(54) 发明名称
具有较大的共模和差模电感的电感器拓扑结构

(57) 摘要
本发明涉及一种具有较大的共模和差模电感的电感器拓扑结构。电感器 (160) 包括带有窗孔 (164) 的磁芯 (162)。该磁芯 (162) 包括第一磁芯部件 (168) 和第二磁芯部件 (170)。第一绕组 (176) 连接在该第一磁芯部件 (168) 上，以及第二绕组 (178) 连接在该第二磁芯部件 (170) 上。横向部件 (172, 174) 至少部分跨过窗孔 (164) 连接，并且可传导地激活该第一磁芯部件 (168) 和第二磁芯部件 (170) 之间的磁通量流。电路 (100)，包括输入端 (118)，电感器 (102) 和输出端 (E′, F′)。该电感器 (102) 与该输入端连接，并且具有一只电感磁芯 (162)。连接该电感器 (102) 以对共模噪声和差模噪声进行滤波。负载端与该电感器 (102) 连接并且从中接收滤波后的共模和差模电流。
1. 一种电感器，其特征在于，包括：
 磁芯，所述磁芯具有孔，且包括；
 第一磁芯部件；以及
 第二磁芯部件；
 第一绕组，所述第一绕组连接所述第一磁芯部件；
 第二绕组，所述第二绕组连接所述第二磁芯部件
 具有与所述第一绕组相反的极性，所述第二绕组位于所述第一绕组上与所述第一绕组相对的一侧；以及
 至少一个横向部件，其在所述第一绕组和第二绕组之间至少部分跨过所述窗孔与侧面
 部件连接，并且可传导地激在所述第一磁芯部件和所述第二磁芯部件之间的磁通量流
 对共模噪声和差模噪声同时进行滤波，其中所述至少一个横向部件包括缝隙。

2. 如权利要求1所述的电感器其特征在于，所述侧面部件进一步包括，
 第一侧面部件，所述第一侧面部件连接所述第一磁芯部件和所述第二磁芯部件；以及
 第二侧面部件，所述第二侧面部件连接所述第一磁芯部件和所述第二磁芯部件。

3. 如权利要求2所述的电感器，其特征在于，所述至少一个横向部件连接在所述第一
 侧面部件和所述第二侧面部件之间。

4. 如权利要求1所述的电感器，其特征在于，所述至少一个横向部件包括第一中间元
 件和第二中间元件。

5. 一种电感器，其特征在于，包括：
 磁芯，所述磁芯具有孔，且包括；
 第一磁芯部件；以及
 第二磁芯部件，所述第二磁芯部件位于所述第一磁芯部件相对的一侧；
 第一磁通回路，所述第一磁通回路包括所述第一磁芯部件且具有第一绕组；
 第二磁通回路，所述第二磁通回路包括所述第二磁芯部件且具有第二绕组，所述第二
 绕组具有与所述第一绕组相反的极性；
 第三磁通回路，所述第三磁通回路包括所述第一磁芯部件和所述第二磁芯部件；以及
 至少一个横向部件，所述至少一个横向部件至少部分跨过所述窗孔与侧面部件连接，
 并且可传导地激在所述第一磁芯部件和所述第二磁芯部件之间的磁通量流，其中所述至
 少一个横向部件包括缝隙。

6. 一种电路，其特征在于，包括
 至少一个输入端；
 连接所述至少一个输入端的单一电感器，所述电感器仅包括单一的电感磁芯，并且连
 接所述电感器以通过使用极性相反的绕组对共模噪声和差模噪声进行滤波；以及
 至少一个输出端，其连接所述电感器并且接收来自该电感器共模滤波和差模滤波后的
 电流：
 第一磁芯部件；
 第二磁芯部件；
 第一绕组，所述第一绕组连接所述第一磁芯部件；
 第二绕组，所述第二绕组连接所述第二磁芯部件；以及
 至少一个横向部件，其至少部分跨过所述第一磁芯部件和所述第二磁芯部件之间的窗
7. 如权利要求6所述的电路，其特征在于，所述电感器包括：
第一磁通回路，所述第一磁通回路包括第一磁芯部件和具有第一绕组；
第二磁通回路，所述第二磁通回路包括第二磁芯部件和具有第二绕组；以及
第三磁通回路，所述第三磁通回路包括所述第一磁芯部件和所述第二磁芯部件。
8. 如权利要求6所述的电路，其特征在于，进一步包括：
至少一个驱动器，所述驱动器连接在所述至少一个输出端上；以及
至少一个马达，所述马达连接在所述至少一个驱动器上。
9. 如权利要求6所述的电路，其特征在于，所述电感器包括至少五个内部磁通路径。
具有较大的共模和差模电感的电感器拓扑结构

