PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 99/34288
GOGF 9/46 Al

(43) International Publication Date: 8 July 1999 (08.07.99)

(21) International Application Number: PCT/US98/27893 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

(22) International Filing Date: 31 December 1998 (31.12.98)

(30) Priority Data:

09/001,377 31 December 1997 (31.12.97) US

(71) Applicant: ALCATEL USA SOURCING, L.P. [US/US]; 1000
Coit Road, Plano, TX 75075 (US).

(72) Inventor: OUELLETTE, Christopher, J.; 2603 Greenway
Drive, McKinney, TX 75070 (US).

(74) Agent: FISH, Charles, S.; Baker & Botts, L.L.P., 2001 Ross
Avenue, Dallas, TX 75201-2980 (US).

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,
KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW,
ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, Fl, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,
BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN,
TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: SOFTWARE ARCHITECTURE FOR MESSAGE PROCESSING IN A DISTRIBUTED ARCHITECTURE COMPUTING

SYSTEM
(57) Abstract
52

A distributed architecture com- \ 58
puting system includes one or more Server 50
processors and object-oriented control - A — /
program for processing request-type ~sendingSeqid O
and response-type messages provided ~recvibox
by a messaging service. The re- foctory 60
quest-typle messages are associated —extReqListFront receives
with one or more newly requested op- _extReqlistRear Message
erations, and the response-type mes-
sages are associated with previously serve 56
requested operations. The control pro- nextSeqld . /
gram for the distributed architecture isEmpty monoges octive | Request ocesses
computing system includes a common oppend N o
server object for receiving and process- remove _server
ing the request—type and response—type findSeqld _sequenceid
messages, and a specialized factory _next
object for receiving the request—type
messages from the common server)cl)lt)) orders requests —sendbox
ject and creating a specialized request builds ~msg
object for processing each of the re- Foctory sequenceld
uest-type messages. Each of the ocessRequest
?equest I())bjects includes process re- mokeRequest ™54 :rrocessRe:ponse
quest and process response methods . | sand
for performing the requested opera- SndMbo sends_messoges vio reot
tion, maintaining state information as- ndMbox Py

sociated with the requested operation
and generating the response~type mes- 62
sages. In addition, the control program

includes a receive mailbox object associated with the common server object for accessing the request-type and response-type messages
bound for the common server object, a send mailbox object associated with the common factory object for sending the response—type
messages to the receive mailbox object, and a message object for buffering message data included in the request-type and response-type

messages.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsrael

Teeland

Taly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
Nz
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

S1
SK
SN
SZ
™D
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 99/34288 PCT/US98/27893

SOFTWARE ARCHITECTURE FOR MESSAGE PROCESSING IN A
DISTRIBUTED ARCHITECTURE COMPUTING SYSTEM

TECHNICAL FIELD OF THE INVENTION

This invention is related in general to the field of
computing systems. More particularly, the invention
relates to a software architecture for message processing

in a distributed architecture computing system.

BACKGROUND OF THE INVENTION

Distributed computing systems require a variety of
software and hardware components for performing processing,
signaling, remote database query, administrative and other
tasks. These components must be a capable of communicating
with other components of the distributed architecture
computing system across one or more interfaces.

Conventional computing systems use a variety of
techniques to communicate information between the various
components of the system. In client/server systems, for
example, it is not uncommon to have individually dedicated
server processes for communicating instructions and
information back and forth from system controllers to lower
level system components. These server processes typically
receive messages and perform highly specialized operations
based on information contained in the received messages.
Consequently, multiple message processing is severely
impaired in conventional distributed architecture computing
systems unless the server process provides some mechanism
for processing messages in parallel, i.e. more than one

request active at a time.

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

SUMMARY OF THE INVENTION

Therefore, it is a primary object of the present
invention to provide a common method and software
architecture for receiving request messages, matching
response messages to the corresponding request messages
waiting for a response, and maintaining a list of active
requests. According to an aspect of the present invention,
the method for message processing is independent of the
specific messages to be processed by the corresponding
message server. The software architecture for message
processing can be implemented, for example, 1in a
distributed telecommunication switching system.

It is another object of the present invention to
provide a software architecture for message processing in
a distributed architecture computing system wherein the
support for parallel message processing is common for all
types of message servers.

It is yet another object of the present invention to
provide a software architecture and method for message
processing in a distributed architecture computing system
wherein software objects, instead of functions, are used to
process message data and perform requested operations. 1In
a distributed telecommunication switching system, for
example, a switch statement can be used to construct
objects that process message data and execute the necessary
switching operations.

It is still another object of the present invention to
provide a software architecture for message processing in
a distributed architecture computing system wherein
specialized functionality does not appear in the server
objects, but is instead distributed at lower levels of the
software hierarchy.

It is still another object of the present invention to
provide a software architecture for message processing in
a distributed architecture computing system whereby a

server object creates a factory object which defines

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

request objects for performing operations requested in
messages received by the server object.

It is still another object of the present invention to
provide a software architecture for message processing in
a distributed architecture computing system whereby control
of message processing is returned to a server object after
creation of the factory and request objects such that the
server object is capable of processing subsequent messages.

Further objects, features and advantages of the
invention will become apparent from the following detailed
description taken in conjunction with the accompanying
figures showing illustrative embodiments of the invention.

In accordance with a preferred embodiment of the
present invention, a distributed architecture computing
system is provided that includes one or more processors and
an object-oriented control program for processing request-
type and response-type messages provided by a messaging
service. The request-type messages are associated with one
or more newly requested operations, and the response-type
messages are associated with previously requested
operations. The control program for the computing system
includes: a common server object for receiving and
processing the request-type and response-type messages; a
common factory object for receiving the request-type
messages from the common server object and creating a
common reguest object for processing each of the request-
type messages, each of the request objects include process
request and process response methods for performing the
requested operation, maintaining state information
associated with the requested operation and generating the
response-type messages; a receive mailbox object associated
with the common server object for accessing the request-
type and response-type messages bound for the common server
object; a send mailbox object associated with the common
factory object for sending the response-type messages to

the receive mailbox object; and a message object for

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

buffering message data included in the request-type and
response-type messages.

In accordance with another preferred embodiment of the
present invention, a distributed telecommunications
switching system is provided that includes one or more
processors and an object-oriented control program for
processing request-type and response-type messages provided
by a messaging service. The request-type messages are
associated with one or more newly requested operations, and
the response-type messages are associated with previously
requested operations. The control program for the
computing system includes: a common server object for
receiving and processing the request-type and response-type
messages; a common factory object for receiving the
request-type messages from the common server object and
creating a common request object for processing each of the
request-type messages, each of the request objects
including process request and process response methods for
performing the requested operation, maintaining state
information associated with the requested operation and
generating the reéponse—type messages; a receive mailbox
object associated with the common server . object for
accessing the request-type and response-type messages bound
for the common server object; a send mailbox object
associated with the common factory object for sending the
response-type messages to the receive mailbox object; and
a message object for buffering message data included in the
request-type and response-type messages.

In accordance with another aspect of the present
invention, a distributed architecture computing system is
provided wherein request-type messages associated with
requested operations are received by a common server object
and forwarded to a factory object for processing by request
objects. The system includes a method wherein the common
server object provides the request-type messages to the

factory object, and the factory object creates the request

10

15

20

25

30

WO 99/34288 PCT/US98/27893

objects for processing the request-type messages such that
one of the request objects corresponds to one of the
request-type messages. For each of the request-type
messages, the corresponding request object is returned by
the factory object to the common server object, which then
invokes a process request method associated with the
returned request object. A method is also provided when
the common server object receives a response-type message
and is used for matching the response-type message to the
corresponding request object waiting for a response. The
common server object invokes the request object's process
response method which completes the processing of the
response-type message.

