

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
1 December 2005 (01.12.2005)

PCT

(10) International Publication Number
WO 2005/113595 A2

(51) International Patent Classification⁷: **C07K 14/705**

DUNN, Steven, Mark [GB/GB]; Avidex Ltd, 57c Milton Park, Abingdon, Oxfordshire OX14 4RX (GB).

(21) International Application Number:
PCT/GB2005/001924

(74) Agent: WALLS, Alan, James; Avidex Ltd, 57c Milton Park, Abingdon, Oxfordshire OX14 4RX (GB).

(22) International Filing Date: 18 May 2005 (18.05.2005)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0411123.3 19 May 2004 (19.05.2004) GB
0419643.2 3 September 2004 (03.09.2004) GB

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): **AVIDEX LTD** [GB/GB]; 57c Milton Park, Abingdon, Oxfordshire OX14 4RX (GB).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2005/113595 A2

(54) Title: HIGH AFFINITY NY-ESO T CELL RECEPTOR

(57) **Abstract:** The present invention provides T cell receptors (TCRs) having the property of binding to SLLMWITQC-HLA-A*0201, the SLLMWITQC peptide being derived from the NY-ESO-1 protein which is expressed by a range of tumour cells. The TCRs have a K_D for the said peptide-HLA complex of less than or equal to 1 μ M and/or have an off-rate (k_{off}) of 1×10^{-3} S $^{-1}$ or slower.

High Affinity NY-ESO T cell receptors

The present invention relates to T cell receptors (TCRs) having the property of binding to SLLMWITQC-HLA-A*0201 and comprising at least one TCR α chain variable domain and/or at least one TCR β chain variable domain CHARACTERISED IN THAT said TCR has a K_D for the said SLLMWITQC-HLA-A*0201 complex of less than or equal to 1 μ M and/or has an off-rate (k_{off}) for the SLLMWITQC-HLA-A*0201 complex of 1×10^{-3} S $^{-1}$ or slower.

10 **Background to the Invention**

The SLLMWITQC peptide is derived from the NY-ESO-1 protein that is expressed by a range of tumours (Chen *et al.*, (1997) *PNAS USA* **94** 1914-1918). The Class I HLA molecules of these cancerous cells present peptides from this protein, including SLLMWITQC. Therefore, the SLLMWITQC-HLA-A2 complex provides a cancer marker that TCRs can target, for example for the purpose of delivering cytotoxic or immuno-stimulatory agents to the cancer cells. However, for that purpose it would be desirable if the TCR had a higher affinity and/or a slower off-rate for the peptide-HLA complex than native TCRs specific for that complex.

20 **Brief Description of the Invention**

This invention makes available for the first time TCRs having high affinity (K_D) of the interaction less than or equal to 1 μ M, and/or a slower off-rate (k_{off}) of 1×10^{-3} S $^{-1}$ or slower, for the SLLMWITQC-HLA-A*0201 complex. Such TCRs are useful, either alone or associated with a therapeutic agent, for targeting cancer cells presenting that complex

Detailed Description of the Invention

The present invention provides a T-cell receptor (TCR) having the property of binding to SLLMWITQC-HLA-A*0201 and comprising at least one TCR α chain variable domain and/or at least one TCR β chain variable domain CHARACTERISED IN THAT said TCR has a K_D for the said SLLMWITQC-HLA-A*0201 complex of less

than or equal to 1 μ M and/or has an off-rate (k_{off}) for the SLLMWITQC-HLA-A*0201 complex of 1×10^{-3} S $^{-1}$ or slower. The K_D and/or (k_{off}) measurement can be made by any of the known methods. A preferred method is the Surface Plasmon Resonance (Biacore) method of Example 5.

5

For comparison, the interaction of a disulfide-linked soluble variant of the native 1G4 TCR (see SEQ ID NO: 9 for TCR α chain and SEQ ID NO: 10 for TCR β chain) and the SLLMWITQC-HLA-A*0201 complex has a K_D of approximately 10 μ M, an off-rate (k_{off}) of 1.28×10^{-1} S $^{-1}$ and a half-life of 0.17 minutes as measured by the Biacore-base method of Example 5.

10

The native 1G4 TCR specific for the SLLMWITQC-HLA-A*0201 complex has the following Valpha chain and Vbeta chain gene usage:

15

Alpha chain - TRAV21

Beta chain: - TRBV 6.5

20

The native 1G4 TCR can be used as a template into which various mutations that impart high affinity and/or a slow off-rate for the interaction between TCRs of the invention and the SLLMWITQC-HLA-A*0201 complex can be introduced. Thus the invention includes TCRs which are mutated relative to the native 1G4 TCR α chain variable domain (see Figure 1a and SEQ ID No: 1) and/or β chain variable domain (see Figure 1b and SEQ ID NO: 2) in at least one complementarity determining region (CDR) and/or variable domain framework region thereof. It is also contemplated that other hypervariable regions in the variable domains of the TCRs of the invention, such as the hypervariable 4 (HV4) regions, may be mutated so as to produce a high affinity mutant.

25

Native TCRs exist in heterodimeric $\alpha\beta$ or $\gamma\delta$ forms. However, recombinant TCRs consisting of a single TCR α or TCR β chain have previously been shown to bind to peptide MHC molecules.

30

In one embodiment the TCR of the invention comprise both an α chain variable domain and an TCR β chain variable domain.

As will be obvious to those skilled in the art the mutation(s) in the TCR α chain sequence and/or TCR β chain sequence may be one or more of substitution(s), deletion(s) or insertion(s). These mutations can be carried out using any appropriate method including, but not limited to, those based on polymerase chain reaction (PCR), restriction enzyme-based cloning, or ligation independent cloning (LIC) procedures. These methods are detailed in many of the standard molecular biology texts. For further details regarding polymerase chain reaction (PCR) mutagenesis and restriction enzyme-based cloning see (Sambrook & Russell, (2001) Molecular Cloning – A Laboratory Manual (3rd Ed.) CSHL Press) Further information on LIC procedures can be found in (Rashtchian, (1995) *Curr Opin Biotechnol* **6** (1): 30-6)

15 It should be noted that any $\alpha\beta$ TCR that comprises similar Valpha and Vbeta gene usage and therefore amino acid sequence to that of the 1G4 TCR could make a convenient template TCR. It would then be possible to introduce into the DNA encoding one or both of the variable domains of the template $\alpha\beta$ TCR the changes required to produce the mutated high affinity TCRs of the invention. As will be 20 obvious to those skilled in the art, the necessary mutations could be introduced by a number of methods, for example site-directed mutagenesis.

The TCRs of the invention include those in which one or more of the TCR alpha chain variable domain amino acids corresponding to those listed below are mutated relative 25 to the amino acid occurring at these positions in the sequence provided for the native 1G4 TCR alpha chain variable domain in Figure 1a and SEQ ID No: 1.

Unless stated to the contrary, the TCR amino acid sequences herein are generally provided including an N-terminal methionine (Met or M) residue. As will be known to 30 those skilled in the art this residue may be removed during the production of recombinant proteins. Furthermore, unless stated to the contrary, the soluble TCR and

TCR variable domain sequences have been truncated at the N-terminus thereof. (Resulting in the lose of the N-terminal "K" and "NA" in the TCR alpha and beta chain sequences respectively.). As will be obvious to those skilled in the art these "missing" N-terminal TCR residues may be re-introduced into the TCRs of the present 5 invention. As will also be obvious to those skilled in the art, it may be possible to truncate the sequences provided at the C-terminus and/or N-terminus thereof, by 1, 2, 3, 4, 5 or more residues, without substantially affecting the pMHC binding characteristics of the TCR, all such trivial variants are encompassed by the present invention.

10

As used herein the term "variable domain" is understood to encompass all amino acids of a given TCR which are not included within the constant domain as encoded by the TRAC gene for TCR α chains and either the TRBC1 or TRBC2 for TCR β chains. (T 15 cell receptor Factsbook, (2001) LeFranc and LeFranc, Academic Press, ISBN 0-12-441352-8)

As is known to those skilled in the art, part of the diversity of the TCR repertoire is due to variations which occur in the amino acid encoded by the codon at the boundary 20 between the variable domain, as defined herein, and the constant domain. For example, the codon that is present at this boundary in the wild-type IG4 TCR sequence results in the presence of the Tyrosine (Y) residue at the C-terminal of the variable domain sequences herein. This Tyrosine replaces the N-terminal Asparagine (N) residue encoded by the TRAC gene shown in Figure 8A.

25

Embodiments of the invention include mutated TCRs which comprise mutation of one or more of alpha chain variable domain amino acids corresponding to: 20V, 51Q, 52S, 53S, 94P, 95T, 96S, 97G, 98G, 99S, 100Y, 101I and 103T, for example the amino acids:

30

20A

51P/S/T or M

52P/F or G
53W/H or T
94H or A
95L/M/A/Q/Y/E/I/F/V/N/G/S/D or R
5 96L/T/Y/I/Q/V/E/X/A/W/R/G/H/D or K
97D/N/V/S/T or A
98P/H/S/T/W or A
99T/Y/D/H/V/N/E/G/Q/K/A/I or R
100F/M or D
10 101P/T/ or M
103A

The numbering used above is the same as that shown in Figure 1a and SEQ ID No: 1

15 Embodiments of the invention also include TCRs which comprise mutation of one or more of the TCR beta chain variable domain amino acids corresponding to those listed below, are relative to the amino acid occurring at these positions in the sequence provided for the native 1G4 TCR alpha chain variable domain of the native 1G4 TCR beta chain in Figure 1b and SEQ ID No: 2. The amino acids referred to which may be mutated are: 18M, 50G, 51A, 52G, 53I, 55D, 56Q, 70T, 94Y, 95V and 97N, for 20 example:

18V
50S or A
51V or I
52Q
25 53T or M
55R
56R
70I
94N or F
30 95L
97G or D

The numbering used above is the same as that shown in Figure 1b and SEQ ID No: 2

Further preferred embodiments of the invention are provided by TCRs comprising one of the mutated alpha chain variable domain amino acid sequences shown in Fig 6

5 (SEQ ID Nos: 11 to 83). Phenotypically silent variants of such TCRs also form part of this invention.

Additional preferred embodiments of the invention are provided by TCRs comprising one of the mutated beta chain variable domain amino acid sequences shown in Figures 10 7 or 13. (SEQ ID Nos: 84 to 99 or 117 to 121). Phenotypically silent variants of such TCRs also form part of this invention.

Native TCRs exist in heterodimeric $\alpha\beta$ or $\gamma\delta$ forms. However, recombinant TCRs consisting of $\alpha\alpha$ or $\beta\beta$ homodimers have previously been shown to bind to peptide 15 MHC molecules. Therefore, one embodiment of the invention is provided by TCR $\alpha\alpha$ or TCR $\beta\beta$ homodimers.

Further preferred embodiments are provided by TCRs of the invention comprising the 20 alpha chain variable domain amino acid sequence and the beta chain variable domain amino acid sequence combinations listed below, phenotypically silent variants of such TCRs also form part of this invention:

Alpha chain variable domain sequence, SEQ ID NO:	Beta chain variable domain sequence, SEQ ID NO:
1	84
1	85
1	86
1	87
1	88
11	84

12	84
12	85
12	90
11	85
11	86
11	92
11	93
13	86
14	84
14	85
15	84
15	85
16	84
16	85
17	86
18	86
19	84
20	86
21	84
21	85
22	84
23	86
24	84
25	84
26	84
27	84
28	84
29	84
30	84
31	84

32	84
33	84
20	86
34	86
35	89
36	89
37	89
38	89
39	89
16	89
17	89
31	89
40	89
1	90
1	91
41	90
42	2
42	85
42	92
1	92
1	93
43	92
44	92
45	92
46	92
47	92
48	84
49	94
50	84
50	94

51	94
51	95
1	94
1	85
51	84
52	84
52	94
52	95
53	84
49	95
49	94
54	92
55	92
56	92
57	92
58	92
59	92
60	92
61	92
62	92
63	92
64	92
65	92
66	92
67	92
68	92
69	92
70	92
71	92
72	92

73	92
74	92
75	92
76	92
77	92
78	92
79	92
80	92
81	92
82	92
83	92
11	96
11	97
11	98
11	99
1	89
50	117
49	117
50	118
49	119
50	119
58	93
49	118
1	119
1	117
55	120
56	120
50	121
50	120
49	121

49	120
48	118
53	95

Preferred embodiments provide a TCR of the invention comprising:

5 the alpha chain variable domain shown in the SEQ ID NO: 49 and the beta chain variable domain shown in the SEQ ID NO: 94, or phenotypically silent variants thereof.

10 In another preferred embodiment TCRs of the invention comprising the variable domain combinations detailed above further comprise the alpha chain constant region amino acid sequence shown in Figure 8a (SEQ ID NO: 100) and one of the beta chain amino acid constant region sequences shown in Figures 8b and 8c (SEQ ID NOs: 101 and 102) or phenotypically silent variants thereof.

15 As used herein the term “phenotypically silent variants” is understood to refer to those TCRs which have a K_D for the said SLLMWITQC-HLA-A*0201 complex of less than or equal to 1 μ M and/or have an off-rate (k_{off}) of 1×10^{-3} S $^{-1}$ or slower. For example, as is known to those skilled in the art, it may be possible to produce TCRs that 20 incorporate minor changes in the constant and/or variable domains thereof compared to those detailed above without altering the affinity and/or off-rate for the interaction with the SLLMWITQC-HLA-A*0201 complex. Such trivial variants are included in the scope of this invention. Those TCRs in which one or more conservative substitutions have been made also form part of this invention.

25 In one broad aspect, the TCRs of the invention are in the form of either single chain TCRs (scTCRs) or dimeric TCRs (dTcRs) as described in WO 04/033685 and WO 03/020763.

A suitable scTCR form comprises a first segment constituted by an amino acid sequence corresponding to a TCR α chain variable domain, a second segment constituted by an amino acid sequence corresponding to a TCR β chain variable domain sequence fused to the N terminus of an amino acid sequence corresponding to 5 a TCR β chain constant domain extracellular sequence, and a linker sequence linking the C terminus of the first segment to the N terminus of the second segment.

Alternatively the first segment may be constituted by an amino acid sequence corresponding to a TCR β chain variable domain, the second segment may be 10 constituted by an amino acid sequence corresponding to a TCR α chain variable domain sequence fused to the N terminus of an amino acid sequence corresponding to a TCR α chain constant domain extracellular sequence

The above scTCRs may further comprise a disulfide bond between the first and second 15 chains, said disulfide bond being one which has no equivalent in native $\alpha\beta$ T cell receptors, and wherein the length of the linker sequence and the position of the disulfide bond being such that the variable domain sequences of the first and second segments are mutually orientated substantially as in native $\alpha\beta$ T cell receptors.

20 More specifically the first segment may be constituted by an amino acid sequence corresponding to a TCR α chain variable domain sequence fused to the N terminus of an amino acid sequence corresponding to a TCR α chain constant domain extracellular sequence, the second segment may be constituted by an amino acid sequence corresponding to a TCR β chain variable domain fused to the N terminus of an amino acid sequence corresponding to TCR β chain constant domain extracellular sequence, 25 and a disulfide bond may be provided between the first and second chains, said disulfide bond being one which has no equivalent in native $\alpha\beta$ T cell receptors.

In the above scTCR forms, the linker sequence may link the C terminus of the first segment to the N terminus of the second segment, and may have the formula -PGGG-(SGGGG)_n-P- wherein n is 5 or 6 and P is proline, G is glycine and S is serine.

5 -PGGG-SGGGGSGGGGSGGGGGSGGGGSGGGG-P (SEQ ID NO: 103)
-PGGG-SGGGGSGGGGSGGGGGSGGGGSGGGG-P (SEQ ID NO: 104)

A suitable dTCR form of the TCRs of the present invention comprises a first polypeptide wherein a sequence corresponding to a TCR α chain variable domain sequence is fused to the N terminus of a sequence corresponding to a TCR α chain constant domain extracellular sequence, and a second polypeptide wherein a sequence corresponding to a TCR β chain variable domain sequence fused to the N terminus a sequence corresponding to a TCR β chain constant domain extracellular sequence, the first and second polypeptides being linked by a disulfide bond which has no equivalent in native $\alpha\beta$ T cell receptors.

The first polypeptide may comprise a TCR α chain variable domain sequence is fused to the N terminus of a sequence corresponding to a TCR α chain constant domain extracellular sequence, and a second polypeptide wherein a sequence corresponding to a TCR β chain variable domain sequence is fused to the N terminus a sequence corresponding to a TCR β chain constant domain extracellular sequence, the first and second polypeptides being linked by a disulfide bond between cysteine residues substituted for Thr 48 of exon 1 of TRAC*01 and Ser 57 of exon 1 of TRBC1*01 or TRBC2*01 or the non-human equivalent thereof. (“TRAC” etc. nomenclature herein as per T cell receptor Factsbook, (2001) LeFranc and LeFranc, Academic Press, ISBN 0-12-441352-8)

The dTCR or scTCR form of the TCRs of the invention may have amino acid sequences corresponding to human $\alpha\beta$ TCR extracellular constant and variable domain sequences, and a disulfide bond may link amino acid residues of the said constant domain sequences, which disulfide bond has no equivalent in native TCRs.

The disulfide bond is between cysteine residues corresponding to amino acid residues whose β carbon atoms are less than 0.6 nm apart in native TCRs, for example between cysteine residues substituted for Thr 48 of exon 1 of TRAC*01 and Ser 57 of exon 1 of TRBC1*01 or TRBC2*01 or the non-human equivalent thereof. Other sites where cysteines can be introduced to form the disulfide bond are the following residues in exon 1 of TRAC*01 for the TCR α chain and TRBC1*01 or TRBC2*01 for the TCR β chain:

TCR α chain	TCR β chain	Native β carbon separation (nm)
Thr 45	Ser 77	0.533
Tyr 10	Ser 17	0.359
Thr 45	Asp 59	0.560
Ser 15	Glu 15	0.59

10

In addition to the non-native disulfide bond referred to above, the dTCR or scTCR form of the TCRs of the invention may include a disulfide bond between residues corresponding to those linked by a disulfide bond in native TCRs.

15

The dTCR or scTCR form of the TCRs of the invention preferably does not contain a sequence corresponding to transmembrane or cytoplasmic sequences of native TCRs.