技术领域

[0001] 本发明涉及车用和非车用电子和电气系统和组件。更具体地，本发明涉及用于共模滤波和差模滤波电路等的电感器拓扑结构。

背景技术

[0002] 各种各样的功率转换器用在工业的各个地方。功率转换器经常用在直接 (DC) 或者交流 (AC) 转换的电路中，以向马达提供动力。这种转换在混合动力汽车，风扇驱动，洗衣机，和其他各种机器和设备上进行，以提高效率和性能，并且将噪声降至最低。
[0003] 特定的电路表现出高切换速度。在高切换速度下，电路产生共模 (CM) 和差模 (DM) 电磁干扰 (EMI) 噪声。因此，加入 CM 和 DM 滤波器以去除这种噪声。理论上最简单的滤波器拓扑结构包括若干电容器和在绕组之间没有互耦的若干电感器。然而，在实际实现时，这些电感器一般都带有互耦绕组以使电感器的尺寸最小。根据电感器的耦合极性和所使用的电感器的数量，可有效地阻止该 CM 或 DM 噪声。在现有技术中，第一电感器用于对 CM 噪声进行滤波，第二电感器用于对 DM 噪声进行滤波。一个使用现有技术的电感器由于其结构原因不能有效地同时对 CM 和 DM 噪声进行滤波。
[0004] 需要进一步降低与 CM 和 DM 电感器滤波相关的电路尺寸，成本，复杂度及重量。因而，需要一种改进的提供 CM 和 DM 电感器滤波的方法。

发明内容

[0005] 本发明的一个实施例中，提供一种电感器其包括一个带有窗孔的磁芯。该磁芯包括第一磁芯部件和第二磁芯部件。第一绕组连接在该第一磁芯部件上，以及第二绕组连接在该第二磁芯部件上。一个或多个横向部件至少部分跨过该第一磁芯部件和第二磁芯部件连接，并且可传导地激活该第一磁芯部件和第二磁芯部件之间的磁流通流。
[0006] 本发明的另一个实施例中，提供一种电感器，其特征在于，包括：磁芯，磁芯具有窗孔，且包括：第一磁芯部件；第二磁芯部件；第三绕组；第一绕组连接第一磁芯部件；第二绕组，第二绕组连接第二磁芯部件并具有和第一绕组相反的极性，第二绕组位于窗孔上与第一绕组相对的一侧；以及至少一个横向部件，其在第一绕组和第二绕组之间至少部分跨过窗孔连接，并且可传导地激活第一磁芯部件和第二磁芯部件之间的磁通量流，以对共模噪声和差模噪声同时进行滤波，其中至少一个横向部件包括至少一个缝隙。
[0007] 本发明的另一个实施例中，提供一种电感器，其特征在于，包括：磁芯，磁芯具有窗孔，并且包括：第一磁芯部件；第二磁芯部件；第三绕组位于第一磁芯部件和第二磁芯部件之间；第一磁芯部件；第二磁芯部件；第三绕组位于第一磁芯部件和第二磁芯部件之间；以及至少一个横向部件，其在第一磁芯部件和第二磁芯部件之间至少部分跨过窗孔连接，并且可传导地激活第一磁芯部件和第二磁芯部件之间的磁通量流，以对共模噪声和差模噪声同时进行滤波。该输出端与该电感器连接并且其中接触滤波后的共模和差模电流。
[0008] 本发明的又一个实施例中，提供一种电感器，其特征在于，包括：磁芯，磁芯具有窗孔，并且包括：第一磁芯部件；第二磁芯部件；第三绕组位于第一磁芯部件和第二磁芯部件之间；第一磁芯部件；第二磁芯部件；第三绕组位于第一磁芯部件和第二磁芯部件之间；以及至少一个横向部件，其在第一磁芯部件和第二磁芯部件之间至少部分跨过窗孔连接，并且可传导地激活第一磁芯部件和第二磁芯部件之间的磁通量流，以对共模噪声和差模噪声同时进行滤波。该输出端与该电感器连接并且其中接触滤波后的共模和差模电流。
反的极性；第三磁通回路，第三磁通回路包括第一磁芯部件和第二磁芯部件；以及至少一个横向部件，至少一个横向部件至少部分跨过窗口连接，并且可传导地激荡在第一磁芯部件和第二磁芯部件之间的磁通量流，其中至少一个横向部件包括至少一个缝隙。

【0009】在本发明的再一个实施例中，提供一种电路，其特征在于，包括至少一个输入端；连接至少一个输入端的单一电感器，电感器仅包括单一的电感磁芯，并且连接电感器通过使用极性相反的绕组对其模噪声和差模噪声进行滤波；以及至少一个输出端，其连接电感器并且接收来自该电感器共模滤波和差模滤波后的电流；第一个磁芯部件；第二个磁芯部件；第一绕组，第一绕组连接第一磁芯部件；第二绕组，第二绕组连接第二磁芯部件；以及至少一个横向部件，其至少部分跨过第一磁芯部件和第二磁芯部件中的至少一个连接，并且可传导地激荡穿过第一磁芯部件和第二磁芯部件的磁通量流，其中至少一个横向部件包括至少一个缝隙。