In accordance with another aspect of the present
invention, a distributed telecommunications switching
system is provided wherein request-type messages associated
with requested operations are received by a common server
object and forwarded to a factory object for processing by
request objects. The system includes a method wherein the
common server object provides the request-type messages to
the factory object, and the factory object creates the
request objects for processing the request-type messages
such that one of the request objects corresponds to one of
the request-type messages. For each of the request-type
messages, the corresponding request object is returned by
the factory object to the common server object, which then
invokes a process request method associated with the
returned request object. A method is also provided when
the common server object receives a response-type message
and is used for matching the response-type message to the
corresponding request object waiting for a response. The
common server object invokes the request object's process
response method which completes the processing of the

response-type message.

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

BRIEF DESCRIPTION OF THE DRAWINGS

For a complete understanding of the present invention
and the advantages thereof, reference is now made to the
following description taken in conjunction with the
accompanying drawings in which 1like reference numbers
indicate like features and wherein:

FIG. 1 shows a Dblock diagram of a distributed
architecture computing system utilizing a method for
message processing according to a preferred embodiment of
the present invention;

FIG. 2 shows an object model defining the software
architecture (building block infrastructure) for message
processing in a distributed architecture computing system;

FIG. 3 shows an event trace for a sample sequence of
request-type and response-type messages;

FIG. 4 shows an inheritance diagram corresponding to
the object model of FIG. 2;

FIG. 5 shows a specialized server object class for use
in a distributed telecommunications switching system
implementation of FIG. 1;

FIGS. 6A and 6B show an event trace corresponding to
a sequence for processing incoming messages and timeouts;

FIG. 7 1is an event trace corresponding to a process
timeout sequence used by a request object while waiting for
a response-type message according to the event trace of
FIGS. 6A and 6B;

FIG. 8 is an event trace corresponding to sequence for
replying to a request-type message used by the process
timeout sequence of FIG. 7, an initial processing sequence
as shown in FIG. 10, and a process response seguence as
shown in FIG. 12;

FIG. 9 is an event trace corresponding to a sequence
for creating a new specialized request object according to
the event trace of FIGS. 6A and 6B;

FIG. 10 is an event trace corresponding to a sequence

for processing a request-type message by a newly created

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

specialized request object according to the event trace of
FIGS. 6A and 6B;

FIG. 11 is an event trace corresponding to a sequence
used by a specialized request object for allocating and
sending a new specialized request message to another
building block according to the event trace of FIG. 10; and

FIG. 12 is an event trace corresponding to a sequence
for matching response messages received by a server object
with the appropriate specialized request object according
to the event trace of FIGS. 6A and 6B.

DETATILED DESCRIPTION OF THE INVENTION

FIG. 1 is a block diagram of a computing system 10
utilizing a method for initializing computing tasks
according to a preferred embodiment of the present
invention. As shown i1in FIG. 1, computing system 10
includes a service unit layer 20 for top-level management
and control of computing system 10, a delivery unit layer
30 for communication and control of software elements and
hardware components, and a communications pathway 40 for
connecting service unit layer subsystems with delivery unit
layer subsystems. Service unit layer 20 includes a top-
level system manager 22, one oOr more service nodes 24
connected to top-level system manager 22, and one or more
system managers 26 also connected to top-level system
manager 22. Delivery unit layer 30, under the control of
service unit layer 20, includes one or more unit
controllers 32 connected to top-level system manager 22 or
system managers 24 via communications pathway 40, and a
plurality of software elements, or “building blocks” 34,
designed to be controlled by unit controllers 32, for
performing specific computing tasks and operations.

Computing system 10 of FIG. 1 may also include
industry standard operating systems, object-oriented
implementation, location transparent interfaces such as the

Common Object Request Broker Architecture (“CORBA”), name-

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

based messaging services, and graphical user interfaces
(“GUI's”) for system management and control. In addition,
computing system 10 can be configured to operate as a
telecommunications switching system such as the one
disclosed in United States Patent No. 5,495,484, issued
February 27, 1996, which 1is hereby incorporated by
reference.

In a distributed telecommunications switching system
implementation of FIG.1l, for example, service unit layer 20
of FIG. 1 provides the functionality of the switching
system not inherently dependent upon the technology and
interfaces required for connecting end-users to a public
telephony network. By contrast, delivery unit layer 30
provides the functionality of the switching system directly
associated with the technology and interfaces required for
connecting end-users to a public telephony network.
Subsystems and components included in service unit and
delivery unit layers 20 and 30 are separately functioning
subsystems which can be deployed, upgraded and maintained
independently from each other, thus allowing new
technologies and enhancements to be easily integrated into
an existing switching system. The various service unit and
delivery unit subsystems may be geographically co-located
or disbursed while maintaining the distributed
characteristics of the functions performed by the overall
switching system.

Delivery unit layer 30 of computing system 10 of FIG.
1 includes hardware components, such as specialized
application cards and processors, for providing specific
telecommunication switching services. For example, in the
above-mentioned distributed telecommunications switching
implementation of FIG. 1, delivery unit layer 30 1is
designed to deliver one or more communication services to
end-users on a public telephony network. The delivery unit
hardware components may be constructed and arranged to

perform a variety of computing tasks including but not

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

limited to configuration management, fault management,
performance management, call processing and port management
tasks.

FIG. 2 shows an object model 50 defining a software
architecture, i.e., server infrastructure, for message
processing in a distributed architecture computing system
according to a preferred embodiment of the present
invention. The object model includes a server object class
52, a factory object class 54, a request object class 56,
a receive mailbox object class 58, a message object class
60 and a send mailbox object class 62.

According to a preferred embodiment of the object
model 50, each instance of the server object class 52 is
responsible for receiving all incoming messages from other
software applications. These messages are request-type
messages for requesting specialized tasks or operations, or
response-type messages for responding to previously issued
requests. Both request-type and response-type messages
contain header information including, by way of example and
not limitation, a message type indicator, an operation type
indicator, a sequence identifier and an error code
indicator. The sequence identifier, which is unique to the
sender of the request-type message, is used by the sender
of the request-type message to match a response-type
message to the original request.

FIG. 3 shows an example of how the sequence identifier
is used. The figure shows an event trace for a sample
sequence 70 of incoming and outgoing request-type and
response-type messages. The sample sequence 70 includes
message transport between a plurality of tasks or objects
A through D. As shown in FIG. 3, Task A requests a first
operation from Task C by sending a first request-type
message with sequence #18 to Task C (Event 70a). Task C
then sends a second request-type message with sequence #24
to Task D as part of processing the first operation
originally requested by Task A (Event 70b). Task B then

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

10

requests a second operation from Task C by sending a third
request-type message with sequence #5 to Task C (Event
70c) . Task C then sends a fourth request-type message with
sequence #25 to Task D as part of processing the second
operation originally requested by Task B (Event 70d).

