanding, because fairness criteria may only constrain Pr(C,Y,Sy), they
implicitly marginalize over the individual features X. However, discriminatory behaviour in
models may arise from illegitimate patterns of bias in X. To this end, group fairness criteria
cannot identify if an individual is being discriminated against, nor can it provide insight into
why. Thus, to expose discriminatory behaviour at the level of the individual, fairness criteria

should be enforced locally.

[00208] The group statement of fairness may be converted into a individual level
statement, based on an understanding of how the inputs x vary as a function of c. In
particular, the group fairness criteria may be transformed into stricter individual statements
about the model gradient Vf,, by computing how the expected score S of a model f varies as
a function of the protected attribute C. A fair model may not vary rapidly as a function of C.

These changes may be approximated with an auxiliary model.

[00209] As discussed above, fairness tests aggregate statistics on S over samples from
different groups C, and then mandate they should be equal. Thus for a fair model, the
expected score E[S|C] should be a constant function of C, or at least one that does not vary
more than some tolerance §. By writing E[S|C] explicitly, this property can be enforced by

bounding the partial derivative:
[00210] |%]E[S|C]| <§ (10)

[00211] The full procedure for computing (10) is described later, while the main steps are
described here. To this end, note that the dependence of S on C may be implicitly encoded
through two factors: (1) the dependence of S on X, via the model f,,, and (2) the dependence
of X on C, which is described via generative model like that the model 100F in FIG. 1F. To
make this concrete, denote this model by I'. From the protected attribute ¢, target y, and

latent variables z, x is obtained via:

[00212] x =T(zy,0). (11)
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[00213] Using the chain rule, the variation in S with respect to C is then given by:

Tar

a.
[00214] a—j =V = (12)

[00215] This is a function of Z and Y, and thus, to obtain the aggregate shift in the expected

value of §, the expectation value of (12) is sought. A derivation follows.

[00216] The dependence of S on C is implicitly encoded (1) through the dependence of S
on X, via the model f, and (2) through models relating X and C. Accordingly, Pr(s|c)

factorizes as follows:

[00217] Pr(s|c) = [ dx Pr(s|x)Pr(x|c) (13)
[00218] Because f is a deterministic function of x, Pr(s|x) is obtained via a §-function as:
[00219] Pr(s|x) = 6(s — f(x)) (14)

[00220] Consider a deterministic function I'(z,y,c) which generates a datapoint x from
protected attribute c, target y, and latent variables z. As with Pr(s|x), Pr(x|z,vy,c) may be

expressed using a delta function. Pr(x|c) is then obtained by marginalizing over z and y:
[00221] Pr(x|c) = [ dzdy §(x —T'(z,y,¢))Pr(z)Pr(y) (15)

[00222] Inserting equations (13), (14), and (15) into (10):

[00223] 2 E[S|C] =< [ ds dx sPr(s|x)Pr(x|c) (16)

[00224] == [ dx f(x)Pr(x|c) (17)

[00225] =2 [ dzdy f o T(z,y,c)Pr(2)Pr(y) (18)

[00226] = [ dzdy =(f o I(z,y,0)Pr2)Pr(y) (19)

[00227] = [ dzdy Vf|I S Pr(2)Pr(y) (20)

[00228] = Ex [ 21)
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[00229] The chain rule is used in the last step. Thus, in summary:

[00230] = E[S|C] = Egy[5>

> (22)

[00231] Because the integrand is aggregated over the different values of z and y, it is
possible for different individuals to experience fluctuations in their model outputs, so long as
the net expectation value is undisturbed. As such, the group definition is not sufficient to
guarantee fairness for individuals. Mandating that similar individuals be treated similarly thus
requires that the integrand vanishes for all values of z and y, leading to the following local
definition of independence, which may be used to infer fairness: a machine learning model f

satisfies local independence with tolerance 6 if:
[00232] vx, |V x| <8 (23)

[00233] In various embodiments, 6 may serve as a fairness indicator value that provides a
measure of (e.g., highest acceptable) bias locally. A system for fairness testing may receive
data representative of one or more values of the input variable x and use it to generate
output data representative of the fairness indicator values at those values. In various
embodiments, the system may output § as described above or output binary indicator values
to flag input which do not satisfy the expression (23) as examples of unfair behaviour. These
inputs and the machine learning model (or even the auxiliary machine learning model) may

be studied to provide insights into the model's decisions. In various embodiments, a means

of estimating % may be additionally used to facilitate computation.

[00234] FIG. 2A, FIG. 2B and FIG. 2C graphically illustrate checking alignment of model
gradients with the auxiliary model gradient, i.e. faimess of a model may checked by

comparing its gradient to the auxiliary model gradient V.

[00235] FIG. 2A is a graphical representation 200A of a dataset with two populations in
concentric circles, denoted by circles and triangles. The target objective is independent of
the radius, but data is missing, resulting in a bias. Discrimination occurs when an individual

is advantaged by being in a given population.
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[00236] FIG. 2B is a graphical representation 200B of gradients of a (candidate) model
having unfair bias and that of an auxiliary model configured to predict membership in a
population. If the gradient of a model aligns with the gradient of the auxiliary model, an

individual can increase their score by changing their membership (dark triangle).

[00237] FIG. 2C is a graphical representation 200C of gradients of a fair (candidate) model
and that of the auxiliary model. In contrast to FIG. 2B, FIG. 2C shows that the gradient of a
fair model is orthogonal to the auxiliary model gradient, so that an individual cannot increase

their score in this way.

[00238] Orthogonality, for example, can be observed in the angle between the arrows (e.g.,

in FIG. 2C, they are closer to right angles, while in FIG. 2B, they are less than right angles).

[00239] To evaluate %x access to the full generative model I'(z, y, ¢) is required, but this is

generally not available. An approximation of %x that requires neither I' nor attempts to

model the latent variables Z may instead be used. Because a partial derivative is being
evaluated, only perturbations that maximize the change in ¢, but leave z and y approximately
constant, need to be examined. These perturbations may be found using a surrogate model.
The approach is visualized in FIG. 2A, 2B, and 2C and is summarized in Algorithm 1

outlined below.

[00240] Algorithm 1: Local independence test

[00241] Result: Flag unfair model behaviour

[00242] Data: Training data X, Y, C, task predictor f,, threshold §

[00243] 1. Using supervised learning, train auxiliary model f, to predict C given X.
[00244] 2. Evaluate gradients Vf, and V(.

VY Vfc
VflVfc

[00245] 3. The model exhibits unfair behaviour on inputs for which > 6.
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[00246] To build this surrogate, a machine learning model model f, is trained to predict
group membership C from inputs X. This predictor is referred as the auxiliary machine

learning model (or auxiliary model) or fau, and it outputs a score s, = f-(x).

[00247] Algorithm 1, in a variation, can be stated as:

Algorithm 1: Auxiliary Model Test (fAux)
Result: Flag unfair model behaviour
Input: Validation data points
D= { - (x4,¢i,yi) -}, target model fror,
and threshold &’
Train auxiliary model ¢ = fouq(X);
for each data point (x,c,y) in D do
Evaluate gradients V fi,, and V foyz;
Flag unfair behaviour on inputs through

Y frar (Vo ¥ faue) ' Vfita| <0

Guxr auxr

end

[00248] In a local neighbourhood around a given point x,, fo may be inverted to define

x(s¢), which is indicative of and used a surrogate for x(C). Starting with a Taylor expansion:
[00249] s¢ — fe(xo) = VI (x — x0) (24)

[00250] The left-hand side of this equation denotes the change in the score, and is a
scalar. The right hand side is a dot product between two vectors. Accordingly, (24) is an
indeterminate equation for x. Nevertheless, using the Moore-Penrose pseudoinverse, the
infinite solution set for x may yet be characterized:

[00251] x(s¢) = xo + % + perp. part (25)
[00252] The equation above describes two sources of variation: the first of which is parallel
to Vf, and the second of which is perpendicular to it. To minimize the impact from variations
in the latent variables Z, x(s.) is constrained to be the point closest to x, which maximally
changes s.. To this end, the second term in (25) may be discarded to leave the following
approximation:
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a9 _ _
[00253] 50X % 5 = e (26)

[00254] Combining with the definition for location independence yields an approximate

criteria for local independence:

Vfy V¢
VidVfc

[00255] vx, <$ 27)

[00256] where &6 may be a fairness indicator value in various embodiments adapted to

predict (e.g. highest acceptable) bias or unfairness at particular locations.

[00257] For example, (26) may be a useful approximation of the true derivative of the data
generating model %F(z, y,c). Potential sources of error may arise. Extensions to the

auxiliary model may help mitigate approximation errors.

[00258] Gradient estimates may have high variance: whether through modelling error, or
an ill-posed objective, it is possible that the approximation in (26) will become sensitive to
the model architecture and training procedure. To accommodate this, rather than using Vf,

directly, one may consider using sign(Vf).

[00259] If Vf. moves outside the data generating distribution local perturbations using Vf,
may in fact produce outliers. To accommodate this, Vf. may be corrected using local
estimates of covariance, or second-order gradient estimates. Alternatively, Vf. may be
utilized directly, but out-of-distribution detection may be applied to filter which individuals are

used to estimate fairness.
[00260] For illustrative purposes, a concrete example is provided below.

[00261] A concrete example may be provided by the Coloured MNIST dataset, comprising
images having either a handwritten zero digit (“0”) or handwritten nine digit (“9”) that are
respectively coloured blue and red. The images may be input variables, the digit (“9” or “0”)
or a quantity indicative thereof may be the target prediction, and the colour (blue or red) or
quantity indicative thereof may be the protected attribute (in general, there may be more
protected attributes). An unfair model may use the colour to predict the digit. A task predictor

(machine learning model) may accept an image as the input variable and output the target
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predictions: a vector of probabilities for the digits. An auxiliary model may accept the image
as the input variable and output predictions indicative of the protected attributes: a vector of
probabilities for the colours. For the task predictor a convolutional neural network
architecture may be used. The architecture of the auxiliary model may be composed of an

average pooling layer followed by a linear layer.

[00262] The gradients may be computed using backpropagation. The dot product may be
used to compute alignment of the gradients, e.g. via the dot product itself or in the form of
the cosine angle between the gradient vectors. To reduce variance in the computation of the
gradients (e.g. to avoid problems of excessively small or large gradients), a revised measure
of alignment using the sign gradient may be used. The reduction in variance may be
observed via a histogram of the alignment. In this case, any value of § > 0 may recognize

that the fair model is completely fair.

[00263] A P-R (precision-recall) curve may be used. In the synthetic case, access to
ground-truth definitions of fairness may be available, e.g. since the counterfactuals may be
be directly generated by producing blue 9s and red 0s. In some embodiments, the ground
truth fairness may be given by the difference between the output of a model on an instance
x, and its counterfactual x.. The difference may be correlated or associated with the
definition of local fairness. In some embodiments, ground-truth binary labels may be
obtained by thresholding this difference, e.g. the ground-truth binary labels may declare
whether or not discrimination occurs. Different choices of § may provide varying relative

success in flagging discrimination.

[00264] In experiments described below that employ various embodiments, the reliability of
the approximation in (26), and the proposed extensions, in estimating %F(z, y,c¢) may be

empirically quantified. Because modelling T'(z,y,c) may be difficult on real datasets,
synthetic datasets may be used for benchmarking. The specifics of these datasets are
detailed further below. Based on these results, the algorithm may then be applied to real

world datasets.

[00265] FIGS. 3A-4B shows results from experiments performed with synthetic data in

accordance with some embodiments.
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[00266] FIGS. 3A-3C illustrate a model for a source of bias in datasets. The constructed
model T is takes latent variables z, targets y, and sensitive attribute ¢ to generate datapoints
x via x =T'(z, v, c). Bias is injected by specifying a joint distribution Pr(C,Y), which is used to

sample c and y. This results in datasets with the structure of FIGS. 3A-3C.

[00267] Multiple datasets are constructed with T' and Pr(C,Y) of increasing complexity (the
specifics of the generative model T', and the joint distribution Pr(C,Y), are described below).
To compare how successfully the fairness test flags individual discrimination, a ground-truth
definition of fairness may be required. As the setup gives access to a generative model,

counterfactual fairness may be employed to construct fair and unfair models.

[00268] Generative models may be used to synthesize datasets, to facilitate ground-truth
prescription of fairness, and to construct fair model. For example, such questions may be
quantitatively explored: How do models learn discriminatory behaviour? Is the score of the
auxiliary model a useful surrogate for group membership? Under what settings is it not?
What architectures should be used for the auxiliary model? How does the auxiliary model

compare with existing approaches?

