PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/33162
GO6F A2 . -

(43) International Publication Date: 8 June 2000 (08.06.00)

(21) International Application Number: PCT/US99/28596 | (81) Designated States: JP, KR, European patent (AT, BE, CH, CY,

(22) International Filing Date: 1 December 1999 (01.12.99)

(30) Priority Data:

09/204,760 2 December 1998 (02.12.98) Us

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901 San
Antonio Road, Palo Alto, CA 94043 (US).

(72) Inventors: CHAN, Jeffrey, Meng, Wah; 1984 Latham Street
#10, Mountain View, CA 94040 (US). TREMBLAY, Marc;
140 Manna Way, Menlo Park, CA 94025 (US).

(74) Agents: SHENKER, Michael et al; Skjerven, Morrill,
MacPherson, Franklin & Friel LLP, Suite 700, 25 Metro
Drive, San Jose, CA 95110 (US).

DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: EXECUTION OF INSTRUCTIONS THAT LOCK AND UNLOCK COMPUTER RESOURCES

110
CPU 120.1 CPU 1202
RF | [Pcu 1 L
15011160 BIU
180 [
1trap 180
170 :
< ¥})90
17ons| 170u] 170L| 170RW | 170D| 170A| 170
S S S] SN p — S i
‘ MEMORY
130M DCU 130 < 140
PlLIwo Wi] ... 4130t

(57) Abstract

When an atomic instruction executed by a computer processor locks a memory location, the locking is performed before the processor
has determined whether the instruction is to be executed to completion or canceled. The memory location is unlocked whether or not the
instruction will be canceled. Since the locking operation can occur before it is known whether the instruction will be canceled, the reading
of the memory location can also occur early, before it is known whether the instruction will be canceled.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
cM
CN
CU
CzZ
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

FI

FR
GA
GB
GE
GH
GN
GR

KR
KZ

LI
LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™D
TG
TJ
™
TR
TT
UA
UG
Us
Uz
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 00/33162 PCT/US99/28596

EXECUTION OF INSTRUCTIONS THAT
LOCK AND UNLOCK COMPUTER RESOURCES

BACKGROUND OF THE INVENTION

The present invention relates to execution of instructions
that lock and unlock computer resources.

Examples of instructions that lock and unlock computer
resources are a test-and-set instruction and a swap
instruction, and a cas (compare and swap) instruction. A test-
and-set instruction reads a memory location (to perform a test)
and also writes the memory location (to perform a “set”
operation). This instruction is used to implement semaphores
and other software synchronization mechanisms. A swap
instruction swaps the contents of a memory location and a
register. A cas instruction compares a memory location with a
register R1l, stores the memory location value in register R2,
and if the comparison was successful, the instruction also
stores the previous value of the register R2 in the memory
location. Each of these instructions involves reading and
writing a memory location. If between the reading and writing
operations another instruction, executed by a different
processor, writes the same memory location, the program
executing the test-and-set or swap instruction and/or the
program executed by the different processor may provide
incorrect results. Therefore, the test-and-set and swap
instructions are implemented as atomic instructions. These
instructions lock the memory location during the reading
operation to prevent other processors from writing the
location. The location is unlocked when the memory location is
written.

It is desirable to enable faster execution of instructions

that lock and unlock computer resources.

10

15

20

25

30

35

WO 00/33162 PCT/US99/28596

SUMMARY

Some embodiments of the present invention allow fast
execution of instructions that lock and unlock computer
resources. In particular, an ingtruction is allowed to lock a
computer resource before it becomes known whether the
instruction will be executed to completion or canceled. By the
time the instruction processing is complete, the resource
becomes unlocked whether or not the instruction is canceled.

An instruction may have to be canceled if, for example, a
trap condition occurs while the instruction is being executed.
If the instruction is canceled after locking a computer
resource but before unlocking the resource, the resource may
become permanently locked, which is undesirable.

One solution to this problem is not to allow an
instruction to lock a resource until it is determined that the
instruction will be executed to completion. However, this
delays instruction execution.

Therefore, according to the present invention, an
instruction is allowed to lock a resource before it is
determined whether the instruction will be executed to
completion or canceled. Later in the instruction processing,
the resource is unlocked even if the instruction is canceled,
and even if the fact that the instruction is canceled is
established by the processor before the instruction has
unlocked the resource.

In some atomic instruction embodiments for which the
resource is a memory location, the instruction is allowed to
read the memory location before it is known whether the
instruction will be canceled. Performing the reading operation
early speeds up the instruction execution.

In some pipelined embodiments, the determination of
whether or not an instruction is to be canceled is made before
the pipeline stage or stages in which the instruction results
are written to their destinations (e.g., architecture register

or memory). If an instruction is canceled, writing to the

-2-

10

15

20

25

30

35

WO 00/33162 PCT/US99/28596

destination(s) 1is suppressed. However, the instruction still
goes through all the pipeline stages at least up to, and
including, the stage in which the resource is unlocked. In
some embodiments, the instruction goes through all the pipeline
stages, but writing to the destinations is suppressed.

In some embodiments, the processor shares a cache with one
or more other processors. The resource being locked is a cache
memory location.

