wo 2014/031393 A1 [N DO O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/031393 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

27 February 2014 (27.02.2014) WIPO | PCT
International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 17/30 (2006.01) kind of national protection available): AE, AG, AL, AM,
. L AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
International Application Number: BZ. CA. CH. CL. CN. CO. CR. CU. CZ. DE. DK. DM
PCT/US2013/054808 DO, DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT,
International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
13 August 2013 (13.08.2013) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
- . MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
Priority Data: ZW.
13/590,032 20 August 2012 (20.08.2012) us
(84) Designated States (uniess otherwise indicated, for every
Applicant: ORACLE INTERNATIONAL CORPORA- kind of regional protection available): ARIPO (BW, GH,
TION [US/US]; 500 Oracle Parkway, Mail Stop 50OP7, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
Redwood Shores, California 94065 (US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Inventors: SCHAUER, Justin; 1320 Stevenson St., TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
. . . EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
#C308, San Francisco, California 94103 (US). AMBERG, MC. MK. MT. NL. NO. PL. PT. RO. RS, SE. SL SK. SM
Philip; 30 E. Julian St., #116, San Jose, California 95112 ’ ° > i O P ? i’
.) TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
(US). HOPKINS, Robert David, II; 815 Sea Spray Lane, KM, ML, MR, NE, SN, TD, TG)
Unit 314, Foster City, California 94404 (US). LEXAU, ? ? T e ’
Jon; 8180 SW Miller Hill Road, Beaverton, Oregon 97007 Published:

(US).

Agents: BRANDT, Michael C. et al; 1 Almaden
Boulevard, Floor 12, San Jose, California 95113 (US).

with international search report (Art. 21(3))
with amended claims (Art. 19(1))

(54) Title: HARDWARE IMPLEMENTATION OF THE FILTER/PROJECT OPERATIONS

SYSTEM
100
c
RAM o SYSTEM CONTROL
102 ; 108
R
BLock || o T BITVECTOR CACHE
104A
t [T] orore FILTER UNIT =
BLOCK [— 1o 12 1
106 COMBINE UNIT
H 116
- PROJECT UNIT
BLOCK 118
104N
OUTPUT CACHE
120

(57) Abstract: Techniques are described for performing filter and project operations. In an embodiment, a set of predicates that spe-
cify criteria for filtering results to a query is received. Based on a particular predicate of the set of predicates, a predicate result for at
least one portion of a particular column is generated. The predicate result identifies rows within the first column that satisfy the par -
ticular predicate. Rows are selected and returned as results to the query based at least in part on the predicate result. In an embodi -
ment, the predicate result is a bitvector where each bit of the bitvector corresponds to a particular row within the particular column
and identity whether the particular row satisties the particular predicate.

WO 2014/031393 PCT/US2013/054808

HARDWARE IMPLEMENTATION OF THE FILTER/PROJECT OPERATIONS

FIELD OF THE INVENTION
[0001] The present disclosure relates generally to techniques for performing database

operations and, more specifically, to techniques for performing filter and project operations.

BACKGROUND

[0002] The approaches described in this section are approaches that could be pursued, but
not necessarily approaches that have been previously conceived or pursued. Therefore,
unless otherwise indicated, it should not be assumed that any of the approaches described in
this section qualify as prior art merely by virtue of their inclusion in this section.

[0003] A database comprises data and metadata that are stored on one or more storage
devices, such as a set of hard disks. The data within a database may be logically organized
according to a variety of data models, depending on the implementation. For example,
relational database systems typically store data in a set of tables, where each table is
organized into a set of rows and columns. In most cases, each row represents a distinct
object, and each column represents a distinct attribute. However, other data models may also
be used to organize the data.

[0004] In order to access and manipulate data in a database, a database management
system (DBMS) is generally configured to receive and process a variety of database
commands, often referred to as queries. In many implementations, the DBMS supports
queries that conform to a Data Manipulation Language (DML) such as structured query
language (SQL). When the DBMS receives a query, the DBMS performs one or more
database operations specified by the query and may output a query result. Example database
operations include filter, project, aggregation, and grouping operations, which are described

in further detail below.

FILTER AND PROJECT OPERATIONS

[0005] Filter and project operations are database operations that output values from
certain columns of certain rows, where the rows are filtered based on some criteria, known as
predicates. In SQL, the project and filter operations use the SELECT and WHERE syntax.
Specifically, SELECT statements indicate what data is projected (i.e. from which columns to

retrieve output values) and WHERE clauses include predicates to filter the output (i.e.

WO 2014/031393 PCT/US2013/054808
2

indicate from which rows to retrieve output values). Examples of operators for the WHERE

clause include, without limitation, the operators shown in Table 1 below.

Operator Description

= Equal

< Not Equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

BETWEEN | Between an inclusive range

LIKE Search for a pattern

IN Specifies a set of exact values for the column

Table 1: Example predicate operators

[0006] An example filter and project query is shown in Table 2 below.

Query 1:
SELECT SALESMAN, CUSTOMER, AMOUNT
FROM sales

WHERE AMOUNT > 200 and (SALESMAN = Pedro or SALESMAN = Alex)

Table 2: Sample filter/project query
This query filters the data in the sales table on the criteria that the salesman must be either
Pedro or Alex, and the amount of the sale must be greater than 200. For each record in the
sales table that meets these criteria, the query will return the associated salesman, customer,
and amount specified in the record.

[0007] For instance, Table 3 below illustrates an example sales table.

SALE_ID | SALESMAN CUSTOMER AMOUNT
1 Pedro Gainsley Corp. 400
2 Pedro Lexau’s Lexan 200
3 Alex Lexau’s Lexan 150
4 Michael Lexau’s Lexan 350
5 Alex Gainsley Corp. 600
6 Alex Lexau’s Lexan 650
7 Pedro Gainsley Corp. 470

Table 3: Example sales table

WO 2014/031393 PCT/US2013/054808
3

[0008] Given the example sales table of Table 3, Table 4 below illustrates the expected

output of executing Query 1.

SALESMAN CUSTOMER AMOUNT
Pedro Gainsley Corp. 400
Alex Gainsley Corp. 600
Alex Lexau’s Lexan 650
Pedro Gainsley Corp. 470

Table 4: Output of example query

AGGREGATION AND GROUPING OPERATIONS

[0009] Aggregation and grouping operations are database operations that provide
summary statistics about data in specific columns. In SQL, grouping operations use the
GROUP BY syntax to group results of aggregate functions by one or more columns. Table 5
below illustrates example aggregate functions that may be used in conjunction with GROUP

BY statements.

FUNCTION NAME DESCRIPTION

AVG Returns the average value of a column
COUNT Returns the number of rows in the column
FIRST Returns the first value in the column

LAST Returns the last value in the column

MAX Returns the largest value in the column
MIN Returns the smallest value in the column
SUM Returns the sum of all values in the column

Table 5: Example aggregate functions

[0010] Example aggregation and grouping queries are shown below in Table 6.

Query 2:

SELECT sum(AMOUNT)

FROM sales

Query 3:

SELECT SALESMAN, sum (AMOUNT)
FROM sales

GROUP BY SALESMAN

WO 2014/031393

PCT/US2013/054808

Query 4:

FROM sales

SELECT SALESMAN, CUSTOMER, sum(AMOUNT)

GROUP BY SALESMAN, CUSTOMER

Table 6: Example aggregation queries

[0011] Query 2 requests the total dollar amount of sales the company has made. When

Query 2 is executed, the DBMS performs aggregation but no grouping. The DBMS

unconditionally sums all amounts in the sales table to return a final result. Given the example

sales table of Table 3, Table 7 below illustrates the expected output of executing Query 2.

sum(AMOUNT)

2820

Table 7: Result table for Query 2
[0012] Query 3 requests the total dollar amount of sales grouped by the salesman who

made the sale. When Query 3 is executed, the DBMS performs both grouping and

aggregation. Specifically, the DBMS generates one aggregated result for each unique

salesman in the sales table where the result is the total sales by the particular salesman.

Given the example sales table of Table 3, Table 8 below illustrates the expected output of

executing Query 3.

SALESMAN

sum(AMOUNT)

Pedro

1070

Alex

1400

Michael

350

Table 8: Result table for Query 3
[0013] Query 4 requests the total dollar amount of sales grouped by the salesman and the

customer associated with the sale. When Query 4 is executed, the DBMS performs multi-

column grouping and aggregation. In this case there will be one aggregated result for each

unique salesman-customer pair, and the aggregated results are the total sales for that

particular salesman-customer pair. Given the example sales table of Table 3, Table 9 below

illustrates the expected output of executing Query 4.

SALESMAN | CUSTOMER | sum(AMOUNT)

Pedro Gainsley Corp. | 870

Pedro Lexau’s Lexan | 200

WO 2014/031393 PCT/US2013/054808

5
Alex Gainsley Corp. | 600
Alex Lexau’s Lexan | 800
Michael Lexau’s Lexan | 350

Table 9: Result table for Query 4
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] The present disclosure is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference numerals
refer to similar elements and in which:
[0015] FIG. 1 is a block diagram illustrating an example system architecture for
performing filter and project operations, according to an embodiment;
[0016] FIG. 2 is a flowchart illustrating an example process for performing filter and
project operations, according to an embodiment;
[0017] FIGS. 3A to 3E are a series of block diagrams illustrating different states of a
system in the process of performing filter and project operations, according to an
embodiment;
[0018] FIG. 4 is a block diagram illustrating an example system architecture with an
address generator for performing filter and project operations, according to an embodiment;
[0019] FIG. 5 is a block diagram illustrating an example system architecture for
performing grouping and aggregation operations, according to an embodiment;
[0020] FIG. 6 is a flowchart illustrating an example process for performing grouping and
aggregation operations according to an embodiment;
[0021] FIGS. 7A to 7E are a series of block diagrams illustrating different states of a
system in the process of performing grouping and aggregation operations, according to an
embodiment;
[0022] FIG. 8 is a block diagram of a computer system upon which embodiments may be

implemented.

DETAILED DESCRIPTION
[0023] In the following description, for the purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of the present invention. It
will be apparent, however, that the present invention may be practiced without these specific
details. In other instances, well-known structures and devices are shown in block diagram

form in order to avoid unnecessarily obscuring the present invention.

WO 2014/031393 PCT/US2013/054808

GENERAL OVERVIEW

[0024] Techniques are described herein for performing filter, project, grouping, and
aggregation operations. In an embodiment, specialized hardware may be configured to
perform these database operations. The specialized hardware may accelerate query
processing by reducing the amount of data flowing to rate-limited parts of a computer system,
which may help alleviate data bottlenecks. In particular, the specialized hardware may
reduce the amount of data that needs to be stored in RAM during filter and project operations,
thereby reducing the RAM input/output (I/0O) operations needed to evaluate the query. In
addition, the specialized hardware reduces instruction overhead that is present in most
common general purpose processors for the execution of database operations.

[0025] Furthermore the specialized hardware may allow multiple data passes through a
filter unit, which allows for flexibility in evaluating complex query predicates. Further still,
the specialized hardware may allow for nonlinear evaluation and processing of predicates,
such that the filter unit does not need to keep pace with a constant input stream of data.
[0026] According to other techniques described herein, the grouping and aggregation
may be performed without a global sort of table data. Avoiding a global sort alleviates
random memory access issues that occur while sorting a large list. For example, while
sorting a list, one item may go in a group located in one block of memory, while the next
item might belong to a group located in another block of memory. Writing the sorted table in
this case would typically require closing and opening new memory pages.

[0027] In addition, techniques are described that allow groupings and aggregations to be
performed on small chunks of memory, which allows random accesses to occur in fast, low
power caches.

[0028] According to embodiments described herein, data structures such as bitvectors are
generated to indicate which rows satisfy one or more predicates. In an example embodiment,
a bitvector is generated for each predicate in a query to indicate which rows within the
database satisfy the corresponding predicate. After a bitvector has been generated for each
predicate, bitwise operators are used to combine the bitvectors to generate a final bitvector.
The final bitvector indicates which rows satisfy all of the predicates in the set of predicates,
and may be used in projection operations to select rows to output as results to the query.
[0029] In other embodiments, data structures such as bitvectors are generated to indicate
which rows are part of the same group during grouping and aggregation operations. For
example, a set of bitvectors may be generated where each bitvector in the group corresponds
to a distinct group. The position of the bit within each of the bitvectors corresponds to a

particular row. The bit value of each bit in the bitvector is set to a first bit value if the row

WO 2014/031393 PCT/US2013/054808
7

corresponding to the bit is part of the group represented by the bitvector or a second bit value
if the corresponding row is not part of the group. Thus, the bitvectors may be used to easily
identify rows that belong to the same group and may be used during performance of

operations that aggregate values from columns of these rows.

