O 02/08893 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
31 January 2002 (31.01.2002)

PCT

(10) International Publication Number

WO 02/08893 Al

(51) International Patent Classification’: GOG6F 9/30

(21) International Application Number: PCT/EP00/07020

(22) International Filing Date: 21 July 2000 (21.07.2000)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant and

(72) Inventor: THEIS, Jean-Paul [LU/LU]J; 1, Porte des Ar-
dennes, L.-9145 Erpeldange (LU).

(81) Designated States (national): JP, US.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: A MICROPROCESSOR HAVING AN INSTRUCTION FORMAT CONTAINING EXPLICIT TIMING INFORMA-

TION

bit field length

—

Opcode | Operand 1

Operand n | Timing information

instruction format length

(57) Abstract: The present invention describes an instruction format of a microprocessor (and of a CPU and DSP as well), said
instruction format containing explicit timing information. Said timing information is specified in a dedicated bit-field and determines
the delay in clock cycle units of said microprocessor by which the entrance point and subsequent decoding and execution of an
instruction into the instruction pipeline of said microprocessor has to be delayed with respect to some predefined point in time. The
advantages of the presence of such a timing information in the instruction format consists in substantially reducing the machine code
size of software-pipelined *for’-loops containing conditional statements such as ’if-then-else’ statements.

WO 02/08893 PCT/EP00/07020

A microprocessor having an instruction format
containing explicit timing information.

1. Field of the invention

The invention is dealing with instfucﬁon formats of microprocessors.

2. Conventions, definition of terms, terminology

In the context of the present invention, the term ‘microprocessor’ means also a central processing unit
(CPU) or a digital signal processor (DSP), the meaning of these terms being the one commonly
described in the literature. As usual, a microprocessor has an instruction set. In other words, the
machine code of a program which is running or executed on said microprocessor, contains exclusively
_instructions belonging to said instruction set. Said machine code is obtained either by compiling the
source code of said program or by manual writing. Each instruction of a said instruction set has an
instruction format. As usual, the term ‘instruction format’ refers to a sequence of bit fields of a certain
length. Said bit fields may be of different length. A minimum set of bit fields making up an instruction
format normally contains a so called ‘opcode’ bit field and one or more ‘operand’ bit fields. Figure 1
illustrates the discussed concepts. The ‘opcode’ bit field encodes (allows to uniquely identify) a specific
instruction, e.g. the addition of two numbers, among all the instructions of said instruction set. The
‘operand’ bit fields uniquely determine the operands of the instruction encoded in the ‘opcode’ bit field.
In other words, an instruction is a data operation, where the operation is given by (encoded in) the
‘opcode’ bit field and where the data are given by (encoded in) the ‘operand’ bit fields. Usually, the
operands are either given by memory references, e.g. data stored at some memory addresses, or by
contents of registers in which case the registers are uniquely identified by (encoded in) said ‘operand’
bit fields. E.g. in case of a microprocessor with a register file containing 128 registers, an ‘operand’ bit
field of at least 7 bits is required to uniquely identify (encode) a specific register inside the register file.
Furthermore, one distinguishes normally between source operands and destination operands. Usually,
source operands represent either memory references or registers containing the data required by an
instruction, whereas destination operands represent either memory references or registers to which the
result of an instruction, e.g. the addition of two humbers, has to be stored.

In the context of the present invention, the length and the order of the bit fields making up the format of
an instruction is not relevant. In other words, it doesn’t matter whether the ‘opcode’ bit field is preceding
the ‘operand’ bit fields or vice versa nor does the order of the ‘operand’ bit fields among each other

1

WO 02/08893 PCT/EP00/07020

matter. The encoding of the bit fields is not relevant as well. Finally, the number of operand bit fields is
not relevant either.