20

Preferred embodiments of the invention provide a soluble TCR consisting of:

the alpha chain amino acid sequence of SEQ ID NO: 122 and beta chain amino acid sequence SEQ ID NO: 123;

25

the alpha chain amino acid sequence of SEQ ID NO: 122 and beta chain amino acid sequence SEQ ID NO: 124;

SEQ ID NOs: 122, 123 and 124 have been provided in a form which includes the N-terminal methionine (M) and the N-terminal "K" and "NA" in the TCR alpha and beta chain sequences respectively.

5 *PEGylated TCR Monomers*

In one particular embodiment a TCR of the invention is associated with at least one polyalkylene glycol chain(s). This association may be cause in a number of ways known to those skilled in the art. In a preferred embodiment the polyalkylene chain(s) is/are covalently linked to the TCR. In a further embodiment the polyethylene glycol chains of the present aspect of the invention comprise at least two polyethylene repeating units.

15 *Multivalent TCR Complexes*

One aspect of the invention provides a multivalent TCR complex comprising at least two TCRs of the invention. In one embodiment of this aspect, at least two TCR molecules are linked via linker moieties to form multivalent complexes. Preferably the complexes are water soluble, so the linker moiety should be selected accordingly.

20 Furthermore, it is preferable that the linker moiety should be capable of attachment to defined positions on the TCR molecules, so that the structural diversity of the complexes formed is minimised. One embodiment of the present aspect is provided by a TCR complex of the invention wherein the polymer chain or peptidic linker sequence extends between amino acid residues of each TCR which are not located in a

25 variable region sequence of the TCR.

Since the complexes of the invention may be for use in medicine, the linker moieties should be chosen with due regard to their pharmaceutical suitability, for example their immunogenicity.

30 Examples of linker moieties which fulfil the above desirable criteria are known in the art, for example the art of linking antibody fragments.

There are two classes of linker that are preferred for use in the production of multivalent TCR molecules of the present invention. A TCR complex of the invention in which the TCRs are linked by a polyalkylene glycol chain provides one 5 embodiment of the present aspect.

The first are hydrophilic polymers such as polyalkylene glycols. The most commonly used of this class are based on polyethylene glycol or PEG, the structure of which is shown below.

10

Wherein n is greater than two. However, others are based on other suitable, optionally substituted, polyalkylene glycols include polypropylene glycol, and copolymers of 15 ethylene glycol and propylene glycol.

Such polymers may be used to treat or conjugate therapeutic agents, particularly 20 polypeptide or protein therapeutics, to achieve beneficial changes to the PK profile of the therapeutic, for example reduced renal clearance, improved plasma half-life, reduced immunogenicity, and improved solubility. Such improvements in the PK profile of the PEG-therapeutic conjugate are believed to result from the PEG molecule or molecules forming a 'shell' around the therapeutic which sterically hinders the reaction with the immune system and reduces proteolytic degradation. (Casey *et al*, 25 (2000) *Tumor Targetting* 4 235-244) The size of the hydrophilic polymer used may in particular be selected on the basis of the intended therapeutic use of the TCR complex. Thus for example, where the product is intended to leave the circulation and penetrate 30 tissue, for example for use in the treatment of a tumour, it may be advantageous to use low molecular weight polymers in the order of 5 KDa. There are numerous review papers and books that detail the use of PEG and similar molecules in pharmaceutical formulations. For example, see Harris (1992) *Polyethylene Glycol Chemistry - Biotechnical and Biomedical Applications*, Plenum, New York, NY. or Harris &

Zalipsky (1997) Chemistry and Biological Applications of Polyethylene Glycol ACS Books, Washington, D.C.

5 The polymer used can have a linear or branched conformation. Branched PEG molecules, or derivatives thereof, can be induced by the addition of branching moieties including glycerol and glycerol oligomers, pentaerythritol, sorbitol and lysine.

10 Usually, the polymer will have a chemically reactive group or groups in its structure, for example at one or both termini, and/or on branches from the backbone, to enable the polymer to link to target sites in the TCR. This chemically reactive group or groups may be attached directly to the hydrophilic polymer, or there may be a spacer group/moiety between the hydrophilic polymer and the reactive chemistry as shown below:

15 Reactive chemistry-Hydrophilic polymer-Reactive chemistry

Reactive chemistry-Spacer-Hydrophilic polymer-Spacer-Reactive chemistry

20 The spacer used in the formation of constructs of the type outlined above may be any organic moiety that is a non-reactive, chemically stable, chain, Such spacers include, by are not limited to the following:

-(CH₂)_n- wherein n = 2 to 5
-(CH₂)₃NHCO(CH₂)₂

25 A TCR complex of the invention in which a divalent alkylene spacer radical is located between the polyalkylene glycol chain and its point of attachment to a TCR of the complex provides a further embodiment of the present aspect.

30 A TCR complex of the invention in which the polyalkylene glycol chain comprises at least two polyethylene glycol repeating units provides a further embodiment of the present aspect.

There are a number of commercial suppliers of hydrophilic polymers linked, directly or via a spacer, to reactive chemistries that may be of use in the present invention. These suppliers include Nektar Therapeutics (CA, USA), NOF Corporation (Japan), 5 Sunbio (South Korea) and Enzon Pharmaceuticals (NJ, USA).

Commercially available hydrophilic polymers linked, directly or via a spacer, to reactive chemistries that may be of use in the present invention include, but are not limited to, the following:

10

PEG linker Description	Source of PEG	Catalogue Number
TCR Monomer attachment		
5K linear (Maleimide)	Nektar	2D2MOHO1
20K linear (Maleimide)	Nektar	2D2MOP01
20K linear (Maleimide)	NOF Corporation	SUNBRIGHT ME-200MA
20K branched (Maleimide)	NOF Corporation	SUNBRIGHT GL2- 200MA
30K linear (Maleimide)	NOF Corporation	SUNBRIGHT ME- 300MA
40K branched PEG (Maleimide)	Nektar	2D3XOTO1
5K-NP linear (for Lys attachment)	NOF Corporation	SUNBRIGHT MENP-50H
10K-NP linear (for Lys attachment)	NOF Corporation	SUNBRIGHT MENP-10T
20K-NP linear (for Lys attachment)	NOF Corporation	SUNBRIGHT MENP-20T
TCR dimer linkers		
3.4K linear (Maleimide)	Nektar	2D2DOFO2
5K forked (Maleimide)	Nektar	2D2DOHOF
10K linear (with orthopyridyl ds- linkers in place of Maleimide)	Sunbio	
20K forked (Maleimide)	Nektar	2D2DOPOF
20K linear (Maleimide)	NOF Corporation	
40K forked (Maleimide)	Nektar	2D3XOTOF

Higher order TCR multimers		
15K, 3 arms, Mal_3 (for trimer)	Nektar	OJOONO3
20K, 4 arms, Mal_4 (for tetramer)	Nektar	OJOOP04
40 K, 8 arms, Mal_8 (for octamer)	Nektar	OJOOTO8

A wide variety of coupling chemistries can be used to couple polymer molecules to protein and peptide therapeutics. The choice of the most appropriate coupling 5 chemistry is largely dependant on the desired coupling site. For example, the following coupling chemistries have been used attached to one or more of the termini of PEG molecules (Source: Nektar Molecular Engineering Catalogue 2003):

- N-maleimide
- Vinyl sulfone
- 10 Benzotriazole carbonate
- Succinimidyl propionate
- Succinimidyl butanoate
- Thio-ester
- Acetaldehydes
- 15 Acrylates
- Biotin
- Primary amines

As stated above non-PEG based polymers also provide suitable linkers for 20 multimerising the TCRs of the present invention. For example, moieties containing maleimide termini linked by aliphatic chains such as BMH and BMOE (Pierce, products Nos. 22330 and 22323) can be used.

Peptidic linkers are the other class of TCR linkers. These linkers are comprised of 25 chains of amino acids, and function to produce simple linkers or multimerisation domains onto which TCR molecules can be attached. The biotin / streptavidin system has previously been used to produce TCR tetramers (see WO/99/60119) for in-vitro

binding studies. However, stepavidin is a microbially-derived polypeptide and as such not ideally suited to use in a therapeutic.

5 A TCR complex of the invention in which the TCRs are linked by a peptidic linker derived from a human multimerisation domain provides a further embodiment of the present aspect.

10 There are a number of human proteins that contain a multimerisation domain that could be used in the production of multivalent TCR complexes. For example the tetramerisation domain of p53 which has been utilised to produce tetramers of scFv antibody fragments which exhibited increased serum persistence and significantly reduced off-rate compared to the monomeric scFv fragment. (Willuda *et al.* (2001) J. Biol. Chem. 276 (17) 14385-14392) Haemoglobin also has a tetramerisation domain that could potentially be used for this kind of application.

15 A multivalent TCR complex of the invention comprising at least two TCRs provides a final embodiment of this aspect, wherein at least one of said TCRs is associated with a therapeutic agent.

20 In one aspect a TCR (or multivalent complex thereof) of the present invention may alternatively or additionally comprise a reactive cysteine at the C-terminal or N-terminal of the alpha or beta chains thereof.

Diagnostic and therapeutic Use

25 In one aspect the TCR of the invention may be associated with a therapeutic agent or detectable moiety. For example, said therapeutic agent or detectable moiety may be covalently linked to the TCR.

30 In one embodiment of the invention said therapeutic agent or detectable moiety is covalently linked to the C-terminus of one or both TCR chains.

In one aspect the scTCR or one or both of the dTCR chains of TCRs of the present invention may be labelled with an detectable moiety, for example a label that is suitable for diagnostic purposes. Such labelled TCRs are useful in a method for

5 detecting a SLLMWITQC-HLA-A*0201 complex which method comprises contacting the TCR ligand with a TCR (or a multimeric high affinity TCR complex) which is specific for the TCR ligand; and detecting binding to the TCR ligand. In tetrameric TCR complexes formed for example, using biotinylated heterodimers, fluorescent streptavidin can be used to provide a detectable label. Such a

10 fluorescently-labelled TCR tetramer is suitable for use in FACS analysis, for example to detect antigen presenting cells carrying theSLLMWITQC-HLA-A*0201 complex for which these high affinity TCRs are specific.

Another manner in which the soluble TCRs of the present invention may be detected is

15 by the use of TCR-specific antibodies, in particular monoclonal antibodies. There are many commercially available anti-TCR antibodies, such as α Fl and β Fl, which recognise the constant domains of the α and β chains, respectively.

In a further aspect a TCR (or multivalent complex thereof) of the present invention

20 may alternatively or additionally be associated with (e.g. covalently or otherwise linked to) a therapeutic agent which may be, for example, a toxic moiety for use in cell killing, or an immune effector molecule such as an interleukin or a cytokine. A multivalent TCR complex of the invention may have enhanced binding capability for a TCR ligand compared to a non-multimeric wild-type or T cell receptor heterodimer of

25 the invention. Thus, the multivalent TCR complexes according to the invention are particularly useful for tracking or targeting cells presenting particular antigens *in vitro* or *in vivo*, and are also useful as intermediates for the production of further multivalent TCR complexes having such uses. These TCRs or multivalent TCR complexes may therefore be provided in a pharmaceutically acceptable formulation for use *in vivo*.

The invention also provides a method for delivering a therapeutic agent to a target cell, which method comprises contacting potential target cells with a TCR or multivalent TCR complex in accordance with the invention under conditions to allow attachment of the TCR or multivalent TCR complex to the target cell, said TCR or multivalent TCR complex being specific for the SLLMWITQC-HLA-A*0201 complex and having the therapeutic agent associated therewith.

In particular, the soluble TCR or multivalent TCR complex of the present invention can be used to deliver therapeutic agents to the location of cells presenting a particular antigen. This would be useful in many situations and, in particular, against tumours. A therapeutic agent could be delivered such that it would exercise its effect locally but not only on the cell it binds to. Thus, one particular strategy envisages anti-tumour molecules linked to TCRs or multivalent TCR complexes according to the invention specific for tumour antigens.

Many therapeutic agents could be employed for this use, for instance radioactive compounds, enzymes (perforin for example) or chemotherapeutic agents (cis-platin for example). To ensure that toxic effects are exercised in the desired location the toxin could be inside a liposome linked to streptavidin so that the compound is released slowly. This will prevent damaging effects during the transport in the body and ensure that the toxin has maximum effect after binding of the TCR to the relevant antigen presenting cells.

Other suitable therapeutic agents include:

- small molecule cytotoxic agents, i.e. compounds with the ability to kill mammalian cells having a molecular weight of less than 700 daltons. Such compounds could also contain toxic metals capable of having a cytotoxic effect. Furthermore, it is to be understood that these small molecule cytotoxic agents also include pro-drugs, i.e. compounds that decay or are converted under physiological conditions to release cytotoxic agents. Examples of such agents include cis-platin, maytansine derivatives, rachelmycin, calicheamicin,

docetaxel, etoposide, gemcitabine, ifosfamide, irinotecan, melphalan, mitoxantrone, sorfimer sodiumphotofrin II, temozolmide, topotecan, trimetrate glucuronate, auristatin E vincristine and doxorubicin;

- peptide cytotoxins, i.e. proteins or fragments thereof with the ability to kill mammalian cells. Including but not limited to, ricin, diphtheria toxin, pseudomonas bacterial exotoxin A, DNAase and RNAase;
- radio-nuclides, i.e. unstable isotopes of elements which decay with the concurrent emission of one or more of α or β particles, or γ rays. including but not limited to, iodine 131, rhenium 186, indium 111, yttrium 90, bismuth 210 and 213, actinium 225 and astatine 213; chelating agents may be used to facilitate the association of these radio-nuclides to the high affinity TCRs, or multimers thereof;
- prodrugs, including but not limited to, antibody directed enzyme pro-drugs;
- immuno-stimulants, i.e. moieties which stimulate immune response. Including but not limited to, cytokines such as IL-2 and IFN, Superantigens and mutants thereof, TCR-HLA fusions and chemokines such as IL-8, platelet factor 4, melanoma growth stimulatory protein, etc, antibodies or fragments thereof, complement activators, xenogeneic protein domains, allogeneic protein domains, viral/bacterial protein domains, viral/bacterial peptides and anti-T cell determinant antibodies (e.g. anti-CD3 or anti-CD28).

Functional antibody fragments and variants

Antibody fragments and variants/analogues which are suitable for use in the compositions and methods described herein include, but are not limited to, the following.

Antibody Fragments

As is known to those skilled in the art, it is possible to produce fragments of a given antibody which retain substantially the same binding characteristics as those of the parent antibody. The following provides details of such fragments:

5 Minibodies – These constructs consist of antibodies with a truncated Fc portion. As such they retain the complete binding domains of the antibody from which are derived.

10 Fab fragments – These comprise a single immunoglobulin light chain covalently-linked to part of an immunoglobulin heavy chain. As such, Fab fragments comprise a single antigen combining site. Fab fragments are defined by the portion of an IgG that can be liberated by treatment with papain. Such fragments are commonly produced via recombinant DNA techniques. (Reeves *et al.*, (2000) *Lecture Notes on Immunology* (4th Edition) Published by Blackwell Science)

15 F(ab')₂ fragments – These comprise both antigen combining sites and the hinge region from a single antibody. F(ab')₂ fragments are defined by the portion of an IgG that can be liberated by treatment with pepsin. Such fragments are commonly produced via recombinant DNA techniques. (Reeves *et al.*, (2000) *Lecture Notes on Immunology* (4th Edition) Published by Blackwell Science)

20 Fv fragments – These comprise an immunoglobulin variable heavy domain linked to an immunoglobulin variable light domain. A number of Fv designs have been produced. These include dsFvs, in which the association between the two domains is enhanced by an introduced disulfide bond. Alternatively, scFVs can be formed using a peptide linker to bind the two domains together as a single polypeptide. Fvs constructs containing a variable domain of a heavy or light immunoglobulin chain associated to the variable and constant domain of the corresponding immunoglobulin heavy or light chain have also been produced. FVs have also been multimerised to form diabodies and triabodies (Maynard *et al.*, (2000) *Annu Rev Biomed Eng* 2 339-376)

25 30

Nanobodies™ – These constructs, marketed by Ablynx (Belgium), comprise synthetic single immunoglobulin variable heavy domain derived from a camelid (e.g. camel or llama) antibody.

5 Domain Antibodies - These constructs, marketed by Domantis (Belgium), comprise an affinity matured single immunoglobulin variable heavy domain or immunoglobulin variable light domain.

Antibody variants and analogues

10

The defining functional characteristic of antibodies in the context of the present invention is their ability to bind specifically to a target ligand. As is known to those skilled in the art it is possible to engineer such binding characteristics into a range of other proteins. Examples of antibody variants and analogues suitable for use in the 15 compositions and methods of the present invention include, but are not limited to, the following.

20 Protein scaffold-based binding polypeptides – This family of binding constructs comprise mutated analogues of proteins which contain native binding loops. Examples include Affibodies, marketed by Affibody (Sweden), which are based on a three-helix motif derived from one of the IgG binding domains of *Staphylococcus aureus* Protein A. Another example is provided by Evibodies, marketed by EvoGenix (Australia) which are based on the extracellular domains of CTLA-4 into which domains similar to antibody binding loops are grafted. A final example, Cytokine Traps marketed by 25 Regeneron Pharmaceuticals (US), graft cytokine receptor domains into antibody scaffolds. (Nygren *et al.*, (2000) *Current Opinion in Structural biology* 7 463-469) provides a review of the uses of scaffolds for engineering novel binding sites in proteins. This review mentions the following proteins as sources of scaffolds: CP1 zinc finger, Tendamistat, Z domain (a protein A analogue), PST1, Coiled coils, LACI-30 D1 and cytochrome b₅₆₂. Other protein scaffold studies have reported the use of Fibronectin, Green fluorescent protein (GFP) and ankyrin repeats.

As is known to those skilled in the art antibodies or fragments, variants or analogues thereof can be produced which bind to various parts of a given protein ligand. For example, anti-CD3 antibodies can be raised to any of the polypeptide chains from 5 which this complex is formed (i.e. γ , δ , ϵ , ζ , and η CD3 chains) Antibodies which bind to the ϵ CD3 chain are the preferred anti-CD3 antibodies for use in the compositions and methods of the present invention.