EXAMPLE ARCHITECTURE FOR PROCESSING FILTER AND PROJECT
OPERATIONS

[0030] FIG. 1 illustrates an example system architecture which may be configured to
perform filter and project database operations, according to an embodiment. System 100
generally includes RAM 102, memory controller 106, system control 108, input cache 110,
filter unit 112, bitvector cache 114, combine unit 116, project unit 118, and output cache 120.
[0031] RAM 102 stores N blocks of data, as illustrated by blocks 104A to 104N, where N
may be any positive integer. RAM 102 may be implemented using any suitable computer
data storage that allows random access to the stored data. Examples of RAM 102 may
include without limitation dynamic RAM (DRAM) and static RAM (SRAM).

[0032] Memory controller 106 is a memory controller which manages the flow of data
going to and from RAM 102. For example memory controller 106 may process requests to
read and write data to RAM 102. Memory controller 106 may be implemented using any
suitable memory controller, including without limitation a double data rate DDR memory
controller, a dual-channel memory controller, or a fully buffered memory controller.

[0033] Input cache 110, bitvector cache 114, and output cache 120 are memory caches
that store data during query processing according to techniques described further below. By
caching the data, the number of I/O operations processed by RAM 102 may be minimized,
thereby reducing data bottlenecks.

[0034] System control 108, filter unit 112, combine unit 116 and project unit 118 (hereby
referred to as “database units”) function according to the techniques described in further
detail below to perform filter and project operations. Each of these components and other
database units described herein may be implemented as hardware or a combination of
hardware and software. For example, one or more of these units may be implemented using a
programmable logic device (PLD), such as a field programmable gate array (FPGA) or other
type of gate array or reconfigurable circuit. As another example, one or more of these units
may be implemented using a general purpose processor, such as an advanced RISC Machine

(ARM) or other reduced instruction set computer (RISC) processor.

WO 2014/031393 PCT/US2013/054808
8

FILTERING DATA BASED ON PREDICATES

[0035] FIG. 2 illustrates an example process for performing filter and project operations,
according to an embodiment. The process illustrated in FIG. 2 may be implemented on any
suitable system such as system 100 illustrated in FIG. 1 or system 400 illustrated in FIG. 4.
[0036] Referring to FIG. 2, in step 202, a query that includes a set of one or more
predicates is received by system control 108. For example, the query may include a SELECT
statement with a WHERE clause that specifies one or more predicates. However, any other
suitable syntax may be used depending on the particular implementation. In an embodiment,
each predicate specifies a criterion that is used to filter data extracted from a database and
output or otherwise returned as results to the query. The criterion may be specified using one
or more operators including, without limitation, the operators illustrated in Table 1 above.
[0037] In an example embodiment, system control 108 parses the received query to
determine which predicates the query includes and how the predicates should be programmed
into filter unit 112. Steps 204 to 210 define a loop that is repeated for each predicate in the
set of predicates. Thus, in the first iteration of step 204, filter unit 112 is programmed with a
first predicate of the set of predicates. System control 108 may program the predicates into
filter unit 112 in any suitable order. Techniques for selecting the order are described in
further detail below. In an embodiment, programming the filter unit may comprise
configuring an FPGA or other reconfigurable circuit to apply a filtering criterion dictated by
the predicate. For example, filter unit 112 may be programmed using a hardware description
language (HDL) to implement any of the predicate operators illustrated in Table 1 to compare
one or more values with a predicate value.

[0038] Typically, predicates impose conditions of values from specific columns. A
column upon which a predicate imposes a condition is referred to herein as a target column of
the predicate. Thus, for the predicate (AMOUNT > 200), the AMOUNT column is the target
column.

[0039] In step 206, values from columns are sent to filter unit 112. In an example
embodiment, system control 108 sends a request to memory controller 106 to load values
from one or more columns from RAM 102 into input cache 110. System control 108 may
determine which columns should be loaded into the input cache 110 based on the predicate
being evaluated. For example, system control 108 may cause the loading of values only from
the target column of the predicate with which the filter unit 112 is currently programmed.

For example, for the predicate AMOUNT>200, system control 108 may cause values from at
least a portion of the AMOUNT column to be loaded from RAM 102 into input cache 110, as

illustrated in the example implementation below.

WO 2014/031393 PCT/US2013/054808
9

[0040] The values from the target columns are then streamed from input cache 110 to
filter unit 112. Upon receipt of the column data, filter unit 112 applies the predicate that was
programmed at step 204 to generate a result identifying rows that meet the predicate. To
determine which rows meet the predicate, filter unit 112 may apply one or more predicate
operators to compare the value of a particular row of the received column with a predicate
value specified in the query predicate.

[0041] In step 208, the results of the filter are stored as a data structure indicating which
rows had target column values that met the predicate condition. In an embodiment, the data
structure is a bit vector as described in further detail below. In an alternative embodiment,
the data structure is encoded data generated from the bit vector. Any other suitable data
structure may also be generated, stored, and used to indicate which rows had target column
values that met the predicate condition.

[0042] In step 210, system control 108 determines whether there are predicates remaining
in the set of predicates that have not been evaluated yet by filter unit 112. If there are
remaining predicates that have not been evaluated, then the process returns to step 204, and
system control 108 programs filter unit 112 with one of the remaining predicates. If all the
predicates within the set of predicates have been already been evaluated, then the process

continues with step 212, which is described in further detail below.

GENERATING BITVECTORS AT THE FILTER UNIT

[0043] In an embodiment, the filter unit generates a bitvector for each predicate result.
Each bit of the bitvector corresponds to a row and indicates whether the corresponding row
satisfies the query predicate that is associated with the bitvector. For example, the position of
the bit within the bitvector may correspond to the position of the corresponding row within a
table. Thus, the third bit in a bitvector may correspond to the third row of a table.

[0044] The value of each bit represents a Boolean value, where a first bit value indicates
that the corresponding row satisfies the predicate condition and a second bit value indicates
that the corresponding row does not satisfy the predicate condition. For example, the third bit
in a bit vector is “1” if the third row of the table satisfies the predicate that is associated with
the bitvector, and is “0” if the third row of the table does not satisfy the predicate that is

associated with the bitvector.

COMBINING RESULTS
[0045] After a results for each predicate have been generated according to steps 202 to

210, a final result is generated in step 212 by combining the results of each predicate in a

WO 2014/031393 PCT/US2013/054808
10

manner dictated by the query. The final result is a data structure, such as a final bitvector,
that identifies the set of rows that meet all the predicates in the query.

[0046] In an embodiment, the final result is a final bitvector where, each bit of the final
bitvector corresponds to a particular row of the table that is targeted by the query. Just as the
value of each bit in the predicate-specific bitvectors indicates whether the corresponding row
satisfies the predicate associated with the bitvector, the value of each bit in the final bitvector
indicates whether the corresponding row satisfies all predicates. Thus, a first bit value (e.g.
“1”) is used to indicate that the corresponding row satisfies all predicates in the query, and a
second bit value (e.g. “0”) is used to indicate that the corresponding row does not satisty all
predicates.

[0047] In an example embodiment, system control 108 programs combine unit 116 with
instructions on how to combine the bitvectors. For example, combine unit 116 may be
programmed to perform one or more bitwise operations based on the logical operators
specified in the query to combine the result bitvectors. In the case of Query 1, for example,
system control 108 would program combine unit 116 to perform a bitwise OR operation, and
then a bitwise AND operation, to produce the final bitvector, as illustrated in the example

implementation below.

PROJECTING FILTERED DATA

[0048] In step 214, project unit 118 uses the final result to select rows to output from a
projected column. In the case where a final bitvector is used, project unit 118 processes the
final bitvector bit by bit to identify the rows that satisty all query predicates (i.e., those rows
whose corresponding bit, within the final bitvector, is set to the first bit value). In step 216,
project unit 118 retrieves column data for the projected column from input cache 110 and
outputs the rows identified by the final result to output cache 120. Outputting a row in this
context refers to storing the row that satisfies the predicate in output cache 120. Once the
row is output, it may be returned, for example to a user or application program, at any time as
a result to the query.

[0049] In step 218, system control 108 or project unit 118 determines whether all
columns indicated by the query have been projected. For example, in the case of Query 1, the
projected columns include the SALESMAN, CUSTOMER, and AMOUNT columns. If there
are any projected columns remaining, then the process returns to step 214, and the final result
is applied to a column in the remaining set. Applying the final result may comprise using the

final bitvector as a mask or translating the final bitvector into memory addresses, as described

WO 2014/031393 PCT/US2013/054808
11

further below. This process repeats until all columns indicated by the query have been
projected.

[0050] The process of projecting rows based on the final result may vary depending on
the particular implementation. In one embodiment, if not already stored in input cache 110
from the filtering process, then rows of values from a projected column are loaded into input
cache 110. Project unit 118 determines, based on the final result, which of these rows of
values should be stored in output cache 120. In an embodiment, project unit 110 uses a final
result bitvector as a mask that controls which rows are output at step 216 from project unit
118 to output cache 120. For example, each row of a projected column may be streamed
from input cache 110 to project unit 118. Project unit 118 may then apply the bitvector as a
mask to stream to output cache 120 only those rows that satisfy all query predicates.
Alternatively, an address generator unit may be used, as described in further detail below, to

provide project unit 118 with only those rows that should be output.

HYBRID COLUMNAR BLOCK PROCESSING

[0051] In an embodiment, the system stores at least a portion of the database in RAM 102
in a hybrid-columnar fashion. Hybrid-columnar storage breaks the database into blocks,
where each block has a fixed number of rows for one or more columns. For example, a first
block may store the first 50 rows for one or more columns, the second block the next 50
rows, and a third block the next 30 rows. Within each block, data is stored in a column-
oriented fashion. In other words, the elements within a column are stored contiguously
within the block. Storing the data in hybrid-columnar fashion allows the system to easily
process columns in manageable block sizes.

[0052] In an embodiment, the filtering and projection operations described above may be
performed on a per-block basis. For example, if a column is spread over multiple blocks, the
filtering and project operations may be applied to a first portion of the column residing in a
first block to generate a first result set. The process may repeat for each subsequent block
until the entire column has been processed. The result set generated at one stage does not
need to wait for a subsequent stage before being returned. For instance, the result set

generated for one block may be returned before or during processing of a subsequent block.

EXAMPLE SYSTEM IMPLEMENTATION OF FILTER/PROJECT OPERATIONS
[0053] FIGS. 3A to 3E are a series of block diagrams illustrating different states of a

system in the process of performing filter and project operations, according to an

WO 2014/031393 PCT/US2013/054808
12

embodiment. In particular, these figures illustrate system 100 processing Query 1 shown in
Table 2 above.

[0054] FIG. 3A is a block diagram of system 100 at the start of the filter operation.
Referring to FIG. 3A, the SALESMAN, CUSTOMER, and AMOUNT columns reside in
RAM 102 in a hybrid-columnar fashion and are split between block 302 and block 310.
Specifically, a first portion of the SALESMAN column, CUSTOMER column, and
AMOUNT column as shown by S1 304, C1 306, and, A1 308, respectively, reside in block
302. A second portion of the SALESMAN column, CUSTOMER column, and AMOUNT
column, as shown by S2 312, C2 314, and A2 316, respectively, reside in block 310.

[0055] When system control 108 receives Query 1, system control 108 determines how to
evaluate the predicates and causes the appropriate columns to be loaded into input cache 110.
As illustrated by FIG. 3B, the AMOUNT > 200 predicate is evaluated first. Accordingly,
system controller 108 programs filter unit 112 with predicate 330. The first portion of the
AMOUNT column, A1 308, is loaded into input cache 110 and sent to filter unit 112. Filter
unit 112 then evaluates the column data of Al 308 value by value (where each value
corresponds to a distinct row) using predicate 330 to generate bitvector Apl 340, which
indicates the rows of A1 308 that satisty the AMOUNT>200 predicate. The first bitvector,
Apl 340, is shown as Apl in Table 10 below. Bitvector cache 114 stores this bitvector for

subsequent processing.

AMOUNT | Apl
400 1
200 0
150 0
1
1
1
1

350
600
650
470
Table 10: The first bitvector, Apl, showing rows where AMOUNT > 200

[0056] After the AMOUNT > 200 predicate has been evaluated, the next two predicates,
SALESMAN = Pedro, and SALESMAN = Alex, are then processed serially in a similar
fashion. For example, the SALESMAN column S1 304 may be loaded into input cache 110.

G__9

System control 108 programs filter unit 112 to apply the operation to the “Pedro” value
in the first instance and “Alex” value in the second instance. Filter unit 112 evaluates the

SALESMAN column row by row in each instance to generate a second and third bitvector.