The sequence numbers 18, 24, 5 and 25 are then used to
match the response-type messages with the corresponding
request-type messages sent by Tasks A, B and C in Events
70a through 70d. As further shown in FIG. 3, Task C
receives a first response-type message from Task D and uses
sequence #25 in the first response-type message to match
this response with the request-type message previously sent
by Task C to Task D (Event 70e). Task B then receives a
second response-type message from Task C and uses sequence
5 in the second response-type message to match this
response with the request-type message previously sent by
Task B to Task C (Event 70f). Similarly, Task C receives
a third response-type message from Task D and uses sequence
#24 1in the third response-type message to match this
response with the request-type message previously sent by
Task C to Task D (Event 70qg). Task A then receives a
fourth response-type message from Task C and uses sequence
18 in the fourth response-type message to match up this
response with the request-type message previously sent by
Task A to Task C (Event 70h).

The processing of response-type messages, as shown by
Events 70e through 70h of FIG. 3, utilizes an active
request list created and maintained by the server object.
The active request list registers and tracks active request
objects awaiting responses from other objects. The active
request objects are those objects which have been created
as a result of the server receiving a request-type message.
The server object searches the active request list to match
a response-type message to the corresponding active request
object. Active request objects are therefore required to

save in their private member data the sequence identifier

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

11

for any request messages they originate. When a response-
type message is received, the server object 52 uses the
sequence identifier from the response-type message to match
the sequence identifier saved in the request object private
member data.

Referring again to FIG. 2, the software architecture
of the present invention further includes a messaging
service (not shown) and a server object class 52 for
receiving and processing messages from instances of the
receive mailbox object class 58. The server object class
52 is a an abstract base class for any specialized server
object class, and contains a receive mailbox object.

Each instance of server object class 52 contains the
server processing loop, and has a pointer to the start of
the active request list. Each server object derived from
the server object class 52 also has the member functions
used by the request objects to manipulate the active
request list. Each server object "orders" a request object
via the factory object class 54 whenever a request-type
message 1is received, and maintains the list of "active"
request objects. In addition, each server object may be
associated with many instances of the request object class
56 depending upon the operations supported by the server
object. A server object class 52 is therefore capable of
actively managing all associated instances of the request
object class 56.

According to a preferred embodiment of the present
invention, the server object class 52 includes the
attributes, member data and methods required for processing
sequence identifiers and active request lists, allocating
and reading the receive mailbox objects, and creating the
factory objects used to construct the required request
objects.

The factory object class 54 of FIG. 2 is an abstract
base class for any specialized factory object class. Each

instance of the factory object class 54 provides the method

10

15

20

25

30

35

WO 99/34288 ’ PCT/US98/27893

12

for constructing the appropriate request objects based on
the requested operation in the received request-type
messages. When a request-type message is forwarded from a
server object to a factory object, the factory object
processes the message and determines the operation type
associated with the message. Based on the particular
operation requested, the factory object constructs the
appropriate request object corresponding to the requested
operation. Each factory object is also associated with a
send mailbox object which is used by the request objects
for sending messages.

The request object class 56 is an abstract base class
for any specialized request object class. Each instance of
the request object class 56 1is responsible for adding
itself to the active request list when it is created, and
for removing itself from the active request list when the
associated operation is completed. Each request object
also has a pointer to the original request-type message
that caused the request object to come into existence, and
a pointer to the send mailbox object provided by the
corresponding factory object that the request object uses
for sending any new request-type messages or for replying
to the original request-type message. Each request object
saves the sequence identifier of any request-type message
that the request originates such that the server object can
match the response-type message with the corresponding
request object. The request object class 56 provides
methods to retrieve the requests, sequence identifier, send
messages and default reply, process request and process
response methods.

Request objects derived from the request object class
56 are also designed to implement a variety of processing
methods including but not limited to a process request
method, a process response method, and a reply method. The
sequence identifier method is used to save the sequence

identifiers associated with each request-type message. The

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

13

process request method is used for actually performing the
requested operation, and the process response method is
used for processing any response-type messages the request
object may receive. The reply method is used for sending
a response-type message to the original request-type
message, and the send method is used for sending any
request-type messages the request object originates.

Note, if the request object does not expect to ever
receive any response-type messages, then the process
response method does not need to be implemented. In such
a case a default process reéponse method will take care of
processing an error if an unexpected response is received.

After a factory object constructs the appropriate
request object based on the operation requested in the
received request-type message, the factory object returns
the request object to the server object. The server object
invokes the request object's process request method, which
contains the instructions required for processing the
original request received by the server object. The
process request method must save any state information
pertaining to the processing of the request operations. If
processing the request-type message requires that a message
be sent to other server objects, then the request object is
also responsible for maintaining the state information and
processing any responses from the other server objects.

Referring again to FIG. 2, if a server object derived
from the server object class 52 retrieves a response-type
message from the corresponding receive mailbox object, the
server object matches the sequence identifier of the
received response-type message with the corresponding
sequence identifier on the active request list maintained
by the server object. After the response message is
matched with the corresponding request object on the active
request list, the server object calls the process response
method of that request object, which contains the

instructions required for processing the response.

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

14

In the case where the server object receives a
request-type message for an operation that the factory
object does not understand, the factory object causes an
"unknown request" request object to be returned to the
server object. The "unknown request" process request
method contains the instructions for processing unknown
request-type message. Similarly, in the case where the
server object receives a response-type message and the
server object is unable to match the response-type message
with a request object on the active request list, then an
"unknown request" object is also created and returned back
to the server object, which then invokes an associated
"unknown request" process response method.

Referring again to FIG. 2, the software architecture
of the present invention also includes the receive mailbox

object class 58 for reading incoming messages from the

messaging service. The messaging service can be any
messaging service suitable for real-time data
communications. Instances of the receive mailbox object

class 58 provide methods for reading and de-allocating
messages provided by the messaging service.

The send mailbox object class 62 is used for sending
messages. The class provides methods for allocating and
de-allocating messages, sending messages, and replying to
previously received messages. In addition, the message
object class 60 1is used to contain request-type and
response-type messages. Each instance of the message
object class 60 includes a data buffer of a predefined,
configurable size for writing or reading message data.

The software architecture as shown in FIG. 2 is
advantageous in that message processing is transparent to
the server object. Each server object is designed such
that the specialized processing required for each operation
the server supports is delegated to the specialized request
objects. Consequently, the software architecture of the

resent invention features a "common" server object that is
p

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

15

independent of the specialized processing to be performed.
Specialized functionality is designed away from the server
object class 52 and instead designed into the specialized
factory and request classes derived from the common factory
and request classes 54 and 56, respectfully.

According to a preferred embodiment of the present
invention, the factory objects derived from the factory
object class 54 are specialized and designed based upon the
message types received and operations to be performed. The
request objects derived from the request class 56 are also
specialized in that they contain the methods required to
process the different requested operations.

FIG. 4 is an inheritance diagram 80 that shows how the
server infrastructure of FIG. 2 is specialized to perform
specific operations or processing. As shown in FIG. 4, the
specialized server includes a specialized server class 82
derived from, or "inherited off," the common server object
class 52, a specialized factory object class 84 inherited
off the common factory object class 54, and one or more
specialized request object classes 86 through 89 inherited
off the common request object class 56. Each specialized
request class corresponds to a specific operation supported
by the server. The server infrastructure of FIG. 2 can be
specialized or customized, for example, to perform specific
tasks associated with one or more application cards of the

distributed architecture computing system 10 of FIG. 1.