【0010】本发明的实施例提供多种好处。由本发明的一个实施例提供的好处是电路具有单一电感器，该电感器提供对电磁干扰噪声的共模滤波和差模滤波两者。

【0011】本发明是通用的，其提供的配置可在多种应用，电路和工业范围内使用和修改。

【0012】另外，本发明可以减小电磁干扰滤波电路的尺寸、重量和复杂度，从而降低与其关联的成本。

【0013】通过参考下面结合附图的详细描述，可以更好地理解本发明本身，以及进一步的目的和伴随的优点。

附图说明

【0014】为了更彻底地理解本发明，下面通过本发明的一些例子，结合附图中更加详细的图示说明和描述其实施例，其中：

【0015】图 1 是现有电路的示意图，该电路使用具有单耦合绕组的电感器进行共模滤波和差模滤波；

【0016】图 2 是现有电路的示意图，该电路使用具有双耦合绕组的电感器进行共模滤波和差模滤波；

【0017】图 3 是具有单窗孔和单绕组的现有电感器的剖视图；

【0018】图 4 是具有单窗孔和单绕组的另一种现有电感器的剖视图；

【0019】图 5 是具有单窗孔和单绕组的另一种现有电感器的剖视图；

【0020】图 6 是依据本发明一个实施例的示例电路，该电路包括双模滤波电感器；

【0021】图 7A 是依据本发明一个实施例的双模滤波电感器的剖面磁通量示意图；

【0022】图 7B 是关于图 7A 描述的双模滤波电感器的等效磁路的示意图；

【0023】图 8 是依据本发明一个实施例的双模滤波电感器的立体图；

【0024】图 9 是依据本发明另一个实施例的另一个双模滤波电感器的剖视图，该电感器包括单一的无绕组中柱；

【0025】图 10 是图 9 所示的双模滤波电感器的等效磁路的剖视图；

【0026】图 11 是依据本发明另一个实施例的另一个双模滤波电感器的剖视图，该电感器包括磁芯；该磁芯具有分开的中柱；

【0027】图 12 是依据本发明另一个实施例的另一个双模滤波电感器的剖视图，该电感器
包括磁芯包围的且浮动的中柱。

[0028] 图13是依据本发明另一个实施例的一个双模滤波电感器的侧视图，该电感器具有外部磁通量流激活外壳；及

[0029] 图14是依据本发明另一个实施例的一个双模滤波电感器的侧视图，该电感器具有磁芯分离中间部件。

具体实施方式

[0030] 在下面描述的图1和2所示为典型的共模（CM）和差模（DM）滤波器拓扑结构，用于降低放电的电磁干扰（EMI）噪声。图1说明一个简单的滤波器拓扑结构，该拓扑结构包括若干电容器和若干不带有互感绕组的电感器。图2说明一个滤波器拓扑结构，其中电感器带有互感绕组。

[0031] 参考图1，现有电路10的示意图，该电路结合使用电容器12的CM和DM滤波，该电感器有单独绕组。该电路10包括EMI源电路16和一个基于电感器的滤波电路，即DM滤波电路18和CM滤波电路20。

[0032] 该EMI源电路16具有CM源22，其表示由EMI电路16产生的CM EMC噪声，以及一对DM源24,26,其表示由EMI电路16产生的DM EMC噪声。该CM源22具有CM端28和接地端30。该EMI源电路可以是电源，负载，或其组合的形式。该DM源24,26具有正的DM端32和负的DM端34。该CM源22和该DM源24,26之间的阻抗，如图所示，并且表示为第一阻抗Z1。该阻抗Z1连接在该CM端28和DM端36之间，其依次连接在该DM源24,26之间。该DM源24,26和该DM滤波电路18之间的阻抗如图所示，并且分别表示为第二阻抗Z2和第三阻抗Z3。该EMI电路16具有A端和B端，分别与该阻抗Z2和Z3连接。

[0033] 该DM滤波电路18包括DM电容器C1和DM电感器Lx。该DM电感器C1连接并贯穿于A端和B端，并且与该DM源24,26并联。该DM电感器Lx具有单绕组，其与该第二阻抗Z2串联且连接在该DM电容器C1之后。该DM滤波电路18具有DM端C和D，分别连接到该DM电感器Lx以及该B端和该DM电容器Cx。