[00269] While datasets contain multiple sources of variation, models may preferentially
exploit the most amenable patterns to achieve their performance objective. Thus, if inferring
a target y from x is challenging, a model may exploit the c-dependence of x if ¢ is correlated
with y. This process may be visualized using information plane dynamics. Given a fair and
an unfair model, sources of variation in x are compared and are exploited during training. An
auxiliary model may be able to detect this discriminatory mechanism. Quantitatively, for each
(dataset, model) pair, the alignment between the gradients of the model Vf; may be
examined, and the gradients of the auxiliary model Vf,. A prediction may be that the
alignment will be strongest when the relation between y has x has higher complexity.
Problematic correlations may be flagged by computing an aggregate covariance matrix
between Vfs and Vf,, similar to transparency reports, e.g. such analysis may be a useful

debugging/exploration/diagnosis tool for model developers.

[00270] An auxiliary model may be a useful surrogate for group membership. The auxiliary
model f. may be used to approximate local changes in group memerbship. In particular,

variations in the score s; = f-(x) may be used as a surrogate for variation in the protected
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attribute C (see equation (26)). The setup may allow explicit computation of the left hand
side of this equation, by taking a partial derivative of the generative model %. Then how well

this aligns with the auxiliary-model perturbations may be measured.

[00271] With respect to architectures to be used for the auxiliary model, a search is
performed to determine the architectures and training procedures which maximize the
aforementioned alignment. For example, consider three architectures: (1) A ground truth f,
computed from I', which serves as a baseline. (2) Neural networks with varying depths and
widths. (3) Bayesian ensembles of different models. As architectures change and the
complexity of the dataset increases, the auxiliary model may become progressively less
accurate. In such a way, the proposed extensions described previously may also be

assessed, for instance, by comparing sign(Vf.) and sign(Vfs).

[00272] In various embodiments, the auxiliary approach is more precise that FTA, but may
be easier to implement than CFF. Three tests of fairness are considered: (1) the present
approach, using auxiliary models, (2) FTA, using (6), (3) an approximation of CFF, FlipTest.
Each of these tests has an associated threshold &, which may be used to flag unfair

behaviour.

[00273] Using synthetic datasets, access to a generative-model I' which provides a ground
truth definition of individual fairness is possible. Using the threshold §, PR curves may be
constructed that describe the rate at which individual discrimination is caught for a given
(dataset, model) pair. These are then compared to the AUC of these curves across different

(dataset, model) pairs to see which tests have the best performance.

[00274] FIG. 3A is a visual representation 300A of an example zero perturbation input of
machine learning models configured to generate target predictions of the digit in the input, as

either 0 or 9, and where color is a protected attribute.

[00275] An example of a dataset with synthetic bias is Coloured MNIST. This is used to
demonstrate how models trained on this data may become unfair if not regularized. A
auxiliary model is constructed and then used to generate perturbations that expose
discriminatory behaviour. Finally, these results are examined to see how they may be made

even more reliable using techniques presented above.
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[00276] FIG. 3B is a visual representation 300B of an example perturbation of the input of
FIG. 3A along a gradient of an example fair machine learning model, where the gradient is

relatively less aligned with a gradient of an auxiliary machine learning model.

[00277] FIG. 3C is a visual representation 300C of an example perturbation of the input of
FIG. 3A along a gradient of an example unfair machine learning model, where the gradient is

relatively less aligned with a gradient of an auxiliary machine learning model.

[00278] The upper (top row) plots in FIGS. 3A-3C were generated using the original colour
plots with colours mapped to distinguish differing colours more clearly in grayscale. For
example, lighter shades (of gray) simulate redder hues while darker shades (of gray)

simulate bluer or pinker hues.

[00279] FIG. 4A are an example histograms 400A of values of an unfairness indicator for
the example fair and unfair machine learning models, in accordance with an embodiment.
FIG. 4B are an example histograms 400B of values of an unfairness indicator for the

example fair and unfair machine learning models, in accordance with another embodiment.

[00280] Fair and unfair machine learning models are trained on MNIST to distinguish
between Os and 9s. Here, the targets (predictions) Y describe the digit (0 or 9), and the latent
variables Z describe information about shape and orientation. The dataset is then
augmented by giving the digits a colour (shown in grayscale shading in the figures). This
colour is the sensitive attribute C. To each ¢ an RGB vector V. = [}, 1], V}] is associated.

These colours are chosen so that:

[00281] V.+V, +V, =1 (28)
[00282] The images are then transformed as follows:

[00283] Xcotor = Xpw O Vo = [Xr, Xg, Xp] (29)

[00284] This produces a 3-channel RGB image. Note that, from X.,,.., the following

inverse transformations may be used to obtain X,,, and V.

[00285] Xpw = Xy + Xy + X, (30)
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[00286] (V)i = max(Xy) (31)

[00287] To inject a historical bias, a correlation is imposed between the protected attribute
C and the target Y. Thus, rather than using information about shape to predict the digit, an
unfair model may predict € from X, and then predict Y from C (see FIG. 1F-1G). In this case
study, all of the 9s have been coloured a first colour (e.g., red), while all the Os have been

coloured a second color (e.g., blue).

[00288] Two models are then constructed, which have the same architecture, but are
trained differently. The first of these, which becomes the fair model, is a CNN, where first
layer is a 1x1 convolution, initialized to convert the coloured image into a BW image using
(30). This layer is then frozen while the rest of the model is trained to predict the Y. For the
unfair model, the same architecture is used, except the first layer is randomly initialized, and

model is trained end to end without pre-training.

[00289] For the auxiliary model, the channel-wise mean of the RGB image is taken and fed
into a linear classifier (mean is used instead of max because the gradient of max is too

sparse).

[00290] FIG. 3A, FIG. 3B, and FIG. 3C show an example comparing the gradients of fair
and unfair models. The top row of FIG. 3A, FIG. 3B, and FIG. 3C are counterexamples
obtained by following model gradients. The bottom row of FIG. 3A, FIG. 3B, and FIG. 3C
show the gradients in the blue channel and can be used for a comparison of the different
gradients. The gradients are shown using a bimodal colour map or shading (in grayscale)
where high and low ends of the colour map are rendered darker than the center of the colour
map, which is rendered brighter. In FIG. 3B, the regions 302B and 304B are regions
(enclosed with dashed lines) where the pixels are from the lower end of the colour map.
Regions 306B and 308B are regions (enclosed with dash-dot lines) where the pixels are
from the higher end of the colour map. In FIG. 3C, regions 302C and 304C are regions
(enclosed with dashed lines) where the pixels are from the lower end of the colour map. The
fair gradient changes the shape of the digit, whereas the unfair gradient only changes its
colour. The latter aligns more closely with the gradient of the auxiliary model, which is

evidence of its unfairness.
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[00291] In FIG. 3A, FIG. 3B, and FIG. 3C, the gradients of the fair and unfair models are
visualized. In the blue channel, the gradient of the unfair model is quite correlated with the
auxiliary model, and using this gradient to perturb the input image changes the colour
without changing the shape. This demonstrates discriminatory behaviour against the colour
red. In contrast, the gradient of the fair model tries to turn the image of a 9 into a 0, and

demonstrates little correlation with the auxiliary model.

[00292] FIG. 4A and FIG. 4B show an example set of distributions comparing distributions
of the gradient alignments. Unfairness of a model may be determined by aggregating
counterexamples. FIG. 4A shows the distribution of alignments with the auxiliary model
using Vf directly. It may be observed that, even in the case of coloured MNIST, there is a
great deal of variance. FIG. 4B shows that using sign(Vf;) offers lower variance, and
clearer de-lineation between fair and unfair models. In FIG. 4A and FIG. 4B, distributions of
the gradient alignments is visualized for the fair and unfair models. Note that, using (27)
directly, there is a clear separation between the fair and unfair distribution, but especially for
the unfair model, there is high variance. In contrast, using sign(Vf;) results in less variance

within the distributions, and wider separation between them.

[00293] To demonstrate the utility of the auxiliary model approach, these are deployed on
datasets which feature prominently in the fairness literature. Increasingly aggressive bias-
mitigation strategies are employed, and their impact is examined on the present test for
fairness. This approach may be used to demonstrate that the auxiliary model approach is
able to flag discriminatory behaviour on real datasets. Further approaches of local fairness
that employ yet other methods, e.g., related to adversarial robustness, may be employed.
The auxiliary model may be incorporated, for example, as an additional term in the
objectives for adversarial robustness algorithms. The resulting adversarial examples must be

examined carefully.

[00294] FIG. 5A is an example square neighborhood of an actual input in a two-
dimensional input variable space 500 with superimposed isocontours of target predictions
(such as outputs or scores), showing a counterfactual input obtained by maximizing distance

of the counterfactual target prediction from the actual target prediction.
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[00295] FIG. 5B is the example square neighborhood of FIG. 5A, 500, now with
superimposed isocontours of (the score of) predictions of the protected attribute, showing a
counterfactual input obtained by maximizing both distance of the counterfactual target
prediction from the actual target prediction and distance of the counterfactual (score of the)
prediction of the protected attribute from the actual (score of the) prediction of the protected

attribute.

[00296] FIG. 5A and FIG. 5B show an example of generating fair counterfactuals using
constrained optimization. When a model is approximately constant near a point x, a single
perturbation using the gradient may fail to reveal nearby discriminatory behaviour. One can
thus use an iterative algorithm to find points x’ which maximize the change in the model's

outputs, subject to constraints.

[00297] FIG. 5A shows that the first constraint is a distance constraint, which defines an
upper bound € on the distance between x and x'. Optimizing under this constraint alone

generates adversarial examples.

. shows that, in contrast, fair counterfactuals x.,;. require changes in group
[00298] FIG. 5B sh that, i trast, fai terfactuals x¢;, ire ch i

membership C. One can use the auxiliary model f. as a surrogate for group membership,

and add an additional constraint on the score s, = f-(x") of x}air-

[00299] Single-step attacks have been considered that are made on the auxiliary model f,
and then transferred to the task predictor f,. If f, varies slowly at x, these perturbations may
have a limited effect on the model's output. In some cases, single-step attacks may not find
other points x’ close to x where f, changes sharply. This situation is illustrated in FIG. 5A-B.

These x' may be found as the solution to a constrained optimization problem, as in equation

(3).

[00300] A number of iterative algorithms for solving this optimization problem are available
(e.g. in the adversarial robustness literature), such as the Carlini-Wagner attack and the
momentum attack. However, fairness testing requires that perturbations to x are exclusively
made through changes in the group membership c. This is a limitation of previous works. To

this end, (3) is modified to include constraints on group membership.
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[00301] The score s, of the auxiliary model are again used as a surrogate for changes in c.

In particular, a counterfactual x}air should change the probability of belonging to a certain

group, leading to the constraint
[00302] |feair) = fe ()] > 6 (32)

[00303] For the single-step attacks, it is mandated that changes in the auxiliary model
should not transfer to the task predictor. Empirically, multi-step attacks may be less
transferable than single-step attack. Ultimately, however, demonstration that the task
predictor exhibits low variance when the auxiliary model demonstrates high variance is
needed. Thus & is imposed as a lower bound on the variance of the auxiliary model, it

should be imposed as an upper bound on the variance of the task predictor:
[00304] do(, fr(Xfair)) <6 (33)

[00305] A generalized local fairness may be defined as follows: a machine learning model
fy is fair if for all points x' in a neighbourhood of x, the variance in fy is strictly less than the

variance of an auxiliary machine learning model f.:

[00306] Vx' (d;(x,x) <€) A(do(y, f(x) <) A(do(, f(x)) <Ife(x") = fe(D

[00307] where § may be a fairness indicator value providing a measure of (e.g. highest

acceptable) bias in a neighbourhood around x (defined by vx' d;(x,x") < ¢€)

[00308] To test for (e.g. disprove) generalized local fairness, it may be sufficient to identify
a counterfactual for which the variance in f, is greater than the variance in f.. This
counterfactual may be found by jointly maximizing over f, and f.. This involves only an

addition to equation (3):

[00309]  xjq, = arg maxy,(uycelrair(x’) (34)

[00310] Leair(x") = do (v, fr (%)) + Afc(x) (39)

[00311] Here, A is a hyperparameter that balances the loss between f, and f.. To find
counterfactuals, Lg,; may be substituted in place of the loss function used in a multi-step
attack algorithm.
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[00312] An example is provided in Algorithm 2 below, which is a modification of an iterative

attack.