FIG. 5 shows a specialized server to handle
configuration operations for wuse in the distributed
telecommunications switching implementation of the
distributed architecture computing system 10 of FIG. 1.
The configuration server shown in FIG. 5 consists of a
configuration server 92 class, configuration factory class
94 and several request classes 96 trough 99. The
configuration server class 92, configuration factory class

94 and request classes 92 through 99 are inherited off the

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

16

"common" server class 52, the factory class 54 and the
request class 56, and are characterized by the application
card being operated and the operations being performed.
The specialized request classes 96 through 99 represent
unique operations corresponding to the tasks, i.e.,
configuration management, to be performed by a particular
application card. The specialized request object classes
96 through 99 contain all of the instructions required to
perform the requested operation, including any state
information pertaining to the processing of the requested
operations.

To further illustrate server specialization, the
configuration server of FIG. 5 is required to perform
configuration management operations associated with
application card type A. As shown in FIG. 5, a specialized
configuration server class 92 is derived from the server
class 52, and a specialized configuration factory class 94
is derived from the factory class 54 to construct the
required configuration request classes 96 through 99. The
specialized configuration request classes 96 through 99 are
derived from the request class 56 to perform specific
configuration management operations associated with
application card A. These operations may include, for
example, restore device, restore facility, remove device
and remove facility configuration operations.

Similarly, a specialized server can be customized to
perform other tasks, such as fault management, test
management, performance management, call processing and
port management operations, for the same or other types of
application cards. For example, 1if test management
operations are required for application card type B,
specialized “Test” server, factory and request object
classes 92 through 99 are derived from the common server,
factory and request object classes 52, 54 and 56,
respectively, to perform the required test tasks for the

application card B.

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

17

FIGS. 6A and 6B show an event trace corresponding to
a sequence 100 for processing incoming messages and
timeouts by a server object according to a preferred
embodiment of the present invention. Basic server object
processing includes adjusting timers associated with the
request objects on the server object's active request list,
processing timeouts associated with the request objects on
the server object's active request list, processing new
request-type or response-type messages, and calculating
delay periods for receiving subsequent messages based on
the timer values of the request objects on the server's
active request list. As shown in further detail by FIGS.
6A and 6B, server object processing includes Events 100a
through 100p which are repeated as part of an infinite loop
by an instance of the common server object class 104.

According to a preferred embodiment of the present
invention, an instance of a specialized server class 102 is
derived from the common server class 104 and entered into
the common server processing loop (Event 100a). An
instance of the common server maintains an active request
list representing previously created requests awaiting a
response. The common server object reads the next message
from an instance of the receive mailbox class 106
associated with the common server object (Event 100b), and
returns to the common server object a pointer to the
received message along with an error variable, if
applicable, to indicate the result of the read (Event
100¢). The common server object then adjusts the timeout
periods associated with all specialized request objects on
the common server object's active request list based on the
amount of time the common server object was blocked waiting
for the next incoming message (Event 100d).

Next, as shown by Events 100e and 100f, each
specialized request object on the common server object's
active request list executes a process timeout sequence 120

as shown by the event trace of FIG. 7. The process timeout

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

18

sequence 120 of FIG. 7, together with a reply sequence 140
as shown in FIG. 8, allows each active request object to
determine whether a timeout has occurred while waiting for
a response message.

The remaining events 100g through 100p of the common
server object processing event sequence 100 of FIGS. 6A and
6B are the events that occur if a valid message is received
and no timeout is detected. As part of further server
object processing, the common server object acquires a
pointer to the start of the message data contained in the
received message from the message object (Event 100g),
which then returns the pointer back to the common server
object such that the common server object may determine
whether the received message is a request-type or response-
type message (Event 100h). If the common server object
determines that the received message is a request-type
message, the event sequence 160 as shown in FIG. 9 is
executed by the an instance of the specialized factory
object class 110 to create a new specialized request object
(Event 100i). A pointer to the request object responsible
for processing the message received is then returned to the
common server object from the specialized factory object
(Event 100j), and an event sequence 180 as shown in FIG. 10
is executed for initial processing of the newly created
request object (Events 100k and 1001).

Referring again to FIG. 6B, if the message received by
the common server object is not a request-type message but
instead a response-type message, then the common server
object finds the specialized request object on the common
server object's active request list that is waiting for the
message by matching the source sequence identifier with the
sequence identifier of the response-type message (Event
100m) . The event sequence 210 as shown in FIG. 12 is
executed for processing the response message (Events 100n
and 1000). Processing control is then returned to the

common server (Event 1000) and the minimum timeout for the

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

19

currently active requests 1is recalculated (Event 100p).
The 1recalculated wvalue is wused as the timeout for
processing the next incoming message.

FIG. 7 shows the process timeout sequence 120 for
adjusting the timeout period for a request. FIG. 7
corresponds to the processing steps shown by Events 100e
and 100f of FIG. 6A. As shown by FIG. 7, adjustment of the
timeout period is handled by a function within the common
request class 112, For each of the active timers
associated with the specialized request objects, a common
request object wuses the adjusted timeout period to
decrement the individual timer values (Event 120a). If the
timer for a specialized request object has expired, a call
is made to that specific request object's timeout function
to process the timeout (Event 120b). An event sequence
140 is then executed for replying to a request-type message
(Event 120c), as shown in FIG. 8, and processing control is
returned to the common request object from the specialized
request object (Event 120d). Processing control is then
returned back to the common server object from the common
request object (Event 120e).

FIG. 9 is an event trace corresponding to an event
sequence 160 for creating a new specialized request object
as shown by Events 100i and 100j of FIG. 6A. FIG. 9 shows
how a new specialized request object is created when a
request-type message is received.

According to a preferred method of the present
invention, the event sequence 160 as shown in FIG. 9 is
used by the common server object to request that the
specialized factory object construct a new request object
that is responsible for processing the received message.
The common server object first requests that the
specialized factory object create the specialized request
object (Event 160a). If the specialized factory object
supports the operation type in the request-type message,

then the appropriate specialized request object is

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

20

constructed based on the operation type (Event 160b). The
specialized request object then appends itself to the
common server object's active request list (Event 160c¢c) and
processing control is returned to the newly created
specialized request from the common server object (Event
160d). A pointer to the newly created request object is
then returned to the specialized factory object from the
newly created request object (Event 160e).

If the specialized factory object does not support the
operation type in the request-type message, then the
specialized factory object requests that its base class,
the common factory object class 117, construct an "unknown"
request object to process the unsupported request (Events
160f and 160g) . The "unknown" request object then appends
itself to the common server object's active request list
(Event 160h) and processing control is returned to the

newly created "unknown" request object from the common

server object (Event 160i). A pointer to the newly created
"unknown" request object is then returned to the
specialized factory object (Event 1607). Regardless of

whether or not the requested operation is supported by the
specialized factory object, a pointer to a specialized
request object or T"unknown" request object is always
returned to the common server object (Event 160k).

FIG. 10 shows an event trace of an initial processing
event sequence 180 for initially processing a newly created
request object. FIG. 10 corresponds to the processing
steps shown by Events 100k and 1001 of FIGS. 6A and 6B.
According to a preferred embodiment of the present
invention, the initial processing event sequence 180 of
FIG. 10 is designed to process two scenarios: (1) where the
requested operation can be completed within the initial
processing stage and (2) where the request object must send
a message to another building block and receive a response
before completing processing of the requested operation.