[0034] 该CM滤波电路20包括一对CM电容器C11和C12，以及一对CM电感器L11和L12。该CM电容器C11和C12互相串联，并且与该DM电容器Cx并联。各CM电容器C11和C12与该DM端C或该DM端D之一相连，且接地。该第一CM电感器L11在第一端40与该DM端C和该第一CM电容器C11相连，以及在第二端42与该CM端E相连。该第二电感器L12在第一端44与该DM端D和该第二CM电容器C12相连，以及在第二端46与该CM端F相连。该CM端E和F可以是输入端或输出端，以及可以连接在负载，电源，或者其组合上。该DM滤波器18和该CM滤波器20的位置可以交换或者互换。换句话说，该CM滤波器20可以直接与该电路16连接，而该DM滤波器18连接在该CM滤波器20和该E,F端之间。

[0035] 现在参见图2，现有电路10'的示意图，其结合使用电感器50的CM和DM滤波，该电感器具有双耦合绕组。该电路10'与电路10类似，然而，该单绕组DM电感器Lx被双绕组DM电感器Lx替代，并且该DM滤波电路18'也是这样配置。该电感器Lx'具有第一差分电感器端子52，其与该A端连接，第二差分电感器端子54，其与该DM端B连接，第三差分电感器端子56，其与DM端C连接，以及第四差分电感器端子58，其与该D端连接。该第一端52和该第三端56与第一差分绕组60相关联。该第二端54和该第四端58与第二差分绕组
62 相关联。同样，该 CM 电感器 L_{x1} 和 L_{y2} 用单一双耦合 CM 电感器 L_{x'} 代替，并且该 CM 滤波电路 20' 也因此配置。该 CM 电感器 L_{y'} 具有第一公共绕组 63，其连接在该 C 端和 E 端之间，以及第二公共绕组 65，其连接在该 D 端和 F 端之间。该 CM 电感器 L_{x'} 的端 67 和 68 分别与该 DM 端 C 和 D 连接。该电路 10' 也包括一个负载电路 51，其具有 DM 负载阻抗 Z_{0} 和 CM 负载阻抗 Z_{0x}。类似地，该 CM 滤波器 18 和该 CM 滤波器 20 的位置可以互换。换句话说，该 CM 滤波 20 可以与该电路 16 连接，以及该 CM 滤波器 18 可连接在该 CM 滤波器 20 和该 E，F 端之间。

[0036] 现在参考图 1 和 2，其中，示出 CM 和 DM 噪声传导。CM 噪声在该电路 10 和 10' 的所有线上直接从 CM 源 22 传至 E 和 F 端，或者从电路 10 和 10' 的高电势和低电势分支穿过和向内传导。该 CM 噪声的传导由该 CM 噪声线 64 表示。DM 噪声以类似于电流回路的方式传导，其从该电路 10 和 10' 的低电势点流向该电路 10 和 10' 的正的或者高电势点。该 DM 噪声传导用 DM 噪声线 66 表示。

[0037] 尽管该电感器 L_{x'} 加上 L_{y'} 的组合尺寸小于 L_{x1}，L_{y1} 和 L_{y2} 的尺寸的总和，但是，类似地，它们的每个仅能有效地阻止 CM 或者 DM 噪声中的一个。电感器的互耦绕组的耦合极性确定这个电感器的滤波特性，或者其是 CM 还是 DM 滤波电感器。

[0038] 现在参见图 3- 图 5，其中所示为现有电感器的侧视图。这里，图 3- 图 5 作为伴随下面的说明的示意性示例包括在此，在下面的说明中解释了现有电感器不能表现出 CM 和 DM 两种滤波特性的原因。在图 3 中，示出电感器 70，该电感器具有连续的磁芯 71，磁芯 71 具有单一的轴孔 72 和单一的绕组 74，如图所示。在图 4 中，示出电感器 75，其具有连续的磁芯 76，该磁芯 76 具有两个轴孔 78 和单一的绕组 80。图 3 和图 4 所示的电感器 70 和 75 的结构仅提供 DM 滤波。该结构不能阻止 CM 噪声，因为它们只具有一个绕组。另一方面，图 5 所示的双绕组电感器 82 可作为一个有效的 CM 或者 DM 滤波设备连接，但不能同时具有两种角色。还要注意，存在多绕组并不意味着具备阻止 DM 和 CM 两种噪声的能力。下面所提供的本发明的实施例的双绕组构造表现出 DM 和 CM 两种噪声滤波特性。

[0039] 该双绕组电感器 82 包括 c，d，e，f 端，以及可用作双端 DM 电感器或四端 DM 电感器。作为双端 DM 电感器时，该电感器端子 d 和 e 连接在一起，而该电感器端子 c 和 f 作为外部端。作为四端 DM 电感器时，该电感器端子 c，d，e 和 f，例如，分别与图 2 中的 A，D，C 和 B 端对应。在这种布置下，该 DM 电流在磁芯中引起额外的具有高磁通量和电感的磁动势（mmf）。另一方面，通过双绕组电感器 82 的绕组 84 的电流引起互相抵消的 mmf，因此，产生较低的实际磁通量和电感。