10 Soluble TCRs or multivalent TCR complexes of the invention may be linked to an enzyme capable of converting a prodrug to a drug. This allows the prodrug to be converted to the drug only at the site where it is required (i.e. targeted by the sTCR).

15 It is expected that the high affinity SLLMWITQC (SEQ ID NO: 125)-HLA-A*0201 specific TCRs disclosed herein may be used in methods for the diagnosis and treatment of cancer.

20 For cancer treatment, the localisation in the vicinity of tumours or metastasis would enhance the effect of toxins or immunostimulants. For vaccine delivery, the vaccine antigen could be localised in the vicinity of antigen presenting cells, thus enhancing the efficacy of the antigen. The method can also be applied for imaging purposes.

One embodiment is provided by an isolated cell presenting a TCR of the invention. For example, said cell may be a T cell.

25 Further embodiments of the invention are provided by a pharmaceutical composition comprising:

30 a TCR or a multivalent TCR complex of the invention (optionally associated with a therapeutic agent), or a plurality of cells presenting at least one TCR of the invention, together with a pharmaceutically acceptable carrier;

The invention also provides a method of treatment of cancer comprising administering to a subject suffering such cancer disease an effective amount of a TCR or a multivalent TCR complex of the invention (optionally associated with a therapeutic agent), or a plurality of cells presenting at least one TCR of the invention. In a related 5 embodiment the invention provides for the use of a TCR or a multivalent TCR complex of the invention (optionally associated with a therapeutic agent), or a plurality of cells presenting at least one TCR of the invention, in the preparation of a composition for the treatment of cancer.

10 Therapeutic or imaging TCRs in accordance with the invention will usually be supplied as part of a sterile, pharmaceutical composition which will normally include a pharmaceutically acceptable carrier. This pharmaceutical composition may be in any suitable form, (depending upon the desired method of administering it to a patient). It may be provided in unit dosage form, will generally be provided in a sealed container and 15 may be provided as part of a kit. Such a kit would normally (although not necessarily) include instructions for use. It may include a plurality of said unit dosage forms.

20 The pharmaceutical composition may be adapted for administration by any appropriate route, for example parenteral, transdermal or via inhalation, preferably a parenteral (including subcutaneous, intramuscular, or, most preferably intravenous) route. Such compositions may be prepared by any method known in the art of pharmacy, for example by admixing the active ingredient with the carrier(s) or excipient(s) under sterile conditions.

25 Dosages of the substances of the present invention can vary between wide limits, depending upon the disease or disorder to be treated, the age and condition of the individual to be treated, etc. and a physician will ultimately determine appropriate dosages to be used.

Additional Aspects

A scTCR or dTCR (which preferably is constituted by constant and variable sequences corresponding to human sequences) of the present invention may be provided in 5 substantially pure form, or as a purified or isolated preparation. For example, it may be provided in a form which is substantially free of other proteins.

The invention also provides a method of producing a high affinity TCR having the 10 property of binding to SLLMWITQC-HLA-A*0201. CHARACTERISED IN THAT the TCR (i) comprises at least one TCR α chain variable domain and/or at least one TCR β chain variable domain and (ii) has a K_D for the said SLLMWITQC-HLA- 15 A*0201 complex of less than or equal to $1\mu\text{M}$ and/or an off-rate (k_{off}) for the SLLMWITQC-HLA-A*0201 complex of $1\times 10^{-3} \text{ S}^{-1}$ or slower, wherein the method comprises:

15

(a) the production of a TCR comprising the α and β chain variable domains of the 1G4 TCR wherein one or both of the α and β chain variable domains comprise a mutation(s) in one or more of the amino acids identified in claims 7 and 8;

20

(b) contacting said mutated TCR with SLLMWITQC-HLA-A*0201 under conditions suitable to allow the binding of the TCR to SLLMWITQC-HLA- 25 A*0201;

and measuring the K_D and/or k_{off} of the interaction.

25

Preferred features of each aspect of the invention are as for each of the other aspects *mutatis mutandis*. The prior art documents mentioned herein are incorporated to the fullest extent permitted by law.

Examples

The invention is further described in the following examples, which do not limit the scope of the invention in any way.

5

Reference is made in the following to the accompanying drawings in which:

Figure 1a and 1b details the alpha chain variable domain amino acid and beta chain variable domain amino acid sequences of the native 1G4 TCR respectively.

10

Figures 2a and 2b show respectively the DNA sequence of soluble versions of the native 1G4 TCR α and β chains.

15

Figures 3a and 3b show respectively the 1G4 TCR α and β chain extracellular amino acid sequences produced from the DNA sequences of Figures 2a and 2b.

Figures 4a and 4b show respectively the DNA sequence of soluble versions of the 1G4 TCR α and β chains mutated to include additional cysteine residues to form a non-native disulphide bond. The mutated codon is indicated by shading.

20

Figures 5a and 5b show respectively the 1G4 TCR α and β chain extracellular amino acid sequences produced from the DNA sequences of Figures 4a and 4b. The introduced cysteine is indicated by shading.

25

Figure 6 details the alpha chain variable domain amino acid sequences of the high affinity 1G4 TCR variants.

Figure 7 details the beta chain variable domain amino acid sequences of the high affinity 1G4 TCR variants.

30

Figure 8a details the amino acid sequence of a soluble form of TRAC.

Figure 8b details the amino acid sequence of a soluble form of TRBC1.

Figure 8c details the amino acid sequence of a soluble form of TRBC2.

5

Figure 9 details the DNA sequence of the pEX954 plasmid.

Figure 10 details the DNA sequence of the pEX821 plasmid.

10 Figure 11 details the DNA sequence of the pEX202 plasmid.

Figure 12 details the DNA sequence of the pEX205 plasmid.

15 Figure 13 details further beta chain variable domain amino acid sequences of the high affinity 1G4 TCR variants.

Figure 14a details the alpha chain amino acid sequences of a preferred soluble high affinity 1G4 TCR variant.

20 Figure 14b details the beta chain amino acid sequences of a preferred (c58c61) soluble high affinity 1G4 TCR variant utilising the TRBC1 constant domain.

Figure 14c details the beta chain amino acid sequences of a preferred (c58c61) soluble high affinity 1G4 TCR variant utilising the TRBC2 constant domain.

25

Figure 14d details the beta chain amino acid sequences of a preferred (c58c61) soluble high affinity 1G4 TCR using the TRBC2 encoded constant region fused via a peptide linker to wild-type human IL-2.

Figure 15a shows FACs staining of T2 cell pulsed with a range of NY-ESO-analogue SLLMWITQV peptide concentrations using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.

5 Figure 15b shows FACs staining of T2 cell pulsed with a range of NY-ESO-derived SLLMWITQC peptide concentrations using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.

10 Figure 16 shows FACs staining of SK-MEL-37, ScaBER, J82, HcT119 and Colo 205 cancer cells transfected with an SLLMWITQC peptide producing ubiquitin minigene (\pm proteosome inhibitors) using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.

15 Figure 17 shows ELISPOT data demonstrating the ability of soluble high affinity c58c61 1G4 TCR to inhibit CTL activation against the MEL-624 cancer cell.

Figure 18 shows ELISPOT data demonstrating the ability of soluble high affinity c58c61 1G4 TCR to inhibit CTL activation against the SK-MEL-37 cancer cell.

20 Figure 19 shows inhibition of T cell activation against peptide pulsed T2 cells by the soluble c58c61 high affinity 1G4 TCR as measured by IFN γ production.

Figure 20 shows lack of inhibition of T cell activation against peptide pulsed T2 cells by the soluble wild-type 1G4 TCR as measured by IFN γ production.

25

Figure 21 shows tumor growth inhibition caused by soluble c58c61 high affinity 1G4 TCR-IL-2 immunoconjugates.

30

Figure 22 shows the number of SLLMWITQC-HLA-A*0201 antigens on the surface of Mel 526, Mel 624 and SK-Mel-37 cancer cells as determined by fluorescent

microscopy. The visualisation of cell-bound biotinylated soluble c58c61 high affinity 1G4 TCRs was facilitated by conjugation with streptavidin-R phycoerythrin (PE).

Example 1 – Production of a soluble disulfide-linked TCR comprising the native 1G4 TCR variable domain

RNA isolation

5 Total RNA was isolated from 10000 clonal T cells by re-suspension in 100 μ l tri-reagent (Sigma) and processing of the lysate according to the manufacturer's instructions. After the final precipitation the RNA was re-dissolved in 12.5 μ l RNase free water.

10 cDNA Production

To the above sample of RNA, 2.5 μ l of 10 mM oligo-dT¹⁵ (Promega) was added and the sample incubated at 60°C for 2 minutes then placed on ice. Reverse transcription was carried out using OmniscriptRT kit (Qiagen) by addition of 2 μ l RT buffer (10 \times), 2 μ l 5 mM dNTP, 1 μ l Omniscript reverse transcriptase. The sample was mixed and 15 incubated for 1 hour at 37°C. cDNA was then stored at -80°C.

20 The above cDNA was used as template. A panel of forward primers covering all possible alpha and beta variable chains was used to screen for, and amplify by PCR, alpha and beta chains genes. Primer sequences used for TCR chain gene amplification were designed from the NCBI website (<http://www.ncbi.nlm.nih.gov/Entrez/>) using accession numbers obtained from the T cell receptor Factsbook, (2001) LeFranc and LeFranc, Academic Press, ISBN 0-12-441352-8. Alpha -chain forward primers were 25 designed to contain a *Clal* restriction site and the universal alpha chain reverse primer a *SalI* restriction site. Beta-chain forward primers were designed to contain a *AseI* restriction site and universal beta reverse primer an *AgeI* restriction site.

Recipient vectors for the TCR gene fragments were based on a pGMT7 parent plasmid, which contains the T7 promoter for high level expression in E.coli strain BL21-DE3(pLysS) (Pan *et al.*, *Biotechniques* (2000) 29 (6): 1234-8)

Alpha chain purified PCR products were digested with *Clal* and *SalII* and ligated into pEX954 (see figure 9) cut with *Clal* and *XhoI*.

5 Beta chain purified PCR products were digested with *AseI* and *AgeI* and ligated into pEX821 (See Figure 10) cut with *NdeI/AgeI*.

Ligation

The cut PCR product and cut vector were ligated using a rapid DNA ligation kit (Roche) following the manufacturers instructions.

10 Ligated plasmids were transformed into competent E.coli strain XL1-blue cells and plated out on LB/agar plates containing 100mg/ml ampicillin. Following incubation overnight at 37°C, single colonies were picked and grown in 10 ml LB containing 100mg/ml ampicillin overnight at 37°C with shaking. Cloned plasmids were purified 15 using a Miniprep kit (Qiagen) and the insert was sequenced using an automated DNA sequencer (Lark Technologies).

20 Figures 4a and 4b show respectively the DNA sequence of soluble versions of the 1G4 TCR α and β chains mutated to include additional cysteine residues to form a non-native disulphide bond.

Figures 5a and 5b show respectively the NY-ESO TCR α and β chain extracellular amino acid sequences produced from the DNA sequences of Figures 4a and 4b

Example 2- Production of high affinity variants of the soluble disulfide linked 1G4 TCR

5 The soluble disulfide-linked native 1G4 TCR produced as described in Example 1 can be used a template from which to produce the TCRs of the invention which have an increased affinity for the SLLMWITQC (SEQ ID NO: 125) -HLA-A*0201 complex.

10 The amino sequences of the mutated TCR alpha and beta chain variable domains which demonstrate high affinity for the SLLMWITQC-HLA-A*0201 complex are listed in Figures 6 and 7 respectively. (SEQ ID Nos: 11-83 and 84-99 respectively) As is known to those skilled in the art the necessary codon changes required to produce these mutated chains can be introduced into the DNA encoding these chains by site-directed mutagenesis. (QuickChangeTM Site-Directed Mutagenesis Kit from Stratagene)

15 Briefly, this is achieved by using primers that incorporate the desired codon change(s) and the plasmids containing the relevant 1G4 TCR chain as a template for the mutagenesis:

20 Mutagenesis was carried out using the following conditions : 50ng plasmid template, 1 μ l of 10mM dNTP, 5 μ l of 10x Pfu DNA polymerase buffer as supplied by the manufacturer, 25 pmol of fwd primer, 25 pmol of rev primer, 1 μ l pfu DNA polymerase in total volume 50 μ l. After an initial denaturation step of 2 mins at 95C, the reaction was subjected to 25 cycles of denaturation (95C, 10 secs), annealing (55C 10 secs), and elongation (72C, 8 mins). The resulting product was digested with DpnI restriction enzyme to remove the template plasmid and transformed into E. coli strain XL1-blue. Mutagenesis was verified by sequencing.

25 *Example 3 - Production of soluble "zippered" high affinity TCRs*

30 *Alpha chain – c-jun leucine zipper*

The construct was made by PCR stitching.

For the 5'-end of the gene the plasmid coding for the high affinity TCR alpha chains and containing the code for the introduced inter-chain di-sulfide bridge was used as 5 template. PCR with the following two primer pairs generated the desired variable domain.

10 5'-TRAV21 fwd tctctcattaatgaaacaggagggtgacgcagattcct
(SEQ ID NO: 105)
C-alpha rev CGGCAGGGTCAGGGTCTGG
(SEQ ID NO: 106)

15 For the 3'-end of the gene the plasmid pEX202 (see Figure 11), coding for a wild type affinity TCR alpha chain fused to human c-jun leucine zipper domain and not containing the code for the introduced inter-chain di-sulfide bridge, was used as template. PCR with the following primer pair generated the desired constant domain.

20 C-alpha fwd CCAGAACCTGACCCTGCCG
(SEQ ID NO: 107)
3'-alpha rev aagcttccggggaaacttctgggctggg
(SEQ ID NO: 108)

The two products were mixed and diluted 1000 fold and 1 μ l was used as template in a 50 μ l PCR with 5'-TRAV21 fwd and 3'-alpha rev primers.

25 The resulting PCR product was digested using restriction enzymes AseI and XmaI and ligated into pEX202 cut with NdeI and XmaI .

30 PCRs were carried out using the following conditions : 50 pg plasmid template, 1 μ l of 10 mM dNTP, 5 μ l of 10x Pfu DNA polymerase buffer as supplied by the manufacturer, 25 pmol of fwd primer, 25 pmol of rev primer, 1 μ l Pfu DNA polymerase in total volume 50 μ l. After an initial denaturation step of 2 mins at 95C,

the reaction was subjected to 30 cycles of denaturation (95C, 10 secs), annealing (55C 10 secs), and elongation (72C, 2 mins).

Beta chain – c-fos leucine zipper

The construct was made by PCR stitching.

5

For the 5'-end of the gene plasmids coding for the high affinity TCR beta chains and containing the introduced inter-chain di-sulfide bridge were used as template. PCR with the following two primers generated the desired variable domain gene fragment.

10 TRBV6-5 fwd tctctcattaatgaatgctggtgtcactcagacccc

(SEQ ID NO: 109)

C-beta rev CTTCTGATGGCTCAAACACAGC

(SEQ ID NO: 110)

15 For the 3'-end of the gene the plasmid pEX205 (see Figure 12), coding for a wild type affinity TCR beta chain fused to the human c-fos leucine zipper domain and not containing the code for the introduced inter-chain di-sulfide bridge, was used as template. PCR with the following two primers generated the desired constant domain gene fragment.

20 C-beta fwd GCTGTGTTGAGCCATCAGAAG

(SEQ ID NO: 111)

TRBC rev aagctcccggggtctgctctaccccaggc

(SEQ ID NO: 112)

25 The two products were mixed and diluted 1000 fold and 1 µl was used as template in a 50 µl PCR with TRBV6-5 fwd and TRBC rev primers. PCRs were carried out as described above.

The resulting PCR product was digested using restriction enzymes AseI and XmaI and ligated into pEX205 cut with NdeI and XmaI.

30

Example 4 – Expression, refolding and purification of soluble TCR

The expression plasmids containing the mutated α -chain and β -chain respectively as prepared in Examples 1, 2 or 3 were transformed separately into *E.coli* strain BL21pLysS, and single ampicillin-resistant colonies were grown at 37°C in TYP (ampicillin 100 μ g/ml) medium to OD₆₀₀ of 0.4 before inducing protein expression 5 with 0.5mM IPTG. Cells were harvested three hours post-induction by centrifugation for 30 minutes at 4000rpm in a Beckman J-6B. Cell pellets were re-suspended in a buffer containing 50mM Tris-HCl, 25% (w/v) sucrose, 1mM NaEDTA, 0.1% (w/v) NaAzide, 10mM DTT, pH 8.0. After an overnight freeze-thaw step, re-suspended cells were sonicated in 1 minute bursts for a total of around 10 minutes in a Milsonix 10 XL2020 sonicator using a standard 12mm diameter probe. Inclusion body pellets were recovered by centrifugation for 30 minutes at 13000rpm in a Beckman J2-21 15 centrifuge. Three detergent washes were then carried out to remove cell debris and membrane components. Each time the inclusion body pellet was homogenised in a Triton buffer (50mM Tris-HCl, 0.5% Triton-X100, 200mM NaCl, 10mM NaEDTA, 0.1% (w/v) NaAzide, 2mM DTT, pH 8.0) before being pelleted by centrifugation for 15 minutes at 13000rpm in a Beckman J2-21. Detergent and salt was then removed by a similar wash in the following buffer: 50mM Tris-HCl, 1mM NaEDTA, 0.1% (w/v) NaAzide, 2mM DTT, pH 8.0. Finally, the inclusion bodies were divided into 30 mg aliquots and frozen at -70°C. Inclusion body protein yield was quantitated by 20 solubilising with 6M guanidine-HCl and measurement with a Bradford dye-binding assay (PerBio).