As further shown in FIG. 10, in the initial processing

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

21

event sequence 180 for processing a newly created request
object, the common server object begins processing of the
requested operation by invoking the specialized request
object's process request method (Event 180a). The
specialized request object then requests a pointer from the
"original request" message object to the message data of
the original received request-type message (Event 180b),
and the pointer is returned from the "original request"
message object to the specialized request object (Event
180c) . If the request needs to send a message to another
server to complete the requested operation, an event
sequence 200 is executed as shown in FIG. 11 for allocating
and sending a new request message to another building block
(Event 180d). Control is then returned back to the
specialized request object (Event 180e).

If the request can complete the processing of the
requested operation without sending messages to another
server it does so. When the processing has been completed,
the request sends a reply back to the sender of the
request-type message by executing event sequence 140 as
shown in FIG. 8 (Event 180f of FIG. 10). Regardless of
whether a new message or a reply was sent, control is
returned back to the common server object (Event 180g of
FIG. 10).

Completion of the initial processing event sequence
180 of FIG. 10 therefore indicates that either the entire
processing of the specialized request object is complete,
i.e., the request was a simple request, or that at least
one additional request-type message has been sent by the
specialized request object to another building block and
the original specialized request object is waiting for a
response before continuing processing. A simple or trivial
request can be, for example, a request to activate a
display light on the control panel of a certain hardware
component. In such a case, the sequence 180 activates the

display light and then sends the reply back to the common

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

22

server object that originally initiated the request.

In any event, whether a simple or complex request is
involved, the sequence 180 always returns control back to
the common server object such that the server processing
loop of FIGS. 6A and 6B is resumed and the next message is
processed. Therefore, after completion of the initial
processing event sequence 180 of FIG. 10, processing
control is returned to the common server object as shown by
Event 1001 in FIG. 6B.

FIG. 12 shows an event trace of a event sequence 210
for processing response messages received by a common
server object by the corresponding specialized request
object. FIG. 12 corresponds to the processing steps shown
by Events 100n and 1000 of FIG. 6B.

As further shown in FIG. 12, the event sequence 210
for processing response messages includes a request by the
common server object to some specialized request object to
begin processing of the response-type message (Event 210a),
and a request (Event 210b) and return of a pointer to the
message data of the response-type message (Event 210c). If
the request-type message requires that a new message be
sent to another server to complete the requested operation,
the event sequence 200 of FIG. 11 is executed for
allocating and sending a new request-type message to the
other server (Event 210d). The new request-type message is
then created and sent to the send mailbox object class, and
processing control is returned from the send mailbox object
to the specialized request object (Event 210e). If the
specialized request object can complete the requested
operation without sending any additional request-type
messages, then the event sequence 140 for replying to a
request-type message shown in FIG. 8 1is executed and
processing control is returned back to the common server
object (Event 210g).

After the sequence for processing the response-type

message by the corresponding specialized request object is

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

23

completed, (1) the entire processing of the original
request-type message has completed or (2) a new request-
type message has been sent to another building block. If
a new request-type message has been sent to another
building block, then the specialized request object is
waiting for a response before it can continue processing
and the event sequence 210 will be repeated for each
response-type message the common server receives for this
request.

FIG. 8 shows an event sequence 140 for replying to a
request-type message used by the process timeout event
sequence 120 of FIG. 7 (Events 120c¢ and 1204 of FIG. 7),
the initial processing event sequence 180 of FIG. 10
(Events 180f and 180g of FIG. 10) and the process response
event sequence 210 of FIG. 12 (Events 210f and 210g of FIG.
12) . The event sequence 140 of FIG. 8 begins by invoking
the reply method of the specialized request object (ﬁvent
140a), acquiring a pointer from the message object to the
start of the message data within the original request
message (Event 140b), and returning the pointer to the
specialized request object from the message object (Event
140c) . If the original request-type message requires a
reply, the specialized request object “fills-in” the data
required for the response message and invokes the common
request object's reply method (Event 1404).

Next, the common request object sends the response
message (Event 140d), sending the reply corresponding to
the original request-type message to the send mailbox
object from the common request object (Events 140e and
140f), and returns processing control back to the
specialized request (Event 1409g). The completed
specialized request object then deletes itself (Event
140h), calls a request object class destructor in the
common request object class (Event 140i), which removes the
"timed-out" or completed request object from the common

server object's active request list (Event 1403j), and

10

15

20

25

30

35

WO 99/34288 PCT/US98/27893

24

returns processing control to the common request object
from the common server object. If the original message did
not require a reply then the original request message is
deallocated from the send mailbox object (Event 1401),
processing control is returned to common request object
from the send mailbox object (Event 140m), and then to the
removed specialized request object from common request
object (Event 140n).

FIG. 11 shows an event trace of an event sequence 200
used by a request object for allocating and sending a new
request-type message to another server. FIG. 11
corresponds to the processing steps . shown by Events 180d
and 180e of FIG. 10.

As shown in FIG. 11, the event sequence 200 for
allocating and sending a new request-type message to
another server begins with the specialized request object
allocating a new message from the send mailbox object
(Event 200a), and a pointer to the new message is returned
to the specialized request object from the send mailbox
object (Event 200b). The specialized request object then
requests a pointer to the new message data from the "new
message" message object (Event 200c), and the pointer is
returned from the "new message" message object to the
specialized request object (Event 200d). The specialized
request object then requests a new sequence identifier from
the common server object (Event 200e), which in turn
assigns and returns to the specialized request object the
new sequence identifier that is used to match up the
specialized request object to corresponding response-type
message (Event 200f).

After the new sequence identifier is returned to the
specialized request object, the specialized request object
fills in the data for the message. As shown in FIG. 11,
the new request-type message, including the message data
and destination information, is requested to be sent by the

common request object (Event 200g). The common request

10

15

20

25

30

WO 99/34288 PCT/US98/27893

25

object converts the destination name of the new request-
type message into an addressable message recognizable by
the messaging service, and the addressable message is then
forwarded to the send mailbox object corresponding to the
messaging service (Event 200h). The send mailbox sends the
message and processing control is then returned to the
common request object from the send mailbox object (Event
200i), and then to the specialized request object (Event
200j). Finally, the new sequence identifier is saved in
the request object (Event 200k) and processing control is
returned to the specialized request object (Event 2001).

Referring again to FIG. 6B, Events 100i through 100m
always return with a pointer to a specialized request
object of some sort even if a request message is not
understood. For example, if the request message is not
understood by the common factory object or if a matching
specialized request object cannot be found for a response-
type message, then this will be processed as an error
condition. and an "unknown request" object will be returned
to the common server object. The "unknown request" object
will process these errors in its process request and
process response methods thus relieving the common server
object from processing these error conditions.

Although the present invention has been described in
connection with particular embodiments thereof, it is to be
understood that such embodiments are susceptible of
modification and variation without departing from the
inventive concept disclosed. All such modifications and
variations, therefore, are intended to be included within

the spirit and scope of the appended claims.