[0040] 作为 CM 电感器时，该双绕组电感器 82 配置且用作 CM 滤波器。与上述四端 DM 电感器方法相比较，该双绕组电感器一个绕组的极性是相反的。例如，该电感器端子 d 和 f 可交换，分别连接 B 和 D 端。在这种布置下，该双绕组电感器 82 表现出高 CM 电感但同时表现出低 DM 阻抗。

[0041] 本发明克服了现有电感器方法的限制，并在下面详细地描述。

[0042] 在下面的每个附图中，相同的参考标号用于指出同一组件。本发明可应用于汽车、航空、航海和铁路的应用，也可用于其它同时需要大量 CM 和 DM 滤波的应用。本发明可应用于商业和非商业环境。本发明可以用于多种装置，拖车，非公路设备，辅助设备，通信系统，以及各种其他应用或环境。
[0043] 并且，可预期各种其他实施例。具有下文所描述的本发明特征的不同组合的，具有
除这里描述的之外的特征，或者甚至减少一个或多个这些特征。同样的，可以理解，该发明
可以起多种其他合适的模式实现。
[0044] 在下文的描述中，多种运行参数和组件在一个创建的实施例中描述。这些具体参
数和组件是作为例子包括在其中，并不是要对其进行限制。
[0045] 现在参考图 6，出示示例电路 100，其中结合了依照本发明一个实施例的双模滤波
电感器 102。该电路 100 包括 EMI 源电路 104，双模滤波电路 106，以及 E’和 F’端，E’和
F’端作为输出端且分别连接一个或多个驱动器 110 和一个或多个马达 112（仅示出一个驱
动器和一个马达）。如图所示。该 E’端和 F’端可附加或替换地连接负载，或者连接电源。
并且，该 E’和 F’端可根据应用而用作输入端。注意这些电路 100 的组件的布置，连接和配
置仅作为例子，可以使用双模滤波电感器构成无穷多种其他的电路布置，连接和配置。尽管
所示电路是双本滤波电路，并且因此相应描述该双模电感器 102，该双模电感器 102
can be used and combined with other devices, such as DM and CM filters. For example, in

[0046] 该 EMI 电路 104 包括 CM 噪声源 116，该噪声源表示由该 EMI 电路 104 产生的 CM
噪声。该 CM 源 116 具有电源端 120 和接地端 124。该电源 120 与第一阻抗 Z₁’串联。该接
地端 124 与地 125 连接。该第一阻抗 Z₁’具有第一阻抗端 126 和 128。该第一阻抗端 126
与该电源 120 连接。该第一阻抗端 128 连接一对 DM 噪声源 130, 132, 这两个噪声源表示
在该 EMI 电路 104 中传导的 DM 噪声。该第一 DM 源 130 具有第一 DM 终端 134 和 136。该第一
DM 端 136 与该第一阻抗端 128 连接。该第二 DM 源 132 具有第二 DM 端 138 和 140。该第一
DM 端 142 通过阻抗 Z₂’与源端 A’连接。该第二 DM 端 140 过阻抗 Z₂’与源端 B’连接。
[0047] 第二阻抗 Z₂’和一个第三阻抗 Z₃’与该 DM 源 130, 132 连接。该第二阻抗 Z₃’具
有第二阻抗端 142 和 144。该第三阻抗 Z₃’具有第三阻抗端 146 和 148。该第二阻抗端 142
与该第一 DM 源端 134 连接。该第三阻抗端 146 与该第二 DM 源端 140 连接。
[0048] 该双模滤波电路 106 包括 CM 和 DM 电容器以及该双模电感器 102。差分电容器 C₄’
连接在该 A’和 B’端，与该 DM 源 130, 132 并联，并且在该第二阻抗端 144 和该第三阻抗端
148 之间。一对 CM 电容器 C₁’和 C₂’相互串联，并且组合与该 DM 电容器 C₃’并联。该第
一 CM 电容器 C₁’连接在该 A’端和地 125 之间。该第二 CM 电容器 C₂’连接在该地 125 和
该 B’端之间。
[0049] 该双模电感器 102 具有电感器端子 s, u, t 和 v，或者与这些端连接。该电感器端子
s 和 u 分别连接在 A’和 B’端。该电感器端子 t 和 v 与该电路端 E’和 F’连接。E’和 F’端根据应用可作为输入或输出端。
[0050] 在接下来的图 7A 和图 7B 中，提供图 8-14 的示例电感器的电感器拓扑结构和
表示。
[0051] 现在参考图 7A 和图 7B，出示双模电感器的侧面磁通量流示意图和其等效磁路的
侧面示意图。该双模电感器具有磁芯 150，该磁芯包括绕线磁芯部件 151, 152 和侧面部件
153, 154。一对绕组 155, 156 分别绕在该绕线磁芯部件 151, 152 上。一对横向磁通量流部件
157, 158 连接在该绕线磁芯部件的对角相对端。该绕组 155, 156 具有 s’, t’, u’ 和 v’端。其可分别对应于图 6 的 s, t, u 和 v 端。