Other features and advantages of the invention are
described below. The invention is defined by the appended

claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram of a multi-processor system
according to the present invention.

Fig. 2 illustrates an instruction execution pipeline of a
processor of Fig. 1.

Fig. 3 is a block diagram of one embodiment of a processor
of Fig. 1.

Fig. 4 is a block diagram of a load/store unit for one
embodiment of the processor of Fig. 3.

Fig. 5 illustrates entries in load and store buffers of

Fig. 4.

DETAILED DESCRIPTION

A multiprocessor system 110 (Fig. 1) includes two
processors (cpUs) 120.1, 120.2 which share a two-port data
cache unit (DCU) 130. Fach CPU 120 accesses the DCU through a
respective one of the DCU ports. DCU 130 caches data from
memory 140.

Data cache 130 includes a set -associative cache memory
130M and control logic (not shown) to access the cache memory.
Such caches are known in the art. Each cache set 130L in
memory 130M can store a number of data words WO, W1,
(thirty-two 32-bit words in some embodiments). In addition,

each cache set 130L includes a lock bit L which indicates

-3-

10

15

20

25

30

35

WO 00/33162 PCT/US99/28596

whether the cache set is locked, and a processor bit P which

indicates which CPU has locked the cache set. When the cache

set is locked, the cache set can be accessed only from the port

connected to the CPU that has locked the cache set. The other
CPU is not allowed to read or write the cache set or those
memory 140 locations whose contents are cached in the cache
set.

In some embodiments, if a cache set 130L is locked by one
CPU, the other CPU is allowed to read the cache set but not to
write the cache set.

Fig. 2 illustrates instruction execution pipeline for a
single CPU 120 in some embodiments. In some embodiments, the
two CPUs are identical, but the pipeline stages do not have to
be synchronized between the CPUs. .In particular, a pipeline
disruption of one CPU does not affect the other CPU’s pipeline.

In Fig. 2, “F” is an instruction fetch stage. “A” is an
alignment stage for embodiments in which the CPUs are VLIW
(very long instruction word) processors. In a VLIW processor,
each instruction may include a number of sub-instructions
executed in parallel by different execution units. In the
alignment stage A, the sub-instructions are aligned before the
respective execution units.

In the D/R stage (decode/register file access), each
execution unit decodes its respective sub-instruction and reads
operands from register file 150 (Fig. 1).

In execution stages E, C(Al), A2, A3, the sub-instructions
are executed. In stage T, trap events are handled. “E” stands
for effective address calculation, “C” for cache access, Al,
A2, A3 for annex 1, 2, 3. Depending on the instruction, some
stages may be unnecessary for instruction execution, but are
inserted as padding to delay the trap stage T so that there are
always three clock cycles between stages E and T.

The operations performed during stages E, cC(Al), A2, A3
vary from instruction to instruction. For example, some
instructions (such as NOP) do not perform effective address

calculation.

10

15 .

20

25

30

35

WO 00/33162 PCT/US99/28596

In the write back stage WB, the instruction results are
written to their destinations which may include register file
150 (Fig. 1), DCU 130, memory 140 (if the destination igs a non-
cacheable memory location), OF other devices or bus lines.

In stage T, the processor’s pipe control unit (PCU) 160
(Fig. 1) generates a “trap” signal indicating whether the VLIW
instruction (and hence all its sub-instructions) has to be
canceled due to a trap condition caused by the instruction
itself or by an interrupt. The instruction (say instruction)
wI1” can also be canceled by a trap condition caused by a
previous instruction “I2” if execution of I1 and execution of
I2 overlaps. The trap condition caused by “I2” causes the trap
signal to be asserted in the T stage of I2 which is an earlier

pipeline stage of instruction Il1. Trap conditions are listed

‘in Addendum 1 at the end of this description for some

embodiments. If the “trap” signal is asserted in the T stage
or an earlier pipeline stage of instruction I1, the Il results
are not written to the destination in the WB stage. However,
the instruction I1 is allowed to proceed to the WB stage, and
any cache set that has peen locked by the instruction is
unlocked in the WB stage.

Additional execution stages are inserted between A3 and WB
if needed.

In some embodiments, each CPU 120 has a register file and
a PCU, but in Fig. 1 the register file and the PCU are shown
only for CPU 120.1 for simplicity.

Addendum 2 is a pseudocode listing illustrating execution
of an atomic instruction by a CPU 120. We will describe
Addendum 2 with reference to CPU 120.1. Execution of atomic
instruction by CPU 120.2 1is similar.

At step 310, CPU 120.1 igsues a load-with-lock request to
DCU 130. This is done as follows. Each CPU is connected to
its respective DCU port by a bus 170 (Fig. 1). Only the bus
170 for CPU 120.1 is shown in detail. Each bus 170 includes
address lines 170A, data lines 170D, read/write line 170RW,
lock line 170L, unlock line 170U, and no_store line 170NS.

-5-

10

15

20

25

30

35

WO 00/33162 PCT/US99/28596

At step 310, CPU 120.1 drives the address lines 170A of
its bus 170 with the address of the data.to be loaded (the
address in memory 140), and drives a réad signal on read/write
line 170RW. In addition, the CPU asserts the lock line 170L to
cause the DCU to lock the cache set being read.