10

15

20

25

30

WO 99/34288 PCT/US98/27893

26

WHAT IS CILAIMED IS:

1. A distributed architecture computing system

having one or more processors and an object-oriented
control program for processing request-type messages
associated with one or more newly requested operations and
response-type messages associlated with previously requested
operations, said control program comprising:

a common server object for receiving and processing
said request-type and response-type messages;

a common factory object for receiving said request-
type messages from said common server object and creating
a specialized request object for each of said request-type
messages, said specialized request object comprising
process request and process response methods for performing
said requested operations, maintaining state information
associated with said requested operations and generating
salid response-type messages;

a common request object associated with said
specialized request object comprising process request,
process response, send and reply methods for processing
unknown request-type and response-type messages and for
generating said request-type and response-type messages;

a receive mailbox object associated with said common
server object for accessing said request-type and response-
type messages bound for said common server object;

a send mailbox object associated with said common
factory object for sending said response-type messages to
said receive mailbox object; and

a message object for buffering message data included

in said request-type and response-type messages.

10

15

20

WO 99/34288 PCT/US98/27893

27

2. The distributed architecture computing system
according to claim 1, wherein said common server object
comprises an active request list for matching response-type

messages with said previously requested operations.

3. The distributed architecture computing system
according to claim 1, further comprising one or more
specialized server objects for performing specific server

tasks.

4. The distributed architecture computing system
according to claim 1, further comprising one or more
specialized factory objects for performing specific factory

tasks.

5. The distributed architecture computing system
according to claim 1, further comprising one or more
specialized request objects for performing specific request

tasks.

10

15

20

25

30

WO 99/34288 PCT/US98/27893

28

6. A distributed telecommunications switching system
having one or more processors and an object-oriented
control program for processing request-type messages
associated with one or more newly requested operations and
response-type messages associated with previously requested
operations, said control program comprising:

a common server object for receiving and processing
said request-type and response-type messages;

a common factory object for receiving said request-
type messages from said common server object and creating
a specialized request object for each of said request-type
messages, said specialized request object comprising
process request and process response methods for performing
said requested operations, maintaining state information
associated with said requested operations and generating
said response-type messages;

a common request object associated with said
specialized request object comprising process request,
process response, send and reply methods for processing
unknown request-type and response-type messages and for
generating said request-type and response-type messages;

a receive mailbox object associated with said common
server object for accessing said request-type and response-
type messages bound for said common server object;

a send mailbox object associated with said common
factory object for sending said response-type messages to
said receive mailbox object; and

a message object for buffering message data included

in said request-type and response-type messages.

WO 99/34288 PCT/US98/27893

29

7. The distributed telecommunications switching
system according to claim 1, wherein said common server
object comprises an active request 1list for matching
response-type messages with said previously requested

5 operations.

8. The distributed telecommunications switching
system according to claim 1, further comprising one or more
specialized server objects for performing specific server

10 tasks.

9. The distributed telecommunications switching
system according to claim 1, further comprising one or more
specialized factory objects for performing specific factory

15 tasks.

10. The distributed telecommunications switching
system according to claim 1, further comprising one or more
specialized request objects for performing specific request

20 tasks.

10

15

20

25

30

WO 99/34288 PCT/US98/27893

30

11. In a method of processing messages in a
distributed architecture computing system, wherein request-
type messages are provided to a common server object for
processing, the improvement comprising:

creating specialized request objects using a
specialized factory object in response to said request-type
messages, said specialized request objects including
process request and process response methods for processing
said request-type messages;

invoking said process request and process response
methods using said common server object for processing said

request-type messages.

12. The improvement specified in claim 11, wherein
said common server object maintains a record of said
specialized request objects and correlates said response-

type messages with said specialized request objects.

13. The improvement specified in claim 11, wherein
said distributed architecture computing system further
comprises one or more specialized server objects for
performing specific server tasks, and wherein said common
server, common factory and common request objects process
all aspects of sending and receiving said request-type
messages and response-type messages, and maintaining an
active request list for matching said response-type
messages with said corresponding request-type messages for
any number of specialized servers regardless of the

processing required of the specialized servers.

10

15

20

25

WO 99/34288 PCT/US98/27893

31

14. In a method of processing messages in a
distributed telecommunications switching system, wherein
request-type messages are provided to a common server
object for processing, the improvement comprising:

creating specialized request objects using a
specialized factory object in response to said request-type
messages, said specialized request objects including

process request and process response methods for processing

,sald request-type messages;

invoking said process request and process response
methods using said common server object for processing said

request-type messages.

15. The improvement specified in claim 14, wherein
said common server object maintains a record of said
specialized request objects and correlates said response-

type messages with said specialized request objects.

16. The improvement specified in claim 14, wherein
said distributed telecommunications switching system
further comprises one or more specialized server objects
for performing specific server tasks, and wherein said
common server, common factory and common request objects
process all aspects of sending and receiving said request-
type messages and response-type messages, and maintaining
an active request list for matching said response-type
messages with said corresponding request-type messages for
any number of specialized servers regardless of the

processing required of the specialized servers.

PCT/US98/27893

WO 99/34288

1/10

ﬁ vm vm
X 49 a 149 3 749
SININOJINOD / SININOJNOI £ SININOJWOD /
JUVMAYVH | |¥ITIONINOD | JUVMQYVH | | ¥3TI08INOD | JUVMQNVH | |43 M0¥INOD |
/38VMLI0S LINN /34YML40S LINN /3MVMLI0S LINN
W07 . W01 W07
ye o ° ¥e o ° ye o °
/ ° o / ° o / ° o
SININOJWOD SININOAWOD SININOdWO0D
JYVMO¥VH | |¥ITIONINOD| | JUYMOUVH | | ¥3ITIONINOD | | FUVMAYVH | |4ITIONINOD|
/34VMLA0S LINN /3UVMLIO0S LINN /3YVMLIOS LINN
L W01 N L w001 N L V0T N
X ANNAY . TANAY X TANNAY
SININOJWOD 5 SININOAWOD \ SININOJWOD 5
JIVMANVH | |¥ITI0NINOD| JYVMaVH | |¥3TI0MINOD | | JVMQIYH | | ¥I10¥INOD | |
/34VML40S LINN /34YML40S LINN /34VYMLA0S LINN
L V0T | 01 | 0T
e AVMHLYd e AVMHLVd e AVMHLVd
SNOILVOINNWWNOD |- 0F SNOLLYDINNWNOD [0P SNOILVOINNWNOD | -0F
o SNV || a3ovNwK SI0ON | « V¢
9z 1 WILSAS 97— WILSAS 30IN3S o0
) dol
IR | L _ NIOVNVI

7\

0¢
> INJANOYIANS
na

4
> INJANOYIANS
ns

WO 99/34288 PCT/US98/27893

59 2/10
> o8
Server Y, 50
- /
_sendingSeqld K> RcvMbox
_recvMbox
_factory 60
_extReqListFront , /
_extReqListRear receies Message
serve
nextSeqld 36
isEmpty manages active |
append q Request processes
remove _server
findSeqld _sequenceld
_next
orders requests —sendMbox
. _msg
Factory builds sequenceld
maokeRequest [-54 processRequest
processResponse
? . Send F]G. 2
sends messages via
SndMbox reply
/
62

FIG. 3

Task_A Task_B Tosk_C Task_D
700 | l

/

l
(1) request (sequence #18)

Y

(2) request (sequence #24)

\
70b

(4) request (sequence #25)

-
-

(3) request (sequence #5)

(
10c 70d

Y

705 | (5) response (sequence §25)

»
|
(6) response (sequence #5)] 70e

(|
I‘
>
!
|
l

(7) response (sequence §24)