Approximately 30mg of TCR β chain and 60mg of TCR α chain solubilised inclusion bodies were thawed from frozen stocks, samples were then mixed and the mixture 25 diluted into 15ml of a guanidine solution (6 M Guanidine-hydrochloride, 10mM Sodium Acetate, 10mM EDTA), to ensure complete chain de-naturation. The guanidine solution containing fully reduced and denatured TCR chains was then injected into 1 litre of the following refolding buffer: 100mM Tris pH 8.5, 400mM L-Arginine, 2mM EDTA, 5mM reduced Glutathione, 0.5mM oxidised Glutathione, 5M 30 urea, 0.2mM PMSF. The redox couple (2-mercaptoethylamine and cystamine (to final concentrations of 6.6mM and 3.7mM, respectively) were added approximately 5

minutes before addition of the denatured TCR chains. The solution was left for 5 hrs ± 15minutes. The refolded TCR was dialysed in Spectrapor 1 membrane (Spectrum; Product No. 132670) against 10 L 10 mM Tris pH 8.1 at 5°C ± 3°C for 18-20 hours. After this time, the dialysis buffer was changed to fresh 10 mM Tris pH 8.1 (10 L) 5 and dialysis was continued at 5°C ± 3°C for another 20-22 hours.

sTCR was separated from degradation products and impurities by loading the dialysed refold onto a POROS 50HQ anion exchange column and eluting bound protein with a gradient of 0-500mM NaCl over 50 column volumes using an Akta purifier 10 (Pharmacia). Peak fractions were stored at 4°C and analysed by Coomassie-stained SDS-PAGE before being pooled and concentrated. Finally, the sTCR was purified and characterised using a Superdex 200HR gel filtration column pre-equilibrated in HBS- 15 EP buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 3.5 mM EDTA, 0.05% nonidet p40). The peak eluting at a relative molecular weight of approximately 50 kDa was pooled and concentrated prior to characterisation by BIACore surface plasmon resonance analysis.

20 *Example 5 – Biacore surface plasmon resonance characterisation of sTCR binding to specific pMHC*

A surface plasmon resonance biosensor (Biacore 3000™) was used to analyse the 25 binding of a sTCR to its peptide-MHC ligand. This was facilitated by producing single pMHC complexes (described below) which were immobilised to a streptavidin-coated binding surface in a semi-oriented fashion, allowing efficient testing of the binding of a soluble T-cell receptor to up to four different pMHC (immobilised on separate flow cells) simultaneously. Manual injection of HLA complex allows the precise level of immobilised class I molecules to be manipulated easily.

30 Biotinylated class I HLA-A*0201 molecules were refolded *in vitro* from bacterially-expressed inclusion bodies containing the constituent subunit proteins and synthetic

peptide, followed by purification and *in vitro* enzymatic biotinylation (O'Callaghan *et al.* (1999) *Anal. Biochem.* **266**: 9-15). HLA-A*0201-heavy chain was expressed with a C-terminal biotinylation tag which replaces the transmembrane and cytoplasmic domains of the protein in an appropriate construct. Inclusion body expression levels 5 of ~75 mg/litre bacterial culture were obtained. The MHC light-chain or β 2-microglobulin was also expressed as inclusion bodies in *E.coli* from an appropriate construct, at a level of ~500 mg/litre bacterial culture.

E. coli cells were lysed and inclusion bodies are purified to approximately 80% purity. 10 Protein from inclusion bodies was denatured in 6 M guanidine-HCl, 50 mM Tris pH 8.1, 100 mM NaCl, 10 mM DTT, 10 mM EDTA, and was refolded at a concentration of 30 mg/litre heavy chain, 30 mg/litre β 2m into 0.4 M L-Arginine-HCl, 100 mM Tris pH 8.1, 3.7 mM cystamine, mM cysteamine, 4 mg/ml of the SLLMWITQC peptide required to be loaded by the HLA-A*0201 molecule, by addition of a single pulse of 15 denatured protein into refold buffer at < 5°C. Refolding was allowed to reach completion at 4°C for at least 1 hour.

Buffer was exchanged by dialysis in 10 volumes of 10 mM Tris pH 8.1. Two changes 20 of buffer were necessary to reduce the ionic strength of the solution sufficiently. The protein solution was then filtered through a 1.5 μ m cellulose acetate filter and loaded onto a POROS 50HQ anion exchange column (8 ml bed volume). Protein was eluted with a linear 0-500 mM NaCl gradient. HLA-A*0201-peptide complex eluted at approximately 250 mM NaCl, and peak fractions were collected, a cocktail of protease 25 inhibitors (Calbiochem) was added and the fractions were chilled on ice.

Biotinylation tagged pMHC molecules were buffer exchanged into 10 mM Tris pH 8.1, 5 mM NaCl using a Pharmacia fast desalting column equilibrated in the same buffer. Immediately upon elution, the protein-containing fractions were chilled on ice and protease inhibitor cocktail (Calbiochem) was added. Biotinylation reagents were 30 then added: 1 mM biotin, 5 mM ATP (buffered to pH 8), 7.5 mM MgCl₂, and 5 μ g/ml BirA enzyme (purified according to O'Callaghan *et al.* (1999) *Anal. Biochem.* **266**: 9-15). The mixture was then allowed to incubate at room temperature overnight.

The biotinylated pHLA-A*0201 molecules were purified using gel filtration chromatography. A Pharmacia Superdex 75 HR 10/30 column was pre-equilibrated with filtered PBS and 1 ml of the biotinylation reaction mixture was loaded and the 5 column was developed with PBS at 0.5 ml/min. Biotinylated pHLA-A*0201 molecules eluted as a single peak at approximately 15 ml. Fractions containing protein were pooled, chilled on ice, and protease inhibitor cocktail was added. Protein concentration was determined using a Coomassie-binding assay (PerBio) and aliquots of biotinylated pHLA-A*0201 molecules were stored frozen at -20°C. Streptavidin 10 was immobilised by standard amine coupling methods.

Such immobilised complexes are capable of binding both T-cell receptors and the coreceptor CD8 $\alpha\alpha$, both of which may be injected in the soluble phase. Specific binding of TCR is obtained even at low concentrations (at least 40 μ g/ml), implying 15 the TCR is relatively stable. The pMHC binding properties of sTCR are observed to be qualitatively and quantitatively similar if sTCR is used either in the soluble or immobilised phase. This is an important control for partial activity of soluble species and also suggests that biotinylated pMHC complexes are biologically as active as non-biotinylated complexes.

20 The interactions between 1G4 sTCR containing a novel inter-chain bond and its ligand/ MHC complex or an irrelevant HLA-peptide combination, the production of which is described above, were analysed on a Biacore 3000TM surface plasmon resonance (SPR) biosensor. SPR measures changes in refractive index expressed in 25 response units (RU) near a sensor surface within a small flow cell, a principle that can be used to detect receptor ligand interactions and to analyse their affinity and kinetic parameters. The probe flow cells were prepared by immobilising the individual HLA-peptide complexes in separate flow cells via binding between the biotin cross linked onto β 2m and streptavidin which have been chemically cross linked to the activated 30 surface of the flow cells. The assay was then performed by passing sTCR over the

surfaces of the different flow cells at a constant flow rate, measuring the SPR response in doing so.

To measure Equilibrium binding constant

5

Serial dilutions of WT 1G4 sTCR were prepared and injected at constant flow rate of 5 $\mu\text{l min}^{-1}$ over two different flow cells; one coated with \sim 1000 RU of specific SLLMWITQC-HLA-A*0201 complex, the second coated with \sim 1000 RU of non-specific HLA-A2 -peptide complex. Response was normalised for each concentration 10 using the measurement from the control cell. Normalised data response was plotted versus concentration of TCR sample and fitted to a hyperbola in order to calculate the equilibrium binding constant, K_D . (Price & Dwek, Principles and Problems in Physical Chemistry for Biochemists (2nd Edition) 1979, Clarendon Press, Oxford).

15 *To measure Kinetic Parameters*

For high affinity TCRs K_D was determined by experimentally measuring the dissociation rate constant, k_d , and the association rate constant, k_a . The equilibrium constant K_D was calculated as k_d/ka .

20 TCR was injected over two different cells one coated with \sim 300 RU of specific HLA-A2-nyeso peptide complex, the second coated with \sim 300 RU of non-specific HLA-A2 -peptide complex. Flow rate was set at 50 $\mu\text{l}/\text{min}$. Typically 250 μl of TCR at \sim 3 μM concentration was injected. Buffer was then flowed over until the response had returned to baseline. Kinetic parameters were calculated using Biaevaluation software. 25 The dissociation phase was also fitted to a single exponential decay equation enabling calculation of half-life.

Results

30 The interaction between a soluble disulfide-linked native 1G4 TCR (consisting of the α and β TCR chains detailed in SEQ ID NOS 9 and 10 respectively) and the SLLMWITQC-HLA-A*0201 complex was analysed using the above methods and demonstrated a K_D of 15 μM and a k_{off} of $1.28 \times 10^{-1} \text{ S}^{-1}$.

The TCRs specified in the following table have a K_D of less than or equal to 1 μM and/or a k_{off} of $1 \times 10^{-3} \text{ S}^{-1}$ or slower.

5

Alpha chain variable domain sequence, SEQ ID NO:	Beta chain variable domain sequence, SEQ ID NO:
1	84
1	85
1	86
1	87
1	88
11	84
12	84
12	85
12	90
11	85
11	86
11	92
11	93
13	86
14	84
14	85
15	84
15	85
16	84
16	85
17	86
18	86
19	84

20	86
21	84
21	85
22	84
23	86
24	84
25	84
26	84
27	84
28	84
29	84
30	84
31	84
32	84
33	84
20	86
34	86
35	89
36	89
37	89
38	89
39	89
16	89
17	89
31	89
40	89
1	90
1	91
41	90
42	2

42	85
42	92
1	92
1	93
43	92
44	92
45	92
46	92
47	92
48	84
49	94
50	84
50	94
51	94
51	95
1	94
1	85
51	84
52	84
52	94
52	95
53	84
49	95
49	94
54	92
55	92
56	92
57	92
58	92
59	92

60	92
61	92
62	92
63	92
64	92
65	92
66	92
67	92
68	92
69	92
70	92
71	92
72	92
73	92
74	92
75	92
76	92
77	92
78	92
79	92
80	92
81	92
82	92
83	92
11	96
11	97
11	98
11	99
1	89
50	117

49	117
50	118
49	119
50	119
58	93
49	118
1	119
1	117
55	120
56	120
50	121
50	120
49	121
49	120
48	118
53	95

Example 6 – In-vitro cell staining using a high affinity c58c61 NY-ESO TCR- IL-2 fusion protein.

5

T2 lymphoblastoid cells were pulsed with the NY-ESO-derived SLLMWITQC, NY-ESO-analogue SLLMWITQV peptide, or an irrelevant peptide at a range of concentrations (10^{-5} – 10^{-10} M) for 180 minutes at 37°C. The NY-ESO-analogue SLLMWITQV peptide (V-variant peptide) was used as this peptide is known to have a higher affinity for the binding cleft of the HLA-A*0201 complex than the native NY-ESO-derived SLLMWITQC peptide. After pulsing, cells were washed in serum-free RPMI and 5×10^5 cells were incubated with high affinity c58c61 NY-ESO TCR- IL-2 fusion protein for 10min at room temperature, followed by secondary anti-IL-2 mAb conjugated with PE (Serotec) for 15min at room temperature. After washing, bound TCR-IL-2 was quantified by flow cytometry using a FACS Vantage SE (Becton

10

15

Dickinson). Controls, also using peptide-pulsed T2 cells were included where TCR-IL-2 was omitted.

5 Figure 14a details the amino acid sequence of the alpha chain of the c58c61 NY-ESO TCR. (SEQ ID NO: 122).

Figure 14c (SEQ ID NO: 124) details the amino acid sequence of the beta chain of the c58c61 NY-ESO TCR using the TRBC2 encoded constant region.

10 Figure 14d (SEQ ID NO: 125) details the amino acid sequence of the beta chain of the c58c61 NY-ESO TCR using the TRBC2 encoded constant region fused via a peptide linker to wild-type human IL-2.

15 The alpha and beta chain variable domain mutations contained within the soluble c58c61 1G4 TCR – IL-2 fusion protein correspond to those detailed in SEQ ID NO: 49 and SEQ ID NO: 94 respectively. Note that SEQ ID NOs: 121 -125 have been provided in a form which includes the N-terminal methionine (M) and the “K” and “NA” residues omitted in the majority of the other TCR alpha chain and beta chain amino acid sequences.

20

In similar experiments SK-MEL-37, ScaBER, J82, HcT119 and Colo 205 cancer cells transfected with a NY-ESO-derived SLLMWITQC peptide expressing ubiquitin minigene construct were used. The cancer cells were transfected using substantially the methods described in (Rimoldi *et al.*, (2000) *J. Immunol.* **165** 7253-7261). Cells 25 were labelled as described above.

Results

Figure 15a shows FACs staining of T2 cell pulsed with a range of NY-ESO-analogue 30 SLLMWITQV peptide concentrations using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.

Figure 15a shows FACs staining of T2 cell pulsed with a range of NY-ESO-analogue SLLMWITQV peptide concentrations using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.

5 Figure 15b shows FACs staining of T2 cell pulsed with a range of NY-ESO-derived SLLMWITQC peptide concentrations using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.

10 Figure 16 shows FACs staining of SK-MEL-37, ScaBER, J82, HcT119 and Colo 205 cancer cells transfected with an SLLMWITQC peptide producing ubiquitin minigene (\pm proteosome inhibitors) using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.

Example 9 – CTL activation ELISPOT assay

15

The following assay was carried out to demonstrate that the soluble high affinity c58c61 NY-ESO TCR was capable of inhibiting activation of an SLLMWITQC-HLA-A*0201 specific CTL clone (1G4). IFN- γ production was used as the read-out for CTL activation.

20

Reagents

25 R10 Assay media: 10% FCS (heat-inactivated, Gibco, cat# 10108-165), 88% RPMI 1640 (Gibco, cat# 42401-018), 1% glutamine (Gibco, cat# 25030-024) and 1% penicillin/streptomycin (Gibco, cat# 15070-063).

Peptide: (obtained from various sources) initially dissolved in DMSO (Sigma, cat# D2650) at 4mg/ml and frozen.

Wash buffer: 0.01M PBS/0.05% Tween 20 (1 sachet of Phosphate buffered saline with Tween 20, pH7.4 from Sigma, Cat. # P-3563 dissolved in 1litre distilled water gives final composition 0.01M PBS, 0.138M NaCl, 0.0027M KCl, 0.05% Tween 20). PBS (Gibco, cat#10010-015).

5

The EliSpot kit contains all other reagents required i.e. capture and detection antibodies, skimmed milk powder, BSA, streptavidin-alkaline phosphatase, BCIP/NBT solution (Human IFN- γ PVDF Eli-spot 20 x 96 wells with plates (IDS cat# DC-856.051.020, DC-856.000.000). The following method is based on the instructions supplied with each kit but contains some alterations.

10

MEL-624 and SK-MEL-37 melanoma cell lines were treated with trypsin for 5 minutes at 37 °C. The cells are then washed and re-suspended in R10 media.

15

50000 target cells were then plated out per well in 50 μ l of R10 media in a 96 well ELISPOT plate (Diaclone).

The following was then added to the above target cell cultures:

20

1 \times 10⁻⁷ M high affinity c58c61 TCR, or an irrelevant TCR, in 50 μ l of R10 media.

600 SLLMWITQC-HLA-A*0201 specific T cells (clone 1G4) in 50 μ l of R10 media.

25

These cultures were then incubated for 24 hours at 37°C, 5%CO₂. The ELISPOT plates were processed according to the manufacturers instructions.

Results

The soluble high affinity c58c61 1G4 TCR strongly inhibited the activation of 1G4 T cell clones against the melanoma cells, as measured by IFN- γ production. Whereas 30 the irrelevant high affinity TCR had no inhibitory effect. (See Figure 17 for MEL-624 cancer cell line results and Figure 18 for SK-MEL-37 cancer cell line results)

Example 10 – CTL activation ELISA assay

5 The following assay was carried out to demonstrate that the soluble high affinity
c58c61 1G4 TCR was capable of inhibiting activation of an SLLMWITQC-HLA-
A*0201 specific CTL clone (1G4). IFN- γ production was used as the read-out for CTL
activation.

Reagents

10 R10 Assay media: 10% FCS (heat-inactivated, Gibco, cat# 10108-165), 88% RPMI
1640 (Gibco, cat# 42401-018), 1% glutamine (Gibco, cat# 25030-024) and 1%
penicillin/streptomycin (Gibco, cat# 15070-063).

15 Peptide: (obtained from various sources) initially dissolved in DMSO (Sigma, cat#
D2650) at 4mg/ml and frozen.

20 Wash buffer: 0.01M PBS/0.05% Tween 20 (1 sachet of Phosphate buffered saline with
Tween 20, pH7.4 from Sigma, Cat. # P-3563 dissolved in 1litre distilled water gives
final composition 0.01M PBS, 0.138M NaCl, 0.0027M KCl, 0.05% Tween 20).
PBS (Gibco, cat#10010-015).

25 The ELISA kit contains all other reagents except BSA (Sigma). required i.e. capture
and detection antibodies, skimmed milk powder, streptavidin-HRP, TMB solution
(Human IFN- γ Eli-pair 20 x 96 wells with plates. The following method is based
substantially on the instructions supplied with each kit.

Method

30 ELISA plates were prepared according to the manufacturers instructions. (Diaclone
kit, Immunodiagnostic systems, UK

T2 cell line target cells were washed and re-suspended in R10 media with or without varying concentrations (100nM – 10pM) of SLLMWITQC peptide, then incubated for 1 hour at 37°C, 5%CO₂.

5

10,000 target cells per well were then plated out into a 96 well ELISA plate.

To these plates the following was added to the relevant well:

10 1 x 10⁻⁶ M to 3 x 10⁻¹² M of the high affinity c58c61 1G4 TCR or wild-type 1G4 TCR in 50 µl of R10 media.

5000 1G4 effector cells in 50 µl of R10 media.

15 The plates were then incubated for 48 hours at 37°C, 5% CO₂. The ELISA was then processed according to manufacturer's instructions.

Results

20 The soluble high affinity c58c61 1G4 TCR strongly inhibited the activation of 1G4 T cell clones against the peptide-pulsed target cells, as measured by IFN-γ production. Whereas the wild-type 1G4 TCR had no inhibitory effect. (See Figure 19 for the high affinity c58c61 1G4 TCR and Figure 20 for the wild-type 1G4 TCR)

25 *Example 11 – In-vivo tumour targeting using a high affinity c58c61 1G4 TCR-IL-2 fusion protein*

This work was carried out to investigate the ability of a high affinity c58c61 1G4 TCR-IL-2 fusion protein described in Example 6, to inhibit growth of human tumor cells engrafted in nude mice.