Within the scope of the present invention, it is assumed that a microprocessor (CPUs or DSPs as well)
operates with a basic clock and that, as is usual for today’s microprocessors (CPUs and DSPs as well),
instructions are pipelined. This means that said microprocessor has an instruction pipeline containing
several stages and that instructions take several cycles of said clock to go through the different stages
of the instruction pipeline before completing execution, the first pipeline stage being usually a ‘prefetch’
stage and the last pipeline stage being often a ‘write back’ or an ‘execution’ stage. Therefore, if a
microprocessor operates with a basic clock, this means that data operations done inside said
microprocessor as well as the depth of the instruction pipeline are given in cycle units of said clock.
Typical depths of instruction pipelines of today’s microprocessors range between 5 to 15 stages, in
other words it takes from 5 up to 15 clock cycles for an instruction to go through the entire pipeline.
Usually, each instruction has a different number of pipeline stages to go through. The number of
pipeline stages that a given instruction has to go through is called the latency (in clock cycle units) of
said instruction. Concerning the operation of a microprocessor and concerning the execution of a
machine code on said microprocessor, a time axis can be defined by starting to count and label the
clock cycles upwards, from a certain point in time onwards or when said microprocessor starts operation
and begins to execute said machine code. If not mentioned otherwise, in the following the terms
‘instruction scheduling’ and ‘instruction execution’ refer to the definition and determination of the points
on said time axis at which a given instruction within said machine code has to enter the different stages
of the instruction pipeline. Note that this has not to be confounded with the instruction scheduling done
by compiler techniques like software pipelining, list or trace scheduling etc... The point in time (on said
time axis) at which a given instruction enters a pipeline stage is called the ‘entrance point’ of said
instruction into said pipeline stage.

3. Prior Art

As mentioned before, a minimum set of bit fields making up an instruction format contains at least
‘opcode’ and ‘operand’ bit fields. Instruction formats of today’s microprocessors, DSPs and CPUs may
contain different flavors of said bit fields and usually contain additional bit fields as well.

First, instruction formats may be of fixed or of variable length and my contain a fixed number or a
variable number of operands. In case of a variable instruction format length and a variable number of
operands, additional bit fields may be spent for these purposes. However, format length and number of
operands may also be part of the ‘opcode’ bit field.

Second, often an ‘operand’ bit field is given in form of an ‘address specifier’ bit field and an ‘address’ bit
field. The ‘address specifier’ bit field determines the addressing mode for the considered operand, e.g.
2

WO 02/08893 PCT/EP00/07020

indirect addressing, offset addressing etc..., whereas the ‘address’ bit field determines the address of
the considered operand within a memory space.

However, none of today’s instruction formats contains a bit field encoding explicit timing information,
where said timing information explicitly determines insfruction scheduling and execution as defined
before. This lack of information is due to the fact that the architecture concepts of today’s
microprocessors (CPUs and DSPs as well) doesn't require this type of information because instruction
scheduling is done either (1) in case of super-scalar and multi-issue microprocessors (CPUs and DSPs
as well), by dynamic scheduling mechanisms based on data dependence analysis of instructions
contained in a more or less large instruction window of the compiled or hand written machine code of a
given program or (2) in case of VLIW processors by static scheduling techniques, in particular by
software pipelining and trace scheduling, such thatinstructions are scheduled and executed in the same
order in which they are arranged in the machine code, where said machine code is generated by
applying said static scheduling techniques or (3) in case of EPIC processors, e.g. the 1A-64 from Intel
Corporation, by a mixture of the approaches (1) and (2). In this sense, timing information contained
(encoded) in the instruction format appears to be just redundant information and only likely to increase
the machine code size. However this does not hold in conjunction with a static instruction scheduling
technique called software pipelining, as will be shown in section 5.

4. Brief description of the drawings

Figure 1 shows an example of a ‘conventional’ instruction format containing bit fields for ‘opcode’ and
‘operands’.

Figure 2 shows an example of an instruction format containing a bit field containing explicit timing
information.

Figure 3 shows a ‘for'-loop and the directed acyclic graph (‘dag’) which equivalently represents the loop
body of said ‘forloop. Nodes of said ‘dag’ represent instructions of an instruction set of a
microprocessor and where said ‘dag’ is ‘software pipelined’ with an initiation interval of 1 clock cycle.

WO 02/08893 PCT/EP00/07020

5. Detailed description of the drawings

The main aspects of the present invention are described by referring to the figures mentioned in this
section.

Figure 2 shows an instruction format containing a bit field with explicit timing information. Note that the
position of the bit field within the instruction format is not relevant for the scope of the present invention.
The main aspect of the present invention consists in introducing explicit timing information into
instruction formats in general and to show the impacts on machine code size in conjunction with certain
scheduling techniques. In the discussion that follows, it is assumed that the microprocessor for which
such an instruction format is devised, operates with a basic clock. In other words, time indications
referring to instruction scheduling and execution as well as the depth of the instruction pipelines are
given in cycle units of said clock. Furthermore, a time axis is defined by starting to count and label the
clock cycles upwards, from a certain pointin time onwards or when said microprocessor starts operation
or starts execution of some machine code. Furthermore, itis assumed that instructions are pipelined, in
other words an instruction may take several clock cycles to go through all the stages of the instruction
pipeline before completing execution. Furthermore, instructions may have different latencies as defined
in the previous section.