[00313] An algorithm is described with comprehension notes included in brackets [ .. ].
[00314] Algorithm 2: Iterative FGSM independence test

[00315] Result: Flag unfair model behaviour

[00316] Input: Task predictor fy, auxiliary model f., output metric d,, datapoint (x, y)
[00317] Params: Input bound ¢, loss weight A1, number of iterations T, step size a

[00318] x; < x; [A counterfactual may be first initialized at iteration 0 with an original

datapoint.]
[00319] fort <« O0to T — 1 do [Details at each iteration are described below.]

[00320] Leqir < do(y, fyr(x1)) + Afe(x{), [Computation of a loss or loss function.]

[00321] Xt41 < X{ + a sign(VLgy;); [Computation of the the gradient of the loss
function: take an element-wise sign function to convert the elements of the gradient V.,

into either +1 or -1 (in some embodiments: either +1, -1, or 0), and shift the counterfactual at

the previous iteration x; (i.e. at iteration t) by an amount « in a direction sign(VLs,;) (the

direction may or may not be represented by a unit length vector) determined by the sign

function of the gradient, to produce a counterfactual x/,, at iteration ¢ + 1.]

[00322] Xi41 < clip(x{41,x + €,x — €); [Clipping the new counterfactual (i.e. x;/,,, and

at iteration ¢ + 1) so that it lies within the input bound.]
[00323] end

[00324] Raise flag if do(y, fy (x7)) > |fc(x7) — fc(x)|. [Discrimination is evidenced if the
change in f, (as measured by d,) is greater than the change in f. (as measured by the

absolute deviation).]
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[00325] The task predictor f, is the machine learning model, and is configured to generate

the target prediction y based on the input variable x, as represented by the datapoint (x, y).

[00326] The output metric d, is a metric on the target space, e.g. it may be a Euclidean

distance.

[00327] The input bound ¢ is a tolerance on the input variable, e.g. as determined from
noise in the input variables. In various embodiments, ¢ (epsilon) may be specified according

to group level statistics or individual level statistics, e.g. based on business considerations.

[00328] In various embodiments of group level statistics, ¢ may be indicative of a
proportion of the overall range of a given feature, or may be indicative of percentiles of that
feature. In some embodiments of individual level statistics, individual bounds may be

specified in terms of variance.

[00329] For example, group and individual level statistics may be prescribed for a feature
that describes the amount of money in a person’s bank account. The account balance may
fluctuate according to transactions made by the individual. A group level statistic may
examine the distribution of account balances across the entire dataset (as a function of
time), and specify an ¢ based on differences in various percentiles. As an illustration, the
account balance of a person in the 50" percentile may not be expected to fluctuate by more
than 1 percentile. In this case, ¢ may be defined by a metric distance between the 50" and
51st percentile. An individual level statistic may be given by the variance in a individual
person’s account (e is given by the variance), given the individual person’s transaction

history.

[00330] The loss weight A > 0, number of iterations T > 0, step size a > 0 are optimization

parameters that may be adjusted to achieve convergence in a reasonable amount of time.

[00331] The clip function may saturate a variable (with upper and lower bounds specified)

or otherwise clip it to the respective bound when it is exceeded.

[00332] While these stronger attacks may find discriminatory behaviour that the present
attack cannot, there are some considerations that must be made in the interpretation of the

resulting counterfactuals. Some of these are noted below.
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[00333] Extensions to the auxiliary model approach which mitigate the effects of modelling
error were proposed for single-step attacks. Other extensions may be needed if multi-step
attacks are used, especially if the auxiliary model has a lower accuracy. In particular,
allowing multi-step attacks increases the risk that the counterfactuals produced will be out of

distribution samples, which may be less meaningful for tests of fairness.

[00334] Using multi-step attacks there is no guarantee that the new adversarial examples

would contain variations exclusively in c.

[00335] Finally, because the tests are enforced locally, a task-specific metric to quantify
how "small" a perturbation is is not required. This alone is an improvement over FTA.
However, it also means that there is single parameter, the tolerance & for the variation in the
outputs. Allowing for multi-step attacks will require an additional tolerance ¢ to be specified

for the variation of the inputs, as in (4).

[00336] FIG. 6A are graph representations of example generative models 600A for
unbiased datasets. In both data sets the observable features X are distributed according to a
target Y and latent variables Z. There are no distinct populations in either dataset, and so

there is no bias

[00337] FIG. 6B is a graph representation of a synthetic bias pipeline 600B fusing the

unbiased datasets of FIG. 6A to generate a dataset with synthetic historic bias.

[00338] In various embodiments, systems for synthetic data generation may comprise one
or more processors operating in conjunction with computer memory, the one or more
processors may be configured to execute one or more methods for synthetic data
generation. Various embodiments may include non-transitory computer readable medium or
media storing machine interpretable instructions, which when executed by a processor,

cause the processor to perform one or more methods for synthetic data generation.
[00339] Algorithm 3: Synthetic Data Generation
[00340] Result: Obtain samples x from a biased dataset

[00341] Input: Joint distribution Pr(c,y), latent priors Pr(z,), Pr(z;), generative models I,

I, fusion function F
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1. Sample z; ~ Pr(z;) and z, ~ Pr(z,).
2. Sample (y,c) ~ Pr(c,y)

3. Compute x; =T, (21,y), x, = [(23,¢)
4. Compute x = F(xq,x;)

[00342] X, and X, are fused together to form a new dataset X, which contains two distinct
patterns of variation. The target of the second dataset Y, is declared to be a sensitive
attribute, labeled with C. Historical bias is introduced using a correlation between Y and C.
Models trained on the new dataset may learn to exploit the ¢ dependence of X to predict Y,

which corresponds to discriminatory behaviours.

[00343] This algorithm for synthetic data generation can also be stated as:

Result: Obtain samples X from a biased dataset

Input: Joint distribution Pr(c, ), latent priors
Pr(z), Pr(Z), generative models I',, I'..,
fusion function F

Z)and Z ~ Pr(z).

2. Sample (y,¢) ~ Pr(ec,y)

1. Sample 2z ~ Pr(

3. Compute X; = I'y(2,y), x; = ['c(Z, ¢)

4. Compute X = F'(X;,X;)

[00344] Specific algorithms for building models of dataset bias may be obtained that allow
construction of synthetic datasets. Bias may be injected into existing datasets. Such a
synthetic approach may include or reflect real-world limitations in data collection, or reflect

real-world relationships.

[00345] While datasets contain multiple sources of variation, models may preferentially
exploit the most amenable patterns to achieve their performance objective. Thus, if inferring

a target y from x is challenging, a model may exploit the c-dependence of x if ¢ is correlated
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with y. A dataset containing different patterns may thus be constructed, as visualized in FIG.
6A and FIG. 6B.

[00346] The overall goal is to construct a dataset with the structure shown in FIG. 1F. To

this end the following must be identified:

[00347] » Observable features x. This may be done by taking two existing datasets, and

fusing them together.

[00348] More specifically, consider two different datasets, D, and D,, which respectively
consists of (input, output) pairs (x;,y;) and (x,,y,). Suppose D, poses a more challenging
machine learning problem. As an example, consider using the MNIST dataset as D,, and the

iris dataset as D,. The inputs x; and x, are fused using a tranformation F as follows:
[00349] x = F(xq,%5) (36)

[00350] » Targets y: The target of the more challenging task, y,, becomes the target of

the fused dataset.

[00351]  Populations c: The target of the easier task, y,, becomes the sensitive attribute

of the fused dataset.

[00352] » Latent factors z: As shown in FIG. 6A, both D; and D, contain latent variables
z; and z,. While these are not observable, Conditional Variational Autoencoders (CVAEs)

are trained to model them. In this way models T, and I'; are built for the two datasets.

[00353] To inject a historical bias, a correlation is imposed between y and c, using a joint
distribution Pr(C,Y). In the present experiments, one dimensional target variables are
considered. When y and ¢ are both discrete the bias may be specified using a confusion

matrix. Alternatively when y and ¢ are both real, a normal distribution may be used:
[00354] Pr(c,y) =N(c—y;0,0°) (37)

[00355] Here the variance o2 controls amount of bias. The full sampling procedure is
describe in the algorithm below. A case study where a colour bias is injected into MNIST is

presented below.
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[00356] In fusing the datasets, there may be a slight constraint: while the aim is to mix the
different patterns, they must also be distinct enough that the learning task can be performed.
As such, some fusion transforms are described below. The relations (y,x;) and (c, x;)

correspond to real patterns.

[00357] » Concatenate the vectors x; and x;,:

[00358] x = concat(xq,x3) (38)
[00359] This corresponds to zero mixing.

[00360] * Mix x; and x, by taking the outer x; & x,.

[00361] » Take a linear combination:

[00362] x = Wixy + Wox, (39)
[00363] » Employ a nonlinear mixing strategy:

[00364] x = concat(x; Q cos(mxy),x1 @ sin(mxy)) (40)

[00365] The unbiased information in x;, may be extracted from x using a quadratic

transformation.

[00366] Because the datasets are constructed using generative models, counterfactual
fairness may be used to define a ground truth for individual fairness. Using the algorithm, the
latent variables (z,,z,) are first sampled, along with targets y, and group c¢. Using the
generative models, x; may then be sampled from (z,y;), x;, and used to construct an
instance x. To generate a counterfactual, this process is repeated, but ¢’ is used in place of

¢ to generate x’'. The individual is treated fairly is treated fairly by the model f, if:

[00367] do(fy(x), fr(x')) <& (41)
[00368] Where the metric d, and the threshold § are chosen based on the datasets used.

[00369] Training fair models may be possible with methods and systems disclosed herein.
A model is counterfactually fair if its predictions are only based on the information in x,. This

suggests an architecture for fair models:
-51-

Date Recgue/Date Received 2021-10-08



10

15

20

25

30

[00370] h = encoder(x; 8g) (42)
[00371] vy = decoder(h; 6p) (43)

[00372] To construct a fair model, h is trained to output x; given x. The parameters of the
encoder are then frozen, and the decoder is trained to output y based on the outputs of the
encoder. To make an unfair model, the same architecture is employed, but now it is trained
end-to-end: that is, the full model is trained to accept x as input and output y, without pre-

training.

[00373] In various embodiments, exemplary methods for training fair models may reflect
embodiments of such architectures. In various embodiments, systems for training fair
models may comprise one or more processors operating in conjunction with computer
memory, the one or more processors may be configured to execute one or more methods for
training fair models. Various embodiments may include non-transitory computer readable
medium or media storing machine interpretable instructions, which when executed by a
processor, cause the processor to perform one or more methods for training fair models. For
example, non-transitory computer readable media may include electro-mechanical data
storage devices (such as hard disk drives using magnetic storage), integrated circuit
assemblies storing data (such as solid-state drives, e.g., flash memory), or optical storage

media (such as CDs, DVDs, blu-ray, or other disc storage solutions).

[00374] FIG. 7A is schematic block diagram of an exemplary machine learning model
700A. The machine learning model may be configured to generate target predictions based
on an input variable (such as a vector). In various embodiments, the machine learning model

may be a supervised learning model.

[00375] FIG. 7B is schematic block diagram 700B of an exemplary auxiliary machine
learning model 700B. The auxiliary machine learning model may be configured to generate
predictions of one or more protected attributes based on the input variable. In various
embodiments, the auxiliary machine learning model may be a supervised learning model. In
some embodiments, the supervised learning model may be trained at least partially based
on known values (e.g., from measurements or a dataset) of the one or more protected
attributes. In various embodiments, the auxiliary machine learning model may be suitable for
adversarial attack, e.g. as part of a multi-step adversarial attack engine.
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[00376] FIG. 8 is schematic block diagram of an exemplary system 800. In various
embodiments, the system 800 may suitable for diagnosing fairness of a machine learning
model. The system may be configured to receive data representative of a value of the input
variable of the machine learning model. The input variable may be associated with an actual

target prediction the machine learning model.

[00377] The system may be configured to generate output data representative of a fairness
indicator value of the machine learning model. The fairness indicator value is indicative of

discrimination risk due to the target predictions generated by the machine learning model.

[00378] The system may be configured to generate the fairness indicator value (e.g. the
embodiments of metrics shown in FIGS. 4A-4B) by comparing a first vector to a second
vector. The first and second vectors may be vectors in the sense of vector spaces, e.g. they
may be matrix-valued. The first vector indicative of a gradient of the machine learning model
evaluated at the value of the input variable and the second vector indicative of a gradient of
an auxiliary machine learning model evaluated at the value of the input variable. The first
and second vectors may be approximations, surrogates, depend on surrogates, or

heuristics.