30 Fifty female nude mice (HARLAN, France) were used in this trial.

All animals were injected subcutaneously with the human melanoma tumour-forming cell line (SK-MEL-37) which had been stably transfected with a NY-ESO peptide/ubiquitin minigene construct to ensure enhanced expression of the appropriate class I-peptide target at the cell surface. Tumors were allowed to grow in the animals 5 for 5 days to allow tumour development prior to commencement of treatment.

The rats then received the following i.v. bolus dosage of c58c61 high affinity NY-ESO TCR/IL-2 fusion protein:

Doses ranged between 0.02 and 1.0 mg/kg high affinity 1G4 TCR/IL-2 fusion proteins in PBS, administered at 5, 6, 7, 8, 11, 13, 17, 20, 24, 28, and 30 day post-tumor 10 engraftment. In all experiments, a control treatment group was included where PBS alone was substituted for the TCR/IL-2 immunoconjugate.

Tumor size was then measured using callipers and tumor volume determined according to the following formula $(W^2 \times L)/2$, where W=the smallest diameter of the tumor, and L= is the longest diameter.

15 *Results*

The therapeutic effect of the TCR/IL-2 immunoconjugates in terms of tumor growth inhibition is shown in Figure 21.

Conclusions

20 The TCR/IL-2 immunoconjugate exhibited a clear dose-dependent anti-tumor effect as shown by the tumour growth curves depicted in Figure 21.

Example 12 - Quantification of cell surface TCR ligands by fluorescence microscopy using high affinity c58c61 1G4 TCR

25 The number of SLLMWITQC-HLA-A*0201 antigens on cancer cells (Mel 526, Mel 624 and SK-Mel-37 cell lines) was determined (on the assumption that one fluorescence signal relates to a single labelled TCR bound to its cognate pMHC ligand on the surface of the target cell) by single molecule fluorescence microscopy using the

high-affinity c58c61 1G4 TCR. This was facilitated by using biotinylated TCR to target the antigen-expressing cancer cells and subsequent labelling of cell-bound TCR by streptavidin-R phycoerythrin (PE) conjugates. Individual PE molecules were then imaged by 3-dimensional fluorescence microscopy.

5

10 *Staining of adherent cells.* The cancer cells were plated into chamber well slides and allowed to adhere overnight in incubator. (37°C, 5% CO₂) Media was removed and replaced with fresh R10. Media was removed, and cells washed twice with 500 µl of PBS supplemented with 400 µM MgCl₂ (PBS/Mg). Cells were incubated in 200 µl of TCR solution (5 µg ml⁻¹ high affinity c58c61 1G4 TCR, or 5 µg ml⁻¹ of an “irrelevant” HLA-A2-tax peptide-specific high affinity TCR, in PBS/Mg containing 0.5% BSA albumin) for 30 min at 4°C. TCR solution was removed, and cells were washed three times with 500 µl of PBS/Mg. Cells were incubated in 200 µl of streptavidin-PE solution (5 µg ml⁻¹ streptavidin-PE in PBS/Mg containing 0.5% BSA) at room 15 temperature in the dark for 20 min. Streptavidin-PE solution was removed and cells were washed five times with 500 µl of PBS/Mg. Wash media was removed, and cells kept in 400 µl of imaging media before imaging by fluorescence microscopy.

20 *Fluorescence microscopy.* Fluorescent microscopy was carried out using an Axiovert 200M (Zeiss) microscope with a 63x Oil objective (Zeiss). A Lambda LS light source containing a 300W Xenon Arc lamp (Sutter) was used for illumination, and light intensity was reduced to optimal levels by placing a 0.3 and a 0.6 neutral density filter into the light path. Excitation and emission spectra were separated using a TRITC/DiI filter set (Chroma). Cells were imaged in three dimensions by z-stack acquisition (21 25 planes, 1 µm apart). Image acquisition and analysis was performed using Metamorph software (Universal Imaging) as described (Irvine *et al.*, Nature (419), p845-9, and Purhoo *et al.*, Nature Immunology (5), p524-30.).

30

Results

As demonstrated by Figure 22 the above method was used successfully to image high affinity 1G4 TCR bound to SLLMWITQC-HLA-A*0201 antigens on the surface of Mel 526, Mel 624 and SK-Mel-37 cancer cells.

Claims

1. A T-cell receptor (TCR) having the property of binding to SLLMWITQC-HLA-A*0201 and comprising at least one TCR α chain variable domain and/or at least one TCR β chain variable domain CHARACTERISED IN THAT said TCR has a K_D for the said SLLMWITQC-HLA-A*0201 complex of less than or equal to $1\mu\text{M}$ and/or has an off-rate (k_{off}) for the SLLMWITQC-HLA-A*0201 complex of $1\times 10^{-3} \text{ S}^{-1}$ or slower.
- 10 2. A TCR as claimed in claim 1 comprising both an α chain variable domain and an TCR β chain variable domain.
3. A TCR as claimed in claim 1 which is an $\alpha\alpha$ or $\beta\beta$ homodimer.
- 15 4. A T-cell receptor (TCR) as claimed in any of the preceding claims wherein the said K_D and/or k_{off} is/are as measured by Surface Plasmon Resonance.
- 20 5. A TCR as claimed in any of the preceding claims which is mutated relative to the native 1G4 TCR α chain variable domain (SEQ ID No: 1) and/or β chain variable domain (SEQ ID NO: 2) in at least one complementarity determining region.
- 25 6. A TCR as claimed in any of the preceding claims which is mutated relative to the native 1G4 TCR α chain variable domain (SEQ ID No: 1) and/or β chain variable domain (SEQ ID NO: 2) in at least one variable domain framework region thereof.
- 30 7. A TCR as claimed in any of the preceding claims wherein one or more of alpha chain variable domain amino acids 20V, 51Q, 52S, 53S, 94P, 95T, 96S, 97G, 98G, 99S, 100Y, 101I and 103T using the numbering shown in SEQ ID NO: 1 are mutated.

8. A TCR as claimed in any of the preceding claims wherein one or more of beta chain variable domain amino acids 18M, 50G, 51A, 52G, 53I, 55D, 56Q, 70T, 94Y, 95V and 97N using the numbering shown in SEQ ID NO: 2 are mutated.

5 9. A TCR as claimed in any of claims 1 to 6 comprising one or more of alpha chain variable domain amino acids 20A, 51P, 51S, 51T, 51M, 52P, 52F, 52G, 53W, 53H, 53T, 94H, 94A, 95L, 95M, 95A, 95Q, 95Y, 95E, 95I, 95F, 95V, 95N, 95G, 95S, 95R, 95D, 96L, 96T, 96Y, 96I, 96Q, 96V, 96E, 96X, 96A, 96W, 96R, 96G, 96H, 96K, 96D, 97D, 97N, 97V, 97S, 97A, 97T, 98P, 98H, 98S, 98T, 98W, 98A, 99T, 99Y, 99D, 10 99H, 99V, 99N, 99E, 99G, 99Q, 99K, 99A, 99I, 99R, 100F, 100M, 100D, 101P, 101T, 101M or 103A using the numbering shown in SEQ ID NO: 1.

15 10. A TCR as claimed in any of claims 1 to 6 or 9 comprising one or more of beta chain variable domain amino acids 18V, 50S, 50A, 51V, 51I, 52Q, 53T, 53M, 55R, 56R, 70I, 94N or 94F, 95L, 97G or 97D using the numbering shown in SEQ ID NO: 2.

11. A TCR as claimed in any of claims 1 to 6 comprising one of the alpha chain variable domain amino acid sequences shown in (SEQ ID Nos: 11 to 83), optionally comprising one or more phenotypically silent substitutions.

20 12. A TCR as claimed in any of claims 1 to 6 or 11 comprising one of the beta chain variable domain amino acid sequences shown in (SEQ ID Nos: 84 to 99, or 117 to 121), optionally comprising one or more phenotypically silent substitutions.

25 13. A TCR as claimed in claim 2 comprising the alpha and beta chain variable domain pairings shown in the following table, optionally comprising one or more phenotypically silent substitutions:

Alpha chain variable domain sequence, SEQ ID NO:	Beta chain variable domain sequence, SEQ ID NO:
1	84
1	85
1	86
1	87
1	88
11	84
12	84
12	85
12	90
11	85
11	86
11	92
11	93
13	86
14	84
14	85
15	84
15	85
16	84
16	85
17	86
18	86
19	84
20	86
21	84
21	85
22	84
23	86

24	84
25	84
26	84
27	84
28	84
29	84
30	84
31	84
32	84
33	84
20	86
34	86
35	89
36	89
37	89
38	89
39	89
16	89
17	89
31	89
40	89
1	90
1	91
41	90
42	2
42	85
42	92
1	92
1	93
43	92

44	92
45	92
46	92
47	92
48	84
49	94
50	84
50	94
51	94
51	95
1	94
1	85
51	84
52	84
52	94
52	95
53	84
49	95
49	94
54	92
55	92
56	92
57	92
58	92
59	92
60	92
61	92
62	92
63	92
64	92

65	92
66	92
67	92
68	92
69	92
70	92
71	92
72	92
73	92
74	92
75	92
76	92
77	92
78	92
79	92
80	92
81	92
82	92
83	92
11	96
11	97
11	98
11	99
1	89
50	117
49	117
50	118
49	119
50	119
58	93

49	118
1	119
1	117
55	120
56	120
50	121
50	120
49	121
49	120
48	118
53	95

14. A TCR as claimed in claim 2 comprising the alpha chain variable domain
5 shown in the SEQ ID NO: 49 and the beta chain variable domain shown in the SEQ ID NO: 94, optionally comprising one or more phenotypically silent substitutions.

15. A TCR as claimed in any preceding claim further comprising the alpha chain constant region amino acid sequence shown in SEQ ID NO: 100, and/or one of the
10 beta chain amino acid constant region sequences shown in SEQ ID NOs: 101 and 102, optionally comprising one or more phenotypically silent substitutions..

16. A TCR as claimed in any preceding claim which is a dimeric T cell receptor (dTCR) or a single chain T cell receptor (scTCR).

15 17. A TCR as claimed in of claims 4 to 16 which is an scTCR comprising a first segment constituted by an amino acid sequence corresponding to a TCR α chain variable domain

a second segment constituted by an amino acid sequence corresponding to a TCR β chain variable domain sequence fused to the N terminus of an amino acid sequence corresponding to a TCR β chain constant domain extracellular sequence, and

5

a linker sequence linking the C terminus of the first segment to the N terminus of the second segment.

18. A TCR as claimed in any of claims 4 to 16 which is an scTCR comprising
10 a first segment constituted by an amino acid sequence corresponding to a TCR β chain
variable domain

15 a second segment constituted by an amino acid sequence corresponding to a TCR α chain variable domain sequence fused to the N terminus of an amino acid sequence corresponding to a TCR α chain constant domain extracellular sequence, and

20 a linker sequence linking the C terminus of the first segment to the N terminus of the second segment.

20

19. A TCR as claimed in claim 17 or 18 further comprising a disulfide bond
25 between bond between the first and second chains, said disulfide bond being one
which has no equivalent in native $\alpha\beta$ T cell receptors, and wherein the length of the
linker sequence and the position of the disulfide bond being such that the variable
domain sequences of the first and second segments are mutually orientated
substantially as in native $\alpha\beta$ T cell receptors.

20. An scTCR as claimed in any of claims 17 to 19 wherein in the binding part the
linker sequence links the C terminus of the first segment to the N terminus of the
30 second segment.

21. A scTCR as claimed in any of claims 17 to 20 wherein in the binding part the linker sequence has the formula -PGGG-(SGGGG)₅-P- (SEQ ID NO: 103) or -PGGG-(SGGGG)₆-P- (SEQ ID NO: 104) wherein P is proline, G is glycine and S is serine.

5

22. A TCR as claimed in any of claims 1, 2 or 4 to 16 which is a dTCR comprising a first polypeptide wherein a sequence corresponding to a TCR α chain variable domain sequence is fused to the N terminus of a sequence corresponding to a TCR α chain constant domain extracellular sequence, and

10

a second polypeptide wherein a sequence corresponding to a TCR β chain variable domain sequence fused to the N terminus a sequence corresponding to a TCR β chain constant domain extracellular sequence,

15

the first and second polypeptides being linked by a disulfide bond which has no equivalent in native $\alpha\beta$ T cell receptors.

20

23. A TCR as claimed in claim 22 wherein the disulfide bond links amino acid residues of the said constant domain sequences, which disulfide bond has no equivalent in native TCRs.

24. A TCR as claimed in claim 23 wherein the said disulfide bond is between cysteine residues corresponding to amino acid residues whose β carbon atoms are less than 0.6 nm apart in native TCRs.

25

25. A TCR as claimed in claim 23 wherein the said disulfide bond is between cysteine residues substituted for Thr 48 of exon 1 of TRAC*01 and Ser 57 of exon 1 of TRBC1*01 or TRBC2*01 or the non-human equivalent thereof.

26. A TCR as claimed in any of claims 16 to 25 wherein the dTCR or scTCR binding part includes a disulfide bond between residues corresponding to those linked by a disulfide bond in native TCRs.

5 27. A TCR as claimed in any of claims 14 to 24 wherein the dTCR or scTCR binding part does not contain a sequence corresponding to transmembrane or cytoplasmic sequences of native TCRs.

10 28. A soluble TCR consisting of the alpha chain amino acid sequence of SEQ ID NO: 122 and beta chain amino acid sequence SEQ ID NO: 123.

29. A soluble TCR consisting of the alpha chain amino acid sequence of SEQ ID NO: 122 and beta chain amino acid sequence SEQ ID NO: 124.

15 30. A TCR as claimed in any preceding claim wherein the TCR is associated with at least one polyalkylene glycol chain(s).

31. A TCR as claimed in claim 30 wherein the polyalkylene glycol chain(s) is/are covalently linked to the TCR.

20 32. A TCR as claimed in claim 30 or claim 31 wherein the polyalkylene glycol chain(s) comprise(s) at least two polyethylene glycol repeating units.

33. A TCR as claimed in any preceding claim further comprising a reactive cysteine at the C terminal or N-terminal of the alpha or beta chains thereof.

25 34. A TCR as claimed in any preceding claim associated with a therapeutic agent or detectable moiety.

30 35. A TCR as claimed in claim 34 wherein the TCR is covalently linked to a therapeutic agent or detectable moiety.

36. A TCR as claimed in claim 34 wherein the therapeutic agent or detectable moiety is covalently linked to the C terminus of one or both TCR chains.

5 37. A TCR as claimed in any of claims 34 to 36 associated with a therapeutic agent which is an immune effector molecule.

38. A TCR as claimed in claim 37 wherein the immune effector molecule is a cytokine.

10 39. A TCR as claimed in claim 37 wherein the immune effector molecule is IL-2, or a functional variant or fragment thereof.

40. A TCR as claimed in any of claims 34 to 36 wherein the therapeutic agent is a cytotoxic agent.

15 41. A TCR as claimed in any of claims 34 to 36 wherein the therapeutic agent is a radionuclide.

20 42. A multivalent TCR complex comprising at least two TCRs as claimed in any of the preceding claims.

25 43. A multivalent TCR complex comprising at least two TCRs as claimed in any of the preceding claims linked by a non-peptidic polymer chain or a peptidic linker sequence.

44. A TCR complex as claimed in claim 43 wherein the polymer chain or peptidic linker sequence extends between amino acid residues of each TCR which are not located in a variable region sequence of the TCR.

30

45. A TCR complex as claimed in either of claims 43 or 44 in which the TCRs are linked by a polyalkylene glycol chain or a peptidic linker derived from a human multimerisation domain.

5 46. A TCR complex as claimed in claim 45 wherein a divalent alkylene spacer radical is located between the polyalkylene glycol chain and its point of attachment to a TCR of the complex.

10 47. A TCR complex as claimed in claim 43 or claim 44 wherein the polyalkylene glycol chain comprises at least two polyethylene glycol repeating units.

48. A multivalent TCR complex comprising at least two TCRs as claimed in any of claims 1 to 33 wherein (i) at least one of said TCRs is associated with a therapeutic agent as claimed in any of claims 31 to 38.

15 49. An isolated cell presenting a TCR as defined in any of claims 1 to 26.

50. A pharmaceutical composition comprising a TCR or a multivalent TCR complex as claimed in any of claims 1 to 48, or a plurality of cells as claimed in claim 20 49, together with a pharmaceutically acceptable carrier.

51 A method of treatment of cancer comprising administering to a subject suffering such cancer an effective amount of a TCR or a multivalent TCR complex as claimed in any of claims 1 to 48, or a plurality of cells as claimed in claim 49.

25 52 The use of a TCR or a multivalent TCR complex as claimed in any of claims 1 to 48, or a plurality of cells as claimed in claim 49 in the preparation of a composition for the treatment of cancer.

30 53. A method of producing a high affinity TCR having the property of binding to SLLMWITQC-HLA-A*0201 CHARACTERISED IN THAT the TCR (i) comprises at

least one TCR α chain variable domain and/or at least one TCR β chain variable domain and (ii) has a K_D for the said SLLMWITQC-HLA-A*0201 complex of less than 1 μ M and/or an off-rate (k_{off}) for the SLLMWITQC-HLA-A*0201 complex of less than 1×10^{-3} said method comprising:

5

- (a) the production of a TCR comprising the α and β chain variable domains of the 1G4 TCR wherein one or both of the α and β chain variable domains comprise a mutation(s) in one or more of the amino acids identified in claims 7 and 8;
- 10 (b) contacting said mutated TCR with SLLMWITQC-HLA-A*0201 under conditions suitable to allow the binding of the TCR to SLLMWITQC-HLA-A*0201;

And measuring the K_D and/or k_{off} of the interaction.