Two problems related to instruction formats containing explicit timing information are now considered :
(1) given explicit timing information, how are the points on said time axis determined at which a
given instruction has to enter a certain stage of the instruction pipeline
(2) how is the timing information encoded

To problem (1) : As mentioned before, it is natural to take as time unit the cycle of the basic clock of the
microprocessor. As mentioned before, it is feasible that the timing information contained in the
corresponding bit field of the instruction format of a given instruction contains timing information for each
pipeline stage. In other words, the point in time at which a given instruction has to enter a certain
pipeline stage, e.g. a ‘decode’ or an ‘execution’ stage, is contained in said timing information in form of a
positive integer delay and said point in time (on said ime axis) is obtained by adding said delay to the
time reference of said instruction (this is called ‘absolute timing’ encoding) or to the pointin time (on said
time axis) at which said instruction entered a previous pipeline stage (this is called ‘incremental timing’
encoding). It is natural to take the point in time at which an instruction would enter the first pipeline
stage in the absence of any timing (delay) information as time reference (called ‘time zero’), for that
instruction. However, the definition of the time reference is formal and any other pipeline stage may be
considered as time reference as well.

An example shall illustrate the concepts. Consider an instruction pipeline of 3 stages consisting of
‘fetch’, ‘decode’ and ‘execute’ stages and assume that the bit field of the instruction format containing

WO 02/08893 PCT/EP00/07020

explicit iming information for a given instruction contains the integers 2, 3 and 5. This would mean that
said instruction would
(a) enter the ‘fetch’ stage with a delay of 2 clock cycle units with respect to ‘time zero’, where ‘time
zero' is the point in time or the clock cycle when the instruction would enter the ‘fetch’ stage in
the absence of any delay information
(b) enterthe ‘decode’ stage 3 clock cycles after having entered the ‘fetch’ stage
(c) enter the ‘execute’ stage 5 clock cycles after having entered the ‘decode’ stage.

As one can see, the timing information, given in form of positive integers, represents delays (in clock
cycle units) according to which the entrance points of an instruction into the different pipeline stages
have to be delayed with respect to points in time at which said instruction entered the previous pipeline
stage. As explained before, the entrance point into the first pipeline stage is thereby delayed with
respect to ‘time zero’, where time zero’ is the point in time at which said instruction would enter the first
pipeline stage in the absence of any timing (delay) information. Using a different terminology, one
simply says that the entrance points must be delayed by the delays as given by the integer values
contained in the timing information bit field of the instruction format. Therefore, it is assumed that the
microprocessor contains some mechanism or hardware circuitry to delay the entrance points of an
instruction into each pipeline stage individually. However, it is not relevant for the scope of the present
invention how this mechanism is implemented, whether the delays are generated by stalls of the
instruction pipeline or by some other method. In the previous example ‘incremental timing’ encoding was
used, in other words the entrance point of an instruction into a certain pipeline stage is determined by
adding the delay (as given by the integer value) to the entrance point into the previous pipeline stage.
For the scope of the present invention, it must be noted that the method of delaying the entrance point
of an instruction into a certain pipeline stage is equivalent to leaving the entrance point unchanged and
delaying the point in time at which the instruction ‘leaves’ said pipeline stage, which is equivalent to
increasing the latency of said pipeline stage, where the latency of a pipeline stage can be defined as the
number of clock cycles that an instruction takes in order to go through said pipeline stage.

To problem (2) : As mentioned before, the timing information contained in the corresponding bit field of
the instruction format may contain timing information for each pipeline stage of a given instruction.
Although it is not relevant for the scope of the present invention, two basic encoding schemes are of
practical interest and shall be briefly considered. Of coursé, there exists a myriad of encoding
techniques allowing to further compress the timing information by minimizing the redundancy. This
however always requires some decoding overhead prior to actual instruction scheduling and execution
and usually implies some loss in overall processing speed performance as well as additional power
‘consumption. The t\}vo mentioned encoding schemes which shall be considered here are : (a) ‘absolute
timing’ (b) ‘incremental timing’. ‘Incremental timing’ encoding has been used in the previous example. If
‘absolute timing’ encoding would be used instead, then said bit field would contain the integers 2, 5

=2+3) and 10 (=2+3+5) respectively and all timing information would be with respect to the time
reference (time ‘zero”) of said instruction, in other words the ‘decode’ stage would be entered 5 clock

5

WO 02/08893 PCT/EP00/07020

cycles after ‘time zero’ and the ‘execution’ stage 10 clock cycles after ‘time zero’. As one can see,
‘incremental timing’ will normally require less bits to encode than ‘absolute timing’.