[00379] In various embodiments, the first vector may be compared to the second vector
using a projection of the first vector on to the second vector. In various embodiments,
comparing the first vector to the second vector includes using a norm of a projection value,
where the projection value is obtained by projecting the first vector on to the second vector
and dividing by a L2 norm of the second vector (e.g., Euclidean distance). In some
embodiments, second vector is representative of an output of a sign function of the gradient
of the auxiliary machine learning model evaluated at the value of the input variable. In
various embodiments, the second vector is indicative of a modified gradient when the
gradient of the auxiliary machine learning model is associated with out-of-distribution

predictions of the auxiliary machine learning model (see discussion above).

[00380] In various embodiments, the (input) value is one of a plurality of values configured
to be received by the one or more processors, the fairness indicator value is one of a
plurality of fairness indicator values, each of the plurality of fairess indicator values

generated based on a corresponding one of the plurality of values, and the output data is
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indicative of whether an aggregated measure of the plurality of fairness indicators exceeds a

predefined fairness threshold.

[00381] In some embodiments, each of the plurality of fairess indicator values is indicative
of a covariance between the gradient of the machine learning model evaluated at the
corresponding one of the plurality of values and the gradient of the auxiliary machine
learning model evaluated at the corresponding one of the plurality of values. In some

embodiments, the aggregated measure is an L-p norm.

[00382] In various embodiments, the input variable includes an observable attribute
correlated with at least one of the one or more protected attributes via an unobserved latent

variable.

[00383] In various embodiments, the system 800 may suitable for fairness testing of a
machine learning model using adversarial attack (e.g. similar to the discussion around
equations 24-25 and associated optimization problem). In various embodiments, the system
800 may deploy a multi-step adversarial attack engine configured to receive an actual value

x of the input variable associated with an actual target prediction y.

[00384] In various embodiments, the system 800 may be configured to iteratively generate,
using a multi-step adversarial attack engine configured to receive the actual value x and an
auxiliary machine learning model f.(x") configured to generate predictions indicative of one
or more protected attributes, one or more counterfactual values {x';}’_, of the input variable
adapted to increase an iteration-specific loss value, e.g., as computed from a loss function
similar to equation 25. The iteration-specific loss value L;q;-(x), k € [0,T] may be jointly
indicative of a counterfactual-specific first distance dg;.. (f¢c (1), fc (x)) and a counterfactual-
specific second distance dgconq (fy (1), ¥). In some embodiments, the outcome may be as
described in FIGS. 6A-6B.

[00385] In various embodiments, the system 800 may be configured to generate output
data representative of an unfairness indicator if dfl-rst(fc(x,’c), fc(x)) < dsecona (fy (xi), y) for

atleastone k € [0, T].

[00386] In various embodiments, the one or more counterfactual values {x';}’_, are

confined to within a neighborhood of the actual value x. In various embodiments, for each of
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the one or more counterfactual values x'i, k € [0, T], the counterfactual-specific first distance
fe(xp), fe(x) is of a counterfactual prediction f;(x;) indicative of one or more protected
attributes from an actual prediction f.(x) indicative of the one or more protected attributes.
In various embodiments, the counterfactual-specific second distance dgecona (fy (x1), V) is of
a counterfactual target prediction f,(x;) generated by the machine learning model from the
actual target prediction y. The distance functions dy;.s; and dgeconqg Mmay be metrics in some

embodiments (e.g. similar to equation 23 and Algorithm 2).

[00387] In various embodiments, the system 800 may be configured to execute an

exemplary method for fairness testing of a machine learning model using adversarial attack.

[00388] FIG. 9 is an exemplary graphical user interface (GUI 900) of a system for
diagnosing fairness of a machine learning model. The GUI 900 may be coupled to the

system 800.

[00389] FIG. 10A is an exemplary algorithm 1000A for fairness testing, similar to Algorithm
1 discussed previously. FIG. 10B is an exemplary algorithm 1000B for fairness testing,

similar to Algorithm 2 discussed previously.

[00390] FIG. 11 is an example computing device, according to various embodiments. The
device 1100, such as a computer server, can be utilized to implement the system of 800, or
the algorithms 1000A or 1000B. The device 1100 includes one or more processors 1102,

which operate in conjunction with computer memory 1104.

[00391] The computer memory 1104 can be adapted to store various non-transitory
computer readable instruction sets, which can be executed on the processors 1102 to cause

the performance of various methods described herein.

[00392] The computer memory 1104 can maintain data objects representing the classifier
models stored herein and refined through one or more training epochs. An input/output
interface 1106 can be utilized to receive various input commands, for example, through an
attached keyboard, mouse, or touch input, and generate various outputs, such as screen

renderings for display on a computer display of a computer or a mobile device.
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[00393] A networking interface 1108 can be utilized to communicate one or more data sets,
for example, through a message bus or other enterprise communication linkage. Networking
interface 1108 can be adapted to obtain machine learning models or inputs thereof, for

example, as the model validation and auditing process takes place.

[00394] The device 1100, in some embodiments, can be a special purpose machine, such
as a rack mounted appliance, that is specially adapted and configured to receive data
representative of machine learning models and inputs suitable for those models, and to
generate outputs suitable for characterizing or testing fairness. For example, device 1100
can be a computer appliance that can be used by a team member of a model audit team or a

model designer, to improve model fairness.

[00395] FIG. 12 is a process diagram of an exemplary method 1200 for diagnosing fairness

of a machine learning model.

[00396] At step 1202, the method 1200 includes receiving data representative of a value of
an input variable of the machine learning model, the machine learning model configured to

generate target predictions based on the input variable.

[00397] At step 1204, the method 1200 includes generating a first vector indicative of a

gradient of the machine learning model evaluated at the value of the input variable.

[00398] At step 1206, the method 1200 includes generating a second vector using an
auxiliary machine learning model configured to generate predictions indicative of one or
more protected attributes based on the input variable, the second vector indicative of a

gradient of the auxiliary machine learning model evaluated at the value of the input variable.

[00399] At step 1208, the method 1200 includes comparing the first vector to the second

vector to generate a fairness indicator value.

[00400] At step 1210, the method 1200 includes generating output data representative of

the fairness indicator value.

[00401] FIG. 13 is a process diagram of an exemplary method 1300 for fairness testing of a

machine learning model using adversarial attack. The machine learning model is configured
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to generate target predictions y’ = fy(x’) based on an input variable x’, the method

comprising:

[00402] At step 1302, the method 1300 includes receiving data representative of an actual

value x of the input variable associated with an actual target prediction y.

[00403] At step 1304, the method 1300 includes generating iteratively, using a multi-step
adversarial attack engine configured to receive the actual value x and an auxiliary machine
learning model f.(x") configured to generate predictions indicative of one or more protected
attributes, one or more counterfactual values {x';}’_, of the input variable adapted to
increase an iteration-specific loss value, the iteration-specific loss value L4 (x¢), k € [0,T]
jointly indicative of a counterfactual-specific first distance d.o(fc(xi), fc(x)) and a

counterfactual-specific second distance d.cona(fy (X1), ¥)-

[00404] At step 1306, the method 1300 includes generating output data representative of a

unfairness indicator if de;s¢ (fe (), fe(x)) < dsecona(fr (x1), y) for at least one k € [0, T].

[00405] The one or more counterfactual values {x';}’_, is confined to within a
neighborhood of the actual value x. For each of the one or more counterfactual values
x'y, k € [0,T], the counterfactual-specific first distance f.(x;), fc(x) is of a counterfactual
prediction f-(x;) indicative of one or more protected attributes from an actual prediction
fc(x) indicative of the one or more protected attributes, and the counterfactual-specific
second distance d.cona(fy (x1), V) is of a counterfactual target prediction f, (x;) generated

by the machine learning model from the actual target prediction y.
[00406] Additional Experiments are described below.

[00407] Applicants evaluate the proposed fax test of some embodiments to answer the

following research questions (RQs):

[00408] + RQ1: Given the target model f;,, trained on synthetic datasets whose
ground-truth degrees of bias are known, how well does the fax methods perform compared

to the existing testing methods?
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[00409] + RQ2: Given the target model f;,, trained on the real dataset whose ground-

truth degree of bias is unknown, can fa. identify discriminatory features?

[00410] + RQ3: How efficient is faxx compared to the existing approaches in terms of

inference cost?

[00411] *+ RQ4: Does fax have any conditions needed to guarantee reliable test
performance? In particular, Applicants want to know how the effect of auxiliary model

performance would impact the test performance.
[00412] Experimental Setup

[00413] + FTA: A local version of the Fairness Through Awareness definition, (John,
Vijaykeerthy, and Saha 2020). In these approaches, the neighbourhood around the input x;
is rigorously searched over to ensure a bound on the output deviation ¢, (fiar (X)), frar (%)))-
In the limit that the size of this neighbourhood goes to zero, this is equivalent to a bound on
the [, norm of Vf;,,. Applicants also consider using a weighted [,,-norm, where the weights

come from a linear auxiliary model (Ruoss et al. 2020; Yurochkin, Bower, and Sun 2020).

[00414] + Unfair Map:Given an individual x;, the Unfair Map (Maity et al. 2021) uses a

gradient-flow attack to generate individuals x; that violate FTA. The test statistic is then the
ratio between the model's performance measure on x; and x;. This attack is conducted

within a neighbourhood defined by a similarity metric ¢,,, and to this end, Applicants can

employ the same weighted [, norm used in FTA.

[00415] » FlipTest: FlipTest (Black, Yeom, and Fredrikson 2019) is a testing approach
that aims to enforce the CFF definition by leveraging Wasserstein GANs as its backbone
generative model. As Applicants mentioned previously, training the generative model is
tricky in terms of requiring various parameters to control its performance. Thus, to reduce the
tuning range, Applicants keep the architecture settings constant by defining both the

generator and discriminator as fully connected networks.

[00416] » faux: Applicants include all variants of the faxx method proposed in this paper
and described in the Relaxations and Extensions section. Applicants set the auxiliary model

architecture to be a fully connected network.
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[00417] » LIC-UB: The upper-bound performance of a testing approach that aims to
enforce the Local Independence Criterion (LIC) described previously. For the experiments
on synthetic datasets, Applicants can access the ground truth generative model for the data
and so Applicants can compute the true gradient of the generative model (instead of
approximating it with the auxiliary model) to conduct the LIC check. Since error introduced

by the approximation is removed, the test performance should achieve its upper-bound.

[00418] + Target Models: Given datasets in the form D = {--- (x,y,¢) --- }, Applicants train
multi-layer fully connected networks as the target models f;,,- with only features x and label
vy. The target models in the experiments are all classifiers that aim to produce probabilistic
predictions P(y|x). However, as previously discussed, an unfair model may infer protected

variable C, resulting in it implicitly modeling P(v|x, ).

[00419] Synthetic Datasets with Ground Truth Bias - To produce realistic synthetic data in
which the bias cannot be immediately recognized by human auditors, Applicants propose
bridging and augmenting real datasets through a series of fusion operations that join
datasets based on a intentionally biased data sampling process. Specifically, given two
datasets D = {--(X;,9,)-} and D = {--- (X;,9;) -+ }, with a fusion operation, Applicants can

produce a synthetic dataset D;,,, suchthat Dy, = {--(x,¥,¢) -} = { (frus R0, X)), 91, 5j) -+

where y qef Vi, € def ¥, and fr,, is a fusion operation (see below for examples). While this
looks simple, the selection of data indices i and j for fusion is based on the predefined
generative model under the hood. Furthermore, the generative model controls the degree of
bias for the synthetic datasets with hyper-parameters. Hence, the entire synthetic data

generation process reproduces the historical bias.

[00420] A full description of generating synthetic data (including generative model
specifics) could be found in Appendix. Here, Applicants summarize two key hyper-
parameters of the data generator, which Applicants will use to control ground-truth data bias

and complexity.

[00421] » Bias Level: The bias level controls the level of dependency between Y and C
in the range of [0,1]. A Higher bias level results in larger correlation between Y and C in the

generated dataset.
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[00422] » Fusion Function: A fusion function determines how the feature vectors from
the two datasets are merged together. It controls how many elements in features X have
correlations with protected variable C after merging. Applicants have two variants:
Concatenation which stacks features without changing the element values (see (Kusner et

al. 2017))), and the outer product which blends features perfectly.
[00423] Evaluating Fairness Tests and Selecting &

[00424] Having access to the ground-truth generative model, Applicants can compute the
individual fairness score (IFS) described in Definition 1 for each generated synthetic data
sample. IFS will serve as the ground-truth label in the following experiments on synthetic

datasets.