1 of 41

Figure 1a

10 20
* *
M Q E V T Q I P A A L S V P E G E N L V L N C S F T D S A

30 40 50
* * *
I Y N L Q W F R Q D P G K G L T S L L L I Q S S Q R E Q T

60 70 80
* * *
S G R L N A S L D K S S G R S T L Y I A A S Q P G D S A T

90 100 110
* * *
Y L C A V R P T S G G S Y I P T F G R G T S L I V H P Y
(SEQ ID No: 1)

2 of 41

Figure 1b

10		20
*		*
M G V T Q T P K F Q V L K T G Q S M T L Q C A Q D M N H E		
30	40	50
*	*	*
Y M S W Y R Q D P G M G L R L I H Y S V G A G I T D Q G E		
60	70	80
*	*	*
V P N G Y N V S R S T T E D F P L R L L S A A P S Q T S V		
90	100	110
*	*	*
Y F C A S S Y V G N T G E L F F G E G S R L T V L		
(SEQ ID No: 2)		

3 of 41

Figure 2a

atgcaggaggtgacacagattcctgcagctctgaggtgtccagaaggagaaaacttggttctcaactgcagttactgatag
cgctatttacaacccctccagtggtttaggcaggaccctggaaaggctcacatctgttgcatttcgtcaagtcaagagaga
gcaaaacaagtggaaagacttaatgcctcgctggataatcatcaggacgtacttatacattgcagcttcagcctgggtga
ctcagccacctacctctgtgtgaggcccacatcaggaggaagctacatacatttggaaagaggaaccagcatttatt
gttcatccgtatccagaaccctgaccctgcgttaccagctgagagactctaaatccagtgacaagtctgtgccttattc
accgattttgttctcaaacaatgtgtcacaaggtaaggattctgtatcacaagacaaaactgtgctagacatgaggt
ctatggactcaagagcaacagtgtggctggagcaacaaatctgacttgcattgtgcaaaacgcctcaacaacagcatt
attccagaagacacccttccccagcccagaaagttctaa

(SEQ ID No: 3)

Figure 2b

atgggtgtactcagacccaaaattccaggcctgaagacaggacagacatgcagtgtgccaggatataac
catgaatacatgtcctggatcgacaagacccaggcatggggctgaggctgattcattactcagttggctgtgtatcactga
ccaaggagaagtccccatggctacaatgtctccagatcaaccacagaggattccgcgtcaggctgtcggctgtcc
tcccgacatctgtgtactctgtgcgcaggcgtacgtcgggaacaccggggagctgttttggagaaggcttaggctgac
cgtactggaggacctgaaaaacgtgttccacccgaggctcgctgtttgagccatcagaaggcagagatctccacaccca
aaaggccacactgggtgcctggccacaggcttctaccccgaccacgtggagctgagctgggtgaatgggaaggag
gtgcacagtgggtcagcacagacccgcagccctcaaggagcagccgcctcaatgactccagatacgctgagca
gccgcctgagggctcggccaccttctggcaggaccccgcaaccactccgcgtcaagtccagttctacggctcgg
agaatgacgagtggaccaggatagggccaaacccgtcaccagatcgtcagcggcaggcctgggttagagcagact
aa

(SEQ ID No: 4)

4 of 41

Figure 3a

M Q E V T Q I P A A L S V P E G E N L V L N C S F T D S A I Y N L Q W
F R Q D P G K G L T S L L I Q S S Q R E Q T S G R L N A S L D K S S
G R S T L Y I A A S Q P G D S A T Y L C A V R P T S G G S Y I P T F G
R G T S L I V H P Y I Q N P D P A V Y Q L R D S K S S D K S V C L F T
D F D S Q T N V S Q S K D S D V Y I T D K T V L D M R S M D F K S N S
A V A W S N K S D F A C A N A F N N S I I P E D T F F P S P E S S

(SEQ ID No: 5)

Figure 3b

M G V T Q T P K F Q V L K T G Q S M T L Q C A Q D M N H E Y M S W Y R
Q D P G M G L R L I H Y S V G A G I T D Q G E V P N G Y N V S R S T T
E D F P L R L L S A A P S Q T S V Y F C A S S Y V G N T G E L F F G E
G S R L T V L E D L K N V F P P E V A V F E P S E A E I S H T Q K A T
L V C L A T G F Y P D H V E L S W W V N G K E V H S G V S T D P Q P L
K E Q P A L N D S R Y A L S S R L R V S A T F W Q D P R N H F R C Q V
Q F Y G L S E N D E W T Q D R A K P V T Q I V S A E A W G R A D

(SEQ ID No: 6)

Figure 4a

atgcaggagggtgacacagattcctgcagctctgagtgcccagaaggagaaaactggttcaactgcagttcactgatag
cgctattacaacctccagtggtaggcaggaccctggaaaggctcacatctgttgcattcagtcaagtcaagcagagaga
gcaaacaagtggaaagacttaatgcctcgctggataaatcatcaggacgtacttatacattgcagcttcagcctggta
ctcagccaccctacctctgtgtgaggcccacatcaggaggaagctacatacctacatttgcagggagaccgcatttatt
gttcatccgtatccagaaccctgaccctgcccgttaccagctgagagactctaaatccagtgacaagtctgtgcctattc
accgatttgattctcaaacaatgtgtcacaaggtaaggattctgtatcacagacaatgtgtgcatacatgaggt
ctatggacttcaagagcaacagtgtggctggagcaacaaatctgacttgcatttgcacaaacgcctcaacaacagcatt
attccagaagacaccccttccccagcccagaaagttcctaa
(SEQ ID No: 7)

Figure 4b

atgggtgtcactcagacccaaaattccaggcctgaagacaggacagagcatgacactgcagtgcccaggatataac
catgaatacatgtcctggatcgacaagacccaggcatgggctgaggctgattcattactcagttggctggatactga
ccaaggagaagtcccaatggctacaatgtctccagatcaaccacagaggattcccgctcaggctgtcgctgcctcc
tcccgacatctgtgtacttctgtgccagcagttacgtcggaaacaccggggagctgttttgagaaggcttaggctgac
cgtactggaggaccgtaaaaacgtgttccacccgaggctgctgtgttgcacatcagaagcagagatctccacacccca
aaaggccacactgggtgcctggccacaggcttaccccgaccacgtggagctgagctggggtaatgggaggag
gtgcacagtgggtctgcacagacccgcagccctcaaggagcagccgcctcaatgactccagatacgctctgagca
gccgcctgagggtctggccacccctggcaggaccccaaccactccgctgtcaagtccagttctacggctcgg
agaatgacgagtggaccaggataggccaaacccgtcaccagatcgtcagcggcggcctgggttagagcagact
aa
(SEQ ID No: 8)

6 of 41

Figure 5a

M Q E V T Q I P A A L S V P E G E N L V L N C S F T D S A I Y N L Q W
F R Q D P G K G L T S L L I Q S S Q R E Q T S G R L N A S L D K S S
G R S T L Y I A A S Q P G D S A T Y L C A V R P T S G G S Y I P T F G
R G T S L I V H P Y I Q N P D P A V Y Q L R D S K S S D K S V C L F T
D F D S Q T N V S Q S K D S D V Y I T D K G V L D M R S M D F K S N S
A V A W S N K S D F A C A N A F N N S I I P E D T F F P S P E S S
(SEQ ID No: 9)

Figure 5b

M G V T Q T P K F Q V L K T G Q S M T L Q C A Q D M N H E Y M S W Y R
Q D P G M G L R L I H Y S V G A G I T D Q G E V P N G Y N V S R S T T
E D F P L R L L S A A P S Q T S V Y F C A S S Y V G N T G E L F F G E
G S R L T V L E D L K N V F P P E V A V F E P S E A E I S H T Q K A T
L V C L A T G F Y P D H V E L S W W V N G K E V H S G V G T D P Q P L
K E Q P A L N D S R Y A L S S R L R V S A T F W Q D P R N H F R C Q V
Q F Y G L S E N D E W T Q D R A K P V T Q I V S A E A W G R A D
(SEQ ID No: 10)

Figure 6

MQEV~~T~~QIPAALSVP~~E~~GENLV~~N~~CSFTDSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC~~AVRPL~~LDGT~~Y~~IP~~T~~FGRGTS~~L~~I~~V~~H~~P~~Y
(SEQ ID No: 11)

MQEV~~T~~QIPAALSVP~~E~~GENLV~~N~~CSFTDSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC~~AVR~~RHTSNGYFP~~T~~FGRGTS~~L~~I~~V~~H~~P~~Y
(SEQ ID No: 12)

MQEV~~T~~QIPAALSVP~~E~~GENLV~~N~~CSFTDSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC~~AVR~~PMTGGT~~Y~~IP~~T~~FGRGTS~~L~~I~~V~~H~~P~~Y
(SEQ ID No: 13)

MQEV~~T~~QIPAALSVP~~E~~GENLV~~N~~CSFTDSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC~~AVR~~PLYGGT~~Y~~IP~~T~~FGRGTS~~L~~I~~V~~H~~P~~Y
(SEQ ID No: 14)

MQEV~~T~~QIPAALSVP~~E~~GENLV~~N~~CSFTDSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC~~AVR~~PMIGGT~~Y~~IP~~T~~FGRGTS~~L~~I~~V~~H~~P~~Y
(SEQ ID No: 15)

8 of 41

MQEV TQIPAALS VPEGENLV LNCSFTDSAIYNLQWFRQ
DPGKGLTSLLI QSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC A VRPLTGGTYIPTFGRGTS LIVHPY
(SEQ ID No: 16)

MQEV TQIPAALS VPEGENLV LNCSFTDSAIYNLQWFRQ
DPGKGLTSLLI QSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC A VRPLTGGSYIPTFGRGTS LIVHPY
(SEQ ID No: 17)

MQEV TQIPAALS VPEGENLV LNCSFTDSAIYNLQWFRQ
DPGKGLTSLLI QSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC A VRPATGGTYIPTFGRGTS LIVHPY
(SEQ ID No: 18)

MQEV TQIPAALS VPEGENLV LNCSFTDSAIYNLQWFRQ
DPGKGLTSLLI QSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC A VRPQTVPTYIPTFGRGTS LIVHPY
(SEQ ID No: 19)

MQEV TQIPAALS VPEGENLV LNCSFTDSAIYNLQWFRQ
DPGKGLTSLLI QSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC A VRPMSGGTYIPTFGRGTS LIVHPY
(SEQ ID No: 20)

MQEV TQIPAALS VPEGENLV LNCSFTDSAIYNLQWFRQ
DPGKGLTSLLI QSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC A VRPYQSGHYMP TFGRGTS LIVHPY
(SEQ ID No: 21)

9 of 41

MQEVTQIPAALSVPEGENVLNCFTDSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPTSGGDDYTPTFGRGTSLIVHPY
(SEQ ID No: 22)

MQEVTQIPAALSVPEGENVLNCFTDSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPMLLGGTYIPTFGRGTSLIVHPY
(SEQ ID No: 23)

MQEVTQIPAALSVPEGENVLNCFTDSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPLQDGTYIPTFGRGTSLIVHPY
(SEQ ID No: 24)

MQEVTQIPAALSVPEGENVLNCFTDSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPMTDSTYIPTFGRGTSLIVHPY
(SEQ ID No: 25)

MQEVTQIPAALSVPEGENVLNCFTDSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPLVDPTYIPTFGRGTSLIVHPY
(SEQ ID No: 26)

MQEVTQIPAALSVPEGENVLNCFTDSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPEVDATYIPTFGRGTSLIVHPY
(SEQ ID No: 27)

10 of 41

MQEVTQIPAALSVP EGENLV LNC SFT DSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC A VRP LEDSTYIPTFGRGTSLIVHPY
(SEQ ID No: 28)

MQEVTQIPAALSVP EGENLV LNC SFT DSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC A VRP LVGGYIPTFGRGTSLIVHPY
(SEQ ID No: 29)

MQEVTQIPAALSVP EGENLV LNC SFT DSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC A VRP TS GGN YIPTFGRGTSLIVHPY
(SEQ ID No: 30)

MQEVTQIPAALSVP EGENLV LNC SFT DSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC A VRP TGGSYIPTFGRGTSLIVHPY
(SEQ ID No: 31)

MQEVTQIPAALSVP EGENLV LNC SFT DSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC A VRP ISGGSYIPTFGRGTSLIVHPY
(SEQ ID No: 32)

MQEVTQIPAALSVP EGENLV LNC SFT DSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC A VRP MSGGSYIPTFGRGTSLIVHPY
(SEQ ID No: 33)

11 of 41

MQEVTQIPAALSVPEGENVLNCFTDSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPMTGGSYIPTFGRGTSLIVHPY
(SEQ ID No: 34)

MQEVTQIPAALSVPEGENVLNCFTDSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPISGGSYIPTFGRGTSLIVHPY
(SEQ ID No: 35)

MQEVTQIPAALSVPEGENVLNCFTDSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPTSGGTYIPTFGRGTSLIVHPY
(SEQ ID No: 36)

MQEVTQIPAALSVPEGENVLNCFTDSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPTAGGSYIAFGRGTSLIVHPY
(SEQ ID No: 37)

MQEVTQIPAALSVPEGENVLNCFTDSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPAGGSYIPTFGRGTSLIVHPY
(SEQ ID No: 38)

MQEVTQIPAALSVPEGENVLNCFTDSAIYNLQWFRQ
DPGKGLTSLLIQSSQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPAGGSYIPTFGRGTSLIVHPY
(SEQ ID No: 39)

12 of 41

MQEV TQIPA AALSV PEGENLV LNC SFTD SAIY NLQ WFR Q
DPG KGLT SLLL IQSS QREQ TSGRLN ASLDKSS GRST LYI
AAS QPGD SATYLCA VRPT -Q YT QVPT FGRG TSLIV HPY
(SEQ ID No: 40)

MQEV TQIPA AALSV PEGENLA LNC SFTD SAIY NLQ WFR Q
DPG KGLT SLLL IQPS QREQ TSGRLN ASLDKSS GRST LYI
AAS QPGD SATYLCA VRPT SGGS YIPT FGRG TSLIV HPY
(SEQ ID No: 41)

MQEV TQIPA AALSV PEGENLV LNC SFTD SAIY NLQ WFR Q
DPG KGLT SLLL IPFW QREQ TSGRLN ASLDKSS GRST LYI
AAS QPGD SATYLCA VRPT SGGS YIPT FGRG TSLIV HPY
(SEQ ID No: 42)

MQEV TQIPA AALSV PEGENLV LNC SFTD SAIY NLQ WFR Q
DPG KGLT SLLL ISPW QREQ TSGRLN ASLDKSS GRST LYI
AAS QPGD SATYLCA VRPT SGGS YIPT FGRG TSLIV HPY
(SEQ ID No: 43)

MQEV TQIPA AALSV PEGENLV LNC SFTD SAIY NLQ WFR Q
DPG KGLT SLLL ITPW QREQ TSGRLN ASLDKSS GRST LYI
AAS QPGD SATYLCA VRPT SGGS YIPT FGRG TSLIV HPY
(SEQ ID No: 44)

MQEV TQIPA AALSV PEGENLV LNC SFTD SAIY NLQ WFR Q
DPG KGLT SLLL IQGW QREQ TSGRLN ASLDKSS GRST LYI
AAS QPGD SATYLCA VRPT SGGS YIPT FGRG TSLIV HPY
(SEQ ID No: 45)

13 of 41

MQEV TQIPA AALSVPEGENLVLNCSFTDSAIYNLQWFRQ
DPGKGLTSLLIMGHQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPTSGGSYIPTFGRGTSLIVHPY
(SEQ ID No: 46)

MQEV TQIPA AALSVPEGENLVLNCSFTDSAIYNLQWFRQ
DPGKGLTSLLIMGTQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPTSGGSYIPTFGRGTSLIVHPY
(SEQ ID No: 47)

MQEV TQIPA AALSVPEGENLVLNCSFTDSAIYNLQWFRQ
DPGKGLTSLLIPFWQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPLLDGTYIPTFGRGTSLIVHPY
(SEQ ID No: 48)

MQEV TQIPA AALSVPEGENLVLNCSFTDSAIYNLQWFRQ
DPGKGLTSLLITPWQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPLLDGTYIPTFGRGTSLIVHPY
(SEQ ID No: 49)

MQEV TQIPA AALSVPEGENLVLNCSFTDSAIYNLQWFRQ
DPGKGLTSLLISPWQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPLLDGTYIPTFGRGTSLIVHPY
(SEQ ID No: 50)

MQEV TQIPA AALSVPEGENLVLNCSFTDSAIYNLQWFRQ
DPGKGLTSLLIMGHQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPLLDGTYIPTFGRGTSLIVHPY
(SEQ ID No: 51)

14 of 41

MQEVTQIPAALSVPEGENLVLNCSFTDSAIYNLQWFRQ
DPGKGLTSLLIMGTREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPLLDGTYIPTFGRGTSLIVHPY
(SEQ ID No: 52)

MQEVTQIPAALSVPEGENLVLNCSFTDSAIYNLQWFRQ
DPGKGLTSLLIIMGWREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPLLDGTYIPTFGRGTSLIVHPY
(SEQ ID No: 53)

MQEVTQIPAALSVPEGENLVLNCSFTDSAIYNLQWFRQ
DPGKGLTSLLISPWREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPLRGGSYIPTFGRGTSLIVHPY
(SEQ ID No: 54)

MQEVTQIPAALSVPEGENLVLNCSFTDSAIYNLQWFRQ
DPGKGLTSLLISPWREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPNDGGSYIPTFGRGTSLIVHPY
(SEQ ID No: 55)

MQEVTQIPAALSVPEGENLVLNCSFTDSAIYNLQWFRQ
DPGKGLTSLLISPWREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPAWGGNYIPTFGRGTSLIVHPY
(SEQ ID No: 56)

MQEVTQIPAALSVPEGENLVLNCSFTDSAIYNLQWFRQ
DPGKGLTSLLISPWREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPAEGGEYIPTFGRGTSLIVHPY
(SEQ ID No: 57)

15 of 41

MQEV TQIPA AALSV PEGENLV LNC SFTD SAIY NLQ WFR Q
DPG KGLT SLLL ISPW QREQ TSGRLN ASLDKSS GRST LYI
AAS QPGD SATYLCA VRPF TGGY I PTF GRGT SLIV HPY
(SEQ ID No: 58)

MQEV TQIPA AALSV PEGENLV LNC SFTD SAIY NLQ WFR Q
DPG KGLT SLLL ISPW QREQ TSGRLN ASLDKSS GRST LYI
AAS QPGD SATYLCA VRPV SGGD Y I PTF GRGT SLIV HPY
(SEQ ID No: 59)