WO 2014/031393 PCT/US2013/054808
13

FIG. 3C is a block diagram of the system after all predicates have been processed. Bitvector
Sp2 342 represents the bitvector generated in response to evaluating the SALESMAN =
Pedro predicate and bitvector Sp3 344 represents the bitvector generated in response to

evaluating the SALESMAN = Alex predicate. These bitvectors are shown in Table 11 below.

AMOUNT Apl | SALESMAN | Sp2 | Sp3
400 1 Pedro 1 0
200 0 Pedro 1 0
150 0 Alex 0 1
350 1 Michael 0 0
600 1 Alex 0 1
650 1 Alex 0 1
470 1 Pedro 1 0

Table 11: The second bitvector, Sp2, shows rows where SALESMAN = Pedro and the third
bitvector, Sp3, shows rows where SALESMAN = Alex

[0057] In an embodiment, the bitvector generated by filter unit 112 is as many bits long
as there are rows in a block. For instance, the length of the bitvectors shown in Tables 10 and
11 above correspond to the number of values, for each column, are stored in the Block 1 302.
Thus, bitvector Ap1 340 has the same number of bits as there are rows in A1 308, and
bitvectors Sp2 342 and Sp3 344 have the same number of bits as there are rows in S1 304. In
these tables, rows that satisfy the predicate are assigned a bit value “1”” and rows that do not
satisfy the predicate are assigned the bit value “0”. However, these bit values may be
inverted, depending on the implementation.

[0058] After the result bitvectors for each predicate have been generated, the final
bitvector may be generated through the combine process described above. In the case of
Query 1 the combine process may be implemented as dictated by the logical operators in the
WHERE clause. Accordingly, system control 108 first programs combine unit 116 to
perform a bitwise OR on bitvectors Sp2 342 and Sp3 344. The result of the OR operation is
then used to perform a bitwise AND with bitvector Apl 340. FIG. 3D shows a block
diagram of the system after predicate result bitvectors have been combined to produce the
final bitvector used to retrieve a final set of filtered rows.

[0059] Referring to FIG. 3D, bitvector cache 114 stores bitvector Sp2ISp3 344, which is
the resulting bitvector from performing the bitwise OR operation on bitvectors Sp2 342 and
Sp3 344. Combine unit 116 then performs a bitwise AND operation using bitvector Sp2ISp3
344 and bitvector Apl 340 to generate final bitvector Ap1(Sp2ISp3) 348. These bitvectors

WO 2014/031393 PCT/US2013/054808

14

are shown in Table 12 below. The final bitvector shown in the last column of Table 12

represents rows, within block 1 302, that meet all the predicates of Query 1.

AMOUNT | Apl | SALESMAN | Sp2 | Sp3 | Sp2 or Sp3 | Apl and (Spl or Sp2)
400 1 Pedro 1 0 1 1
200 0 Pedro 1 0 1 0
150 0 Alex 0 1 1 0
350 1 Michael 0 0 0 0
600 1 Alex 0 1 1 1
650 1 Alex 0 1 1 1
470 1 Pedro 1 0 1 1

Table 12: Results of the bitvector combine operations, including the final bitvector for block
302

[0060]
rows from the appropriate columns. In Query 1, the SELECT statement indicates that data
should be projected from the SALESMAN, CUSTOMER, and AMOUNT columns of the
sales table. Accordingly, S1 304 may be streamed from input cache 110 to project unit 118.

The final bitvector is sent to project unit 118, which uses this bitvector to project

Project unit 118 may go through the final bitvector bit by bit and send to output cache 120 the
rows of the S1 304 that correspond to “Is” in the final bitvector. Project unit 118 repeats this
process for the CUSTOMER and AMOUNT columns using the same final bitvector.

[0061]
operation. Srl 350 represents the projected SALEMAN column data from block 302, Crl
352 represents the projected CUSTOMER column data from block 302, and Arl 354
represents the projected AMOUNT column data from block 302. This data may be sent out

FIG. 3E is a block diagram of the system at the end of the filter and project

as a result while the system begins processing block 310.
[0062]

data stored in other blocks such as block 310. For purposes of illustration, it is assumed that

The filtering and project operations described above may then be repeated on the

the sales table also includes the rows shown below in Table 13.

SALE_ID | SALESMAN CUSTOMER AMOUNT
8 Pedro Gainsley Corp. 100
9 Alex Lexau’s Lexan 370
10 Alex Lexau’s Lexan 500
11 Michael Lexau’s Lexan 120
12 Pedro Gainsley Corp. 280

WO 2014/031393 PCT/US2013/054808
15

Table 13: Additional rows of example sales table
Block 310 stores data for rows 8-12 in column-oriented format. For example, S2 312 may
store the following values in contiguous order: Pedro, Alex, Alex, Michael, Pedro. Similarly,
C2 314 stores rows 8-12 of the CUSTOMER column, and A2 316 stores rows of the
AMOUNT column.
[0063] Table 14 below shows the bitvectors generated after performing the filtering

operations on the data stored in block 310.

AMOUNT | Apl | SALESMAN | Sp2 | Sp3 | Sp2 or Sp3 | Apl and (Spl or Sp2)
100 0 Pedro 1 0 1 0
370 1 Alex 0 1 1 1
500 1 Alex 0 1 1 1
120 0 Michael 0 0 0 0
280 1 Pedro 1 0 1 1
Table 14: Results of the bitvector combine operations, including the final bitvector for block
310

[0064] The final bitvector shown in the last column of Table 14 identifies the rows within
block 310 that satisfy all the query predicates. Project unit 118 parses this final bitvector bit
by bit and send to output cache 120 the rows of S2 312 that correspond to “1s” in the final
bitvector. Project unit 118 repeats this process for C2 314 and A2 316 using the same final

bitvector.

SELECTIVE ROW FILTERING BASED ON ADDRESS GENERATION

[0065] In some embodiments, the rows that are supplied to filter unit 112 during
predicate evaluation may be restricted based on results obtained from a previous predicate
evaluation. For example, certain rows that do not satisfy a previously evaluated predicate
may not need to be considered when evaluating a subsequent predicate. By selectively
providing rows to filter unit 112 for processing, filter unit 112 may avoid having to evaluate
the entire column for each predicate.

[0066] FIG. 4 is a block diagram illustrating an example system architecture with an
address generator for performing filter and project operations, according to an embodiment.
System 400 is a variation of system 100 that includes address generator 402. System 400
may use address generator 402 for selectively supplying rows of a column being filtered to

filter unit 112.

WO 2014/031393 PCT/US2013/054808
16

[0067] In an embodiment, address generator 402 uses the bitvector result of a previous
filter to supply a subset of the rows to the filter unit for subsequent filters. The manner in
which a bitvector is used to restrict the rows supplied to filter unit 112 depends on the logical
operators specified in the query. For example, with Query 1, the first predicate is ANDed
with the subsequent predicates. Thus, if a row does not meet the first predicate, then that row
does not need to be considered for the next two predicates.

[0068] In the example implementation above, address generator 402 can use bitvector
Ap1 340 to only supply the rows that met the first predicate to filter 112 unit when producing
bitvectors Sp2 342 and Sp3 344. Specifically, because the bitvector associated with the
predicate AMOUNT>200 is 1001111, the second and third rows need not be evaluated
against the other predicates. The greater the number of subsequent evaluations that can be
skipped, the more efficient the query evaluation. For example, if AMOUNT>200 had
produced a bitvector 0000000, then the entire evaluation of the remaining predicates could be
skipped.

[0069] Because the next two predicates are ORed together, a row that meets the second
predicate does not need to be considered when evaluating the third predicate. That is, the
bitvector 1100001 associated with the second predicate indicates that the first, second and
seventh rows can be skipped during the evaluation of the third predicate.

[0070] In fact, during the evaluation of the third predicate, address generator 402 may use
the result bitvectors of the first and second predicate to determine that only the fourth, fifth
and sixth rows need to be evaluated against the third predicate. Specifically, the second and
third rows can be skipped because they fail to satisfy the first predicate, and the first, second

and seventh rows can be skipped because they do satisfy the second predicate.

ORDER OF EVALUATION

[0071] The order in which predicates are evaluated may vary depending on the
implementation. In an embodiment, the predicates may be evaluated in a sequential order.
For example, the predicates may be evaluated serially from left to right or right to left as
specified in the query.

[0072] In another embodiment, the order of predicate evaluation may be based on the
likelihood that the predicate will filter out a large number of rows (i.e. the “selectivity” of the
predicate). When predicates that are highly selective are evaluated first, a greater number of

rows are filtered out earlier in the filtering process. In system 400, this results in address

WO 2014/031393 PCT/US2013/054808
17

generator 402 providing a smaller subset of rows to filter unit 112 during subsequent
predicate evaluations. Thus, processing more selective predicates before less selective
predicates may reduce processing overhead.

[0073] In an embodiment, system control 108 estimates the selectivity of a predicate
based on the operators specified in the query. For example, predicates that are ANDed with
other predicates are more likely to be highly selective than predicates that are ORed with
other predicates. In another example, the equivalence predicate operator (“=") is more likely
to be highly selective than the not equal predicate operator (“<>" or “!="). Based on the
estimation, system control 108 programs the filter unit 112 in sequential order from the most
selective predicate to the least selective predicate.

[0074] In other embodiments, one or more predicates specified in a query are processed
in parallel. For example, filter unit 112 may be programmed with two or more predicates
specified in a query. Filter unit 112 may evaluate both predicates concurrently. Techniques

for parallelizing the predicate evaluation process are described further below.

PROJECTING FILTERED DATA IN A SYSTEM THAT USES AN ADDRESS
GENERATOR

[0075] In another embodiment, address generator 402 may translate the final bitvector
into a set of memory addresses for each row that satisfies all query predicates. Address
generator 402 may then use the memory addresses to request only these rows from input
cache 110 and provide them to project unit 118 for output. This may save processing
overhead because the entire column does not need to be streamed through project unit 118.
[0076] For example, at step 214, the final bitvector may be provided to address generator
402 from bitvector cache 114. Address generator 402 then determines the memory addresses
for each row that has a corresponding bit value indicating that the row satisfied the set of
predicates. Address generator 402 sends memory fetch requests to input cache 110 using
these memory addresses. If these rows are already loaded into input cache 110, then they
may be streamed directly from input cache 110 to project unit 118, which output the rows to

output cache 120. Alternatively, the rows may be sent to address generator 402

MULTIPLE PREDICATES PER COLUMN
[0077] In the examples given above, filter unit 112 applied a single predicate each time
column data is passed through. In alternative embodiments, filter unit 112 may be configured

to process multiple predicates for each column. For example, sample Query 1 includes the

predicates SALESMAN = Pedro or SALESMAN = Alex. Both of these predicates relate to

WO 2014/031393 PCT/US2013/054808
18

the same column. Therefore, system control 108 may program filter unit with both predicates
such that both predicates may be evaluated with a single pass of the SALESMAN column
through filter unit 112.

MULTIPLE COLUMNS PER UNIT

[0078] In the examples given above, filter unit 112 operated on a single column input. In
alternative embodiments, filter unit 112 may include a plurality of column inputs. Multiple
column inputs may be helpful when evaluating certain predicates. For example, the clause
WHERE SALESMAN = CUSTOMER references both the SALESMAN and CUSTOMER
columns in the same predicate. If filter unit 112 had two column inputs, then the predicate
could be evaluated on a single pass. Even in cases where two columns are not included in a
single predicate, having multiple columns inputs may be used to process predicates on
multiple columns simultaneously.

[0079] Project unit 118 may also include a plurality of column inputs, depending on the
implementation. For example, if project unit 118 had multiple column inputs, then the final
bitvector may be applied concurrently to the multiple columns to project the results in

parallel.

EXAMPLE ARCHITECTURE FOR PROCESSING GROUPING AND AGGREGATION
OPERATIONS

[0080] In an embodiment, specialized hardware may be configured to perform grouping
and aggregation operations. FIG. 5 illustrates an example system architecture which may be
configured to perform grouping and aggregation database operations, according to an
embodiment. System 500 may include all the elements of system 100 or system 400. In
addition or as an alternative to project unit 118, system 500 also includes aggregation unit
502.

[0081] System 500 may be combined or otherwise integrated with system 100 or 400 in
any suitable manner. Each of the overlapping blocks may be implemented as the same
hardware unit or as separate independent units. For example, filter unit 112 may be the same
hardware unit that performs predicate filtering in system 100 or system 400. This same unit
can also be used to create groups based on column data according to the techniques described
below. Alternatively, separate filter units and/or other database units may be used to process
grouping operations and filtering operations. In other embodiments, system 500 may be
implemented independently of and/or separately from the filtering and projection logic

illustrated in system 100 or 400.