Because the cache set can be unlocked in the WB stage even
if the instruction has to pe canceled, step 310 can be
performed before the instruction’s T stage, that is, before it
becomes known whether or not the instruction will be canceled.

If the data requested at step 310 are in the cache, and
the cache set has not been locked by CPU 120.2, the DCU returns
the data on lines 170D. otherwise, the DCU asserts apprdpriate
controls signals (not shown) to CPU 120.1 to signal that the
cache set 1is locked or the data are not in the cache, whatever
the case may be. If the data are not in the cache, CPU 120.1
issues a request to bus interface unit (BIU) 180 to fetch the
data from memory 140. BIU 180 fetches the data via bus 190.
When the data are fetched, they are cached in a cache set 130L
in DCU 130 and are also provided to CPU 120.1. 1In addition,
the lock bit L is set in the cache set, and the processor bit P
is made to indicate CPU 120.1.

At step 320, CPU 120.1 calculates a store condition “COND”
which determines whether the memory 140 location read at step
310 has to be written by the instruction. Step 320 is omitted
for some instructions, such as swap, for which the memory
location is written unconditionally.

Step 350 is completed in the WB stage (though this step
may start before the WB stage in some embodiments) . This step
includes steps 350A, 350B. At step 350A, CPU 120.1 issues a
store request to DCU 130, driving the store address on lines
170A, the store data on lines 170D, and the write signal on
line 170RW, as known in the art. In addition, CPU 120.1
asserts the unlock 1ine 170U to cause the DCU to unlock the
cache set 130L.

At the same time, at step 350B, CPU 120.1 drives the

no_store line 170NS with a signal indicating whether the store

-6~

10

15

20

25

30

35

WO 00/33162 PCT/US99/28596

data are to be actually written tO the cache set. The data
will not be written if, and only if: (1) “trap” was asserted
in the T stage OY carlier stage of the instruction, oOr (2) the
condition COND 1is false.

Whether or not no_store ig asserted, DCU 130 will reset
the L bit to unlock the cache set.

Further details of one embodiment will be illustrated on
the example of an atomic compare-and-swap instruction cas
(Addendum 3) . This instruction takes three operands rd, rsl,
rs2. In some embodiments, these operands are addresses of
registers in register file 150. |

At step 410, the instruction reads a memory location
M[rs2] whose address is stored in register rs2. This location
is in memory 140. (The instruction definition of Addendum 3
does not depend on the presence of a cache.) AL step 420, the
contents temp_rs2 of the memory location are compared with the
contents rrsl] of register rsi. If the comparison is
successful, the memory jocation M(rs2] ig written with the
contents rlrdl of register rd. |

Whether or not the comparison is successful, the register
rd is written with the memory location contents temp_rs2 (step
430) fetched at step 410.

Addendum 4 illustrates execution of the cas instruction by
a CPU 120. The step reference numbers correspond to those of
Addendum 2. At step 310 in Addendum 4, the contents of memory
location M[rs2] are fetched from cache 130 and placed into a
temporary register temp rs2. The cache set storing Mlrs2] is
locked. Register temp_rs2 1s not an wgrchitecture” register,
that is, this register 1is not visible by software and this
register can by modified even if the cas jpnstruction will be
canceled.

At step 314, register rd is read into another non-
architecture register temp_rd.

At step 320, another non-architecture register COND is

written with a bit indicating whether temp_rs2 = r[rsl].

10

15

20

25

30

35

WO 00/33162 PCT/US99/28596

Steps 310, 314, 320 can be performed pefore the T stage.
These steps can overlap or be performed in an order different
from the order shown. .

Step 350, consisting of steps 350A, 350B, 350C, is to be
completed after the T stage. At step 350A, a store-with-unlock
ig issued to the DCU to store the contents of temp_rd in the
cache location that caches M[rs2]. Step 350B is performed as
in Addendum 2. At the same time, at step 350c, if “trap” has
peen deasserted in the T and all earlier stages of the cas
instruction, then the contents of temp_rs2 are written to
register rd to implement step 430 of Addendum 3.

Fig. 3 illustrates one embodiment of a CPU 120 in more
detail. CPU 120 ig a VLIW processor having four execution
units 610.0, 610.1, 610.2, 610.3, also labeled GFU, MFUl, MFUZ2,
MFU3 respectively. GFU stands for wgeneral functional unit”.
MFU stands for smedia functional unit”. The four execution
units operate in parallel to execute a single VLIW instruction
which may include up to four sub-instructions. Instruction cas
is a sub-instruction.

The GFU is the only exgcution unit that can perform memory
access operations, including cas.

During the pipeline fetch stage F (Fig. 2), the CPU
fetches instructions from instruction cache 614 into
instruction aligner 618. During the A stage, instruction
aligner 618 extracts up to four sub-instructions from cache 614
and aligns the sub-instructions pefore respective execution
units 610. The sub-instructions are written into instruction
puffer 624. During the D stage, units 610 decode their
respective sub-instructions and, if needed, read instruction
operands from respective register files RFO, RF1, RF2, RF3
which form the register file 150. Each register file RFO, RF1,
RF2, RF3 stores a COPY of the same data.