MQEV TQIPA AALSV PEGENLV LNC SFTD SAIY NLQ WFR Q
DPG KGLT SLLL ISPW QREQ TSGRLN ASLDKSS GRST LYI
AAS QPGD SATYLCA VRPLDDGG Y I PTF GRGT SLIV HPY
(SEQ ID No: 60)

MQEV TQIPA AALSV PEGENLV LNC SFTD SAIY NLQ WFR Q
DPG KGLT SLLL ISPW QREQ TSGRLN ASLDKSS GRST LYI
AAS QPGD SATYLCA VRPNTGG Q Y I PTF GRGT SLIV HPY
(SEQ ID No: 61)

MQEV TQIPA AALSV PEGENLV LNC SFTD SAIY NLQ WFR Q
DPG KGLT SLLL ISPW QREQ TSGRLN ASLDKSS GRST LYI
AAS QPGD SATYLCA VRPIAGG K Y I PTF GRGT SLIV HPY
(SEQ ID No: 62)

MQEV TQIPA AALSV PEGENLV LNC SFTD SAIY NLQ WFR Q
DPG KGLT SLLL ISPW QREQ TSGRLN ASLDKSS GRST LYI
AAS QPGD SATYLCA VRPGTGG D Y I PTF GRGT SLIV HPY
(SEQ ID No: 63)

16 of 41

MQEVTQIPAALSVPEGENLVLNCSFTDSAIYNLQWFRQ
DPGKGLTSLLISPWQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPAAGGSDIPTFGRGTSLIVHPY
(SEQ ID No: 64)

MQEVTQIPAALSVPEGENLVLNCSFTDSAIYNLQWFRQ
DPGKGLTSLLISPWQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPLAGGAYIPTFGRGTSLIVHPY
(SEQ ID No: 65)

MQEVTQIPAALSVPEGENLVLNCSFTDSAIYNLQWFRQ
DPGKGLTSLLISPWQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPARGGDYIPTFGRGTSLIVHPY
(SEQ ID No: 66)

MQEVTQIPAALSVPEGENLVLNCSFTDSAIYNLQWFRQ
DPGKGLTSLLISPWQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPLGGGIYIPTFGRGTSLIVHPY
(SEQ ID No: 67)

MQEVTQIPAALSVPEGENLVLNCSFTDSAIYNLQWFRQ
DPGKGLTSLLISPWQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPMGGGRYIPTFGRGTSLIVHPY
(SEQ ID No: 68)

MQEVTQIPAALSVPEGENLVLNCSFTDSAIYNLQWFRQ
DPGKGLTSLLIQGWQREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPSVGGNYIPTFGRGTSLIVHPY
(SEQ ID No: 69)

17 of 41

MQEVTQIPAALSVP EGENLV LNC SFTDSAIYNLQWFRQ
DPGKGLTSLLIQGWREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC AVRPATGGNYIPTFGRGTSLIVHPY
(SEQ ID No: 70)

MQEVTQIPAALSVP EGENLV LNC SFTDSAIYNLQWFRQ
DPGKGLTSLLIQGWREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC AVRPLTGGAYIPTFGRGTSLIVHPY
(SEQ ID No: 71)

MQEVTQIPAALSVP EGENLV LNC SFTDSAIYNLQWFRQ
DPGKGLTSLLISPWREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC AVRPRESGNYIPTFGRGTSLIVHPY
(SEQ ID No: 72)

MQEVTQIPAALSVP EGENLV LNC SFTDSAIYNLQWFRQ
DPGKGLTSLLIQGWREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC AVRPISGGDYIPTFGRGTSLIVHPY
(SEQ ID No: 73)

MQEVTQIPAALSVP EGENLV LNC SFTDSAIYNLQWFRQ
DPGKGLTSLLIQGWREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC AVRPAHNGNYIPTFGRGTSLIVHPY
(SEQ ID No: 74)

MQEVTQIPAALSVP EGENLV LNC SFTDSAIYNLQWFRQ
DPGKGLTSLLISPWREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLC AVRPDNTWGTYIPTFGRGTSLIVHPY
(SEQ ID No: 75)

MQEVTQIPAALSVPEGENVLNCFTDSAIYNLQWFRQ
DPGKGLTSLLIQGWREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPVEGGDYIPTFGRGTSLIVHPY
(SEQ ID No: 76)

MQEVTQIPAALSVPEGENVLNCFTDSAIYNLQWFRQ
DPGKGLTSLLISPWREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPAASGNYIPTFGRGTSLIVHPY
(SEQ ID No: 77)

MQEVTQIPAALSVPEGENVLNCFTDSAIYNLQWFRQ
DPGKGLTSLLIQGWREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPISGGEYIPTFGRGTSLIVHPY
(SEQ ID No: 78)

MQEVTQIPAALSVPEGENVLNCFTDSAIYNLQWFRQ
DPGKGLTSLLISPWREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPITGGYIPTFGRGTSLIVHPY
(SEQ ID No: 79)

MQEVTQIPAALSVPEGENVLNCFTDSAIYNLQWFRQ
DPGKGLTSLLIQGWREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPLKGGAYIPTFGRGTSLIVHPY
(SEQ ID No: 80)

MQEVTQIPAALSVPEGENVLNCFTDSAIYNLQWFRQ
DPGKGLTSLLIQGWREQTSGRLNASLDKSSGRSTLYI
AASQPGDSATYLCAVRPAEGGSYIPTFGRGTSLIVHPY
(SEQ ID No: 81)

19 of 41

M Q E V T Q I P A A L S V P E G E N L V L N C S F T D S A I Y N L Q W F R Q
D P G K G L T S L L I Q G W Q R E Q T S G R L N A S L D K S S G R S T L Y I
A A S Q P G D S A T Y L C A V R P S T G G N Y I P T F G R G T S L I V H P Y
(SEQ ID No: 82)

M Q E V T Q I P A A L S V P E G E N L V L N C S F T D S A I Y N L Q W F R Q
D P G K G L T S L L I Q G W Q R E Q T S G R L N A S L D K S S G R S T L Y I
A A S Q P G D S A T Y L C A V R P V D D G G K Y I P T F G R G T S L I V H P Y
(SEQ ID No: 83)

Figure 7

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVGAGTTDRGEVPNGYNVSRSTIEDFPL
RLLSAAPSQTSVYFCASSYLGNTGELFFGEGSRLTVL
(SEQ ID No: 84)

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVGAGTTDQGEVPNGYNVSRSTIEDFP
LRLLSAAPSQTSVYFCASSYLGNTGELFFGEGSRLTVL
(SEQ ID No: 85)

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVGAGTTDQGEVPNGYNVSRSTTEDFP
LRLLSAAPSQTSVYFCASSNVGNTGELFFGEGSRLTVL
(SEQ ID No: 86)

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVGAGTTDQGEVPNGYNVSRSTTEDFP
LRLLSAAPSQTSVYFCASSYVGGTGELFFGEGSRLTVL
(SEQ ID No: 87)

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVGAGITDQGEVPNGYNVSRSTIEDFPL
RLLSAAPSQTSVYFCASSYVGNTGELFFGEGSRLTVL
(SEQ ID No: 88)

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVGAGTTDQGEVPNGYNVSRTTEDFP
LRLLSAAPSQTSVYFCASSYLGDTGELFFGEGSRLTVL
(SEQ ID No: 89)

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVGVGTTDQGEVPNGYNVSRTTEDFP
LRLLSAAPSQTSVYFCASSYLGDTGELFFGEGSRLTVL
(SEQ ID No: 90)

MGVTQTPKFQVLKTGQSVTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVGVGTTDQGEVPNGYNVSRTTEDFP
LRLLSAAPSQTSVYFCASSYLGDTGELFFGEGSRLTVL
(SEQ ID No: 91)

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVSVGMTDQGEVPNGYNVSRTTEDFP
LRLLSAAPSQTSVYFCASSYVGNTGELFFGEGSRLTVL
(SEQ ID No: 92)

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVAIQTTDQGEVPNGYNVSRTTEDFPL
RLLSAAPSQTSVYFCASSYVGNTGELFFGEGSRLTVL
(SEQ ID No: 93)

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVAIQTTDQGEVPNGYNVSRTIEDFPL
RLLSAAPSQTSVYFCASSYLGNTGELFFGEGSRLTVL
(SEQ ID No: 94)

22 of 41

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVSVGMTDQGEVPNGYNVSRSTIEDFPL
RLLSAAPSQTSVYFCASSYLGNTGELFFGEGSRLTVL
(SEQ ID No: 95)

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVGAGTTDRGEVPNGYNVSRSTIEDFPL
RLLSAAPSQTSVYFCASSYVGTVGELFFGEGSRLTVL
(SEQ ID No: 96)

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVGAGTTDRGEVPNGYNVSRSTIEDFPL
RLLSAAPSQTSVYFCASSYVGDTGELFFGEGSRLTVL
(SEQ ID No: 97)

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVGAGTTDRGEVPNGYNVSRSTIEDFPL
RLLSAAPSQTSVYFCASSYLGDTGELFFGEGSRLTVL
(SEQ ID No: 98)

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVGAGTTDRGEVPNGYNVSRSTIEDFPL
RLLSAAPSQTSVYFCASSEVGDTGELFFGEGSRLTVL
(SEQ ID No: 99)

23 of 41

Figure 8a

N I Q N P D P A V Y Q L R D S K S S D K S V C L F T
D F D S Q T N V S Q S K D S D V Y I T D K
(SEQ ID NO: 100)

Figure 8b

E D L N K V F P P E V A V F E P S E A E I S H T Q K A T
L V C L A T G F F P D H V E L S W W V N G K E V H S G V
(SEQ ID NO: 101)

Figure 8c

E D L K N V F P P E V A V F E P S E A E I S H T Q K A T
L V C L A T G F Y P D H V E L S W W V N G K E V H S G V
(SEQ ID NO: 102)

24 of 41

Figure 9**PEX954**

gatctcgatcccgcaaaattaatacgactcactatagggagaccacaacggttcccttagaaataatttgttaacttaaga
aggagatataatcgatgtctaactcgagtgacaagtctgtgcctattcaccgatttgattctcaaacaatgtgcacaaagt
aaggattctgtatcacagacaaatgtgtctagacatgaggctatggactcaagagcaacagtgtgtggcctg
gagcaacaaatctgacttgcattgtgcacgcctcaacaacacgcatttcagaagacacccctcccccagcccaaaaa
gttcctaagcttgcattccgatccggctgtcaacaaagccgaaaggaagctgagttggctgctgccaccgctgagaataa
ctagcataacccctgggcctctaaccgggtttgaggggttttgcataaggagactatccggataattctgaag
acgaaagggcctcgatgcctattttataggttaatgtcatgataataatggttcttagacgtgaggtggactttcggg
gaaatgtgcgcgaaaccctattgttattttctaaatacattcaaaatgtatccgctcatgagacaataaccctgataaaatgc
ttcaataatattgttaaaattcgcttaattttgttaatcagctcattttaaccaataggccgaaatggcaaaatcccttat
aaatcaaaaagaatagaccgagatagggttagtggccatggtaacaagactccactattaaagaacacgtggactccaa
cgtcaaaagggcgaaaaaccgtctatcaggcgatggccactacgtgaaccatcaccctaatacgatggggatggccgaaac
tgccgtaaagcactaaatcggaaccctaaaggagcccccgatttagagcttgcacggggaaagccgcaacgtggcga
gaaaggaagggagaaagcgaaaggagcggcgctaggcgctggcaagtgttagcggcacgtcgctgcgtaaaccacc
acacccggcgcttaatgcgcgtacaggcgctaggcgctaggcgactttcgggaaatgtgcgcggaaaccctattgtt
tattttctaaatacattcaaaatgtatccgctcatgagacaataaccctgataatgctcaataatattgaaaaaggaagaga
tgagttcaacattccgtgtgcgcctattcccttttgcggcatttgcctcgtttgcacccagaaacgctgtgaaat
gtaaaagatgctgaagatcagttgggtgcacgagtggttacatcgaactggatctcaacagcggtaaatccctgagtt
tcgccccgaagaacgtttccaatgtgagcactttaaagttctgtatgtggcggtattatccctgttgcacgcggca
agagcaactcggtcgccgcataactattctcagaatgacttggtgagtgactcaccagtcacagaaaacgcattacggatg
gcatgacagtaagagaattatgcagtgtgcataaccatgagtgataacactgcggccaacttactctgacaacacgtcg
aggaccgaaggagctaaccgcattttgcacaacatggggatcatgtaactgcgcctgatcgtggaaaccggagctgaat
gaagccataccaaacgacgagcgtgacaccacgatgcctgcagcaatggcaacaacgttgcgcaacttactggcga
actactacttagttcccgcaacaattaataagactggatggaggcggataaagtgcaggaccactctgcgcctggccc
ttccggctggctggttattgctgataaatctggagccggtagcggctgggtctcgctgtatcattgcagcactggggccagat
ggttaagccctccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgag
ataggtgcctactgattaagcattggtaactgtcagaccaagttactcatataacttttagattgatgtttaaaaacttcatttt
aaaaggatctaggtgaagatcctttgataatctcatgacccaaatcccttaacgtgagtttcgttccactgagcgtcagacc

ccgttagaaaagatcaaaggatcttcttgcgcgtaatctgcgtctgcaaaacaaaaaccaccgcacc
agcgggtgttgttgcggatcaagagctaccactttccgaaggtaactggctcagcagagcgcagataccaaata
ctgtcccttagttagccgtagttaggccaccactcaagaactctgttagcaccgcctacatacctcgctgtaatcctgtt
accagtggctgctgccagtgccgataagtcgtcttaccgggtggactcaagacgatagttaccggataaggcgcagcg
gtcgggctgaacgggggttcgtcacacagccagctggagcgaacgacctacaccgaactgagataacctacagcgt
gagctatgagaaagcgccacgctcccgaaaggagaaaggcggacaggtatccggtaaagcggcagggtcggaaacagg
agagcgcacgaggagctccaggggaaacgcctggatcttatagtcctgtcgggttgcaccctctgactgagcgt
cgattttgtgatgctcgtcagggggcggagcctatggaaaacgcctggatcttatagtcctgtcgggttgcaccctctgactgagcgt
ctggcccttgcacatgtcttcctgcgttatcccctgattctgtggataaccgtattaccgccttgcgttgcggatatttgccttgc
cgccgcagccgaacgaccgagcgcagcgcagtcagtgagcggaggaagcggaaagagcgcctgatgcggatatttgccttgc
cgcatctgtcggatttcacaccgcaatggtgactctcagtcataatctgtctgatgcgcgcataatggccatgat
ccgctatcgctacgtgactgggtcatggctgcgcggcgcacaccgcataacaccgcgtacgcgcgcgcgcgcgcgcgc
gctcccgccatcgcttacagacaagctgtgaccgtctccggagctgcataatgtgtcagaggtttgcaccgtcatcaccgaaa
cgccgcgaggcag

(SEQ ID NO: 113)

26 of 41

Figure 10

PEX821

cggcctttacggtccctggcctttgtggcctttgctcacatgttccctgcgttatccctgattctgtggataaccgtatta
ccgccttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgcagtcagtgagcgaggaagcggaaag
agcgcctgatgcggtatttctccctacgcacatgtcggtattcacaccgcaatggtcactctcagtaaatctgctgtatg
ccgcatagtttaagccagatacacactccgtatcgctacgtgactgggtatggctgcgcggccgacaccgcacacccgc
tgacgcgcctgacggcttgcgtctgcctccggcatccgttacagacaagctgtgaccgtctccggagctgcatgtcag
aggtttcaccgtcatcaccgaaacgcgcgaggcag
(SEQ ID NO: 114)

Figure 11

pEX202

attaccgcctttagttagtgcgtataccgcgtcgccgcagccgaacgaccgagcgcagcgagtcagttagcggaggaagcgg
aagagcgcctgtatgcggattttctccttacgcattgtgcggattcacaccgcaatgggcacttcagtcataatctgcct
gatgccgcatagttaagccagtatacactccgcatacgctacgtgactgggcattggctgcgcggccgacacccgcacac
ccgctgacgcgcgcctgacgggcgtgtctgtccggcatccgcattacagacaagctgtgaccgtctccggagctgcatt
gtcagaggtttcaccgtcataccgaaacgcgcgaggcag
(SEQ ID NO: 115)

Figure 12

pEX205

31 of 41

Figure 13

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVAIQTTDQGEVPNGYNVSRSTIEDFPL
RLLSAAPSQTSVYFCASSYVGDTGELFFGEGSRLTVL
(SEQ ID No: 117)

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVAIQTTDRGEVPNGYNVSRSTIEDFPL
RLLSAAPSQTSVYFCASSYLGNTGELFFGEGSRLTVL
(SEQ ID No: 118)

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVAIQTTDQGEVPNGYNVSRSTIEDFPL
RLLSAAPSQTSVYFCASSYVGNTGELFFGEGSRLTVL
(SEQ ID No: 119)

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVSVGMTRGEVPNGYNVSRSTTEDFP
RLLSAAPSQTSVYFCASSYVGDTGELFFGEGSRLTVL
(SEQ ID No: 120)

MGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQ
DPGMGLRLIHYSVAIQTDRGEVPNGYNVSRSTIEDFPL
RLLSAAPSQTSVYFCASSYVGNTGELFFGEGSRLTVL
(SEQ ID No: 121)

32 of 41

Figure 14a

C58c61 alpha with TRAC

MKQEV TQ I P A A L S V P E G E N L V L N C S F T D S A I Y N L Q W F R
Q D P G K G L T S L L I T P W Q R E Q T S G R L N A S L D K S S G R S T L Y
I A A S Q P G D S A T Y L C A V R P L L D G T Y I P T F G R G T S L I V H P Y I
Q N P D P A V Y Q L R D S K S S D K S V C L F T D F D S Q T N V S Q S K D S
D V Y I T D K

(SEQ ID NO: 122)

Figure 14b

C58c61 beta with TRBC1

M N A G V T Q T P K F Q V L K T G Q S M T L Q C A Q D M N H E Y M S W Y
R Q D P G M G L R L I H Y S V A I Q T T D Q G E V P N G Y N V S R S T I E D F
P L R L L S A A P S Q T S V Y F C A S S Y L G N T G E L F F G E G S R L T V L
E D L N K V F P P E V A V F E P S E A E I S H T Q K A T L V C L A T G F F P D
H V E L S W W V N G K E V H S G V