WO 2014/031393 PCT/US2013/054808
19

GROUPING AND AGGREGATING DATA USING A PREDICATE FILTER

[0082] FIG. 6 illustrates an example process for performing grouping and aggregation
operations, according to an embodiment. The process illustrated in FIG. 6 may be
implemented on any suitable system, such as system 500 illustrated in FIG. 5.

[0083] Referring to FIG. 6, in step 602, a query is received that includes a request to
aggregate data grouped by one or more columns. For example, the query may include any
suitable aggregation function including, without limitation, those listed in Table 5. The
aggregation function may be used in conjunction with a GROUP BY statement specifying
one or more columns for grouping the aggregate result data. However, any suitable syntax
may be used to specify the aggregation function and grouping columns.

[0084] In step 604, a row of a first column that is being grouped is sent to filter unit 112.
In the case of sample Query 3, for instance, the first row of the SALESMAN column may be
sent to filter unit 112. In the case of sample Query 4, the SALESMAN and CUSTOMER
column may be combined and sent to filter unit 112 according to techniques described further
below. Alternatively, if filter unit 112 has multiple column inputs as described in further
detail below, then the first row of both the SALESMAN and CUSTOMER column may be
sent to filter unit 112 concurrently.

[0085] In step 606, filter unit 112 identifies an element associated with the first row of the
column. In an embodiment, the element is an item of data stored within the first row of the
column. For example, referring to the example sales table shown in Table 3, the first element
of the SALESMAN column is “Pedro”, and the first element of the CUSTOMER column is
“Gainsley Corp.”

[0086] In step 608, filter unit 112 uses equivalence to the first element identified at step
606 as a predicate to filter out rows that do not belong to the group to which the first element
belongs. For example, assuming the first element in the SALESMAN column is “Pedro”,
filter unit 112 uses the predicate “SALESMAN=Pedro” to filter out all rows that do not
belong to the “SALESMAN=Pedro” group. System control 108 may program filter unit 112
with this logic in response to receiving the query at step 602.

[0087] In step 610, the remaining rows (i.e., those rows other than the first row) of the
column are sent to filter unit 112. In an embodiment, the remaining rows are streamed in
contiguous order from input cache 110 to filter unit 112 in the first pass. In subsequent
passes, address generator may feed filter unit 112 only those rows that have not been

previously grouped.

WO 2014/031393 PCT/US2013/054808
20

[0088] In step 612, filter unit 112 filters out rows that do not satisty the filter to generate
the group of rows to which the first row belongs (e.g. the group of all rows where
SALESMAN=Pedro). This step may include generating a bitvector or other data structure
that identifies each row that satisfies the equivalence predicate. Similar to the predicate
filtering described above, each bit of the bitvector may correspond to a distinct row within the
column, where a first bit value indicates that the row satisfies the equivalence predicate and is
therefore part of the group, and a second bit value indicates that the row does not satisfy the
equivalence predicate and is therefore not part of the group.

[0089] In step 614, the first row and rows that match the first row are grouped and sent to
aggregation unit 502. In an example embodiment, filter unit 112 sends the bitvector
generated at step 612 to address generator 402, which uses the bitvector to request from
memory only those rows that are part of the current group. Once received, address generator
402 sends these rows to aggregation unit 502 for aggregation.

[0090] In step 616, aggregation unit 502 aggregates the values of the grouped rows as
dictated by the query. In the case of Queries 3 and 4, for example, aggregation unit 502
would sum the values of the grouped rows stored in the AMOUNT column.

[0091] In step 618, system 500 determines whether there are any remaining rows that
have not been grouped yet. If there are, then the process returns to step 604, where the
grouping and aggregation operation is repeated for only those rows that have not yet been
grouped. Accordingly, filter unit 112 is reprogrammed to use an element of a first ungrouped
row as the equivalence predicate to form a new group.

[0092] In the present example from Table 3, rows 1 and 2 would have been grouped in
the SALESMAN=Pedro group. Therefore, the third row would be the first not-yet-grouped
row. The third row has the value “Alex” in the SALESMAN column, which is the grouping
column of the query. Therefore, the second group is determined based on the filter
SALESMAN=Alex. The second group would include rows 3, 5 and 6.

[0093] During the third iteration of step 604, row 4 is the first remaining ungrouped row.
Row 4 has the value “Michael” in the SALESMAN column. Therefore, the third group is
determined based on the filter SALEMAN=Michael. The third group would only include
row 4. After the formation of the third group, the process illustrated in FIG. 6 would end,
because there would be no ungrouped rows remaining.

[0094] During each iteration, system 500 generates and aggregates a group based on a
new predicate. If all rows have been grouped, then the process ends. If the relevant columns
are stored over a plurality of RAM blocks, then this process may be repeated for each of the

plurality of RAM blocks, as described in further detail below, to produce a final result.

WO 2014/031393 PCT/US2013/054808
21

DETERMINING SUBSEQUENT GROUPINGS BASED ON PREVIOUSLY GENERATED
BITVECTORS

[0095] In an embodiment, the bitvectors generated at step 612 used to identify row
groupings (referred to herein as “group-membership bitvectors”) may also be used to
selectively provide rows to filter unit 112 for subsequent groupings. Specifically, each bit in
a group-membership bitvector corresponds to a particular row. When the bit is set to a first
bit value such as a “1” within a group-membership bitvector, this indicates that a group for
the particular row has been identified. If none of the group-membership bitvectors that have
already been generated have set the bit for a particular row to the first bit value, then the
particular row has not yet been associated with a group. Therefore, that particular row may
be provided to filter unit 112 for subsequent processing to determine to which group the
particular row belongs.

[0096] Combine unit 116 may perform bitwise operations on one or more of the group-
membership bitvectors generated at step 612 to generate a bitmask identifying ungrouped
rows. In one embodiment, after the first bitvector is generated, a bitwise NOT operation may
be performed on the bitvector. This results in a bitmask where the first bit value identifies
rows that have not been previously grouped. Accordingly, address generator 402 may
operate in the same manner to translate the bitmask into memory addresses for these rows.
Address generator 402 may then request retrieval of these rows, and only these rows, such
that only rows that are not already assigned to groups are provided to filter unit 112 for
subsequent grouping and aggregation operations.

[0097] After a second group-membership bitvector has been generated, the NOT
operation alone will not work to identify previously ungrouped rows, because there are now
multiple bitvectors in the set. Therefore, to generate the bitmask identifying previously
ungrouped rows, combine unit 116 may perform a bitwise exclusive or (XOR) operation
between the group-membership bitvector for the current group and the previously generated

bitmask. This process is illustrated in the example implementation below.

BLOCK-BY-BLOCK GROUPING AND AGGREGATION

[0098] In one embodiment, the grouping and aggregation operations described above
may be performed on a block-by-block basis. For example, table data may be stored in a
hybrid-columnar format in a plurality of RAM blocks. The process of FIG. 6 may be
implemented on a first block to generate a first result set identifying the groups and the

aggregate values within the first block. This process may repeat in the same fashion for each

WO 2014/031393 PCT/US2013/054808
22

of the remaining RAM blocks. Accordingly, a result set identifying the groups and aggregate
results is generated for each remaining block.

[0099] Depending on the particular implementation, output cache 120 may fill with data
before processing on the plurality of blocks has completed. For example, output cache 120
may not have sufficient storage to store the result sets for every block if the relevant data is
spread over many blocks. Storage in output cache 120 may also be consumed more quickly if
there are a large number of groups or the column data elements are large.

[0100] To free up storage space in output cache 120 or to generate a final result, a
plurality of result sets for different blocks may be grouped and aggregated according to the
process describe in FIG. 6. For example, after the output cache fills or the amount of
available storage space is otherwise less than a threshold, the data in output cache 120 may be
sent to the input cache 110. A group and aggregate operation is then run on the input cache
data in the same fashion as described previously. Thus, the results records of the different
result sets are grouped and aggregated, which may free up more storage by consolidating the
result sets. If this process does not free up space in output cache 120 or the output cache 120
reaches a state of such high occupancy that performance seriously degrades, then the output
cache contents may be passed to another unit such as a general purpose processor for larger-

scale aggregation.

EXAMPLE SYSTEM IMPLEMENTATION OF GROUPING/AGGREGATION
OPERATIONS

[0101] FIGS. 7A to 7E are a series of block diagrams illustrating different states of a
system in the process of performing grouping and aggregation operations, according to an
embodiment. In particular, these figures illustrate system 500 processing the sample Query 3
shown in Table 6 above.

[0102] FIG. 7A shows a system diagram after processing a first group for Query 3. As
illustrated, the SALESMAN and the AMOUNT column are divided between a plurality of
blocks. A first portion of the SALESMAN column, S1 704, and a first portion of the
AMOUNT column, A1 706, are stored in block 702, and a second portion of the
SALESMAN column, S2 712, and a second portion of the AMOUNT column, A2 714, are
stored in block 710. In an embodiment, the data is stored within these blocks in a hybrid-
columnar format.

[0103] When Query 3 is received, system control 108 causes a first portion of the
SALESMAN column, S1 704, to be loaded into input cache 110. The SALESMAN column

may be streamed from input cache 110 to filter unit 112 to group rows based on the

WO 2014/031393 PCT/US2013/054808
23

SALESMAN column. In order to compute the first group, system control 108 programs filter
unit 112 to use equivalence to the first element of the SALESMAN as a filtering predicate.
This is represented by predicate 720 of FIG. 7A. In the present example, the first element of
the SALESMAN column is “Pedro”, so the first group is the group of rows where
SALESMAN=Pedro.

[0104] Filter unit 112 may operate in the same manner described above for the filtering
and project operations with additional logic for determining the first element of a column for
use in predicate evaluation. Once programmed with predicate 720, the remaining rows of the
SALESMAN column are streamed from input cache 110 to filter unit 112 for evaluation.
Given the sample sales table shown in Table 3 and the filter SALESMAN=Pedro, filter unit

112 would generate the group-membership bitvector shown in Table 15 below.

SALESMAN | Bitvectorl
Pedro 1
Pedro 1
Alex 0
Michael 0
0
0
1

Alex
Alex
Pedro
Table 15: Filter unit output from predicate SALESMAN = Pedro

[0105] Group-membership bitvector] corresponds to the predicate results of predicate
720. Each bit in the group-membership bitvector with a value of “1” identifies a row in the
SALESMAN column with a value of “Pedro.” Thus, all rows that belong to a first group are
identified by the same bit value. Conversely, each bit that has a bit value of “0” identifies a
row that does not have a value of “Pedro” and, therefore, does not belong to the first group.
[0106] After filter unit 112 has generated the group-membership bitvector shown in
Table 15, the group-membership bitvector may then be sent to aggregation unit 502.
Aggregation unit 502 operates on the rows of the AMOUNT column indicated by the
bitvector as satisfying predicate 720. In one embodiment, address generator 402 translates
the group-membership bitvector into memory addresses of the rows in Al 706 for which the
corresponding bit value equals “1”°. These memory addresses are used to retrieve from RAM
102, into input cache 110, the values from Al 706 of the rows that belong to the group.

These values are then provided to aggregation unit 502 for aggregation.

WO 2014/031393 PCT/US2013/054808
24

[0107] In addition to the group-membership bitvector, aggregation unit 502 also receives
an indication of the type of aggregation operation it is to perform. For example, system
control 108 may program aggregation unit 502 to perform an aggregation function specified
in the query. Example aggregation functions include without limitation the aggregation
functions shown in Table 5. In the case of Query 3, aggregation unit 502 sums the data
stored in the rows of the AMOUNT column indicated by group-membership Bitvectorl.
Aggregation unit 502 may generate two outputs for the result set: the name of the group and
the result of the aggregation operation for the group. The output of a first group when
processing Query 3 is shown in Table 16 below. Aggregation unit 502 stores this output
(aggregate result 750) in output cache 120.

GROUP | SUM
Pedro 1070

Table 16: First output of aggregate unit
Some aggregation operations may involve more than two outputs. For example, the AVG
function may save GROUP, RUNNING AVERAGE, and TOTAL ELEMENTS in order to

calculate the average for subsequent occurences of the group.

[0108] FIG. 7B is a system diagram after processing a second group. Concurrently with
aggregation unit 502 operating on the first group-membership bitvector to generate aggregate
results for the first group, filter unit 112 may begin producing the next group-membership
bitvector for a second group. This time, filter unit 112 is only fed the rows that produced a
“0” the first time they were passed through the filter unit. In an example embodiment,
combine unit 116 performs bitwise NOT operation 740 on Bitvectorl to generate a bitvector
mask ~Bitvector] 730 and stores this bitvector mask in bitvector cache 114. The bitvector
mask ~Bitvectorl 730 identifies all rows that have not yet been grouped.