)
10g

70f
70h
/

(8) response (sequence #18)

l 1
¥
I [
=
L [
. |~

WO 99/34288 PCT/US98/27893
3/10
Y2\ SERVER FACTORY 24
A
82~ SPECIALIZED SPECIALIZED | -84
SERVER FACTORY
A REQUEST FIG. 4
o6 .
| 1 ! l
FIRST SECOND THIRD FOURTH
861 SPECIALIZED 87" SPECIALIZED SPECIALIZED ~-88 SPECIALIZED ~-89
REQUEST REQUEST REQUEST REQUEST
Y2 SERVER FacToRY 2%
1 1
FIG. 5 92~ CONFIGURATION CONFIGURATION | ~94
SERVER FACTORY
A REQUEST
o6 -
“CONFIGURATION" | [[l
SPECIALIZED RestoreDevReq | [RestoreFacilityReq| | RemoveDevReq | | RemoveFacilityReq
REQUEST 7 7 N N
96 97 98 99
104 114 112
\ \ 4 FIG. 7
COMMON SPECIALIZED COMMON
SERVER REQUEST 1 REQUEST
1200 o I
N (1) timeout(deltaTime) |
ol
i // decrement timeout and check for expiration
| |
| // if the request’s timer has expired
1200, (2) timeout()
>
190 4 // process a timeout for this request

|
120¢ ,El (3) Sbb_Reply_MACRO

120d |

1

(4)

|
l
|

vy _

PCT/US98/27893

WO 99/34288

4/10

i
|
I
!
I
I
|
!
!
|
I
I
!
|
!
I
I
I
I
|
|
!
[
|
!
!
[
I
!
|
I
I
I
|
!
[
I

¢ 1S3n03Y
@3Z1V193dS

/
911

(
%001

{
| ¢
i
|
I
|
I
|
!
I
I
I
|
|
I
I
I
[
!
|
I
!
!
|
|
I
]

|
abossaw WOOLY xeu 3y} Joj buiom paxdojq SOM JanaS ay) dwi) JO Junowd dy} 3jojnod //
_

!
[
!
!
I
!
|
|
|

I 1S3N03Y
((EVARV/WETN

/
yll

J00L
\

_
!
(0yOVN)1sanbay ~MaN ~ssa201d qqs (11) L (001
_ |~
[
_

“ bayawiogkhxxye (01)
|

|

|

|

-

1SIND3YINASY 20 [SIND3Y==ad|bswrbsw y // | cwo_

_ |

|

|

|

I

pamadas abossaw ‘ssasons=="soud //
|y

oYV K10j20474gS (p)
_

ojops (g) \

(Joiog __mmz (1) \

_
[
e
I

001

i

A

I
!
|
!
I
!
I
!
!
I
|
I
!
|
[
|
|
[
I
|
!
|
!
[
|

|
I
|
!
!
I
I
|
|

1S3n03Y
NOWWO0D

/
AN

(
5001

!
A4OLIV4
Q3Z1Iv193dS

/
oLl

151 Jsanbas ay) uo jsanbas yooa 1o
|

|
I
m
1 l
OUOV Inoowy ~ssa00igqqS (6) |
I
|
I
I
l

_ (swnypyep)ncauny (y) !

»l
>

uoo_)__,\ bossapaly+ (€) |
3 £ G001

[

|
_
_
_ 1 (fo.3)abossappoas S“
_
|
_
_

_ 13A310 _
! _ /

_ 7 (Jansas (1)

!
JOVSSIN XO0qNoAY dINIS 4INIS
\ \ NOWWOD 03Z1v193dS

801 901 \ \
vs.w .UN&N ¥01 0l

PCT/US98/27893

WO 99/34288

|
I
|
|
I
|
[
|
|
|
Y001\

I [I | [|

_ _ _ _ _ |

_ _ | | _ [

_ _ _ _ _ |

_ _ _ _ _ _

| _ _ _ _ _

_ _ | _ _ _

_ _ | _ _ !

_ _ _ _ _ |

_ _ _ _ | _

_ | _ _ [_

| | _ | | |

_ ! _ _ (~Aopapx)hoppqo109 (91) _

_ 0001 _ _ _ _ | _

M- _ I _ “

_ _ | (c1) \ _ | _ |

I _ _ ; _ ! m _

b \ [T d = i T 1 |

| | | OYOVN asuodsay~s§e20id7qaS (v1) | _ _ |
SO uool _ _ _ | yoalq0 bayumouyungasay ay) Jo /] !
N ! | _ P _ 1| (Q3NNIINOD)
0 “ | | " | jsanbay ?___Eos ay sumay // ¢ 001

_ [_ _ w _

| | | | 1400}~ ——] |

_ _ _ _ (p _gmssom bsw)pibag puyy (51) _

_ | _ _ _

| ! | 3SNOdSIy==pdAibswbsw p // | | |

_ _ _ _ _ |

! | _ _ _ _ | |

_ _ _ _ _ | ! !

_ _ | \ ! (1) _ _ \ g |

" “ " JaA310 _ “ 1001 _ "

| | _ “ _ _ _ _

[| | | !
¢ 1S3n0Y I 1S3n03Y 1S3ND3Y AYOLIVA JOVSSIN XOqQNoAY IS IS
(321'v193dS 0321v193dS NOWWOJ (321v193dS \ \ NONWNOD Q3Z1v193dS
/ / / / 801 901 \ \
gll 123! Cll

0Ll g9 9Jd ¥0l ¢0l

PCT/US98/27893
6/10

WO 99/34288

woyl |

M | _ _
L _ - R]
] (€1) | uoyl | |
_ / Cmo:cm:|_ocwocovm_oom8:oo=oon (1) “ _ _
" 0¥ 1 bmu:oumdz%ﬁuo&hm_ms.ﬂmo:ce.._oc_mco n// _ “ v_wi _
_ _ _

| -
| | : (11) | |
| | | (siy)anowas (1) | _/ g
! He
~ | . /0 (p) | 07l :
[| 1 10¥1 - _
| | L uon (s)e19p (8) | |
_ %ON— “ _ ' _ | ¢ OFl
| ; -
| | (9) | bov1 | _
A |(ysenba. - ouibuioYebossapAidal (G) 1< _ !
B | | 0o () N | |
" abossaw asuodsas ay) soy pjop pasinbas ayy w qy // POV “ “
“ 1S3nD3y==adA|bsw)sanbas~jouibuo y // owi " _

i 1 |
| P>
| | | o10pe () | |
| 3 / | (Jowgssn (7) | |
“ _ q0v i | ._ >l _

I I D ! |
“ _ R 3

XOqNpUS (1sanbas~joutbuo)sbossap 1S3n03Y L 1S3N03Y mu\,_mum

/ / NOWNOD Q3ZIVIO3dS NOWNOD

8Ll .
g o4 % 2 o o

PCT/US98/27893

WO 99/34288

7/10

%091
/

| | | “
| | _ |
o9l _ | ysanbayqasoys (11) |
— _ | - 091 |
" " bayumousungasays (01) _ | \ “
- |) _ m I
" " (siy})puaddo (g) " " N \"
Ll |(TBsw “~xoqppuas* Jasas)iop (1), \H/Lof Y091 _
I b9l _ T p——] _
_ _ [(Tbsw *~Janias)jsanbayaxows (9) _
m m ocm_ PIOA jOU SI marco”:eoaon.ome n// m m 001
_ " “ 1sanbayowoshhxxs (G) v_ nwm_ _
_ B “ _ _
_ ! : (v) _ |
" __u | (swy)puaddo (¢) _ o/ _
“ L/ (Tbsw "xogpipuas ‘JoNI3s) 10 (7) ! 091 “
" " 4091 PIOA SI w&?o:o_aqou.mme n// “ 0091 _
m “ _ “ (~bsw*~Iansas)isanbayayow (|) “ ’
| | _ |
1S3n03y 1S3n03y AY010V AY01IvA RENYEN
z;oxzxz: ouN_._v_uuam zozﬁ‘oo ouN_._<f_um_n_m zozﬁ‘oo
it 6 Old 4 (11 oLt Y0l