The concept of ‘incremental timing’ and ‘absolute timing’ can be applied unchanged to as sequence of
instructions which have to be scheduled and executed consecutively. Consider f. ex. a microprocessor
containing an instruction pipeline with 3 stages. Consider an instruction i; containing timing information
given in form of the integer delays 2, 3 and 5. Consider another instruction iz, which has to be scheduled
* and executed consecutively to instruction i; and which contains timing information given in form of the
integer delays 1, 2 and 3. Then if ‘incremental timing’ was used to encode the mentioned delays, it
would mean that if instruction i; enters its 3 pipeline stages at clock cycles t+2, t+5, {+10 respectively (f
being the time reference for said instruction), then instruction i, enters its 3 pipeline stages at clock
cycles (+2,1+5,t+10)+(1,2,3)= t+2+1, t+5+2, t+10+3 respectively.

One advantage of introducing timing information for each pipeline stage is to avoid hardware resource
conflicts. E.g. consider the case of two instructions which are issued in parallel (in other words which
enter the first pipeline stage at the same point in time), which have the same latencies and which must
share the same ALU (Arithmetic Logic Unit) circuitry. Then, by delaying the entrance points into each
pipeline stage appropriately, it is possible to avoid that the two instructions access the ALU at the same

point in time or at the same clock cycle.

However, although the possibility of delaying entrance points individually allows for greater scheduling
freedom, the special case in which the timing information contained in the bit field of the instruction
format contains only one single delay is interesting as well. In this case, said delay specifies how much
the entrance point of the given instruction into the first pipeline stage has to be delayed with respect to
‘time zero’, where as before ‘time zero’ is the point in ime (or the clock cycle) when said instruction
would enter the first pipeline stage in the absence of any delay. All consecutive pipeline stages are then
entered without any additional delays.

E.g. assume that, in the absence of any timing information in the instruction format, an instruction would
enter the pipeline stages at clock cycles £, t+1, {+2 ... respectively, where tis the time reference for said
instruction. Then if the instruction format of said instruction would contain timing information in the form
of a single delay given by some integer ¢, this would imply that the pipeline stages would now be
entered at clock cycles t+c, t+c+1, t+c+2 ... respectively. In the case that the timing information
contained in the instruction format of a given instruction contains is given in form of) only a single delay,
one says that said delay is associated to said instruction.

Before closing this section, it is interesting to show the impact of incorporating explicit timing information
in the instruction format on the machine code size of a given program. To this end we consider a simple
example, shown in figure 3, of a ‘for-loop whose loop body contains three nested ‘if-then-else’
statements. Besides specifying the loop body in a high level language like C, it is more convenient for

6

WO 02/08893 PCT/EP00/07020

the present discussion to specify the loop body in form of a graphical representation, namely in form of
a directed acyclic graph (abbreviated by ‘dag’ in the following) whose nodes represent instructions of
the instruction set of a given microprocessor. A directed edge emanating from a node v; and ending ata
node v, means that node v, has to be scheduled and executed after node v;. The presence of 3 nested
if-then-else’ statements in the loop body of the ‘for-loop translates into 3 ‘compare’ instructions in the
‘dag’ and results in 4 possible branches such that one of the nodes labeled a, b, ¢ ord in figure 3 are
executed depending on the outcome of the ‘compare’ nodes labeled e, fand g. Assuming that there are
no data dependencies between iterations of the ‘for'-loop, the goal is now to maximize instruction level
parallelism and to overlap the scheduling and execution of the different iterations of the ‘for-loop by
applying software pipelining and determining the minimum initiation interval. Furthermore, assume that
the resource constraints of the microprocessor are such that no more than three instructions can be
scheduled and executed at the same time (in the same clock cycle). Neglecting any additional
constraints due to operand (register) lifetimes, one can easily verify that the minimum initiation interval is
1 clock cycle long. Furthermore, the ‘dag’ shown in figure 3 is such that no instruction has to be
delayed. However, since the ‘dag’ is software-pipelined with a period of one clock cycle, 3 independent
‘compare’ instructions have to be scheduled in one clock cycle leading to 2® possible combinations
containing each 4 instructions taken from different iterations of the ‘for-loop, namely the combinations :
(a,e,g,h), (afg,h), (beg.h), (bfgh), (cegh) (cfgh), degh) dfgh). This means that tpe final
machine code corresponding to the ‘software-pipelined’ ‘for-loop contains at least 2*x4 =32
instructions (it effectively contains even more because additional ‘branch’ instructions must be inserted
in the machine code), which is 4 times more than the number of instructions of a sequential machine
code version of the ‘for'-loop. Indéed, said sequential machine code version would contain only as many
instructions as contained in the ‘dag’ under the assumption that predicated instructions would be used.