[0109] Once generated, this bitvector mask may then be sent to address generator 402,
which translates ~Bitvector]l 730 into memory addresses for the rows that have not been
previously grouped and causes only these rows to be delivered to filter unit 112. Filter unit
112 may then operate on these ungrouped rows by taking the first element from the
previously ungrouped rows provided by address generator 402 and using equivalence to this
first element as the new predicate 722. In the present example, equivalence to the value
“Alex” is used as the new predicate 722. Filter unit 112 evaluates the remaining rows that
have not been previously grouped using predicate 722 to generate a group-membership

bitvector for the second group, Bitvector2 732 and stores this group-membership bitvector in

WO 2014/031393 PCT/US2013/054808
25

bitvector cache 114. Each bit in Bitvector2 732 with a bit value “1” corresponds to a row
belonging to the second group. Aggregation unit 502 uses Bitvector2 to generate the
aggregate result 752, which sums the AMOUNT column for those rows in the second group.
Result 752 is stored in output cache 120.

[0110] FIG. 7C is a system diagram after processing a third group. Processing the third
group may proceed in a similar fashion to processing the second group, except that a different
bitvector mask is used to indicate which rows should be sent to filter unit 112. To determine
which rows should be provided to filter unit 112, combine unit 116 may perform an exclusive
or (XOR 742) bitwise operation with Bitvector2 and the previous bitvector mask ~Bitvectorl
to generate the new bitvector mask BV mask 736. Each bit of BV mask 736 with a bit value
of “1” corresponds to a row that has not yet been grouped. Address generator 402 uses BV
mask 736 to provide filter unit 112 with rows that have not yet been grouped. Filter unit 112
uses equivalence to the value “Michael” as the new predicate 724 to generate Bivector3 734.
Aggregation unit 502 uses Bitvector3 734 to generate the aggregate result 754, which sums
the AMOUNT column for those rows in the third group. Result 754 is stored in output cache
120. Table 17 below shows the group-membership bitvectors generated in these steps. If

there are additional groups in a block, their processing would be analogous to that of the third

group.
SALESMAN | Bitvectorl | Bitvector2 | Bitvector3
Pedro 1 0 0
Pedro 1 0 0
Alex 0 1 0
Michael 0 0 1
Alex 0 1 0
Alex 0 1 0
Pedro 1 0 0

Table 17: Bitvectors produced through the third pass of the filter unit

At the end of aggregation of data in the first block, the table stored in output cache 120 may

be represented by the table shown in Table 18 below.

GROUP | SUM
Pedro | 1070
Alex 1400

WO 2014/031393 PCT/US2013/054808
26

Michael | 350

Table 18: Aggregate output after a single block

[0111] FIG. 7D is a system diagram after two blocks in RAM have been processed. In
particular, the same processes that were applied to block 702 may be applied to block 710 to
group and aggregate data stored in the second block. Block 710 stores a second portion of
the SALESMAN column, S2 712, and a second portion of the AMOUNT column, A2 714.
For purposes of simplicity, it is assumed that, in block 710, the sales for Pedro, Alex, and
Michael sum to 1000, 2000, and 3000, respectively. Thus, the grouping and aggregation
operations generate result set 756, which is stored in output cache 120 along with the result
set generated when processing the first block. Thus, output cache 120 stores combined result
set 758. Table 19 below shows a representation of the output after two blocks have been

processed.

GROUP | SUM
Pedro 1070
Alex 1400
Michael 350
Pedro 1000
Alex 2000
Michael | 3000

Table 19: Aggregate output after two blocks
[0112] FIG. 7E is a system diagram after results in the output cache has been processed.
If available storage in output cache 120 is less than a threshold or a final aggregate result for
each of the blocks is ready to be computed, result set 758 may be sent to input cache 110 for
further processing and consolidation. A grouping and aggregation operation is then run on
the input cache data in the same fashion as described previously. After this aggregate pass,
the data that ends up in the result cache is shown in Table 20 below. This data is stored as

result 760 in output cache 120.

GROUP | SUM
Pedro 2070
Alex 3400
Michael 3350

WO 2014/031393 PCT/US2013/054808
27

Table 20: Result cache data after aggregate on a full result cache
[0113] Thus, the separate result sets generated for each block are grouped and aggregated
to generate a single result set for both blocks.
[0114] If there are additional RAM blocks remaining, this process continues until all
blocks are aggregated. If the result cache completely fills or reaches a state of such high
occupancy that performance seriously degrades, then the result cache contents may be passed

to another unit such as a general purpose processor for larger-scale aggregation.

CACHE SIZING

[0115] The sizes of input cache 110, bitvector cache 114, and output cache 120 may vary
depending on the particular implementation. Small caches have several benefits, including
faster operation and smaller area consumption. However, larger cache sizing may reduce the
number of RAM accesses during the filter and project operations. Therefore, the optimal
cache size of the various caches may vary depending on the implementation.

[0116] In one embodiment, the size of input cache 110, bitvector cache 114 and/or output
cache 120 is selected to approximate the size of one or more blocks of RAM, such as blocks
104A to 104N. With cache sizes that approximate block sizes, the system may efficiently
perform filter and project operations on a block-by-block or multi-block basis with limited
RAM accesses.

[0117] In another embodiment, the caches are sized such that the input cache has
sufficient storage for the column being grouped as well as the column storing the aggregate
data. Both of these columns may be processed multiple times if the group cardinality is
greater than one in a block, so having a cache large enough to store both columns may save
the time and power of reading them from RAM repeatedly.

[0118] In another embodiment, the output cache may be sized depending on the expected
cardinality of the overall dataset as well as the cardinality within blocks. The higher the
cardinality of the number of groups within a block, the quicker the output cache will fill
causing the result data to be aggregated more often during the grouping and aggregation
operations described above. Likewise, if the overall cardinality of the group data is high, the
output cache may not be able to hold the results for every group no matter how many extra
aggregates are performed. If the output cache is full even after an aggregate has been run on
its contents, a higher-level processing node may be used to complete the aggregate, which
may cause degradation in performance. Therefore, an output cache that is large enough to

hold at least the final result set may improve performance.

WO 2014/031393 PCT/US2013/054808
28

[0119] The size of the caches may also be selected based on the relative speeds of the
memory interface for RAM 102 and database units such as filter unit 112, combine unit 116,
and project unit 118. If the memory is fast compared to the database units, then a smaller
cache may be preferable because the cost associated with frequent loads may be small.
Conversely, if the memory is slow compared to the processing speed of the database units,
then a larger cache size may be more efficient.

[0120] In another embodiment, the size of input cache 110, bitvector cache 114 and/or
output cache 120 is selected based on the nature of the database workload. In some instances,
column data within a block may be processed by the database units multiple times such as
when many predicates are applied to the same column. If such a scenario is common in a
particular implementation, then larger cache sizes may improve performance by allowing

column data to reside in the caches for a greater period of time.

MULTI-COLUMN GROUPING

[0121] The above grouping and aggregation example describes processing Query 3 from
Table 6, but the same system may process Query 4, which groups data based on multiple
columns instead of a single column. In one embodiment, the columns involved in the
GROUP BY may be combined together. For example, in the case of Query4, the
SALESMAN and CUSTOMER columns may be combined, such as by concatenation. The
combined column may then be sent to filter unit 112 in step 602. The two columns would
then be separated at some point, such as before being written into the output cache. System
500 may include an additional database unit for combining the columns before they are sent
to filter unit 112 and an additional database unit for separating the columns before the output
cache 120.

[0122] In another embodiment, a filter unit that is capable of operating on multiple
columns, such as described above, is used to process multi-column groupings. For example,
a filter unit with multiple column inputs would be able to implement and evaluate a predicate
such as SALESMAN = first element of SALESMAN column AND CUSTOMER = first
element of CUSTOMER column in a single pass. For query3, a filter unit capable of
handling a two-column input would be sufficient. If the GROUP BY groups data by more
than two columns, the filter unit may be configured to accept more columns or the system

may iterate through the combinations of columns.

WO 2014/031393 PCT/US2013/054808
29

MULTIPLE GROUPS PER PASS

[0123] In an embodiment, filter unit 112 may be configured to process multiple streams
such that multiple groups may be determined in a single pass. For example, as the
CUSTOMER column is processed by filter unit 112, one stream may apply the predicate
SALESMAN = first element of SALESMAN, while another stream waits for the first case of
SALESMAN != first element of SALESMAN and uses that SALESMAN value as the
equivalence predicate. This approach is similar to the techniques for performing multi-
column grouping described in the preceding section, but the same column is sent to all
streams and the predicates are based on the results of previous predicates.

[0124] According to this process, filter unit 112 generates a group-membership bitvector
for each group that it processes. If the filter unit is capable of producing N groups per pass,
where N represents a positive integer value, then bitvector cache 114 may be configured to
store N+2 group-membership bitvectors: N bitvectors that are the output of filter unit 112,
one bitvector that ORs the N bitvectors together, and the bitvector mask that operates on the
ORed bitvectors as described in the example implementation above.

[0125] In alternative embodiments, bitvector cache 114 may be configured to store N or
N+1 bitvectors, depending on the implementation. For example, some of the N bitvectors can
be overwritten by the OR combination or the bitvector mask.

[0126] When aggregating data, aggregation unit 502 may operate on the N bitvectors
sequentially. Alternatively, if aggregation unit 502 is also configured to process multiple

streams, aggregation unit 502 may operate on these bitvectors simultaneously.

ADDITIONAL PARALLELISM

[0127] The techniques described above illustrate a sequential processing of the steps
presented. However, some of these steps may be performed in parallel, depending on the
implementation. For example, combine unit 116 could process bitvectors as the bits became
available from filter unit 112 rather than waiting for filter unit 112 to complete the predicate
evaluation. As another example, while project unit 118 is processing a column for output
cache 120, filter unit 112 may begin processing the next column to be filtered. Other steps
such as cache loading and access could be performed in parallel with other filtering and
projection steps as well. In yet another example, while aggregation unit 502 is processing a
column for output cache 120, filter unit 112 may start processing the next group. Other

operations such as cache loading and access could also operate in parallel.

WO 2014/031393 PCT/US2013/054808
30

HARDWARE OVERVIEW

[0128] According to one embodiment, the techniques described herein are implemented
by one or more special-purpose computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may include digital electronic devices such
as one or more application-specific integrated circuits (ASICs) or field programmable gate
arrays (FPGAs) that are persistently programmed to perform the techniques, or may include
one or more general purpose hardware processors programmed to perform the techniques
pursuant to program instructions in firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine custom hard-wired logic, ASICs, or
FPGAs with custom programming to accomplish the techniques. The special-purpose
computing devices may be desktop computer systems, portable computer systems, handheld
devices, networking devices or any other device that incorporates hard-wired and/or program
logic to implement the techniques.

[0129] For example, FIG. 8 is a block diagram that illustrates a computer system 800
upon which an embodiment of the invention may be implemented. Computer system 800
includes a bus 802 or other communication mechanism for communicating information, and a
hardware processor 804 coupled with bus 802 for processing information. Hardware
processor 804 may be, for example, a general purpose microprocessor.

[0130] Computer system 800 also includes a main memory 806, such as a random access
memory (RAM) or other dynamic storage device, coupled to bus 802 for storing information
and instructions to be executed by processor 804. For example, RAM 102 may be
implemented in main memory 806. Main memory 806 also may be used for storing
temporary variables or other intermediate information during execution of instructions to be
executed by processor 804. Such instructions, when stored in non-transitory storage media
accessible to processor 804, render computer system 800 into a special-purpose machine that
is customized to perform the operations specified in the instructions.

[0131] Computer system 800 further includes a read only memory (ROM) 808 or other
static storage device coupled to bus 802 for storing static information and instructions for
processor 804. A storage device 810, such as a magnetic disk or optical disk, is provided and
coupled to bus 802 for storing information and instructions.

[0132] Computer system 800 may be coupled via bus 802 to a display 812, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device 8§14,
including alphanumeric and other keys, is coupled to bus 802 for communicating information
and command selections to processor 804. Another type of user input device is cursor control

816, such as a mouse, a trackball, or cursor direction keys for communicating direction

WO 2014/031393 PCT/US2013/054808
31

information and command selections to processor 804 and for controlling cursor movement
on display 812. This input device typically has two degrees of freedom in two axes, a first
axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane.
[0133] Computer system 800 may also include query processing logic 832 for performing
filter, project, grouping, and/or aggregation operations. Query processing logic 832 may be
implemented using one or more elements illustrated in system 100, system 400, or system
500.