In the execution stages E, C(Al), AZ, A3, and possibly
other stages after A3 and before WB, each execution unit 610

executes 1its respective sub-instruction.

10

15

20

25

30

35

WO 00/33162 PCT/US99/28596

In stage WB, execution units 610 write instruction
results, as explained above.

When a VLIW instruction is in its T stage, each execution
unit 610.0-610.3 generates a respective signal “trap0” through
strap3” to indicate whether the execution unit detected a trap
condition. Signals trap0O-trap3 are provided to PCU 160. In
the same stage T, the PCU asserts, “trap” signal if, and only
if, any one of signals trap0-trap3 is asserted in the T stage.

The “trap” signal is provided to load/store unit (LSU)
640.

LSU 640 executes requests toO access cache 130, BIU 180,
and other devices. 1In 18U 640, store buffer 710 (Fig. 4) is a
queue of eight entries 0-7. Entry O is the front (bottom) of
the queue, entry 7 is the back (or top). The store
instructions are written from GFU 610.0 into entry 7 in the E
stage. (An entry in store buffer 710 defines a store operation
which we will call a “store instruction”. gimilarly, an entry
in load buffer 720 of LSU 640 defines a load operation which we
will call a “load instruction”. These store and load
instructions should not be confused with sub-instructions
executed by units 610 or with VLIW instructions.)

at the end of the C stage, the instruction in entry 7 of
the store buffer 710 is written to the lowest empty entry
chosen from entries 4-7.

A store instruction is not dispatched from the store
buffer to the DCU until the stage A3. (Dispatching the
instruction involves providing the address, data and control
signals on bus 170 of Fig. 1.) When a store instruction is
dispatched to the DCU, the DCU writes cache memory 130M at
ljeast one cycle atter the dispatch. If the instruction was
dispatched at stage A3 but in stage T the vtrap” signal is
asserted, the instruction is canceled via a cancellation signal
(not shown) sent by the LSU to the DCU in the T stage.

In each store buffer entry, “datab” field 710D holds the
store data. Address field 710A (“addrb”) holds the store

address which is an address in memory 140.

-9~

10

15

20

25

30

35

WO 00/33162 PCT/US99/28596

atate field 710S indicates the pipeline stage of the
instruction. The binary encoding of the stage field is as
follows:

100: instruction is in stage A2;

010: instruction is in stage A3;

001: instruction is in stage T;

000: instruction is past the T stage.

The stage field is written at the end of the C stage and
is thereafter shifted right once per clock cycle. Entries 4-7
of the store buffer keep all the three bits of the stage field.
Entry 3 has two bits to track whether the instruction is in
stage A3 or T or is past T. Entry 5> has one bit to track if
the instruction is in stage T or past the T stage. Entries 0O
and 1 do not have the stage field.

The instruction type field 710T indicates the instruction
type. In particular, this field indicates whether the store is
part of a cas instruction.

One-bit load/store field 710L is used for cas instructions
to track if the cas load has been performed, as described
below.

Load buffer 720 in Fig. 4 is a queue of five entries 0-4.
Entry 0 is the front of the queue, and entry 4 is the back.
Load instructions are written from GFU 610.0 to entry 4 in the
E stage. They shift through the buffer from top to bottom.
Each instruction remains in the load buffer through its
1ifetime in the LSU, that is, even after the load request has
been issued to DCU 130. After the load data have returned from
the DCU, the instruction is logically deleted from the load
buffer.

The load buffer entries can pe finished (i.e. respective
loads can be performed) out of order. Holes in the buffer from
out-of -order completed instructions can be filled from any
entry, one per clock cycle.

A load instruction can be dispatched to the DCU in the E
stage without being written to the load buffer first. However,

the instruction still gets written into the load buffer.

-10-

10

15

20

25

30

35

WO 00/33162 PCT/US99/28596

In each load buffer entry, waddrb” field 720A holds the
load address. This is an address in memory 140. The address
igs calculated in the E stage (the address may be equal to the
sum of two operands, as known in the art.)

Destination register specifier field 720RD holds the
address of the load destination register in register file 150.

RAW hazard field 720RAW is an g8-bit vector pointing to
store buffer 710 instructions which must be performed before
the load instruction to avoid a RAW (read after write) hazard.
In the embodiment being described, the stores are issued in
order with respect to each other. The loads are also issued in
order with respect to each other. However, the loads are also
issued in preference to the stores. The store instructions are
dispatched only when the first load in load buffer 720 cannot
be dispatched due to a RAW hazard, or when the load buffer is
empty. Therefore, a RAW (read after write) hazard is a
possibility, but RAR, WAR, and WAW hazards are not .

Each bit in field 720RAW corresponds to an entry of store
buffer 710. The bit is set if the instruction in the
corresponding store entry must be executed before the load, and
the bit is reset otherwise. As the store buffer entries are
shifted down to fill the free space in the store pbuffer, the
RAW fields 720RAW are shifted to the right.

A load instruction can be speculatively dispatched to DCU
130 in the E stage even though the corresponding RAW hazards
are not calculated until the C stage. If the load is found to
have a hazard, the load 1is canceled (that is, the data returned
by cache 130 are discarded), and the load is retried later.