PCT/US98/27893

WO 99/34288

8/10

|
|
|
I
I
|
|
I
|
|
!
|
!
|
!
!
!
I
|
|
[
!
!
[
|
!
!
|

?mcoamo_v

abossap

(
2801

™\~
Y

N

on
o
O
—

J081 ()

!
|
I
|
I
|
_
1040V ~Aiday~aqs (9),
|

I [
! |
! |
[|
| |
! |
i I
I |
| |
| |
I I

_ coaeoao uﬁmozcm__ msso_asou\\
abossaw [ouorjippo >=c buipuas ynoyym pajaidwos aq uod uorjosado pajsanbas ayy §i // “

|

_

!

!

!

_

!

!

!

!

!

_

_ _ | !
~ !

| | 08l

| _
!

!

!

!

_

|

!

!

I

!

!

|

_
I
|
!
!
!
!
!
!
|
|
|
I
!
|
I
_

oow_)_,\ i ©) _
now_.\/c 0¥V ~2bossay~maNTJuas qqS (+)
}sanbas ay) jo buissaooud ay) muo_aES 0} 2140 39 0} x0iq buiping Jayjo swos 0} juss aq jsnw aBossow 0 n//
“ “ _ ﬁmzce ayads ay) mmmuoa //
_ | >
| | o%_JL “ ojops (¢) | oww_
_ _ _ / L (oogiasn (z7) e J
_ _ _ q081 m m Jsanbayssadoud ()
_ | |
1 | |
(1sanbai~mau) XOGHPUS (152nbasousbuo) 1S3n03Y 153003y Y3INY3S
abossapy / abossap NOWNOD d3Z1vI23dS NOWWN0D
(8l1 (\ \)
4801 D801 ¢l 14%' v0l
0L OId

PCT/US98/27893

WO 99/34288

9/10

|
|
I
|
!
|
|
I
[
[
|
|
I
I
|
|
|
!
|
|
|
|
|
!
!
|
I
l
I
|
|
!
[
I
|
!

Aowcoamev
abossap

4
9801

100¢
\ N~

l
>
|

_ _ _ [
_ [_ _
| | | %00z (V) |
| | | Y | |
" _ _ (p1~aouanbas ~burjouibuo)pjasuanbas (| |) "
| Lo _ ” - [
_ _ .ONN “ | (o1) N | I
| | 0 g ooz | !
_ | (9bossaw~mau ‘ssasppo)ebosappuas (g) A_ m@om “ _
_ _ ! I [_
“ _ “ (abossaw~mau *awoNuoiDuSap)puas (/) _
! _ ! L
“ _ " abossaw)sanbas mau swyy Joj oyop ayy 1y // S\ON " 00¢
_ _ _ | _
“ _ “ _ pi—a2uanbas —bunoutbuo (g)
_ ! _ _ “ o
| Smm | | | P00E T Tpibesou @)
' ! ! X V_ |
u " oip* (v) _ " “
| [_ | [
_ / ! ()oyoquasn (g) “ _ “
| 200¢ ! _ _ s | > |
| _ abossaw ~mau _
| | 9002 | *@ | |
| - " ()obossamooim (1) | N | L
_ " _ e |
| 1 !
(sbossaw~mau) X0Q)\PUS (¥sanbau~joutbLio) 1S3n03Y | 1S3ND3Y NENNEN
mooxmwoz / mmo\mmmz zozﬁ‘oo cm_N_._ﬂ_oun_m zozﬂ‘oo
8l
4801 0801 cll 145 70l
L O1A

PCT/US98/27893

WO 99/34288

]

10/10

°01l¢

sabossaw jouoiyppo Auo
|

N\

|
|
|
|
012 "

0¥VN—Aidoy—aqs (9) "

butpuas jnoyym pajaidwod aq uod jsanbas ayy p //

(s)

>

e

>

—

—— e e e —— — — e [Py —

_
_
|
|
|
_
|
|
_ A _
_
| OUOVI~2B0SSa MaN PuaSqdS () | —POLe | 1012
anbas ay} Jo buissacosd ay} a}2idwod 0) 2jq0 8q 0} %20]q buipjing Jayjo swos 0} Juas aq Jsnw abossaw Jayjouo §i // _
_ ! _ _
| asuodsas oiyvads ayy ssasoud // QW_N _ |
| I, | _
| | " 0jope (g) | |
_ | | V_ |
| “ no_m/“\ (Joyogsasn (g) | |
- _ 4
_ _ | (Tasuodsas)asuodsayssacoid (1) N\ | :
" _ “ _ Wiz |
XOQWpus 1S3n03y L 1S3nD3Y JOVSSIN BN EN
/ NONNOD Q3Z1VID3dS \ NOWINOI
8Ll % \ 80! \
cll vl 701
¢t Old

INTERNATIONAL SEARCH REPORT

‘nationat Application No

PCT/US 98/27893

CLASSIFICATION OF SUBJECT MATTER

A,
IPC 6 GO6F9/46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system foilowed by classification symbols)

IPC 6 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A WISMANS B: "Linking databases to the
Internet: present status and development
trends"

MOBIS '97: VERTEILTE OBJEKTE IN
ORGANISATIONEN (MOBIS ’97: DISTRIBUTED
OBJECTS IN ORGANISATION), BAMBERG,
GERMANY, 16-17 OCT. 1997,

vol. 4, no. 1, pages 72-77, XP002103507
Informationssystem-Architekturen, Sept.
1997, Gesellschaft Inf, Germany

see page 74, paragraph 4.2 - page 76

A "OBJECT—~ORIENTED MESSAGE QUEUE"
IBM TECHNICAL DISCLOSURE BULLETIN,
vol. 36, no. 6A, 1 June 1993, pages
585-586, XP000373103

see the whole document

/...

1,6,11,
14

1,6,11,
14

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considared to be of particutar relevance

invention
“E" earlier document but published on or after the international e
filing date
"L" document which may throw doubts on priority claim(s) or
which is cited to establish the pubtication date of another v

citation or other special reason (as specified)

"T" fater document published after the intemational fiting date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

document of particutar relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken afone

document of particular reievance; the claimed invention
cannot be considered to involve an inventive step when the

'0" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
"P" document published prior to the intemational filing date but in the art.
later than the priority date claimed “&" document member of the same patent family

Date of the actual completion of the international search

21 May 1999 04/06/1999

Date of mailing of the international search report

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Fax: (+31-70) 340-3016

Name and mailing address of the ISA Authorized officer

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Michel T
’

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

‘national Application No

PCT/US 98/27893

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

see the whole document

Category > | Citation of document, with indication,where appropriate, of the relevant passages Relevant to claim No.
A WO 97 22928 A (OBJECT TECHNOLOGY LICENSING 1,6,11,
C0) 26 June 1997 14

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent tamily members

‘national Application No

PCT/US 98/27893

Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 9722928 A 26-06-1997 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