[0134] Computer system 800 may implement the techniques described herein using
customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or programs computer system 800 to
be a special-purpose machine. According to one embodiment, the techniques herein are
performed by computer system 800 in response to processor 804 executing one or more
sequences of one or more instructions contained in main memory 806. Such instructions may
be read into main memory 806 from another storage medium, such as storage device 810.
Execution of the sequences of instructions contained in main memory 806 causes processor
804 to perform the process steps described herein. In alternative embodiments, hard-wired
circuitry may be used in place of or in combination with software instructions.

[0135] The term “storage media” as used herein refers to any non-transitory media that
store data and/or instructions that cause a machine to operate in a specific fashion. Such
storage media may comprise non-volatile media and/or volatile media. Non-volatile media
includes, for example, optical or magnetic disks, such as storage device §10. Volatile media
includes dynamic memory, such as main memory 806. Common forms of storage media
include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape,
or any other magnetic data storage medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a
FLASH-EPROM, NVRAM, any other memory chip or cartridge.

[0136] Storage media is distinct from but may be used in conjunction with transmission
media. Transmission media participates in transferring information between storage media.
For example, transmission media includes coaxial cables, copper wire and fiber optics,
including the wires that comprise bus 802. Transmission media can also take the form of
acoustic or light waves, such as those generated during radio-wave and infra-red data
communications.

[0137] Various forms of media may be involved in carrying one or more sequences of
one or more instructions to processor 804 for execution. For example, the instructions may

initially be carried on a magnetic disk or solid state drive of a remote computer. The remote

WO 2014/031393 PCT/US2013/054808
32

computer can load the instructions into its dynamic memory and send the instructions over a
telephone line using a modem. A modem local to computer system 800 can receive the data
on the telephone line and use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in the infra-red signal and
appropriate circuitry can place the data on bus 802. Bus 802 carries the data to main memory
806, from which processor 804 retrieves and executes the instructions. The instructions
received by main memory 806 may optionally be stored on storage device 810 either before
or after execution by processor 804.

[0138] Computer system 800 also includes a communication interface 818 coupled to bus
802. Communication interface 818 provides a two-way data communication coupling to a
network link 820 that is connected to a local network 822. For example, communication
interface 818 may be an integrated services digital network (ISDN) card, cable modem,
satellite modem, or a modem to provide a data communication connection to a corresponding
type of telephone line. As another example, communication interface 8§18 may be a local
area network (LAN) card to provide a data communication connection to a compatible LAN.
Wireless links may also be implemented. In any such implementation, communication
interface 818 sends and receives electrical, electromagnetic or optical signals that carry
digital data streams representing various types of information.

[0139] Network link 820 typically provides data communication through one or more
networks to other data devices. For example, network link 820 may provide a connection
through local network 822 to a host computer 824 or to data equipment operated by an
Internet Service Provider (ISP) 826. ISP 826 in turn provides data communication services
through the world wide packet data communication network now commonly referred to as
the “Internet” 828. Local network 822 and Internet 828 both use electrical, electromagnetic
or optical signals that carry digital data streams. The signals through the various networks
and the signals on network link 820 and through communication interface 818, which carry
the digital data to and from computer system 800, are example forms of transmission media.
[0140] Computer system 800 can send messages and receive data, including program
code, through the network(s), network link 8§20 and communication interface 818. In the
Internet example, a server 830 might transmit a requested code for an application program
through Internet 828, ISP 826, local network 822 and communication interface 818.

[0141] The received code may be executed by processor 8§04 as it is received, and/or

stored in storage device 810, or other non-volatile storage for later execution.

WO 2014/031393 PCT/US2013/054808
33

EXTENSIONS AND ALTERNATIVES

[0142] In the foregoing specification, embodiments of the invention have been described
with reference to numerous specific details that may vary from implementation to
implementation. The specification and drawings are, accordingly, to be regarded in an
illustrative rather than a restrictive sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the scope of the invention, is the literal
and equivalent scope of the set of claims that issue from this application, in the specific form

in which such claims issue, including any subsequent correction.

WO 2014/031393 PCT/US2013/054808
34

CLAIMS

What is claimed is:

1. A method comprising:

programming a filtering unit with a predicate that specifies criteria for filtering results
of a query that targets a table;

wherein the predicate specifies a condition for a particular column of the table;

generating a predicate result by loading values from the particular column into an
input cache and causing the filtering unit to apply the predicate to the values;

wherein the predicate result identifies rows of the table that have values, within the
particular column, that satisty the condition specified by the predicate;

selecting rows to return, as results of the query, based at least in part on the predicate
result;

returning the selected rows as results to the query;

wherein the method is performed by one or more computing devices.

2. The method of Claim 1 wherein the predicate result is a bitvector and each bit of the
bitvector corresponds to a particular row and identifies whether the particular row satisfies

the condition specified by the first predicate.

3. The method of Claim 1, wherein:
said predicate is a first predicate of a set of predicates associated with the query;
said predicate result is a first predicate result;
the method further comprises:
programming the filtering unit with a second predicate, of the set of
predicates, that specifies second criteria for filtering results of the
query;
wherein the second predicate specifies a second condition for a second column
of the table;
generating a second predicate result by loading values from the second column
into the input cache and causing the filtering unit to apply the second
predicate to the values;
wherein the second predicate result identifies rows of the table that have
values, within the second column, that satisfy the second condition

specified by the second predicate;

WO 2014/031393 PCT/US2013/054808
35

wherein selecting rows to return as results based at least in part on the
predicate result comprises:
combining the first predicate result with the second predicate result to
generate a combined result;
using the combined result to identify rows that satisty both the first
predicate and the second predicate;
selecting rows identified by the combined result as satisfying both the

first predicate and the second predicate.

4. The method of Claim 1 further comprising:
for each predicate of the set of predicates:
programming the filtering unit with said each predicate, of the set of predicates, that
specifies particular criteria for filtering results of the querys;
generating a predicate result by loading values from at least one portion of a column
into the filtering unit and causing the filtering unit to apply said each predicate
to the values;
wherein selecting rows to return as results comprises:
combining each predicate result to generate a final result that identifies rows that
satisty all criteria specified by the set of predicates;
selecting the rows that are identified by the final result as satisfying the criteria

specified by the set of predicates.

5. The method of Claim 4,

wherein the predicate result generated for said each predicate is used to determine which row
values to provide to the filtering unit for evaluation of a next predicate;

wherein the set of predicates are evaluated in a serial order;

wherein the serial order is based on a likelihood that a predicate will filter out a large number
of rows;

wherein predicates that are more likely to filter out a large number of rows are evaluated

before predicates that are less likely to filter out a large number of rows.

6. The method of Claim 4, wherein selecting rows as results further comprises:
translating the final result into a set of memory addresses;
wherein each memory address in the set of memory addresses identifies a memory location of

a row that satisfies the criteria specified by the set of predicates.

WO 2014/031393 PCT/US2013/054808
36

7. The method of Claim 1, wherein causing the filtering unit to apply the predicate to the
values comprises:
generating a first bit value for a corresponding row of the particular column if a value
of the corresponding row satisfies the condition;
generating a second bit value, different than the first bit value, for the corresponding

row if the value of the corresponding row does not satisfy the condition.

8. The method of Claim 1, wherein generating the predicate result by loading values
from the particular column into an input cache and causing the filtering unit to apply the
predicate to the values comprises:
loading a first set of values from the particular column stored in a first block of
memory:
causing the filtering unit to apply the predicate to the first set of values to generate a
first bitvector that identifies rows of the table that have values stored within
the first block of memory that satisfy the condition specified by the predicate;
loading a second set of values from the particular column stored in a second block of
memory:
causing the filtering unit to apply the predicate to the second set of values to generate
a second bitvector that identifies rows of the table that have values stored
within the second block of memory that satisfy the condition specified by the

predicate.

0. The method of Claim 1, wherein causing the filtering unit to apply the predicate to the
values comprises causing the filtering unit to concurrently apply the predicate to a plurality of

values from the particular column.

10. One or more non-transitory computer-readable media storing instructions, which,
when executed by one or more processors, cause one or more computing devices to perform
operations comprising:
programming a filtering unit with a predicate that specifies criteria for filtering results
of a query that targets a table;
wherein the predicate specifies a condition for a particular column of the table;
generating a predicate result by loading values from the particular column into an

input cache and causing the filtering unit to apply the predicate to the values;

WO 2014/031393 PCT/US2013/054808
37

wherein the predicate result identifies rows of the table that have values, within the
particular column, that satisty the condition specified by the predicate;

selecting rows to return, as results of the query, based at least in part on the predicate
result;

returning the selected rows as results to the query;

wherein the method is performed by one or more computing devices.

11. The one or more non-transitory computer-readable media of Claim 10, wherein the
predicate result is a bitvector and each bit of the bitvector corresponds to a particular row and

identifies whether the particular row satisfies the condition specified by the first predicate.

12. The one or more non-transitory computer-readable media of Claim 10, wherein:
said predicate is a first predicate of a set of predicates associated with the query;
said predicate result is a first predicate result;
the one or more non-transitory computer-readable media further storing instructions
causing the one or more computing devices to perform operations comprising:
programming the filtering unit with a second predicate, of the set of
predicates, that specifies second criteria for filtering results of the
query;
wherein the second predicate specifies a second condition for a second column
of the table;
generating a second predicate result by loading values from the second column
into the input cache and causing the filtering unit to apply the second
predicate to the values;
wherein the second predicate result identifies rows of the table that have
values, within the second column, that satisfy the second condition
specified by the second predicate;
wherein selecting rows to return as results based at least in part on the
predicate result comprises:
combining the first predicate result with the second predicate result to
generate a combined result;
using the combined result to identify rows that satisty both the first
predicate and the second predicate;
selecting rows identified by the combined result as satisfying both the

first predicate and the second predicate.

WO 2014/031393 PCT/US2013/054808
38

13. The one or more non-transitory computer-readable media of Claim 10 further storing
instructions that cause the one or more computing devices to perform operations comprising:
for each predicate of the set of predicates:
programming the filtering unit with said each predicate, of the set of predicates, that
specifies particular criteria for filtering results of the querys;
generating a predicate result by loading values from at least one portion of a column
into the filtering unit and causing the filtering unit to apply said each predicate
to the values;
wherein instructions for selecting rows to return as results comprise instructions for:
combining each predicate result to generate a final result that identifies rows that
satisty all criteria specified by the set of predicates;
selecting the rows that are identified by the final result as satisfying the criteria

specified by the set of predicates.

14. The one or more non-transitory computer-readable media of Claim 13,

wherein the predicate result generated for said each predicate is used to determine which row
values to provide to the filtering unit for evaluation of a next predicate;

wherein the set of predicates are evaluated in a serial order;

wherein the serial order is based on a likelihood that a predicate will filter out a large number
of rows;

wherein predicates that are more likely to filter out a large number of rows are evaluated

before predicates that are less likely to filter out a large number of rows.

15. The one or more non-transitory computer-readable media of Claim 13, wherein
instructions for selecting rows as results comprises instructions for:

translating the final result into a set of memory addresses;

wherein each memory address in the set of memory addresses identifies a memory location of

a row that satisfies the criteria specified by the set of predicates.

16. The one or more non-transitory computer-readable media of Claim 10, wherein
instructions for causing the filtering unit to apply the predicate to the values comprise
instructions for:

generating a first bit value for a corresponding row of the particular column if a value

of the corresponding row satisfies the condition;

WO 2014/031393 PCT/US2013/054808
39

generating a second bit value, different than the first bit value, for the corresponding

row if the value of the corresponding row does not satisfy the condition.

17. The one or more non-transitory computer-readable media of Claim 10, wherein
instructions for generating the predicate result by loading values from the particular column

into an input cache and causing the filtering unit to apply the predicate to the values comprise

instructions for:

loading a first set of values from the particular column stored in a first block of
memory:

causing the filtering unit to apply the predicate to the first set of values to generate a
first bitvector that identifies rows of the table that have values stored within
the first block of memory that satisfy the condition specified by the predicate;

loading a second set of values from the particular column stored in a second block of
memory:

causing the filtering unit to apply the predicate to the second set of values to generate
a second bitvector that identifies rows of the table that have values stored

within the second block of memory that satisfy the condition specified by the

predicate.

18. The one or more non-transitory computer-readable media of Claim 10, wherein
instructions for causing the filtering unit to apply the predicate to the values comprises
instructions for causing the filtering unit to concurrently apply the predicate to a plurality of

values from the particular column.

19. A system for performing filtering and projection operations comprising:

a control unit configured to:

receive a set of predicates that specify criteria for filtering results to a query that

targets a table;
program a filter unit to perform a apply a particular predicate, of the set of predicates,

that specifies a condition for a particular column of the table;

a filter unit configured to:

receive values from the particular column and apply the particular predicate to the

values;

WO 2014/031393 PCT/US2013/054808
40

generate a bitvector that identifies rows of the table that have values, within the
particular column, that satisty the condition specified by the particular
predicate;
a project unit configured to:
select rows to return, as results of the query, based at least in part on the bitvector;

return the selected rows as results to the query.