[00425] In flagging discrimination in practice, it is necessary to set a value for the threshold
6. This threshold is usually set by regulatory standards that depend on problem domain or
statistics of manual auditing results. Indeed, the selection of specific thresholds is a subtle
question (Corbett-Davies and Goel 2018), and in practice, decision-making may involve
multiple thresholds (one or more thresholds for each population) that require further domain-

specific study (Corbett-Davies et al. 2017).

[00426] In the experiment/evaluation setting, however, Applicants aim to avoid misleading
conclusions associated with particular threshold 6. To this end, Applicants estimate the
continuous discrimination score and obtain a precision-recall curve as a metric. Similarly,
Applicants compare the tests based on average precision. This enables one to determine

which test is the most reliable across a range of different thresholds.
[00427] Experiments - Real Datasets

[00428] Applicants also compare the proposed model with the baseline models on real

data sets:

[00429] + Adult Income Dataset (Dua and Graff 2017): The protected attribute is

gender, a binary variable (Female/Male).

[00430] + Bank Marketing Dataset (Moro, Cortez, and Rita 2014): The protected
variable is age (binarized by thresholding at 25).
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[00431] Performance on Synthetic Data

[00432] Table 1 compares the proposed fAux methods with two state-of-the-art testing
approaches on the synthetic datasets. Table 1. Performance Comparison among Individual
Fairness Testing Methods on Synthetic Datasets. Applicant report Average-Precision scores
with the highest score in bold font. The confidence interval comes from 10 runs by re-training

auxiliary models. Rows are sorted in order of increasing computational requirements.

| Synthetic-1 | Synthetic-2 | Synthetic-3 | Synthetic-4 | Synthetic-5 | Synthetic-6 | Synthetic-7 | Synthetic-§

xchy 1 mdgac/ lmaﬂgif:/ ‘ maglcl magm/ aus‘tn'akizm/ awswu.ral@an/ ‘ aus‘(.ml%an/ austm;@an/
hackache backache backache backache credit credit credit credit
Biaslevl | 05 | 05 | U | 1 [ 05 | 05 | 1 | I
Fusion Approach | outer | concat |  ouer | comcat | ower | comcal | omer | concat
FTA ‘ 0.307 £ 0.000 ‘ {1.306 £ 0.000 | 0.307 £ 0.000 ‘ 0.307 £ 0.000 ‘ (1466 £ 0.000 ‘ (.293 £ 0.000 | 0.355 £ 0.600 ‘ 0.309 £ 6.000

FTA + lin. aux ‘ (.402 £ 0,000 ‘ {.683 £ 0.003 | 0.451 £ 0.601 ‘ 0.455 £ 0.001 ‘ 0.709 £ .000 ‘ (L6358 £ 0.00 | 0.672 £ 0.000 ‘ 0.612 + 0.000
Unfair Map ‘ 0.407 £ (.000 ‘ 0,400 £ 0.000 | 0.576 £ 0.000 ‘ 0.820 £ 0.000 ‘ 0.571 £ 0.000 ‘ (L653 £ 0.000 | 0.687 £ 0.000 ‘ 0.732 £ 0.000

FlipTest | 0.598 0,285 | 0.880£0.015 | 043320259 | 0633£0.109 | 06004 0.148 | 0.678 40056 | 0.701 =0209 | 0.732+0.132
fAux | 0332 0,004 | 0998£0.001 | 03110002 | 1L0W£ 0000 | 061540032 | 093740005 | 0.564 = 0014 | 0.997 +0.001
FAUENG | 0876+ 0.015 | 0.999-+0.001 | 0.978-+0.023 | 1000 -+0.000 | 0815+ 0.015 | 0947+ 0.006 | 0910+0.019 | 0.998 + 0.1
FAHG | 0717 0,031 | 0.998-+0.000 | 0.937+0.012 | LO0D+0.000 | 0886+ 0.015 | 09440002 | 0.979 £ 0.007 | 0.999 & 0.001

LIC-UB 099 | 0999 | 1600 | 1000 | 095 | 0966 | 0999 | 09%

[00433] Applicants make the following observations:

[00434] 1. Applicants note the fAux outperforms FTA with a large margin across all the
experiments in the Table 1. Applicants will describe the further investigations into the

performance gap later.

[00435] 2. Among all fax variants, the fAux+NG shows the most promising test
performance, especially when Applicants compare the variants based on their worst-case
performance. However, when the accuracy of the auxiliary model is lower (as it is with the

Australian dataset), fax+1G becomes the more reliable test.

[00436] 3. The baseline faxx shows unsatisfactory performance compared to the other
variants. This observation reflects the consideration that controlling the variance of gradients

is critical to maintaining good performance.

-61-

Date Recgue/Date Received 2021-10-08



10

15

20

25

[00437] 4. FlipTest demonstrates competitive performance on some datasets but has
larger variability in performance than the proposed faxx models. This variability probably
comes from the quality difference of the deep generative models trained during the testing
process. In particular, Applicants note the FlipTest is sensitive to the fusion approach that is
used for creating the synthetic datasets. As the feature size increases (with the outer
product), it appears difficult for FlipTest to correctly model the causal relations through deep

generative models.
[00438] Performance on Real Data

[00439] In the absence of ground truth labels for discrimination, Applicants cannot quantify
the precision of a fairness test at the level of individual datapoints. However, Applicants may
still compare their ability to distinguish fair and unfair models, as is done in (Maity et al.
2021; Yurochkin and Sun 2021). Applicants construct fair models by employing adversarial
regularization (Adel et al. 2019); models become spontaneously unfair in the absence of

such regularization.

[00440] FIG. 14 are bar charts showing predicted unfairness scores, according to some
embodiments, for the two data sets, Adult Income Data Set, and Bank Marketing Dataset.
Bar charts 1400 show performance comparison among individual fairness testing methods
on real datasets. For each testing approach, Applicants show the predicted unfairness score
for both unfair model (grey box on left) and fair model (darker shaded box on right). Greater
difference (between the boxes) shows better performance. To conserve space, Applicants

have only plotted fAux+NG in this example.

[00441] In FIG. 14, Applicants plot the distribution in the test scores for fair and unfair
models. For both datasets, Applicants note the fax approach shows better performance than
the existing approaches since it produces observably higher unfairness scores to the Unfair
model than those of the Fair model. Moreover, with fau testing, the difference of score
distributions between the Unfair and Fair model is also more distinguishable, which helps the

threshold search using statistic tools.

[00442] Exploring Performance
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[00443] The fAux methods show good experimental performance but in this section
Applicants explore potential conditions that may impact their effectiveness. To analyze the
conditions comprehensively, Applicants train target and auxiliary models on synthetic
datasets with the structure described in the previous experiments, but explore a wider range
of settings (refer to supplementary materials). Applicants aggregate these results to examine
the effectiveness of the fau test across different datasets. In particular, Applicants

investigated the following aspects:

[00444] « Sensitivity: The first question Applicants address is whether the fa.x method
can correctly identify models that exhibit slight unfair treatment. As the ground truth
unfairness level of a target model is hard to measure, Applicants use the bias level as the

indicator.

[00445] FIG. 15 is a set of graphs that chart recall against precision, according to some
embodiments. In graphs 1500, Applicants identify the operational range of the faux by
examining PR curves on aggregated runs. The graphs show: (a) Impact from data bias. (b)
Impact from the auxiliary model performance. (c) Impact from the gradient magnitude of the
target model. FIG. 15, chart (a) shows the Precision-Recall (PR) curve of the fAux
performance based on the degree of the data bias. Applicants note that when the target
model is trained on highly biased data (bias = 0.75), the faux shows better discrimination
detection performance. When the target model is trained on less biased data (bias < 0.5),
the reliability of faux decreases. In the worst-case (bias < 0.25), fauw loses its functionality

since the PR curve and the diagonal line (the random guess line) have multiple intersections.

[00446] + Auxiliary model accuracy: Chart (b)hows the PR curve for different auxiliary
model accuracies. Model accuracy varies according to the hyperparameters used, and the
difficulty of the classification task. Empirically, Applicants find that auxiliary models with
better accuracy lead to better fAux performance. Since the auxiliary models aim to predict
the protected attributes C, their performance impacts how well fAux detects the variance of C

given features X.

[00447] » Quality of target model: In practice, target model quality is out of scope for

tuning fairness testing methods. However, Applicants note that the gradient magnitude
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|Vfiarr| impacts the fAux performance as shown in chart (c). When the gradient is extremely

large, faux exhibits worse performance.

[00448] In various embodiments described herein, Applicants developed a novel criterion
for testing individual fairness (Definition 1), which Applicants related to other well-known
criteria. Applicants demonstrated that if a model satisfies a local conditional independence
relation, it also meets the criterion. Based on these insights, Applicants proposed an
individual fairness test and corresponding computer implemented systems and approaches,
which Applicants termed fax. In experiments, Applicants have demonstrated that fau

outperforms several other state-of-the-art approaches for both synthetic and real datasets.
[00449] Example Use Cases

[00450] In order to introduce individual fairness testing into industry as an important
checking point/regulation, an efficient and effective testing approach that can scale up to
applications with millions of customers is urgently needed. Applicants note that the existing
approaches such as counterfactual fairness, while conceptionally effective, are hard to
deploy in practice as they either consume too much computation resources (that are out of
budget) or require detailed domain knowledge (that are usually too complex to summarize).
Hence, the proposed approach becomes the most practical option. It only needs to estimate
gradient (or feature importance) alignment, which happens to also be unavoidable when
testing for other properties such as adversarial robustness testing or performing feature

importance analysis, etc.

[00451] That said, Applicants caution against over reliance on mathematical metrics for
quantifying fairness. In particular, while Applicants show in Table 4 that f.x can flag proxy
features, Applicants emphasize this is no substitute for intuition about the impact of the
features in the dataset. Applicants advocate f.x as an effective component of a validation
pipeline, but investigators should be mindful of other sources of bias beyond historical bias

e.g. label contamination.
[00452] Use Cases

[00453] Predictive Policing
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[00454] Applicants consider the use case described in (Kusner et al. 2017), where a
hypothetical city government is seeking to predict crime rates in order to assign policing
resources to different communities. The goal is that, given an individual, a model may be
used to estimate that individual's predisposition to violence. A developer trains a model on a
dataset obtained by merging residential information with police records of arrests. However,
some neighborhoods have higher arrest rates due to greater policing there. Because
individuals of different races may congregate in different neighborhoods, this can lead the

model to conclude that members of a particular race are more likely to break the law.

[00455] This bias persists even if the classifier does not take race as an explicit input, since
that information may be inferred from the neighborhood. Thus, Fairness Through
Unawareness (FTU) is not applicable. faw, however, can identify such correlations through
the gradient of the auxiliary model. Moreover, it can recognize when these correlations

impact model predictions through gradient alignment.

[00456] Accordingly, according to an embodiment, the f,x approach can be implemented
as a fairness detection circuit or computer server through which trained classifiers or models
are first provided to assess a level of unfaimess. If an output fairness score is too low (or
conversely, an output unfairness score is too high), the model may be replaced or not

utilized.

[00457] Credit Cards

[00458] Consider a hypothetical credit agency that wants to automate the process of giving
credit cards. As inputs, they merge account data, transaction history, and demographic
information to form a high-dimensional, sparse dataset with millions of entries. They train a
model to predict whether the individual will default on their payments within a certain time
window. The model learns that individuals above a certain income threshold are more likely
to make their payments. However, due to income disparity between men and women, and
income disparity between younger and older individuals, these individuals may be unfairly

treated by the model.

[00459] Fairness Through Awareness (FTA) may be deployed to solve this problem, by
going through pairs of individuals, and determining if similar treatment is offered to similar
individuals (as measured by a similarity metric). However, this has a few shortcomings.
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Firstly, computing pairwise similarities is computationally daunting, especially in higher
dimensions. Secondly, the dataset is constructed from a mixture of tabular and time series
data, meaning it incorporates different data domains that have different semantic
interpretation. Finally, the model may be justified in treating two "similar" individuals
differently if they differ in a business-relevant sensitive feature. Depending on the similarity
metric, FTA may completely miss the underlying issue, which in this case, is the income

disparity, and simply identify all instances where the model was sensitive.