The load can also be canceled by a “trap” signal generated
in the T or earlier stage if the load was dispatched to the DCU
pefore the T stage. In this case, the load is not retried.

one-bit field 720T (“trap_taken”) is initially set to
zero. This bit is set to 1 in the T or earlier stage in
response to the trap signal from PCU 160 being asserted. If

the bit is set, the instruction will be removed from the load

-11-

10

15

20

25

30

35

WO 00/33162 PCT/US99/28596

puffer when the load data return, and the load data will be
discarded. |

The stage field 7208 has the same meaning as the field
7108 in the store puffer, and the encoding is the same. When
the load data are passed back to GFU 610.0, the stage field
final value, shifted right once more, is passed to PCU 160.

Entry 4 of load puffer 720 includes all the three stage
bite 720S. Entry 3 has two pits to track whether the
instruction is in stage A3, T, or past T. Entry 2 has one bit
to track whether the instruction is in stage T or past T.
Entries 1 and 0 do not have the stage field.

BIU list 730 is a queue of commands to be dispatched to
bus interface unit 180. The BIU list is written when DCU 130
returns a cache miss and when, therefore, data have to be
fetched into the cache from memory 140. The BIU list is also
written to write the memory 140.

When GFU 610.0 issues a cas instruction to 1LSU 640, the
LSU writes one entry into each of buffers 720, 710. The
entries are shown in Fig. 5. 1In the store buffer entry, the
instruction type field 710T indicates cas. Address field 710A
has the contents of register rs2 (Addendum 3) of the cas
instruction, i.e. the memory 140 address. The data field 710D
has the contents of the destination register rd (Addendum 3) of
the cas instruction. The bit 710L is 0 to indicate that the
cas load has not been performed yet.

In the load buffer entry, the address field 720A receives
the contents of register rsl (the comparison data). See
Addendum 3. Field 720RD receives the address of the
destination register rd (Addendum 3) of the cas instruction.
In RAW vector 720RAW, the bit pointing to the store entry for
the cas instruction is set even though the cas load is to
precede the cas store. In addition, the bits corresponding to
other RAW hazards, if any, are set.

The remaining fields of the cas load and store entries of

Fig. 5 are defined as for other load and store instructions.

-12-

10

15

20

25

30

35

WO 00/33162 PCT/US99/28596

Addendum 5 describes the LSU operation in pseudocode. BIU
1ist 730 has the highest priority in some embodiments. If the
BIU list 730 is not e&pty, the LSU dispatches an operation from
the BIU list (step 910).

If the BIU list is empty, an operation from load buffer
720 or store buffer 710 is dispatched. If the first entry
(i.e., the entry in the front of the queue) in load buffer 720
has no RAW hazard (step 920), the entry is dispatched. More
particularly, the LSU dispatches to DCU 130 a load-without-lock
request, that is, a read request with lock signal 170L
deasserted (step 920A). When DCU returns data on lines 170D
(step 920B), the LSU passes the data to PCU 160 and GFU 610.0
on bus lsu dc_data (Fig. 3). The LSU also passes to the PCU
and the GFU on bus lsu pcu_rd the destination register
specifier rd from field 720RD (Fig. 4). The LSU also passes to
the PCU the stage bits 7208 and the trap taken bit 720T.

If load buffer 720 is empty, or the first entry in the
load buffer has a non-zero bit in field 720RAW, the first store
in store buffer 710 is dispatched (step 930). If the
instruction type field 710T of this entry does not indicate a
cas instruction (step 930A), then a store request is issued to
DCU 130, with the lock and unlock signals 170L, 1700
deasserted. The instruction is dispatched in stage A3 or
later. The stage is indicated by the stage field 7108 or by
the position of the instruction in the store buffer.

If the field 710T indicates a cas instruction (step 930B),
the actions in Table 5-1 are performed.

In the table, the column “CAS STAGE” indicates the
pipeline stage of the cas instruction for one example. In that
example, both LSU buffers were empty when the cas instruction
was issued by GFU 610.0. Therefore, the cas load (step 930Bl)
is dispatched to DCU 130 in the E stage.

The column “LSU PIPE STAGE” indicates the LSU pipeline
stages. LSU 640 is pipelined, and can issue a request to the

DCU on every clock cycle.

-13-

10

15

20

25

30

35

WO 00/33162 PCT/US99/28596

At step 930B1 (LSU pipeline dispatch stage LD), a load
request is dispatched using the store puffer 710 entry for the
cas instruction. Using the store buffer entry rather than the
load buffer entry allows utilization of the same logic as used
for non-cas instructions to select an instruction for dispatch.
Indeed, the cas load entry has a RAW hazard bit set (pointing
to the cas store entry). Therefore, according to the non-cas
ruleg, the cas store must be dispatched before the cas load.

When the LSU dispatches the cas store entry with field
710T showing cas and bit 710L reset, the LSU dispatches a load
request rather than a store to the DCU.

In the load request, the memory address in field 710A is
driven on the DCU address bus 170A. The lock signal 170L is
asserted, and the unlock signal 170U is deasserted.

At step 930B2, in stage C, the DCU returns data on lines
170D (assuming a cache hit). The LSU sets the bit 710L to
indicate that the cas load has been performed.