[0052] 采用两个绕组和两个横向部件，该双模电感器具有六个内部磁通路径 P_a, P_b, P_c, P_d, P_e 和 P_f, 其中具有相关的磁通量，用 \(\Phi_a, \Phi_b, \Phi_c, \Phi_d, \Phi_e \) 和 \(\Phi_f \) 表示。该第一磁芯部件 151 作为磁通路径 P_a 并具有磁通量 \(\Phi_a \), 该第二磁芯部件 152 作为磁通路径 P_b 并具有磁通量 \(\Phi_b \), 该第一侧面部件 153 作为磁通路径 P_c 并具有磁通量 \(\Phi_c \), 该第二侧面部件 154 作为磁通路径 P_d 并具有磁通量 \(\Phi_d \), 该第一横向部件 157 作为磁通路径 P_e 并具有磁通量 \(\Phi_e \), 该第二横向部件 158 作为磁通路径 P_f 并具有磁通量 \(\Phi_f \)。图 7B 说明该双模电感器的等效磁电路，其中磁动势 (mmf) 建模为等效电源并且该磁芯磁阻建模为电阻。该等效电压源近似等于相关磁芯部件上绕组的匝数与通过该绕组的电流的乘积。该双模电感器的绕组的匝数用 \(N_1 \) 和 \(N_2 \) 表示，而该电流用 \(I_1 \) 和 \(I_2 \) 表示。每个磁芯部件 151, 152, 153, 154 和该横向部件 157, 158 的相关磁阻为 \(R_5 \), \(R_6 \), \(R_7 \), \(R_8 \) 和 \(R_9 \)。

[0053] 在该双模电感器上通过每个支路或部件的磁通量可利用已知的电路理论计算得到。假设该双模电感器是对称，这样绕组的匝数 \(N_1 \) 和 \(N_2 \) 相等，该磁阻 \(R_5 \) 等于该磁阻 \(R_6 \)，磁阻 \(R_7 \) 等于磁阻 \(R_8 \)，以及磁阻 \(R_9 \) 等于磁阻 \(R_7 \)，则有下面的公式。X 和 Y 分量电流变量 \(I_x \) 和 \(I_y \) 基于绕组电流 \(I_1 \) 和 \(I_2 \) 的组合定义，并且从公式 1- 公式 4 获得。

\[
I_x = \frac{I_1 + I_2}{2} \quad (1)
\]

\[
I_y = \frac{I_1 - I_2}{2} \quad (2)
\]

\[
I_1 = I_x + I_y \quad (3)
\]

\[
I_2 = I_x - I_y \quad (4)
\]

[0058] 当仅存在 X 磁通量电流分量时，磁通量 \(\Phi_x \), 磁通量 \(\Phi_y \), 磁通量 \(\Phi_z \) 和磁通量 \(\Phi_0 \) 相等，并且磁通量 \(\Phi_e \) 和磁通量 \(\Phi_f \) 等于零。因此，磁通量 \(\Phi_x \) 由公式 5 得到。

\[
\Phi_x = \frac{NI_x}{R_5 + R_6} \quad (5)
\]

[0060] 从公式 5, 该电感 \(L_x \) 可由公式 6 确定。

\[
L_x = \frac{N^2}{I_x} = \frac{N^2}{R_5 + R_6} \quad (6)
\]

[0062] 另一方面，当仅存在 Y 磁通量电流分量存在时，磁通量 \(\Phi_y \), 该磁通量 \(\Phi_0 \) 的反相，磁通量 \(\Phi_e \) 和磁通量 \(\Phi_f \) 相等，该磁通量 \(\Phi_z \) 和磁通量 \(\Phi_0 \) 为零。同样，磁通量 \(\Phi_y \) 可由公式 7 得到以及该电感 \(L_y \) 由公式 8 得到。

\[
\Phi_y = \frac{NI_y}{R_5 + R_6} \quad (7)
\]

\[
L_y = \frac{N^2}{I_y} = \frac{N^2}{R_5 + R_6} \quad (8)
\]

[0065] 公式 6 和 8 表明该电感 \(L_x \) 和 \(L_y \) 可以单独确定。并且，根据公式 3 和 4，如果电流包括 X 和 Y 分量，该绕组的大小定为应可处理两个分量的和或者差。类似地，通过组合公式 5 和 7，该磁芯路径 \(P_a \) 和 \(P_b \) 的大小定为可处理该 X 和 Y 磁通分量的和或者差。该磁芯路径
Pc 和 Pn 的大小定为可处理该 X 分量。该磁芯路径 Pc 和 Pn 的大小定为可处理该 Y 分量。