[00460] By contrast, fau avoids the need for designing similarity metrics, by inferring which
features are relevant for predicting sex/age. By aligning the feature importances with the the
gradients of the target model, fau can identify when the model is leveraging this information

to make its predictions, revealing the discrimination.

[00461] Accordingly, according to an embodiment, the f.x approach can be implemented
as a fairness detection circuit or computer server through which trained classifiers or models
are first provided to assess a level of unfairness. If an output faimess score is too low (or
conversely, an output unfairness score is too high), the model may be replaced or not

utilized.
[00462] Discussion: Relation to Adversarial Robustness

[00463] Individual fairness testing has strong connections with adversarial robustness
(see Yurochkin, Bower, and Sun 2019; John, Vijaykeerthy, and Saha 2020). The adversarial

robustness criterion near point x

[00464] VX' 5.t (Pin(X,X") < €) A (@oue (f (X), f (X)) <)

[00465] is nearly identical to the criterion of the FTA definition if Applicants reformulate the

FTA criterion as

[00466] VX;X; 5.t (Pin (X0 X)) < €) A (Pout (frar X, fear(X))) < 6)

[00467] with additional constraint € = §. Similarly, the counterfactual fairness criterion, can

be rewritten as
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[00468] (¢in (c, c’) <e)A (¢out (P(y|x,¢) — PC<—do(cl) lx0)) < 6)

[00469] to match the adversarial robustness definition.

[00470] The Local Fairness Test proposed also has strong connections with adversarial
robustness. However, as faux works on the level of differentiation, the input distance condition
¢in(c,c+ Ac) becomes ftrivial since Ac is negligible. Hence, faux considers only the output

distance condition:

[00471] Pout = | Vitar (vfaLx vfaux) -1 vfa-ll-uc | o) (44)

[00472] where distance function over the inputs is no longer explicitly provided; the

derivative is the limit of the predictive difference between two near identical inputs.

[00473] However, even though individual fairness testing and adversarial robustness
testing share common properties mentioned above, Applicants note that they are different
tests that aim to reveal different weaknesses of a machine learning model. Specifically,
adversarial robustness testing focuses on detecting vulnerability of a model with respect to
anomalous (or adversarial) inputs, whereas individual fairness testing pays attention to the

sensitivity of protected attributes on a model.
[00474] Proof of Theorem

[00475] The [, norm represents a max operation on the most violated protected attribute
cin c={c,,c, - c;}. To prove the theorem described earlier, Applicants only need to focus
on this single protected attribute ¢. Hence, if a prediction violates the Local Independence

Criterion (LIC), Applicants can express it as:

[00476] >

B ftar(X)
dc

[00477] By expanding the left hand side of the inequality with the generative model f,,

Applicants note

[00478] llm frar (fg (ZJ_,IP(C))) —frar (fg (ZJ_,IP(C‘I‘AC)))
Ac—0 Ac
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[00479] which could be numerically approximated with small Ac such that

Jtar (fgZ L)) = frar(fg(Z 1P (c+AC)))

lim
Ac—0 Ac
[00480] _ Srar Uy B D) Srar fyBabeH00) |
Ac ’

[00481] where the ¢ is an error term introduced by the approximation.

[00482] Therefore, the above Inequality could be extended as

|frar (fg(ZL WD) — frar(fg(ZL P (c + Ac)))|
[00483] > (8 — &)|Ac|.

[00484] If Applicants choose § > & and |Ac| is positive, Applicants have

[00485] |ftar(fg(ZJ_; IP(C))) - ftar(fg(ZJ_; Il)(C + AC)))| > 0;

[00486] which violates the individual fairness definition in Definition 1.
[00487] Using Pseudoinverses for Model Inversion

[00488] In this section, Applicants provide a more in-depth discussion on the derivation of
the combined equation for approximating the LIC. The Taylor expansion is a local linear
approximation of the function f,,,,. The left-hand side of this equation denotes the change in
the score, and is a scalar. The right hand side is a dot product between two vectors. While
Applicants would like to invert this equation to solve for x, and the equation is is an
indeterminate equation. Nevertheless, using the Moore-Penrose pseudoinverse, Applicants

may still characterize the infinite solution set for x.
[00489] To understand this, consider a general linear equation:
[00490] y = Ax.

[00491] Here, A is an m by n matrix, and Applicants want to solve this equation for x.

When A does not have an inverse, solutions may be found to the above general linear
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equation, but they will not be unique. Instead, there will be a family of solutions x(z)

parameterized by a vector z € R™, which will be given by:

[00492] x(z2) = ATy + (I — ATA)z.

[00493] Here, I is the n by n identity matrix, and the pseudo-inverse is given by
[00494] AT = AT(AATL.

[00495] Note that equation the family of solutions describes an infinite solution set, insofar
as z is undetermined: the operation of A on the right-hand side of the family of solutions
parameterized by the vector z will simply cause the second term to vanish, so that any

vector z may be used.

[00496] For the specific case of the local linear approximation of the auxiliary model, y =

(c — faux(x0) is @ scalar, A = Vf,! . is a co-vector, and Applicants may solve for f,,,.(c) as:

fsur(€) =

Vfaux Vfauxvf(;rux
o+ (€= f o)) gpr v T U —gpr w07

[00497]

[00498] Applicants illustrate these different terms in FIG. 16. FIG. 16 is an illustration
1600 that is adapted to show an inverse of a linear function. In one dimension, the inverse
of a linear function is uniquely determined by the slope. In higher dimensions, the slope
becomes the magnitude of the gradient. However the inverse is no longer uniquely

determined: the output is constant along directions perpendicular to the gradient.

[00499] The equation above describes two sources of variation: the first of which is parallel
to Vf,.x, and the second of which is perpendicular to it. The partial derivative with respect to
C is defined by the variance in a function as C is changed, and all other variables are fixed.
As a relaxation, Applicants consider the direction that leads to maximal change in C, and
minimal change in all other variables. This corresponds to the minimum norm solution that

satisfie the equation for fsu(C)s, above.

[00500] For a model trained to predict ¢, the gradient should point in the direction of

greatest change in c. Therefore, intuitively, the c-dependence of the perpendicular part
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should be much smaller than the c-dependence of the parallel part. Applicants may thus

disregard the perpendicular part, and are left with the following approximation:

% . Viaux
[00501] ac Vfguxvfaux

[00502] Description of the Synthetic Dataset Pipeline

[00503] Applicants hypothesized that when datasets contain multiple sources of variation,
models will preferentially exploit the simplest patterns to achieve their performance objective.
In this section, Applicants describe a framework for constructing synthetic datasets that
trigger this misbehaviour. Specifically, Applicants present an approach for fusing real
datasets together, so that the final dataset contains multiple patterns of variation. This has
the advantage that the final dataset inherits the same types of noisy and nonlinear
relationships that are present in real datasets. Applicants summarize this procedure in an

algorithm for synthetic data generation.
[00504] The framework has three main degrees of freedom:

[00505] 1. To simulate a historical bias, Applicants allow the target variable y and the
protected variable ¢ to be correlated while sampling from the dataset. This is controlled by a
joint distribution P(C,Y).

[00506] 2. The fusion function F, which combines the datasets together without
distorting the underlying patterns. Applicants consider two extremes: one in which data is

perfectly mixed (outer product), and one in which it is trivially separable (concatenation).

[00507] 3. The choice of datasets, which controls the difficulty of the learning task.
Applicants measure difficulty according to the best classification score that is obtained on
each individual dataset using an architecture search. Applicants build Conditional Variational

Autoencoders to model these datasets.

[00508] In the next few subsections, Applicants provide more details about each of these

components.

[00509] Bias parameter
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[00510] Applicants can control the amount of bias by specifying a joint distribution P(C,Y).
In the experiments Applicants consider binary ¢ and Y, so that P(C,Y) may be constructed
as a 2 by 2 matrix, which involves 4 degrees of freedom. Applicants would instead like to

reduce these to a single degree of freedom, which Applicants term the bias parameter.
[00511] Minimal bias occurs when the joint distribution factorizes, so that:
[00512] Prin(C,Y) = Pr(C)Pr(y)

[00513] The amount of bias may then be quantified by considering how much the specified

P deviates from this P,,;,,, which Applicants conduct using the entropy:

[00514] H(P) =3¢ Sy P(C,V)log(s—=22>). (45)

Pmin(CrY)
[00515] Applicants may thus define a B,,,, via:
[00516] Prax = argmaxp H(P). (46)

[00517] This optimization is done with the three constraints:

[00518] Ye 2y Pmax(C,Y) =1 (47)
[00519] Yy Pnax(C.Y) = Pr(C) (48)
[00520] Y¢ Pnax(C.Y) = Pr(Y) (49)

[00521] Here, the marginals are estimated from the respective datasets by examining the

relative frequencies of C = 1 and Y = 1. In addition Applicants have the positivity constraints:

[00522] Prax(C,Y) = 0;VC,Y. (50)

[00523] Applicants thus have an optimization problem with 4 degrees of freedom and 3
constraints, and may find P,,,, using a one-dimensional line search. Applicants then obtain

the biased P by linearly interpolating between these two extremes:

[00524] Poias = (1 = bias)Pp, + (bias)Ppg, (51)
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[00525] One can observe the effect of adjusting bias in FIG. 6A and FIG. 6B,
demonstrating that the proposed mechanism does indeed provoke unfair treatment in
models. FIG. 6A shows generative models for unbiased datasets. In both datasets the
observable features X are distributed according to a target Y and latent variables Z. At
present there are no distinct populations in either dataset, and so there is no bias; and FIG.
6B, where X, and X, are fused together to form a new dataset X, which contains two distinct
patterns of variation. Applicants declare the target of the second dataset Y, to be a sensitive
attribute, labeled with €. Applicants introduce a historical bias using a correlation between Y
and C. Models trained on the new dataset may learn to exploit the ¢ dependence of X to

predict Y, which corresponds to discriminatory behaviours.
[00526] Fusion Functions

[00527] In this section Applicants consider how to fuse datasets together. Applicants
consider two datasets D ={-(%,7;)-+} and D={-(X,5;)-}. The inputs have

dimensions N and N respectively.

[00528] In fusing the datasets, the approach is slightly constrained: while Applicants aim to
mix the different patterns, they must also be distinct enough that the learning task can be
performed. That is to say, all stochasticity and nonlinearity should come from the original
datasets, whose patterns should be preserved (and thus, simultaneously learnable) under

the fusion function. In the experiments, Applicants thus consider two extremes of mixing:

[00529] - Applicants concatenate the vectors X; and X;:
[00530] x = concat(X;,X;) (52)

[00531] This corresponds to the setup in Kusner et al. [2017], in which the observable
features X may be partitioned into descendants and non-descendants of the protected
variable C. That is to say, given a causal graph, certain features of X may be children of the
protected variable C. A simple linear projection is sufficient to separate these sources of

variation:

o~ o~

[00532] X;=Wx; W = concat(Ig,0)
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[00533] X;=Wx, W= concat(0, I )

[00534] » As another extreme, Applicants consider the case of perfect mixing by taking

the outer product:
[00535] x =vec(X; ® X;).

[00536] If X; and X; each sum to 1, then Applicants can completely isolate them from x

using a different linear projection:
[00537] £ =Wx; W==(g®1y)(53)
[00538] % =Wx; W=z(yQIy)(54)

[00539] Generative Models

[00540] For ease of generating counterfactuals, Applicants use Conditional Variational
Autoencoders (CVAEs) to generate samples X from a specified target Y. Applicants discard
all categorical features, and retain only those which are real values. Because the datasets
used are tabular, Applicants use a pre-processing strategy similar to (Xu et al. 2019),
modelling each feature with a Gaussian Mixture Model (GMM). This models the univariate
feature distribution as a sum of distinct gaussian modes, with each mode assigning the
feature a certain probability. Applicants may thus transform each feature into a vector of
mode probabilities, and Applicants concatenate these probability vectors to form the inputs
x. Since each probability vector sums to 1, this has the added advantage that the sum over x
will be a fixed integer, namely, the number of features, making it compatible with the outer

product transform described earlier.

[00541] In addition to the depth and width of the encoder/decoder, Applicants tune the
number of components of the GMM when training the generative models. To evaluate the
final model, Applicants sample a collection of (x,y) pairs, and use them to train a simple
classifer to predict y from x. Applicants tune the parameters so as to maximize the accuracy
of this classifier. This results in a generative model that best preserves the original
discriminative relationship inside a given dataset. Model hyperparameters are shown in
Table 2.