The LSU pipeline stages at step 930B2 are indicated as LC
(LSU cache access) and LF (LSU finish). In the embodiment
being described, these stages may or may not occur in the same
clock cycle. For example, if the DCU returned a cache miss,
the stage LF (data return on lines 170D) would be performed
later.

Of note, in case of a cache miss, the DCU does not lock
the cache set, and the LSU does not set the bit 710L. In this
case (not shown in Table 5-1), the LSU causes BIU 180 to fetch
data from memory 140, and then reissues the load-and-lock
request of step 930Bl.

When the DCU returns data on lines 170D, the LSU 640
drives the destination register specifier rd on lines
lsu_pcu_rd to PCU 160 and GFU 610.0. The register specifier rd
is taken from field 720RD of the cas load entry (see Fig. 5).
In some embodiments, the LSU finds the cas load entry as the
first load in the gueue of load puffer 720. Indeed, because
the loads have priority over stores, a store is issued before a

load only if the load has a RAW bit set, stores are issued in

-14 -

10

15

20

25

30

35

WO 00/33162 PCT/US99/28596

order with respect to each other, and loads are issued in order
with respect to each other, the cas load is the first load in
the load buffer.

In other embodiments, the cas load entry is found by the
LSU as the first load having a RAW vector 720RAW pointing to
the cas store entry.

At step 930B3, the LSU again finds the load buffer entry
corresponding to the cas instruction, and drives the comparison
data (contents of register rsl) from field 720A (Fig. 5) to GFU
610.0. At this time, the data from the DCU are still available
on bus lsu dc_data. The GFU performs the comparison step 320
(Addendum 4), and provides the result COND to LSU 640. This
occurs in pipeline stage A2 in Table 5-1, when the LSU pipeline
for the cas instruction is in stages LL (LSU late cache
response) and LI (LSU invalidate, meaning that the instruction
can be invalidated in this stage). Stages LL, LI may occur in
the same clock cycle or in different cycles. They occur in the
same cycle in Table 5-1.

At step 930B4 (cas stage A3 in Table 5-1, LSU stage LD),
the LSU again selects an entry for dispatch to the DCU. Since
the first load in the load buffer is a cas load, having a RAW
bit set, a store is dispatched. The first store is still the
cas store. However, since its bit 710L is set, the LSU
dispatches a store to the DCU, asserting the unlock signal
170U.

At step 930B5 (cas stage T, LSU stage LC), LSU 640
generates the signal no_store on line 170NS (Fig. 1). This
signal is asserted if, and only if, the trap taken bit 720T is
(one) or COND is false. See step 350B in Addenda 2 and 4.

At step 930B6 (cas stage WB in Table 5-1), the store
operation is allowed to finish. However, if no_store was
asserted at step 930B5, the DCU will not perform a store.
Whether or not no _store was asserted, the DCU resets the cache
set lock bit L.

The above embodiments illustrate but do not limit the

invention. In particular, the invention is not limited to the

-15-

10

15

20

25

30

35

WO 00/33162 PCT/US99/28596

cas instruction. Swap, test-and-set, and other atomic
instructions are used in some embodiments. The invention is
not limited by the number of the CPUs sharing the cache 130 or
by the structure of a CPU. 1In some embodiments, the CPUs are
not identical to one another. Further, in some embodiments,
non-CPU entities, for example, a DMA or a communication
controller, can share the cache with the CPUs. If a cache set
is locked, such entities are prevented from writing and
possibly reading the cache set.

In some embodiments, the LSU provides an interface to non-
memory devices in addition to the memory. In other
embodiments, an LSU is absent from at least one CPU.

The invention is not limited to dispatching loads in
preference to stores, or to any other dispatch policy.

The invention is not limited by the type of the CPUs. In
some embodiments, one or more of the CPUs are non-VLIW
processors. In some embodiments, one or more CPUs do not have
a register file.

While in some embodiments the memory 140 is a random
access memory, in some embodiments the DCU caches data from
non-random access memory devices.

In some embodiments, an atomic instruction locks an entire
cache memory, or an individual word, bit, or some other cache
portion. Some embodiments do not include a cache, and an
atomic instruction locks part or all of a non-cache memory.

The invention is not limited to any particular interface
between a CPU and the cache. For example, in some embodiments,
the lock line 170L and the unlock line 170U are combined into a
single line since in some embodiments the lock and the unlock
commands are never issued to the DCU simultaneously.

The invention is not limited to caches. In some
embodiments, the invention is applied to non-cache resources,
for example, disk or communication controllers.

The invention is not limited to the pipeline of Fig. 2 or to
any particular pipeline of LSU 640. Further, in some

embodiments, an atomic instruction reads one memory location

-16-

WO 00/33162 PCT/US99/28596

but writes a different memory location. The location being
written, or both locations, are locked in some embodiments from
the time the first location is read to the time the second
location is written.

The steps of Addenda 2-4 are performed not necessarily in
the order shown. Some steps may overlap or be performed in a
different order.

Other embodiments and variations are within the scope of

the invention, as defined by the appended claims.