20. The system of Claim 19 wherein:
said predicate is a first predicate of a set of predicates associated with the query;
the control unit is further configured to:
program the filter unit with a second predicate, of the second predicate, that specifies
a second condition for a second column of the table
the filter unit is further configured to:
receive values from the second column and apply the second predicate to the values;
generate a second bitvector that identifies rows of the table that have values, within
the second column, that satisfy the second condition specified by the second
predicate;
the system further comprises a combine unit configured to:
combine the first bitvector with the second bitvector by applying a bitwise operator to
generate a third bitvector;
wherein the project unit is configured to
use the third bitvector to identify rows that satisfy both the first predicate and the
second predicate;
select rows identified by the third bitvector as satisfying both the first predicate and

the second predicate

WO 2014/031393 PCT/US2013/054808

2.

41
AMENDED CLAIMS

received by the International Bureau on 20 December 2013(20.12.2013)

A method comprising;:

programming a circuit into reconfigurable hardware of a filtering unit based on a
predicate that specifics criteria for filtering results of a query that targets a
table;

wherein the predicate specifies a condition for a particular column of the table;

generating a predicate result by loading values from the particular column into an
input cache and causing the filtering unit to apply the predicate to the values;

wherein the predicate result identifies rows of the table that have values, within the
particular column, that satisfy the condition specified by the predicate;

selecting rows to return, as results of the query, based at least in part on the predicate
result;

returning the selected rows as results to the query;

wherein the method is performed by onc or more computing devices.

The method of Claim 1 wherein the predicate result is a bitvector and each bit of the

bitvector corresponds to a particular row and identifies whether the particular row satisfies

the condition specified by the first predicate.

The method of Claun 1, wherein:
said predicate is a first predicate of a set of predicates associated with the query;
said predicate result is a first predicate result;
the method further comprises:
programming a second circuit into the reconfigurable hardware of the filtering
unit based on a second predicate, of the set of predicates, that specifies
second criteria for filtering results of the query;
wherein the second predicate specifies a second condition for a second column
of the table;
generating a second predicate result by loading values from the second column
into the input cache and causing the filtering unit to apply the second

predicate to the values;

WO 2014/031393 PCT/US2013/054808
42

wherein the second predicate result identifies rows of the table that have
values, within the sccond column, that satisfy the second condition
specified by the second predicate;,
wherein selecting rows to return as results based at least in part on the
predicate result comprises: -
combining the first predicate result with the second predicate result to
generate a combined result;
using the combined result to identify rows that satisfy both the first
predicate and the second predicate;
selecting rows identified by the combined result as satisfying both the

first predicate and the second predicate.

4, The method of Claim 1 further comprising:
for each predicate of the set of predicates:
programming a particular circuit into the reconfigurable hardware of the filtering unit
based on said cach predicate, of the st of predicates, that specifies particular criteria
for filtering results of the query;
generating a predicate result by loading values from at least one portion of a column
into the filtering unit and causing the filtering unit to apply said each predicateﬂ
to the values;
* wherein selecting rows to return as results comprises:
combining cach predicate result to generate a final result that identifies rows that
satisfy all criteria specified by the set of predicates;, .
selecting the rows that are identified by the final result as satisfying the criteria

specified by the set of predicates.

5. The method of Claim 4,

wherein the predicate result generated for said cach predicate is used to determine which row
values to provide to the filtering unit for evaluation of a next predicate;

wherein the set of predicates are cvaluated in a serial order;

wherein the serial order js based on a likelihood that a predicate will filter out a large number
of rows;

wherein predicates that are more likely to filter out a large number of rows are evaluated

before predicates that are less likely to filter out a Jarge number of rows.

WO 2014/031393 PCT/US2013/054808
43

6. The method of Claim 4, wherein selecting rows as results further comprises:
translating the final result into a set of memory addresses;
wherein each memory address in the set of memory addresses identifies a memory location of

a row that satisfies the criteria specified by the set of predicates.

7. The method of Claim 1, wherein causing the filtcring unit to apply the predicate to the
values cbmprises:
generating a first bit value for a corresponding row of the particular column if a value
of the corresponding row satisfics the condition;
generating a second bit value, different than the {irst bit value, for the corresponding

row if the value of the corresponding row does not satisfy the condition.

8. The method of Claim 1, wherein generating the predicate result by loading values
from the particular column into an input cache and cauéing the filtering unit to apply the
predicate to the values comprises:
loading a first set of values from the particular column stored in a first block of
wemory:
causing the filtering unit to apply the predicate to the first set of values to generate a
first bitvector that identifies rows of the table that have values stored within
the first block of memory that satisfy the condition specified by the predicate;
loading a second set of values from the particular column stored in a second block of
| memory:
causing the filtering unit to apply the predicate to the second sct of values to generate
a second bitvector that identifies tows of the table that havc values stored
within the second block of memory that satisfy the condition specified by the

predicate.

9. The method of Claim 1, wherein causing the filtering unit to apply the predicate to the
values comprises causing the filtering unit to concurrently apply the predicate to a plurality of

values from the particular column.

WO 2014/031393 PCT/US2013/054808
44

10. One or more non-transitory computer-readable media storing instructions, which,
when executed by one or more processors, cause ove or more computing devices to perform
operations comprising:
programming a circuit into reconfigurable hardware of a filtering unit with a predicate
that specifies criteria for filtering results of a query that targets a table;
wherein the predicate specifies a condition for a particular column of the table;
generating a predicate result by loading values from the particular column into an
input cache and causing the filtering unit to apply the predicate to the values;
wherein the predicate result identifies rows of the table that have values, within the
particular column, that satisfy the condition specified by the predicate;
selecting rows to return, as results of the query, based at least in part on the predicate
result;

returning the selected rows as results to the query.

11. The one or more non-transitory computer-readable media of Claim 10, wherein the
predicate result is a bitvector and each bit of the bitvector corresponds to a particular row and

identifies whether the particular row satisfies the condition specificd by the first predicate.

12. The one or more non-transitory computer-readable media of Claim 10, wherein:
said predicate is a first predicate of a sct of predicates associated with the query;
said predicate result is a first predicate result;
the one or more non-transitory computer-rcadable media further storing instructions
causing the one or more computing devices to perform operations comprising:
programming a second circuit into the reconfigurable hardware of the filtering
unit based on a second predicate, of the sct of predicates, that specifies
second criteria for filtering results of the query;
wherein the second predicate specifies a second condition for a second column
of the table;
generating a second predicate result by loading values from the second column
into the input cache and causing the filtering unit to apply the second

predicate to the values;

WO 2014/031393 PCT/US2013/054808
45

wherein the second predicate result identifies rows of the table that have
values, within the second column, that satisfy the second condition
specified by the second predicate; ‘
wherein selecting rows to return as results based at least in part on the
predicate result comprises:
combining the first predicate result with the second predicate resuit to
generate a combined result;
using the combined result to identify rows that satisfy both the first
predicate and the second predicate;
selecting rows identified by the combined result as satisfying both the

first predicate and the second predicate.

13. The one or more non-transitory computer-readable media of Claim 10 further storing
instructions that cause the one or more computing devices to perform operations éoxnprising'.
for each predicate of the set of predicates:
programming a particular circuit into the reconfigurable hardware of the filtering unit
based on said cach predicate, of the set of predicates, that specifies particular criteria
for filtering results of the query;
generating a predicate result by loading values from at least one portion of a column
into the filtering unit and causing the filtering unit to apply said each predicate
to the values;
wherein instructions for selecting rows to return as results comprise instructions for:
combining each predicate result to generate a final result that identifies rows that
satisfy all criteria specified by the set of predicates;
selecting the rows that are identified by the final result as satisfying the criteria

specified by the set of predicates.

14, The one or more non-transitory computer-readable media of Claim 13,

wherein the predicate result generated for said each predicate is used to determine which row
values to provide to the filtering unit for evaluation of a next predicate;

wherein the set of predicates are evaluated in a serial order;

wherein the serial order is based on a likelihood that a predicate will filter out a large number

of tows;

WO 2014/031393 PCT/US2013/054808
46

wherein predicates that are more likely to filter out a large number of rows are evaluated

before predicates that are less likely to filter out a large number of rows.

15. The one or more non-transitory computer-readable media of Claim 13, wherein
instructions for selecting rows as results comprises instructions for:

translating the final result into a set of memory addresses;

wherein each memory address in the set of memory addresses identifies 2 memory location of

a row that satisfies the criteria specified by the set of predicates.

16. The one or more non-transitory computer-readable media of Claim 10, wherein
instructions for causing the filtering unit to apply the predicate to the values comprise
instructions for:
generating a first bit value for a corresponding row of the particular column if a value
of the corresponding row satisfies the condition;
generating a second bit value, different than the first bit value, for the corresponding

row if the value of the corresponding row does not satisfy the condition.

17. The one or more non-transitory computer-readable media of Claim 10, wherein
instructions for generating the predicate result by loading values from the particular coluron
into an input cache and causing the filtering unit to apply the predicate to the values comprise
instructions for:
loading a first set of values from the particular column stored in a first block of
memory: _ -
causing the filtering unit to apply the predicate to the first sct of values to generate a
first bitvector that identifies rows of the table that have values stored within
the first block of memory that satisfy the condition specified by the predicate;
loading a second set of values from the particular column stored in a second block of
memory:
causing the filtering unit to apply the predicate to the second set of values to generate
a second bitvector that identifies rows of the table that have values stored
within the second block of memory that satisfy the condition specified by the

predicate.

WO 2014/031393 PCT/US2013/054808
47

18. The one or more non-transitory computer-readable media of Claim 10, wherein
instructiovs for causing the filtering unit to apply the predicate to the valucs comprises
instructions for causing the filtering unit to concurrently apply the predicate to a plurality of

values from the particular column.

19. A system for performing filtering and projection operations comprising:
a control unit configured to:

rcecive a set of predicates that specify criteria for filtering results to a query that
targets a table;

.program a circuit into reconfigurable hardware of a filter unit to apply a particular
predicate, of the set of predicates, that specifies a condition for a particular
column of the table;

a filter unit configured to:

receive values from the particular column and apply the particular predicate to the
values; |

generate a bitvector that identifies rows of the table that have values, within the
particular column, that satisfy the condition specified by the particular
predicate;

a project unit configured to:
sclect rows to return, as results of the query, based at least in part on the bitvector;

return the selected rows as results to the query.

20. The system of Claim 19 wherein: ‘ o
said predicate is a first predicate of a set of predicates associated with the query,
the control unit is further configured to:
program a second circuit into reconfigurable hardware of the filter unit with a second
predicate, of the second predicate, that specifies a second condition for a
sccond column of the table
the filter unit is further configured to:
receive values from the second column and apply the second predicate to the values;
generate a second bitvector that identifies rows of the table that have values, within
the second column, that satisfy the second condition specified by the second
predicate;

the system further comprises a combine unit configured to:

WO 2014/031393 PCT/US2013/054808
48

combine the first bitvector with the second bitvector by applying a bitwise operator to
generate a third bitvector;
wherein the project unit is configured to
use the third bitvector to identify rows that satisfy both the first predicate and the
second predicate;

select rows identified by the third bitvector as satisfying both the first predicate and the
second predicate

PCT/US2013/054808

WO 2014/031393

1/16

91T
LINN ANIGANOD

A

!

VI
JHOVO 40103ALId

A

N0
100714

ocl <
JHOVO 1NdLNO
\
N 31T N >

LINN103r0dd |,
90}
- “ > = M
LINA ¥3LTI4 vl :
. « Hovo | | | 3
ndNE [T s
0}
d
1
R 301) | ow
| 104LNOD WILSAS w

X

00!}
W3LSAS

davol
100714

V0l
100714

413
VY

) E

PCT/US2013/054808

WO 2014/031393

2/16

8i¢

$suwn|os
Bulurewoay

SO

01¢
i saealpald

Bulurewoay >OA

91¢
SMOJ Pe1o8|as ayl indino

80¢
uonipuod ajeslpald ay)
J18W SMOJ YDIUM $B)edIpul Jey) Jnsa. Ja)|l 81018

+

A

¥1¢
uwn|o9 pajoslold e wouj

smou sjelidosdde ayj 108j9s 0 JNsal [BUIL BY) BSN

90¢

yun
18}l 8y 0} pasayy Buiag (s)uwinjod ayy pues

+

\

414
sojeolpald ||e

198U 1Byl SMmoJ 8y Bunesipul jnsal jeul) e sjelsush

0] Alenb ayj Aq pajejoIp Se s)nsaJ ay) suIquo?)