-73-

Date Recgue/Date Received 2021-10-08



10

15

20

[00542] Table 2: Original datasets used in the synthetic pipeline: information on the

datasets from PMLB, along with the hyperparameters of the CVAEs used to model them. A

lower model score corresponds to a more “difficult” dataset to model.

dataset | # features | # instances | _ #gmm | hidden size | depth m?m‘m
components ‘ score

backache 6 180 3 186 6 0.545
credit 7 1000 7 8§74 3 0.657
australian 6 690 5 977 5 0.721
wdbc 30 569 4 367 1 0.815
magic 10 19020 2 624 2 0.987

[00543] Datasets Used

[00544]
nonlinear patterns. To quantify the complexity of these patterns, Applicants measure the

In determining the datasets, Applicants aim to find a combination of stochastic and

maximum accuracy reached by a simple classifier after tuning. Intuitively, if a model is
unable to obtain a high score, that dataset constitutes a more difficult challenge. Applicants
perform this analysis on all of the binary classification datasets in PMLB (Olson et al. 2017),

and select those listed in Table 2, since they represent a spread of complexity.

[00545] Note that, in selecting and training models on these datasets, Applicants retain
only those features which are continuously valued, in order to match the generative model

setup.
[00546] Specific Settings

[00547] To generate the plots shown ealrier, Applicants generate synthetic datasets

according to the following parameter grid:

[00548] . the following choices:

[0,0.25,0.5,0.75,1.0].

Applicants select the bias parameter rom

[00549] » Applicants select the fusion function from the set [concat, outer].

[00550] » Applicants select all pairs of datasets from Table 2.
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[00551] Applicants train fully connected neural networks for the auxiliary and target

models, using randomly sampled widths and depths.
[00552] Constructing Ground-Truth Labels and Models

[00553] The main utility of using generative models is that Applicants may simultaneously
sample both an instance x and its counterfactual x’. Accordingly, by passing x and x'
through the target model f;,,, Applicants may use the [,-distance between the model
outputs as a measure of discrimination, which Applicants refer to as the Individual Fairness
Score (IFS):

[00554] IFS = |frar (%) = fear (%)]1

[00555] FIG. 17 is provided and includes three charts showing demonstrates how this CFF
score varies as the parameters of the pipeline are adjusted. FIG. 17 is a set of histograms
1700 that illustrate approaches for controlling discrimination with a tunable bias parameter.
Given access to a generative model, Applicants can measure discrimination by evaluating
the disparity in @ model f's outputs over a point x and its counterfactual x’. The histograms
1700 demonstrate that datasets with higher values of the bias parameter provoke higher

rates of discrimination in models trained on them.

[00556] To obtain binary labels, Applicants define a threshold on the CFF score, which the
system computes using the variance of the CFF score in the absence of any bias. Above this
threshold, the system can be configured to denote that the model is discriminating against

the individual x on the basis of c.

[00557] Furthermore, knowing the form of the fusion functions, Applicants propose, in a
variant embodiment, constraining the input layers of an MLP to separate the different
patterns contained inside the synthetic data. Models which project out the ¢ dependence
become perfectly fair target models. Models which project out the Y dependence become

perfectly disentangled auxiliary models.
[00558] Sources for the Experiments on Real Datasets

[00559] The Adult and Bank datasets were obtained from IBM Fairness 360 (Bellamy et al.
2018), and the SSL dataset was obtained from the Chicago Data Portal.
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[00560] Full Experiment Results for Real Datasets

[00561] The full version of the performance comparison on real datasets. FIG. 18 shows
the complete plots 1800 on the three datasets. In FIG. 18, for each testing algorithm,
Applicants show the predicted unfairness score for both unfair model (grey box) and fair

model (blue box). Greater difference (between the boxes) shows better performance.
[00562] Explaining Discrimination With Transparency Reports

[00563] As the real datasets do not have corresponding generative models that produce
the data, Applicants cannot compute IFS as the ground-truth label and so direct performance
comparison on individual fairness testing is infeasible. In the main body of the paper,
Applicants opted to compare the scores output by the fairness test on fair and unfair models.
However, another way to evaluate a fairness test is to examine the explanations it provides
for flagging discrimination. In this section, Applicants examine how reliably fAux can

generate such explanations.

[00564] In (Black, Yeom, and Fredrikson 2019) the authors construct transparency reports
that rank features based on their contribution to an unfair decision. To generate scores for
the different tests, Applicants collect all N, instances in the dataset for which ¢ = 0, to define

a set S,. For Fliptest, Applicants use the generator G to compute the following vector:
[00565]  +-Fies, (¥~ G()

[00566] The Fliptest feature scores are then given by the absolute value of this vector.
While fAux does not use an explicit Generator, it does define a transformation of features
through the auxiliary model f,,,.. Applicants can thus compute transparency reports from the

following vector:
[00567] Nio ZxESO vfaux (x)

[00568] Once again, the feature score is given by the absolute values of this vector.

[00569] To quantitatively compare these scores, Applicants use a ranking metric, the

Normalized Discounted Cumulative Gain (NDCG). The ground truth ranking is based on an
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estimate of the mutual information between each feature and the protected variable C.
Applicants use a nonparametric entropy-estimator based on (Ross 2014), which is available

through scikit-learn (Pedregosa et al. 2011).

[00570] Table 3 then compares the NDCG scores for the different test rankings. Note that,
for categorical features that are one-hot encoded, Applicants compute an aggregate score

for the feature by taking the mean of the scores of the one-hot components.

[00571] Table 3: Reliability of Transparency Reports. Here, Applicants compare the
candidate testing methods' ability for flagging surrogate features of protected attributes

through ranking metric NDCG.

| Adult | Chicago SSL | Bank
Protected attribute | Sex (Binary) | Race (Binary) | Age (Binarized)
FlipTest ‘ 0.810 £ 0.150 ‘ 0.840 £ 0.136 ‘ 0.752 £ 0.108
fAux ‘ 0.802 £+ 0.058 ‘ 0.796 4+ 0.098 ‘ 0.798 £ 0.047
fAux+NG ‘ 0.807 £ 0.105 ‘ 0.884 £ 0.119 ‘ 0.789 + 0.058
fAuX+IG ‘ 0.896 + 0.037 ‘ 0.958 + 0.006 ‘ 0.814 + 0.058

[00572] Applicants note fax+lG shows remarkably better performance than FlipTest in
terms of explaining the reason for unfair treatment. In addition, Applicants may compare the

computational efficiency of both approaches.

[00573] Table 4 shows the computation resources used for the previous experiment on the
real datasets. Table 4: Resource Consumption Comparison between FlipTest and fAux.
The faux variants share a similar architecture and so Applicants use faux to represent all

variants.
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Resource |  FlipTest | fAux
Adult # Parameters | 220+ 187K | 13+ 8K
Training time | 1012 £532s | 12+£35s
. # Parameters | 154+ 150K | 7+ 6K
Chicago SSL | 1y ining time | 1086 + 580s | 90 + 23
Bank # Parameters | 206 £ 159K | 13+ 10K
| Training time | 444 £+ 204 s 15+4s

[00574] Applicants note that the proposed fax framework is remarkably efficient. It uses
~5% of the parameters and 10% of the training time of FlipTest on both datasets. In
combination with the results from Table 1 and 3, this highlights the significant advantages of

fAux in terms of both effectiveness and efficiency.
[00575] Hyperparameters for the Fairness Tests

[00576]
fairness tests for both the synthetic and real datasets. All experiments were distributed on
the internal cluster which contain NVIDIA DGX-1 with 8X NVIDIA Tesla® V100 32 GB/GPU.

The cluster runs Red Hat Enterprise Linux Server release 7.9, and the experiments employ

In this section, Applicants review the hyperparameters used for the different

pytorch version 1.9.0. Unless otherwise stated, all stochastic algorithms (ex minibatch

gradient descent, parameter initialization, etc) use a random seed of 0.

[00577] Hyperparameters for Constructing Fair Models

[00578] For the real datasets, without knowledge of the fusion-function, Applicants employ
(Adel et al. 2019) to train fair models using adversarial regularization. There were two

parameters to tune:

[00579]

regularizer over the loss function, and this weight exponentially decays between epochs.

» The regularization strength «. This is the initial relative weight given to the

[00580]

Applicants trained the target model, Applicants train the adversarial model for n,,, epochs.

+» Adversarial training can sometimes be unstable, and so for every iteration that
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[00581] (Adel et al. 2019) was quick to use on the datasets, and so Applicants tuned these
values manually. In particular, Applicants tuned the regularization strength on the synthetic
datasets since they offered a more accurate assesment of the tradeoff between accuracy
and fairness. Applicants found that an a of 100 yielded good results. Applicants tuned n,;,
in a similar fashion, and obtained a value of 3. Applicants used these values when training

models on all of the real datasets.

[00582] Hyperparameters for fAux

[00583] Applicants use MLPs for all auxiliary models, varying the depth and width across
different experimental runs. Applicants use a fixed batch size of 64 across all experiments,

using the ADAM optimizer (Kingma and Ba2017) and a learning rate of 0.001 with early
stopping.

[00584] For the real datasets, Applicants additionally employ (Adel et al. 2019), so that the
resulting auxiliary model attends to those features that are most strongly correlated with the
protected attribute. Applicants employ the same settings that Applicants use when

constructing the fair models.
[00585] Hyperparameters for Unfair Map

[00586] The Unfair Map (Maity et al. 2021) uses a gradient-flow attack restricted to a
sensitive subspace in order to test individual fairness. Tensorflow code for this paper was
publically released through OpenReview, and Applicants’ practical (pytorch) implementation

is based off this.

[00587] There are three hyperparameters to consider:

[00588] » The regularization strength, which is responsible for restricting the attacks to

the sensitive subspace.
[00589] » The learning rate, which is used to make the gradient updates in the attack.
[00590] » The number of steps used in the attack.

[00591] In the experiments, Applicants use the same values for these parameters that are

provided in the reference implementation. In addition to these parameters, this test requires
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a fair metric, which is constructed from a logistic regression model. To determine the
sensitivity of this approach to the fair metric used, Applicants train the logistic regression
model using scikit-learn (Pedregosa et al. 2011) using different random seeds. For the
synthetic dataset experiments, Applicants use ten random seeds, taken from [10, 20, ...
100].

[00592] Hyperparameters for GANs

[00593] Applicants use MLPs of varying depth and width for the Generators and
Discriminators. Due to the sensitive nature of GAN training, Applicants tune the batch size,

depth, and number of hidden dimensions, in addition to the following hyperparameters:

[00594] 1. ngitie; Which controls the relative number of training steps between the

Discriminator and the Generator
[00595] 2. 1, the weight of the transport cost in the Generator loss function.

[00596] Collectively, these parameters account for the architecture, loss function, and
optimization of the GANs, to see which components of the training pipeline are most
influential. As per the original Fliptest paper, Applicants tune the GAN models using the

following metrics:

[00597] 1. The Kolmogorov Smirnov (KS) two-sample test (Hodges 1958) on the
marginal distributions for each feature between the real data x and the generated data ¢ (x).
Better GAN models will have a smaller KS-statistic (averaged across features), as the real

and generated distributions will be similar.

[00598] 2. The Mean-Squared Error (MSE) of a linear regression model trained to
predict each observable feature from the remaining features. Better GAN models will have
lower MSE values (averaged across features), as they will have captured correlation

between the features well.

[00599] FIG. 19A and FIG. 19B are plots 1900A and 1900B showing correlation between
GAN evaluation metrics and fairness test performance, according to some embodiments. In
FIG. 19A and FIG. 19B, Applicants examine the correlation of these GAN metrics on the
Synthetic-5 experiment, shown in Table 1. Given the high sensitivity of GANs to their
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hyperparameters, it is important to find evaluation criteria to tune them. The authors of
Fliptest suggest two, average KS and average MSE, and Applicants compare how these
metrics are related to the average precision of the fliptest. The plots show the effect of using
different values of the transport weight 1. Applicants find that, while average KS does

correlate well with average precision, average MSE does not.

[00600] Applicants observe that, while a smaller KS statistic does lead to a higher average
precision, the MSE metric is at odds precision score. In this experiment, the most relevant
hyperparameter was the weight of the transport cost A. generally, Applicants find the best
performance is given by very small values (less than 10~4). Applicants use this value when

testing fair/unfair models on the real datasets.

[00601] Applicants collect the assumptions and limitations of some embodiments of the

proposed approaches:

[00602] » To assess the impact of modifying the protected variable C, Applicants train an
auxiliary model to predict C. This requires the protected variable to be an explicit variable in
the training data. However, because of regulations, it is not always possible to collect this. In

this case, FTA may be a better choice.