-17-

WO 00/33162 PCT/US99/28596

10

15

20

25

30

ADDENDUM 1
Traps

A trap may be caused by an exception or an
interrupt. An exception is a condition associated with
an instruction being executed. Examples include divide
by zero, unaligned memory access, stack overflow, an
illegal instruction, a breakpoint or a software
interrupt instruction, a privileged instruction
executed in a non-privileged mode, a memory map error
(attempt to access an unmapped memory address space, Or
to execute unallowed opcode for an address space), a
memory access error (for example, a parity error), an
instruction address is out of bounds, data are out of
bounds, referencing a null pointer, software-initiated
processor reset.

An interrupt is a condition caused by an external
device. Interrupts are not directly related to an
instruction being executed. Examples of interrupts are
requests from a network controller, a keyboard, a joy
stick, or a disk controller. Another example is a
timer interrupt. Power-on reset (a processor reset
signal being asserted) also causes an interrupt.

When a trap condition occurs, the processors stops
executing the current instruction stream and starts
executing a trap handler. Before the trap handler is
started, the instructions that were past the T stage
when the trap condition occurred are executed to
completion. The instructions that have not yet gone

past the T stage are canceled.

-18-

WO 00/33162 PCT/US99/28596

ADDENDUM 2

Atomic Instruction Pseudocode

310 CPU issues a load-with-lock request to DCU,

5 possibly before T stage.
320 CPU calculates store condition “COND”

350
350A CPU issues a store-with-unlock request
to DCU, to be completed at WB stage

10 350B no_store <- (trap asserted in the T or

earlier stage of the instruction) OR ~COND

-19-

WO 00/33162 PCT/US99/28596

ADDENDUM 3

cas rd, rsl, I[rs2]:

10 temp_rs2 <- M[rs2]
420 if temp rs2 = rirsl], then

M[rs2] <- rlrd]

430 r[rd] <- temp_rs2

-20-

WO 00/33162 PCT/US99/28596

ADDENDUM 4

310 temp rs2 <- M[rs2]; lock the cache set that caches
Mlrs2]

314 temp rd <- r[rd]

320 COND <- (temp rs2 = rlrsl])

350
350A Issue a store with unlock to DCU:
M{rs2] <- temp_rd
350B no store <- (trap asserted in the T or

earlier stage of the instruction) OR ~COND)

350C if ~(trap asserted in the T or earlier

stage of the instruction) then r[rd] <- temp_rs2

-21-

WO 00/33162

PCT/US99/28596

ADDENDUM 5

LSU operation pseudocode

910 If BIU list not empty, dispatch BIU operation

5 20 Else

if load buffer is not empty and the first

load instruction in load buffer has no RAW hazard,

920A
920B

10
30 Else
930A
15 does

Dispatch load-without-lock request to DCU
When DCU returns data on lines 170D,

920B1 Provide the data on bus lsu_dc_data
920B2 Provide destination register specifier
(load buffer entry field rd) on bus
lsu_pcu_rd

if store buffer is not empty

If field 710T of first store buffer entry

not indicate cas, issue a store request to

DCU deasserting the lock signal 170L and the

unlock signal 170U

930B

Else (the first store buffer entry is a cas

entry) :

-22-

WO 00/33162 PCT/US99/28596

TABLE 5-1

STEP CAS LSU ACTION
STAGE PIPE
STAGE

930Bl1 | E LD Dispatch load-with-lock request
to DCU, with address in store
entry field addrb (contents of

rs2)

930B2 | C LC, LF |DCU returns data on lines 170D.
Set flag 710L in store buffer
entry. Drive load buffer
destination register specifier
(rd field of load buffer entry)

on lines lsu_pcu_rd

930B3 | A2 LL, LI |Provide to GFU the comparison
data r([rsl] from addrb field of
load buffer entry. Get COND
from the GFU

930B4 | A3 LD Dispatch store-with-unlock to
the DCU

930B5 | T LC no store <- ((trap_ taken bit
720T set) or ~COND))

930B6 [WB Allow the DCU to complete the
cas store unlock (and, possibly

the data store)

-23-

10

15

20

25

30

WO 00/33162 PCT/US99/28596

CLAIMS

What i1s claimed is:

1. A computer processor capable to execute a
computer instruction which locks and then unlocks a
computer resource, the computer processor being
operable to lock the resource in the course of
execution of the instruction before the processor has
determined whether the instruction is to be executed to
completion or canceled, the processor unlocking the
resource by the time the instruction processing by the
processor is terminated, the unlocking being performed

whether or not the instruction is canceled.

2. The computer processor of Claim 1 wherein the
instruction execution is pipelined, and the instruction
is canceled if a trap condition occurs after the

processor started processing the instruction.

3. The computer processor of Claim 1 wherein:

executing the instruction comprises reading a
memory location and conditionally or unconditionally
writing a memory location; and

the resource comprises the memory location to be

written.

4. The computer processor of Claim 3 further
comprising a cache, wherein the memory location to be

written is a memory location in said cache.

5. The computer processor of Claim 3 wherein the
circuitry is operable to perform the reading before the
processor has determined whether the instruction is to

be canceled.

-24 -

10

15

20

25

30

WO 00/33162 PCT/US99/28596

6. The processor of Claim 1 in combination with

another processor having access to the same resource.