However, by using an instruction format with explicit timing information one can reduce the machine
code size obtained by software-pipelining the considered ‘dag’ or ‘for-loop to the same number of
instructions as required by said sequential machine code version. Indeed, it is enough

(1) to indicate the initiation interval of said ‘dag’ (e.g. of said ‘for'-loop body)

(2) to indicate for each instruction (node) in the ‘dag’, the delay of that instruction such that all

resource constraints are satisfied

This is enough information for an appropriately designed microprocessor to schedule and execute all
instructions such that said ‘for-loop is effectively software-pipelined with the prescribed initiation
interval. Although in the example of figure 3 all the delays are zero, it is easy to figure out this
mechanism for the case where the delays are non-zero. As already mentioned previously, delays will
usually use ‘incremental timing’ encoding. In other words, if the entrance point of a node (instruction)
with no incoming edges is determined to be at some point on said time axis by taking into account the
delay associated to that node, then any node v, having a associated delay d, and having an incoming
edge emanating from some node v;, where node v entered the first pipeline stage at some clock cycle
t (on said time axis) after taking into account the delay associated to that node, is then scheduled to
enter the first pipeline stage at clock cycle t+d,+1.

WO 02/08893 PCT/EP00/07020

Hence, by using an instruction format with explicit timing information, it is possible to keep the machine
code size of the software-pipelined version of a ‘for'-loop almost as compact as a sequential version
thereof. Although a machine code size overhead is generated due to the additional bit-field in the
instruction format containing the timing information, it will be small because in practice because the
delays will lie in the range of a few clock cycles.

Finally as was mentioned before, it is assumed that the microprocessor for which such an instruction
format with explicit timing information is designed, contains mechanisms and hardware circuitry
(a) to automatically start a new iteration every p clock cycles, where p represents the initiation
interval (in clock cycle units), and to overlap the scheduling and execution of said iterations
such that no hardware resource constraints are violated
(b) for each iteration, to delay the entrance points of the instructions into the instruction pipeline
stages according to the timing information contained in the instruction format of said instructions
such that all resource constraints, including register file constraints, of the given microprocessor

are satisfied

Although the example in figure 3 and the previous discussion considers a ‘for’loop, the same
methodology is applicable to loops in general including ‘while-loops. This is due to the fact that the loop
body of any loop (whether ‘for’ or ‘while-loop) can be modeled by a ‘dag’.

Before closing this section, it is important to note that the scope of the presentinvention covers as well
the case in which the bit-field containing the timing information of an instruction is taken out of (or
separated from) the instruction format and stored as a separate part (of the instruction program) which
contains only timing information.

WO 02/08893 PCT/EP00/07020

6. Summary of the invention

The present invention concerns a microprocessor having an instruction format containing explicit timing
information according to claim 1.

WO 02/08893 PCT/EP00/07020

Claims

What s claimed is :

1. A microprocessor having an instruction format containing explicit timing information,
where said instruction format refers to all the instruéﬁons being part of the instruction set of said
microprocessor,
where said microprocessor contains an instruction pipeline containing one or more stages,
where said machine code of said microprocessor contains exclusively instructions being part of said
instruction set,
where said microprocessor operates with a basic clock such that all time indications referring to
instruction scheduling and execution as well as the depth of the instruction pipeline of said
microprocessor are given in cycle units of said clock,
where a time axis is defined by starting to count and label the clock cycles of said clock upwards
from a certain point in time onwards or when microprocessor starts operation and begins to execute
the machine code of a given program,
where instructions, being part of said machine code which is executed on said microprocessor, are
pipelined such that instructions take one or more clock cycles to go through one or more stages of
the instruction pipeline before completing execution,
where said timing information contained in the instruction format of an instruction contains one or
more positive integer values representing delays according to which one or more entrance points (on
said time axis) of said instruction into one or more pipeline stages have to be delayed either with
respect to the point in ime at which said instruction entered the previous pipeline stage or with
respect to ‘time zero’ of said instruction, where the entrance point of said instruction into the first
pipeline stage is delayed with respect to ‘time zero’, where ‘time zero' is the point in time at which
said instruction would enter the first pipeline stage in the absence of any delay, ‘
where said microprocessor contains some mechanism and hardware circuitry to delay the entrance
points of the instructions into each pipeline stage according to the delays contained in the timing
information of the instruction format