[00603] » Applicants base the test on definitions of independence. For certain
applications, however, this may be the wrong criteria to use. For instance, in the presence of
label bias, it might make sense to use the protected variable as an input for biased

mitigation. In this case, the technique is not applicable.

[00604] » The test leverages correlations between the input data X and the protected

variable C in order to identify discrimination.

[00605] » The features flagged by fawx as surrogates may have a legitimate business
reason for being used. For example, with the adult dataset, on average women work fewer
hours per week, but it is fair to use this feature to predict income. faux will flag features for
being correlated with a protected variable, so that, in some embodiments, a human validator
is needed to interpret the final feature rankings. In a variant embodiment, the system
automatically takes action instead without human intervention (e.g., picking a fairest model

for use, deactivating unfair models, having models retrained or perturbed automatically).

-81-

Date Recgue/Date Received 2021-10-08



10

15

20

25

[00606] » The analysis employs a single first order Taylor expansion around an input x.
Applicants thus only consider discrimination that may be revealed by perturbations in a small
neighbourhood around the input. If the target model does not change appreciably over this
neighbourhood (say, for points very far from the decision boundary), it may be necessary to

consider successive first order expansions.

[00607] Applicant notes that the described embodiments and examples are illustrative and
non-limiting. Practical implementation of the features may incorporate a combination of
some or all of the aspects, and features described herein should not be taken as indications
of future or existing product plans. Applicant partakes in both foundational and applied

research, and in some cases, the features described are developed on an exploratory basis.

[00608] The term “connected” or "coupled to" may include both direct coupling (in which
two elements that are coupled to each other contact each other) and indirect coupling (in

which at least one additional element is located between the two elements).

[00609] Although the embodiments have been described in detail, it should be understood
that various changes, substitutions and alterations can be made herein without departing
from the scope. Moreover, the scope of the present application is not intended to be limited
to the particular embodiments of the process, machine, manufacture, composition of matter,

means, methods and steps described in the specification.

[00610] As one of ordinary skill in the art will readily appreciate from the disclosure,
processes, machines, manufacture, compositions of matter, means, methods, or steps,
presently existing or later to be developed, that perform substantially the same function or
achieve substantially the same result as the corresponding embodiments described herein
may be utilized. Accordingly, the embodiments are intended to include within their scope

such processes, machines, manufacture, compositions of matter, means, methods, or steps.

[00611] As can be understood, the examples described above and illustrated are intended

to be exemplary only.
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WHATIS CLAIMED IS:

1. A system for estimating fairness of a machine learning model, the system comprising:
one or more processors operating in conjunction with computer memory, the one or

more processors configured to:

receive data representative of a value of an input variable of the machine
learning model, the machine learning model configured to generate target

predictions based on the input variable;

generate a first vector indicative of a gradient of the machine learning model

evaluated at the value of the input variable;

generate a second vector using an auxiliary machine learning model
configured to generate predictions indicative of one or more protected
attributes based on the input variable, the second vector indicative of a
gradient of the auxiliary machine learning model evaluated at the value of

the input variable;

compare the first vector to the second vector to generate a fairness

indicator value; and
generate output data representative of the fairness indicator value;

wherein the fairness indicator value is indicative of discrimination risk in the target

predictions generated by the machine learning model.

2. The system of claim 1, wherein comparing the first vector to the second vector includes

using a projection of the first vector on to the second vector.

3. The system of claim 1, wherein comparing the first vector to the second vector includes
using a norm of a projection value, the projection value obtained by projecting the first

vector on to the second vector and dividing by a L2 norm of the second vector.

4. The system of claim 1, wherein the machine learning model is a first supervised learning
model, and the auxiliary machine learning model is a second supervised learning model

trained at least partially based on known values of the one or more protected attributes.
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5. The system of claim 1, wherein the second vector is representative of an output of a
sign function of the gradient of the auxiliary machine learning model evaluated at the value

of the input variable.

6. The system of claim 1, wherein the second vector is indicative of a modified gradient
when the gradient of the auxiliary machine learning model is associated with out-of-

distribution predictions of the auxiliary machine learning model.

7. The system of claim 1, wherein a plurality of fairness indicator values are generated,
each corresponding to different protected attributes of the one or more attributes, and the
output data is indicative of whether an aggregated measure of the plurality of fairness

indicators exceeds a predefined fairness threshold.

8. The system of claim 7, wherein each of the plurality of fairness indicator values is
indicative of a covariance between the gradient of the machine learning model and the

gradient of the auxiliary machine learning model.
9. The system of claim 7, wherein the aggregated measure is an L-p norm.

10. The system of claim 1, wherein the input variable includes an observable attribute
correlated with at least one of the one or more protected attributes via an unobserved

latent variable.

11. A method for estimating fairness of a machine learning model, the method comprising:
receiving data representative of a value of an input variable of the machine
learning model, the machine learning model configured to generate target

predictions based on the input variable;

generating a first vector indicative of a gradient of the machine learning

model evaluated at the value of the input variable;

generating a second vector using an auxiliary machine learning model
configured to generate predictions indicative of one or more protected
attributes based on the input variable, the second vector indicative of a
gradient of the auxiliary machine learning model evaluated at the value of

the input variable;

comparing the first vector to the second vector to generate a fairness

indicator value; and
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generating output data representative of the fairness indicator value,

wherein the fairness indicator value is indicative of discrimination risk in the target

predictions generated by the machine learning model.

12. The method of claim 11, wherein comparing the first vector to the second vector

includes using a projection of the first vector on to the second vector.

13. The method of claim 11, wherein comparing the first vector to the second vector
includes using a norm of a projection value, the projection value obtained by projecting the

first vector on to the second vector and dividing by a L2 norm of the second vector.

14. The method of claim 11, wherein the machine learning model is a first supervised
learning model, and the auxiliary machine learning model is a second supervised learning
model trained at least partially based on known values of the one or more protected

attributes.

15. The method of claim 11, wherein the second vector is representative of an output of a
sign function of the gradient of the auxiliary machine learning model evaluated at the value

of the input variable.

16. The method of claim 11, wherein the second vector is indicative of a modified gradient
when the gradient of the auxiliary machine learning model is associated with out-of-

distribution predictions of the auxiliary machine learning model.

17. The method of claim 11, wherein a plurality of fairness indicator values are generated,
each corresponding to different protected attributes of the one or more attributes, and the
output data is indicative of whether an aggregated measure of the plurality of fairness

indicators exceeds a predefined fairness threshold.

18. The method of claim 17, wherein each of the plurality of fairness indicator values is
indicative of a covariance between the gradient of the machine learning model and the

gradient of the auxiliary machine learning model.
19. The method of claim 17, wherein the aggregated measure is an L-p norm.

20. A non-transitory computer readable medium storing machine interpretable instructions,
which when executed by a processor, cause the processor to perform a method for

estimating fairness of a machine learning model, the method comprising:
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receiving data representative of a value of an input variable of the machine
learning model, the machine learning model configured to generate target

predictions based on the input variable;

generating a first vector indicative of a gradient of the machine learning

model evaluated at the value of the input variable;

generating a second vector using an auxiliary machine learning model
configured to generate predictions indicative of one or more protected
attributes based on the input variable, the second vector indicative of a
gradient of the auxiliary machine learning model evaluated at the value of

the input variable;

comparing the first vector to the second vector to generate a fairness

indicator value; and
generating output data representative of the fairness indicator value,

wherein the fairness indicator value is indicative of discrimination risk due to the target

predictions generated by the machine learning model.
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WHATIS CLAIMED IS:

1. A system for estimating fairness of a machine learning model, the system comprising:
one or more processors operating in conjunction with computer memory, the one or

more processors configured to:

receive data representative of a value of an input variable of the machine
learning model, the machine learning model configured to generate target

predictions based on the input variable;

generate a first vector indicative of a gradient of the machine learning model

evaluated at the value of the input variable;

generate a second vector using an auxiliary machine learning model
configured to generate predictions indicative of one or more protected
attributes based on the input variable, the second vector indicative of a
gradient of the auxiliary machine learning model evaluated at the value of

the input variable;

compare the first vector to the second vector to generate a fairness

indicator value; and
generate output data representative of the fairness indicator value;

wherein the fairness indicator value is indicative of discrimination risk in the target

predictions generated by the machine learning model.

2. The system of claim 1, wherein comparing the first vector to the second vector includes

using a projection of the first vector on to the second vector.

3. The system of claim 1, wherein comparing the first vector to the second vector includes
using a norm of a projection value, the projection value obtained by projecting the first

vector on to the second vector and dividing by a L2 norm of the second vector.

4. The system of claim 1, wherein the machine learning model is a first supervised learning
model, and the auxiliary machine learning model is a second supervised learning model

trained at least partially based on known values of the one or more protected attributes.
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5. The system of claim 1, wherein the second vector is representative of an output of a
sign function of the gradient of the auxiliary machine learning model evaluated at the value

of the input variable.

6. The system of claim 1, wherein the second vector is indicative of a modified gradient
when the gradient of the auxiliary machine learning model is associated with out-of-

distribution predictions of the auxiliary machine learning model.

7. The system of claim 1, wherein a plurality of fairness indicator values are generated,
each corresponding to different protected attributes of the one or more attributes, and the
output data is indicative of whether an aggregated measure of the plurality of fairness

indicators exceeds a predefined fairness threshold.

8. The system of claim 7, wherein each of the plurality of fairness indicator values is
indicative of a covariance between the gradient of the machine learning model and the

gradient of the auxiliary machine learning model.
9. The system of claim 7, wherein the aggregated measure is an L-p norm.

10. The system of claim 1, wherein the input variable includes an observable attribute
correlated with at least one of the one or more protected attributes via an unobserved

latent variable.

11. A method for estimating fairness of a machine learning model, the method comprising:
receiving data representative of a value of an input variable of the machine
learning model, the machine learning model configured to generate target

predictions based on the input variable;

generating a first vector indicative of a gradient of the machine learning

model evaluated at the value of the input variable;

generating a second vector using an auxiliary machine learning model
configured to generate predictions indicative of one or more protected
attributes based on the input variable, the second vector indicative of a
gradient of the auxiliary machine learning model evaluated at the value of

the input variable;

comparing the first vector to the second vector to generate a fairness

indicator value; and
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generating output data representative of the fairness indicator value,

wherein the fairness indicator value is indicative of discrimination risk in the target

predictions generated by the machine learning model.

12. The method of claim 11, wherein comparing the first vector to the second vector

includes using a projection of the first vector on to the second vector.

13. The method of claim 11, wherein comparing the first vector to the second vector
includes using a norm of a projection value, the projection value obtained by projecting the

first vector on to the second vector and dividing by a L2 norm of the second vector.

14. The method of claim 11, wherein the machine learning model is a first supervised
learning model, and the auxiliary machine learning model is a second supervised learning
model trained at least partially based on known values of the one or more protected

attributes.

15. The method of claim 11, wherein the second vector is representative of an output of a
sign function of the gradient of the auxiliary machine learning model evaluated at the value

of the input variable.

16. The method of claim 11, wherein the second vector is indicative of a modified gradient
when the gradient of the auxiliary machine learning model is associated with out-of-

distribution predictions of the auxiliary machine learning model.

17. The method of claim 11, wherein a plurality of fairness indicator values are generated,
each corresponding to different protected attributes of the one or more attributes, and the
output data is indicative of whether an aggregated measure of the plurality of fairness

indicators exceeds a predefined fairness threshold.

18. The method of claim 17, wherein each of the plurality of fairness indicator values is
indicative of a covariance between the gradient of the machine learning model and the

gradient of the auxiliary machine learning model.
19. The method of claim 17, wherein the aggregated measure is an L-p norm.

20. A non-transitory computer readable medium storing machine interpretable instructions,
which when executed by a processor, cause the processor to perform a method for

estimating fairness of a machine learning model, the method comprising:

-85-
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receiving data representative of a value of an input variable of the machine
learning model, the machine learning model configured to generate target

predictions based on the input variable;

generating a first vector indicative of a gradient of the machine learning

model evaluated at the value of the input variable;

generating a second vector using an auxiliary machine learning model
configured to generate predictions indicative of one or more protected
attributes based on the input variable, the second vector indicative of a
gradient of the auxiliary machine learning model evaluated at the value of

the input variable;

comparing the first vector to the second vector to generate a fairness

indicator value; and
generating output data representative of the fairness indicator value,

wherein the fairness indicator value is indicative of discrimination risk due to the target

predictions generated by the machine learning model.
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