【0066】在特定的情况下，某些磁芯部件可能具有零或无穷大磁阻。例如，如果该磁阻 Rc 和该磁阻 Rn 等于零，该双模电感器的拓扑结构变为如图 9 和 10 所示。

【0067】注意，在下面的图 8-14 中，所提供的双模滤波电感器具有特定数量的部件，绕组，横轴部件和窗孔，这仅是示例。可以形成具有各种数量的部件，绕组，横轴部件和窗孔的组合。

【0068】现在参考图 8，示出依据本发明的一个实施例的双模滤波电感器 160 的立体视图。尽管该电感器 160 的很多特征描述时使用“输入”和“输出”这样的名称，这是相对的术语，并且根据应用，所述的名称可以相反。例如，连接以接收输入电流的该电感器的绕组端确定哪个绕组端是输入端，而哪个是输出端，并且类似地，确定哪些磁芯部件端是输入端，而哪个是输出端。

【0069】该双模电感器 160 具有带有窗孔 164 的磁芯 162。通常，该磁芯 162 包括多个支柱或部件 166。对于所示实施例，该磁芯 162 具有第一绕线磁芯部件 168 和第二绕线磁芯部件 170。该第一磁芯部件 168 和该第二磁芯部件 170 通过一对横向部件 172, 174 互相连接。该横向部件 172, 174 跨过该窗孔 164 连接，并且提供的磁通量流路径比现有电感器多。

【0070】该第一磁芯部件 168 具有第一导电元件绕组 176，在该第一绕组 176 的两侧分别设有第一磁芯输入端 167 和第一磁芯输出端 169。该第二磁芯部件 170 具有第二导电元件绕组 178，在第二绕组 178 两侧分别设有第二磁芯输出端 171 和第二磁芯输出端 173。该绕组 176, 178 具有 s″, t″, u″ 和 v″端，其分别与图 6 中的 s, t, u 和 v 端对应。

【0071】一对侧向磁芯部件 180, 181 连接在该绕线磁芯部件 168 和 170 之间。该侧向磁芯部件 180, 181 与该磁芯 162 整体形成，连同该绕线磁芯部件 168 和 170 一起作为该磁芯 162 的一部分。该第一侧向部件 180 连接到该第一输入端 167 和该第二输出端 171 并位于其间。该第二侧向部件 181 连接到该第一输入端 169 和该第二输出端 173 并位于其间。各侧向部件 180 和 181 具有缝隙 182, 从而该磁芯 162 是分开的。在该侧向部件 180, 181 上的该缝隙 182 形成四个侧向磁芯 M1, M2, M3 和 M4。该元件 M1 和 M2 连接在该第一磁芯部件 168 和该第二磁芯部件 170 上。类似地，该元件 M3 和 M4 也连接在该第一磁芯部件 168 和该第二磁芯部件 170 上。第一气隙 G1 在该元件 M1 和 M2 之间。第二气隙 G2 在该元件 M3 和 M4 之间。该气隙 G1 和 G2 提供电磁导率，以防止电流在负载下饱和。该气隙 G1 和 G2 或其他现有气隙可以是各种尺寸和形状，并且可用其他材料填充以调整该磁芯的有效磁场或其它特性。将在下面结合图 11-14 给出一些具有不同气隙构造的其他磁电双模滤波的例子。

【0072】该横向部件 172 和 174 可具有多种相关尺寸，形状和构造。该第一横向部件 172 通过该元件 M1 和 M4 连接到该对角相对端 167 和 173。该第二横向部件 174 通过该元件 M2 和 M3 连接到该对角相对端 169 和 171。

【0073】该磁芯 162, 该磁芯部件 168 和 170, 该元件 M1-M4 以及该横向部件 172 和 174, 和该绕组 176, 178 可使用通常用于电感器的材料制成。该磁芯 162 可使用铁，铁粉，铁酸盐，或其他合适的磁芯材料或材料组合制成。该绕组 176, 178 可以用铜，铝，金，银，或其他合适的绕组材料或材料组合制成。