2. A microprocessor having an instruction format containing explicit timing information as claimed in
claim 1., where said microprocessor contains mechanisms and hardware circuitry to software-
pipeline loops, thatis
(a) to automatically start a new iteration of a given loop every p clock cycles, where p represents the
initiation interval (in cycle units of said clock) and to overlap the scheduling and execution of said
iterations of said loop

(b) for each iteration of said loop, to delay the entrance points of the instructions into the stages of
the instruction pipeline according to the timing information contained in the instruction format of

said instructions such that all resource constraints of said microprocessor are satisfied
10

WO 02/08893

bit field length

>

1/2

PCT/EP00/07020

Opcode

Operand 1

Operand 2

Operand n

A

instruction format length

Figure 1

bit field length

—

Opcode

Operand 1

Operand n

Timing informatiﬂ

instruction format length

Figure 2

WO 02/08893 PCT/EP00/07020
2/2

for (i==0;i<=N;i++)
{
if (x[iI<=y[i if (x[i+10]>=y[i] il=ylil;
M)t el(se x[il=x[i+3];)} v loop body of the

else {if (x[i+3]>=y[i]) x[il=y[i+3]; 'for'-loop
else x[i]=x[i+5]; } ’
}

N

g
e f
'dag' equivalently representing
the loop body of the above
a ® \l: c d for'-loop
*h

Figure 3

INTERNATIONAL SEARCH REPORT interni { Application No
PCT/EP 00/07020

A. CLASSIFICATION OF 3LbB-.IECT MATTER

IPC 7 GO6F9

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GOG6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 5 835 745 A (SAXE JAMES BENJAMIN ET 1
AL) 10 November 1998 (1998-11-10)
column 3, Tline 1 - line 36

column 27, 1ine 5 ~column 28, 1ine 3

A US 5 923 862 A (PARK HEONCHUL ET AL) 1

13 July 1999 (1999-07-13)
abstract

column 3, 1ine 16 - 1line 33
column 4, line 17 - Tine 49

A EP 0 840 213 A (BIAX CORP) 1
6 May 1998 (1998-05-06)
abstract

page 10, line 40 -page 11, Tine 2
page 28, line 44 - 1ine 51

s

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :
P g “T* later document published after the international filing date

or priority date and not in conflict with the application but

*A" document defining the general state of the art which is not cited 1o Understand the principle or theory underlying the

considered to be of particular relevance invention
E earller document but published on or after the international *X* document of particular relevance; the claimed invention
filing date cannot be considered nove! or cannot be considered to
"L daz:imelnt whié:h may tglrohwtﬁoubtsb on priotity claim(s) or involve an inventive step when the document is taken alone
vhich Is cited to establish the publication date of another *Y* document of particular relevance; the claimed invention
citation or other special reason (as specifed) cannot be considered to involve an inventive step when the
"O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to & person skilled
P document published prior to the international fiflng date but in the art.
later than the priority date claimed *&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
29 January 2001 05/02/2001
Name and mailing address of the ISA Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, 4
Fax: (+31-70) 340-3016 Moraiti, M

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

interr Application No

PCT/EP 00/07020

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A

US 5 557 761 A (CHAN SUN C ET AL)
17 September 1996 (1996~-09-17)

Form PCT/ISA/210 {continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Interr

+ Application No

PCT/EP 00/07020

Patent document
cited in search report

Publication
date

Patent family
member(s)

Publication
date

US 5835745 A 10-11~1998 NONE

US 5923862 A 13-07-1999 KR 227276 B 01-11~-1999

EP 0840213 A 06-05-1998 us 4847755 A 11-07-1989
DE 3650696 D 01-10-1998
DE 3650696 T 04-02-1999
EP 0247146 A 02-12-1987
JP 10187443 A 21-07-1998
JP 10187640 A 21-07-1998
JP 63501605 T 16—-06-1988
JP 3084282 B 04-09-2000
Wo 8702799 A 07-05-1987
us 5517628 A 14-05-1996
us 5021945 A 04-06-1991
us 5765037 A 09-06-1998

US 5557761 A 17-09-1996 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