7. The processor of Claim 1 wherein instruction
execution is pipelined, and

if the processor determines before a pipeline
stage of stages in which the unlocking is performed
that the instruction is to be canceled, the instruction
proceeds through all the pipeline stages at least up
to, and including, the stage or stages in which the

resource is unlocked.

8. The processor of Claim 1 wherein:

each instruction is executed in a plurality
of pipeline stages, wherein the pipeline for each
instruction includes a stage STl in which a signal
is generated by the processor to indicate whether
the instruction is to be canceled due to a trap;
and

when executing the instruction which locks
and then unlocks the computer resource, the
processor 1is operable to lock the computer

resource before the stage STI1.

9. The processor of Claim 8 wherein for at least
some instructions including the instruction that locks
and then locks the computer resource, the stage ST1 is
followed by a stage ST2 in which at least one
instruction result is written to an architecture
storage location; and

when the processor executes the instruction that

locks and then unlocks the computer resource, and the

-25-

10

15

20

25

30

WO 00/33162 PCT/US99/28596

instruction is to be canceled, the stage ST2 is
executed for the instruction to unlock the resource but
writing to the architecture storage location is

suppressed.

10. A computer processor comprising an interface
to a cache, the interface comprising:
address and data terminals; and
one or more control terminals to lock and unlock at
least a portion of the cache, the one or more control
terminals being operable to indicate that the cache 1is

not to store data but to perform an unlock operation.

11. The processor of Claim 10 in combination with
said cache, the cache being connected to the address
and data terminals and to the one or more control

terminals.

12. The combination of Claim 11 further
compriging a second processor having data and address
terminals and one or more control terminals, wherein
said terminals of the second processor are connected to

the cache.

13. The combination of Claim 12 further
comprising a memory and a circuit for caching data from

the memory in the cache.

14. A method for executing a computer instruction
by a computer processor, wherein the instruction locks
and then unlocks a computer resource, the method

comprising:

-26-

WO 00/33162 PCT/US99/28596

10

15

20

25

30

locking the resource before the processor has
determined whether the instruction is to be executed to
completion or canceled; and then

unlocking the resource by the time the instruction
processing by the processor is terminated, wherein the
unlocking is performed whether or not the instruction

is canceled.

15. The method of Claim 14 wherein the unlocking
is performed after the processor has determined whether

the instruction is to be canceled.

16. The method of Claim 14 wherein the
instruction execution is pipelined, and the instruction
is canceled if a trap condition occurs after the

instructions processing by the processor has begun.

17. The method of Claim 14 wherein the
instruction is an atomic instruction which comprises
reading a memory location and conditionally or
unconditionally writing a memory location; and

the resource comprises the memory location to be

written.

18. The method of Claim 17 wherein the memory

location to be written is a cache memory location.
19. The method of Claim 17 wherein the reading

operation is performed before the processor has

determined whether the instruction is to be canceled.

-27-

PCT/US99/28596

WO 00/33162

1/5

ovl

AHONW3N

ad

061

Il ©Old

Josit M [om [1]d
0ST NOa WOEL
h.j — — w/, — f —
Ll V0Ll [@0ZL | mM¥0ZL |T0ZL |NOLL |SNOZL
A A ~
Y 0Ll
08l < > am;;
e L 091 | | 05T
|| nod| | Ju
Z0ck NdD 10zt

1'0¢l NdD

Ot

WO 00/33162

E CAl) A2 A3 T WB
DR E CAl) A2 A3 T WB

D/R
A

<

FIG. 2

2/5

PCT/US99/28596

WO 00/33162 PCT/US99/28596
3/5

m—
r- — e— e nm—— —— m——
— —— . —— e

-]

CINSTRYCTICN CACHE N
t 514 cel
{0 |

INSTRVCTION ALIGNER —
613 \

l
LTHNSTROCTICA R UEFER l
Dl 4

1
3] [Frz] [RF7] [RFo|™~2°

= e e L
A At

\
}Mér:u 3J MFEU2L {MFUI | GFU
l

61021 16101 | [6100

e || —

—3

mefﬁ ltrqu trapd trapl _—P_ZU_

1

\

] {
L_ _ trap 10|
. LSV gsa_a/c_dafq |
BIU| I | £1Y >l |
gsa-(Dcu_rJ ‘

N R

. 3

WO 00/33162 PCT/US99/28596
4/5

LSl 640
r LOAD BUE 720
| 7204 729m/ 77ﬂA>D 7205 207—

Qddl’b | KAW r‘ai sf‘agéj trap. takenf

i

-
|

& 0 |

STQRE BUF 7/0
7@7’ 7/0,4 7/00 7/05 7/04

7]IT aﬂldrbja/afab 570'9’3 [/g
éi QJ

I J

BRIV LisT 720

\\MKJ\I\

P ———l

i

2
L
1

FlG A

N\

WO 00/33162 PCT/US99/28596
5/5

7204 T20RAW T2ORD —
f " / :7205 ZZO/
Lrs(1| paw| Md[Siape| drap_taken

70T 7I0p 70D 7105 7/0L
YA, S A 4

eas [Lrs2]) | Erdl [stkge [p

Fle 5

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