【0074】现在参考图 9 和 10，两个图分别为另一个双模滤波电感器 190 的侧视图，该电感
器结合单一无绕组中柱 192，以及依据本发明另一实施例的等效磁路的侧视图。该双模电感器 190 表现为该双模电感器 160 在该路经 P_c 和 P_y 的阻抗为零时的特殊情况。该电感器具一个磁芯 194，该磁芯带有一磁芯绕线部件 196，以第二磁芯绕线部件 198，和侧面部 200。该侧面部 200 的阻抗可以分别与磁芯部件 194 和 198 的阻抗分开或者混在一起。
该无绕组中柱 192 在其两侧设有窗口 203 和 205。该第一磁芯绕线部件磁通量 Φ_x 和相关 的磁阻 R_x，该第二磁芯部件磁通量 Φ_y，和相关的磁阻 R_y，以及该中间部件磁通量 Φ_E/F 和 相关的磁阻 R_E/F 如图 10 所示。
[0075] 当该 Y 分量电流 I_y 为零时，该 X 分量磁通量 Φ_x 和该电感 L_x 可由公式 9 和 10 得 到，其中该磁通量 Φ_E/F 等于零。

\[
\Phi_x = \frac{NI_x}{R_A} = \Phi_y = \Phi_E/F
\] \hspace{1cm} (9)

\[
L_x = \frac{NI_y}{I_x} = \frac{N^2}{R_A}
\] \hspace{1cm} (10)

[0077] 另一方面，当 X 分量电流 I_x 等于零时，该 Y 分量磁通量 Φ_y 和该电感 L_y 可由公式 11 和 12 得到。

\[
\Phi_y = \frac{\Phi_E/F}{2} = \frac{NI_y}{R_A + 2R_C} = \Phi_x = -\Phi_y
\] \hspace{1cm} (11)

\[
L_y = \frac{NI_y}{I_y} = \frac{N^2}{R_A + 2R_C} \leq L_x
\] \hspace{1cm} (12)

[0081] 该电感 L_y 等于或小于该电感 L_x，并且该磁芯路径 P_E/F 的大小确定为可容纳该 Y 分量。

[0082] 在下面的图 11- 图 14 中，提供双模滤波电感器的额外的示例实现。为每个相关的 双模滤波电感器，在图 11- 图 14 的每个图中示出该 X 磁通分量和该 Y 磁通分量。该 X 磁通 分量分别用流线 206 表示。该 Y 磁通分量分别用流线 208 表示。

[0083] 现在参考图 11，示出依据本发明另一个实施例的另一个双模滤波电感器 210 的侧 视图，该电感器结合连续的磁芯 212，该磁芯具有分开的中柱 214。该磁芯 212 柱由绕线磁 芯部件 216, 218，侧部分 220，和单一窗口 221。该中柱 214 连接在该侧部分部件 220 之间， 并且具有第一中间元件 222 和第二中间元件 224。该中柱 214 也具有一个缝隙 226，带有相 关的位于该第一中间元件 222 和该第二中间元件 224 之间的气隙 G3。该气隙 G3 可用材料 填充以调整该磁芯的有效磁导率或其他特性。

[0085] 现在参考图 13，依据本发明另一个实施例的另一个双模滤波电感器 250 的侧视 图，该电感器具有外部磁通量流激装备外壳 252。该双模电感器 250 包括连续的磁芯 254，该
磁芯具有绕线磁芯部件 256、258 和侧面部件 260。该外壳 252 围绕该磁芯 254。一对小气隙 G6 和 G7 位于该侧面部件 260 和该外壳 252 之间，以及一对大气隙 G8 和 G9 位于该绕线
磁芯部件 256、258 和该外壳 252 之间。该双模电感器 250 通过该外壳 252 而不是通过中柱
提供额外的磁通路径。由经过该绕组 270、272 的电路通路产生的磁通量产生经过该绕线磁
芯部件 256、258 和该外壳 252 循环的磁通量，如图所示。该 Y 磁通分量在该小气隙 G6 和 G7
之上或穿过该小气隙 G6 和 G7 循环。类似地，该外壳 252 可由其间具有气隙的多个区域形
成或组成。另外，该气隙可填充各种材料。

[0086] 现在参考图 14，依据本发明的另一个实施例的另一个双模滤波电感器 280 的侧视
图，该电感器具有磁芯分离中间部件 282。该双模电感器 280 包括连续的磁芯 284，该磁
芯具有绕线磁芯部件 286、288，和具有缝隙 292、294 的侧面部件 290。该中间部件 282 与该
侧面部件 290 分离或者不与其接触，隔开该窗孔 291，并且设在与该缝隙 292、294 相关的气
隙内。该中间部件 282 在该侧面部件 290 之间延伸，并且连接在每个侧面部件 290 的侧面
元件 296 上。气隙 G10, G11, G12 和 G13 位于该侧面元件 296 和该中间部件 282 之间。

[0087] 本发明为不同的应用提供了多种双模滤波电感器和相关的电路。所述的电感器
和电路可以降低提供共模滤波和差模滤波两者的所需的电感器数量。

[0088] 虽然本发明结合一个或多个实施例进行说明，可以理解的是，所描述的结构和技
术仅仅说明本发明的原理，可对这些方法和装置进行各种修改而不背离本发明的精神以及
由所附权利要求限定的范围。
图3 (现有技术)

图4 (现有技术)
图 8