$0¢
a)esipald e yym jiun Jej|u ayj welboid

+

<0¢
sojeslipald Jo1es e Buipnjoul Aianb e aAI908Y

A

¢ Ol

PCT/US2013/054808

WO 2014/031393

3/16

(e
~—

¢

1453
¢s

IV

(4} -«
JHOVO 1Nd1NO
A
A 4
o7 T]
LINN INIGNOD LINN LO3rOYd |
A
\ 4
41 . g
1INN H31714 oIt
b JHOVD
1NdNI
7T
JHOVO HOLO3AALIG 0T
| 10YMLNOD WILSAS |

OO0OZ+HXx O 4w |7

%0)

70¢
LS

0
VY

0L€
R

c0¢
™~ %209

Ve Ol

PCT/US2013/054808

WO 2014/031393

4/16

«©
[an]
—

49,

1453
A

A4

A

(4} -
JHOVI 1Nd1NO
A
Y
T 3T i
1INN INIFNOD LINN103rodd |
—— <
A
! 0es
. < 0%
- |00e<
4N 3 LY
) LINA ¥31714) T
: JHOVO
0% Ldy LNdNI
7T
JHOVO HOLO3ALIG 30T
JOYINOD WILSAS |

OO0OZFHrxXx O 1w |~

10

IS

493
VY

0LE
[~ 100Ig

c0¢
[~ 0019

= E

PCT/US2013/054808

WO 2014/031393

5/16

©
[ann]
~—

49,

423
A

IV

[/r4X «
JHOVO LNd1NO
A
97T 3T) i
LINN INIGINOD LINN 103r0dd |
] 70¢
1S
A
. 30¢
432 - | w
HE ¢ds INNRSEINIE) T
77 ¢ds JHOVD
[z 1NdNI
i1
JHOVO ¥OL1D3ALIG 0T
JOMLINOD WILSAS |

OO0 Z+HXrQ aawwr |,

(%)

¥0¢
IS

413
VY

0L€
[~ %90|g

c0¢
[~ %001g

J¢ Ol

PCT/US2013/054808

WO 2014/031393

6/16

«©
[l
~

A4

49,

433
A

IV

0ct <
JHOVO LNd1NoO
F N
A 4
118 3T)]
LINN ANIGNOD LINN LO3rodd |
] 70¢
4 1S
B¥¢ (¢dslgds)dy —
%I mam_NQm H - N v
77T ¢ds | ANn¥ELE 5T
7% ¢ds JHOVD
07¢ LAy LNdNI
7IT
JHOVO HOLO3ALE) — u
| 10M1INOD WALSAS

OO0OZHHXrQ dawer L7~

(%)

¥0¢
IS

493
WV

0l€
[~ %20Ig

c0¢
[~ 00|19

ac ol

PCT/US2013/054808

WO 2014/031393

7/16

©
o
~—

¢d

1423
s

IV

A\

28 75¢ 0S¢
Ly Wi} 1S
[N “
JHOVO LNd1NO
A
A 4
9T 3T)]
LINN INIFWOD LINN LO3rodd |
Al
70T
1S
BPT (¢dslzds)idy -
9%¢ ¢dslzds AN « R LV
F¥¢ ¢ds) LNNEELTE | T
FAZ AL JHOVO |
07¢ Ldy IndNE |
2
JHOVI HOLOIALIG =07]
TOYLINOD WILSAS

COZFHXO dawrx /7

20]

¥0¢
IS

01
VY

0l€
RELE

c0¢
[~ %0019

3¢ "Old

PCT/US2013/054808

WO 2014/031393

8/16

113
LINA IANIGNOD

!

21
JHOVO 40103AlLId

A

143

JHOVO 1Nd1NOo

A

(113
LINN 103r0dd

H

A 4

I{4%
4O1Vd3INIO
§S3yaav

H

Y

413
ITNR-EINIE

A

H

801
TOHLNOD INFLSAS

A 4

73
JHOVD
LNdNI

NvOl
2014

«©
(e
~

avol
Y0014

viol
2014

A 4

WV

r
OO0OZ+—HXrodaweow L7~

1/

00y
WILSAS

¥ 'Ol

PCT/US2013/054808

WO 2014/031393

9/16

91T
LINN ANIGWNOD

:

213
JHOVO J0103ALId

A

©
O
~—

N0
100714

A

v

[\4% «
JHOVD 1NdLNO
A
705 -
LINN 3LYOTHOOY
i
0%
» HOLVHINID >
ss3¥aav
'
< > dj
413 JHOVOD
o LNNYALT |« LNdNI
¥
. 801 y
JOHLINOD WILSAS|

X

009
W3LSAS

\]

OOZFHx O 4w |

davol
100714

V0l
100714

VY

G Ol

PCT/US2013/054808

WO 2014/031393

10/16

819

$SMOJ Bulureway soX

A

919

Jun
uonebaibbe ay) je smol o sanjen ajebalbby

*

719
Jun uonebaibbe ay) 0] mo.

1S41J 8Y) Y0JBW Jey) SMOJ pue Mol 1Slil 8Y) pues

809
gjesipald e se anjeA ay)

0] 82us|eAINba ash 0} Jiun J8)|I} 8yl weiboid

»

+

[4%]

MO
1841} 8Y) Yojew jey) smo. o dnoub e sjelsush
0} MOJ 1SJ1} 8} Y2jewW Jou op Jey) SMOJ Ino Ja)|i4

909

uwin|oo ay)
10 MO 1SIIJ B U)IM paJeID0SSe JuswWa|e Ausp)

»

+

709
J1un Jayy

e 0] padnosb Buisg uwn|os e Jo Mo JSI1) puss

019

nun
J8)|ll 8Y1 0] UWN|OD BY) J0 SMOJ Bululewas pusg

+

}

<09
SUWN|o2 sJow Jo suo Aq padnoub ejep

ajebaibbe 0] 3senbau e Buipnjoul Alanb aaieoay

9 'Ol

PCT/US2013/054808

WO 2014/031393

11/16

9
LINN ANIGANOD

:

0%7 1i0j0an)1g

71
JHOVO 40103AlLIg

«©
(el
~

IV

A

\ 4

05,1 040} ‘oipad)
T -
JHOVD LNdLNO
% .
1INN ALYO3HOOV 907
LY
{
07
> YOLYHINIO >
ss3yaav ¥0Z
0 LS
0 [lols=f oz,
. 4] . 3T
"l LNN¥3ALT JHOYD
H 1NdNI
R 801 .
| 104LNOD W3LSAS |

\J

OCOZFHxXx O dawwr | L7~

IS

413
VY

0LL
[~ %901d

¢0.
= 00/d

V. 9ld

PCT/US2013/054808

WO 2014/031393

12/16

00¥) "Xaly

0rL-]

10N

113

L1INN INIGANOD

0%7 Li0j0an)g~
ZEL Z10109M1g

213
JHOVO 40103ALg

©
[ann]
~—

IV

A

h 4

¢sLS _
0.0} ‘oipad)
T ,
JHOVD LNd1NO
F N
% >
1INN 3LYD YOOV 902
v
v
0¥
> HOLVYINIO .
ss3¥aay 707
o LS
_”c”__‘mu 27/]
41’) 0T
" UNn¥aALd | IHOYD
! 1NdNI
_ 801 y
[10MLNOD WALSAS |

\4

OO0OZFHx O dawewx |

01
WV

0L
[~ 90|19

c0.
[~ 300Ig

4. 'Ol

PCT/US2013/054808

WO 2014/031393

13/16

eyl

j<[0)¢

9t

LINN INIGACD

_H

gelysew nd
eI ciopenig

213
JHOVO 4O103AlLld

A

A 4

©
o
—

IV

pg) | 0SE T9BYII
0071 ‘Xl
0.0 ‘0ipad
[)
JHOVD 1NdLNO
A
705 .
1INN 31Y93H99Y 90
LV
3
207
» HOLVYINIO >
ss3daay 707
1S
' S
_”E“__‘wn f.VNN
, 4%) o
" 1INN Y3174 JHOVD
T 1ndNI
. 801 .
TJOHLNOD WILSAS

COZFHX O 4w |~

-
w0~

01
WV

0L
[~ %90|g

¢0L
[~ 00I1d

JL Ol

PCT/US2013/054808

WO 2014/031393

14/16

91T
LINA 3NIGNOD

213
JHOVO HOLO3ALId

©
o
~

Y

A

Y

000€ ‘[oBYOIN
96/ 0002 ‘Xaly
0001 ‘01ped N
0S¢ ToBYOIN 8G.
0071 Xy
0401 ‘01ped
1) «
IHOVD LNdLNO
Fy
705) B
LINN 3LYOTFHDOY i
v
)
07
> HOLYYINIO ‘I
ssayaay AW
f ZS
" LINQ YL THOY)
3 1NdNI
- 301)
TOMLNOD WILSAS

\4

OO0OZFH—rxXx QO dawx |~

IS

<01
WYY

0L
[~ %9019

¢0.
[~ d0/g

dl "ol

PCT/US2013/054808

WO 2014/031393

15/16

9l
LINN ANIGNOD

!

i
JHOYO HOLO3ALIG

=

<©
()
~

v

0SEE ‘[0BYDIN
0o, A | 00vE Yoy
0402 ‘0ipad
(743)
IHOVD LNdLNO
A
208 - w‘ﬁ
1INN 3LY9 T4V L
05E ‘[oeYDI
3 007 ‘X8ly
0% 0.0} ‘oiped
» HOLVYYINID ™ [0G¢ ‘|9BYdIN
ssFYaay ;
001 ‘xely
{ «|.|[0z01 "oipeg
" LINNYILTH JHOYD LAdN|
!
, 307)
TOMLNOD WILSAS

\d

QOO0OZ+—xXx O 2wl -

IS

<0}
NV

011
[~ 9019

¢0.
[~ d0ig

3. "9l

PCT/US2013/054808

WO 2014/031393

16/16

728
1SOH

AHOMLAN

O0T

9¢8

dS|

L13NH3LNI

8c8

H3AE3S

MHOMLAN

918
TOHLNOD
d0SdNO

008

818 7e8 08
JOV4H3LINI 21901 MOSSINON

NOILYOINNNNOD ONISSIZ0Hd AHIND
208 A

sSng
018 308 908
ERLEN AHON3N
JOVH0OLS AWOY NIVIA

78
J0IA3d LNdNI

718
AV1dSId

8 'Ol

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/054808

A. CLASSIFICATION OF SUBJECT MATTER

INV. GOD6FL7/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched {classification system followed by classification symbols)

Documentation searshed other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

AL) 1 March 2012 (2012-03-01)
abstract
paragraph
paragraph
paragraph
paragraph [0042]
paragraph
paragraph [0073]
claim 4

e
OO0
oo R
WMo
w N O1
—
LI T |

—
(o]
o
=
~J

—

1

X US 2012/054225 Al (MARWAH VINEET [US] ET

paragraph [0013]
paragraph [0028]
paragraph [0038]

paragraph [0068]

1-20

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Speoial categories of cited doocuments :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" documentwhich may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or sannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

'&" document member of the same patent family

Date of the actual completion of the international search

14 October 2013

Date of mailing of the international search report

18/10/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswilk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Boyadzhiev, Yavor

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

29 January 2009 (2009-01-29)
abstract

paragraph [0001] - paragraph [0007]
paragraph [0013] - paragraph [0020]
paragraph [0023] - paragraph [0032]
paragraph [0037] - paragraph [0055]
paragraph [0059]

PCT/US2013/054808

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category” | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2010/293135 A1 (CANDEA GEORGE [CH] ET 1-20

AL) 18 November 2010 (2010-11-18)

abstract

paragraph [0004]

paragraph [0009] - paragraph [0012]

paragraph [0049] - paragraph [0054]

paragraph [0062] - paragraph [0063]

paragraph [0070] - paragraph [0071]

paragraph [0075] - paragraph [0079]

paragraph [0082] - paragraph [0092]

paragraph [0104] - paragraph [0106]

paragraph [0109] - paragraph [0112]

paragraph [0126]
A US 20097030874 Al (DAS DINESH [US] ET AL) 1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/054808
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2012054225 Al 01-03-2012 NONE
US 2010293135 Al 18-11-2010 NONE
US 2009030874 Al 29-01-2009 US 2009030874 Al 29-01-2009
US 2009030883 Al 29-01-2009

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - amend-body
	Page 43 - amend-body
	Page 44 - amend-body
	Page 45 - amend-body
	Page 46 - amend-body
	Page 47 - amend-body
	Page 48 - amend-body
	Page 49 - amend-body
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - wo-search-report
	Page 67 - wo-search-report
	Page 68 - wo-search-report