(SEQ ID NO: 123)

Figure 14c

C58c61 beta with TRBC2

M N A G V T Q T P K F Q V L K T G Q S M T L Q C A Q D M N H E Y M S W Y
R Q D P G M G L R L I H Y S V A I Q T T D Q G E V P N G Y N V S R S T I E D F
P L R L L S A A P S Q T S V Y F C A S S Y L G N T G E L F F G E G S R L T V L
E D L N K V F P P E V A V F E P S E A E I S H T Q K A T L V C L A T G F Y P D
H V E L S W W V N G K E V H S G V

(SEQ ID NO: 124)

33 of 41

Figure 14d

C58c61 beta with TRBC2 fused to wt human IL-2

M N A G V T Q T P K F Q V L K T G Q S M T L Q C A Q D M N H E Y M S W Y
R Q D P G M G L R L I H Y S V A I Q T T D Q G E V P N G Y N V S R S T I E D F
P L R L L S A A P S Q T S V Y F C A S S Y L G N T G E L F F G E G S R L T V L
E D L K N V F P P E V A V F E P S E A E I S H T Q K A T L V C L A T G F Y P D
H V E L S W W V V N G K E V H S G V P G A P T S S S T K K T Q L Q L E H L L L
D L Q M I L N G I N N Y K N P K L T R M L T F K F Y M P K K A T E L K H L Q C L
E E E L K P L E E V L N L A Q S K N F H L R P R D L I S N I N V I V L E L K G S E
T T F M C E Y A D E T A T I V E F L N R W I T F C Q S I I S T L T

(SEQ ID NO: 125)

34 of 41

Figure 15a

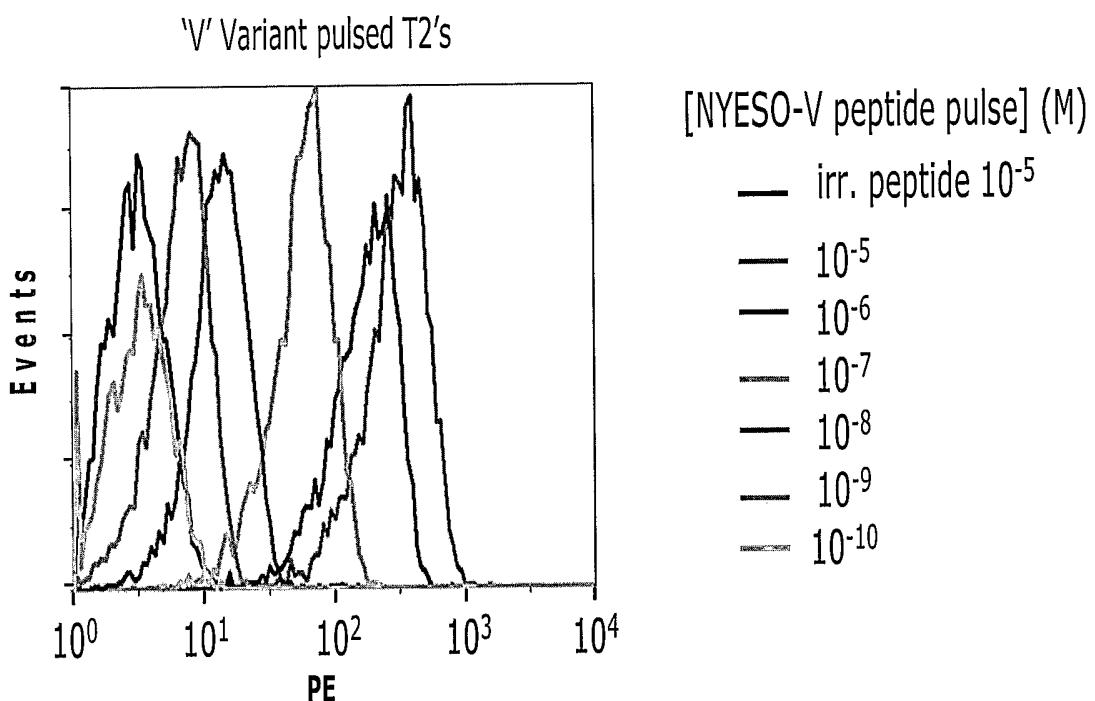
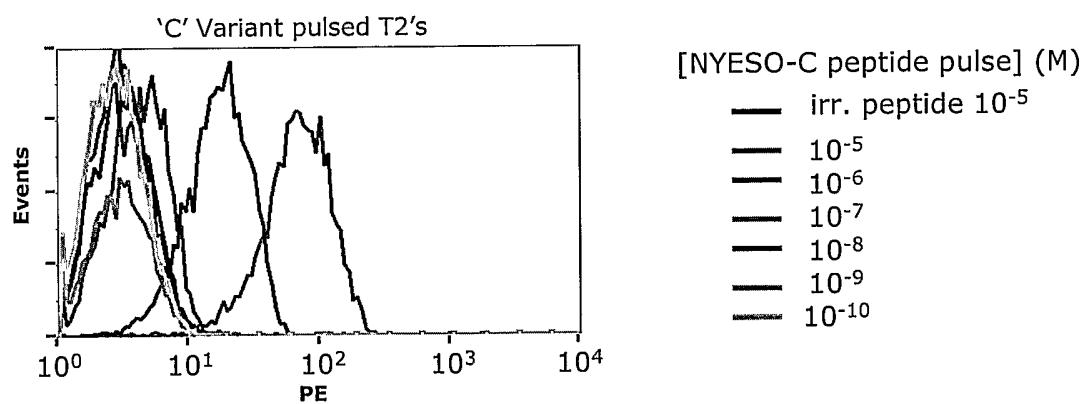
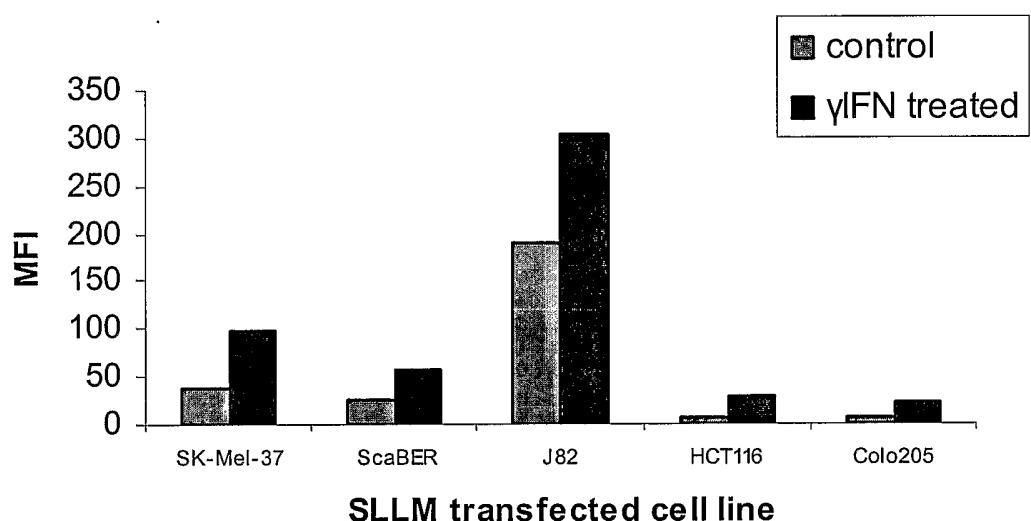




Figure 15b

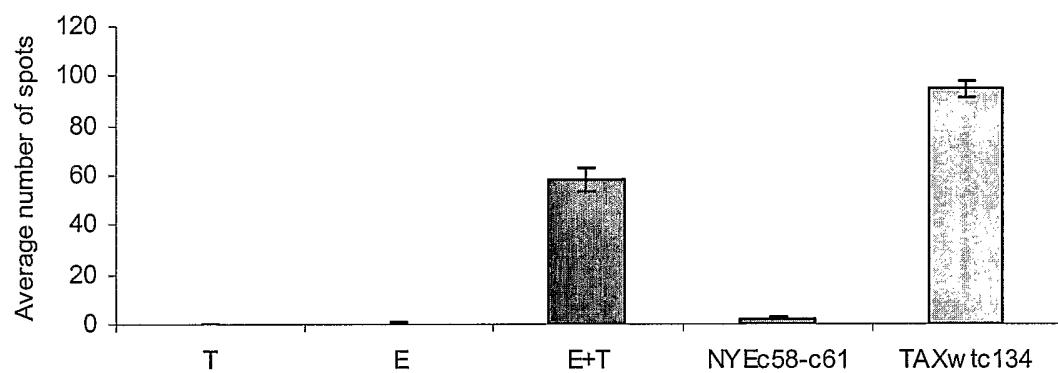

35 of 41

Figure 16

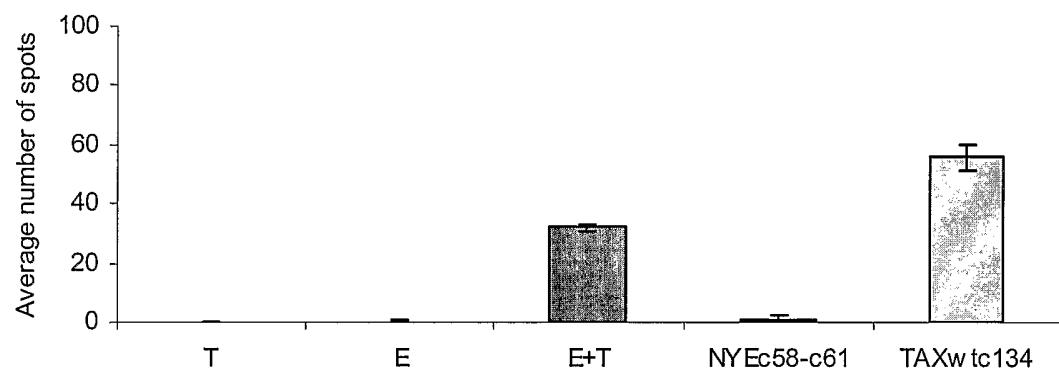

36 of 41

Figure 17

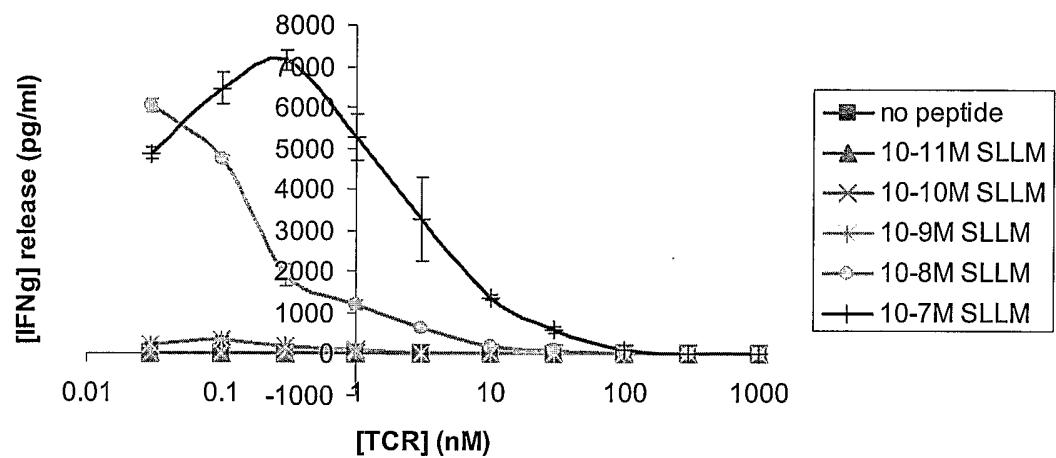

37 of 41

Figure 18

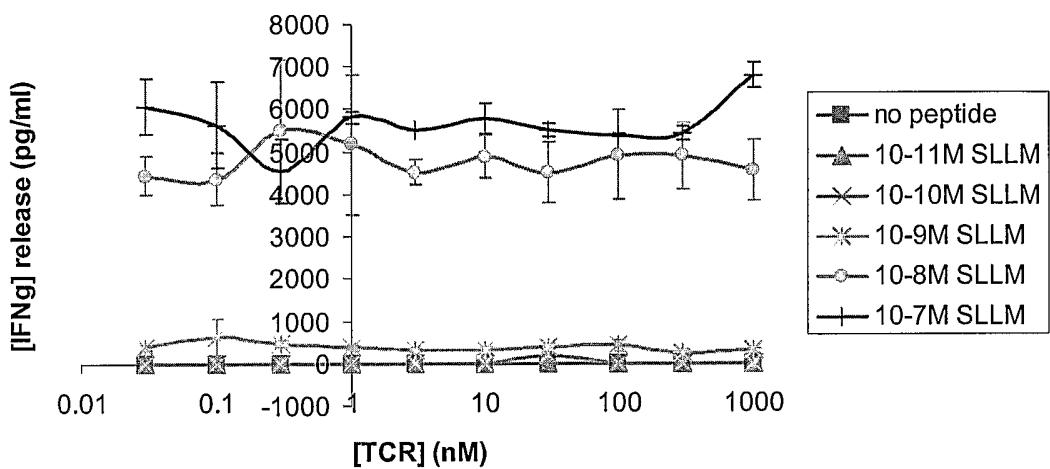

38 of 41

Figure 19

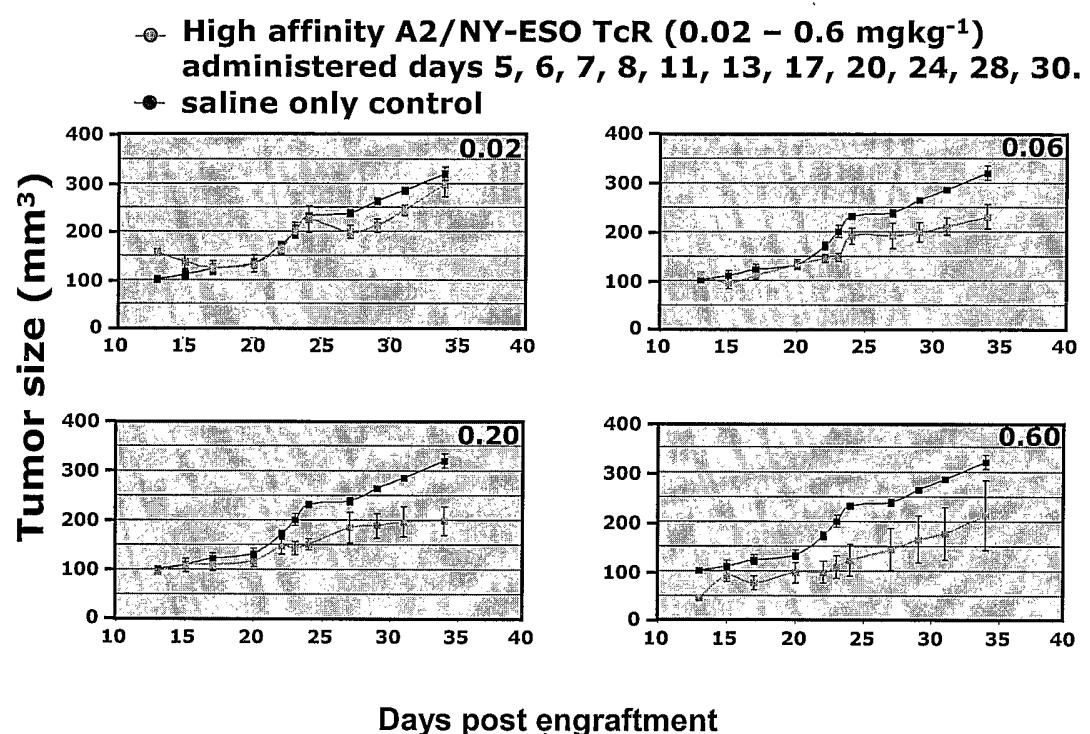

39 of 41

Figure 20

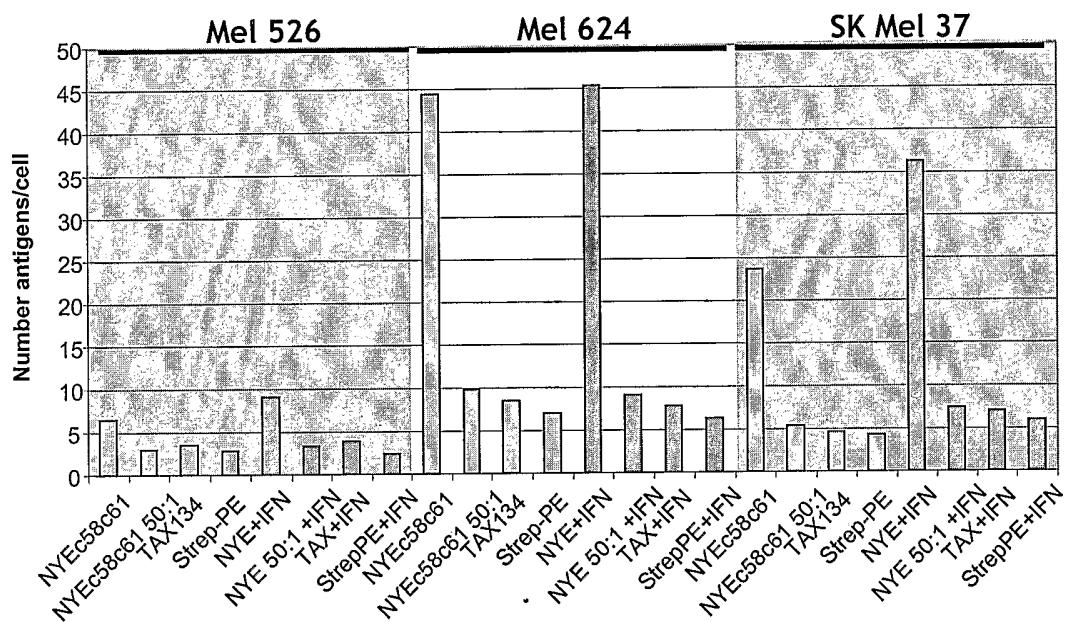

40 of 41

Figure 21

41 of 41

Figure 22

