(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2013/122387 Al

- (43) International Publication Date 22 August 2013 (22.08.2013)
- (51) International Patent Classification: *H04H 20/88* (2008.01)

(21) International Application Number:

PCT/KR20 13/001130

(22) International Filing Date:

13 February 2013 (13.02.2013)

(25) Filing Language:

English

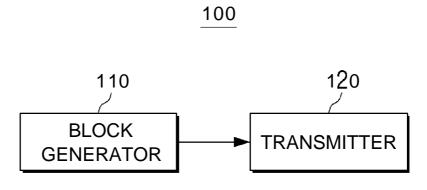
(26) Publication Language:

English

(30) Priority Data:

,	Priority Data:		
	61/599,154	15 February 2012 (15.02.2012)	US
	61/602,975	24 February 2012 (24.02.2012)	us
	61/602,978	24 February 2012 (24.02.2012)	us
	61/604,892	29 February 2012 (29.02.2012)	us
	61/604,844	29 February 2012 (29.02.2012)	us
	61/61 1,822	16 March 2012 (16.03.2012)	us
	61/613,629	2 1 March 2012 (21.03.2012)	us
	61/636,879	23 April 2012 (23.04.2012)	us
	61/636,901	23 April 2012 (23.04.2012)	us
	61/641,580	2 May 2012 (02.05.2012)	us
	61/647,628	16 May 2012 (16.05.2012)	us
	10-2013-00003	73 2 January 2013 (02.01.2013)	KR

- (71) Applicant: SAMSUNG ELECTRONICS CO., LTD. [KR/KR]; 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742 (KR).
- (72) Inventors: KIM, Jong-hwa; 172-13, Godeung-dong, Paldal-gu, Suwon-si, Gyeonggi-do 442-882 (KR). KIM, Soo-young; No. 204, Yeji Villat, 1250-4, Maetan 3(sam)-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-848 (KR). NA, II-ju; 101-306, Jukjeon Xi 2-cha Apt., Bojeong-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-913 (KR).


LEE, Kyeong-jae; 308-203, Ill-Zium Apt., Jamsil 3(sam)-dong, Songpa-gu, Seoul 138-890 (KR). **LEE, Jae-min;** 113-1701, Raemian Nobleclass Apt., Ingye-dong, Paldalgu, Suwon-si, Gyeonggi-do 442-703 (KR). **Yun, Suk-jin;** 2-204, Jinheung Apt., Seocho 4(sa)-dong, Seocho-gu, Seoul 137-776 (KR).

- (74) Agent: JEONG, Hong-sik; 8th Floor, Daelim Bldg., 1600-3, Seocho-dong, Seocho-gu, Seoul 137-877 (KR).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: DATA TRANSMITTING APPARATUS, DATA RECEIVING APPARATUS, DATA TRANSCETVING SYSTEM, DATA TRANSMITTING METHOD, AND DATA RECEIVING METHOD

(57) Abstract: A data transmitting apparatus is disclosed. The data transmitting apparatus includes a block generator which generates an Extended Display Identification Data (EDID) block regarding multi-channel audio data; and a transmitter which transmits the EDID block to a data receiving apparatus, wherein the EDID block includes at least one of a first sub block representing 3D audio characteristics of the multi-channel audio data, a second sub block representing 3D speaker placement information of the multi-channel audio data, and a third sub block representing multi-stream audio characteristics of the multi-channel audio data.

0

Description

Title of Invention: DATA TRANSMITTING APPARATUS, DATA RECEIVING APPARATUS, DATA TRANSCEIVING SYSTEM, DATA TRANSMITTING METHOD, AND DATA RECEIVING METHOD

Technical Field

[1] Apparatuses and methods consistent with the exemplary embodiments relate to transmitting and receiving data, and more particularly, to a data transmitting apparatus, a data receiving apparatus, a data transceiving system, a data transmitting method, and a data receiving method, for transmitting a multi-channel audio signal and/or a multi-stream audio signal in a wired interface environment.

Background Art

- [2] Lately, with the establishment of multimedia environments, high-speed wired interface environments for transmission of various data are proposed. For example, High Definition Multimedia Interface (HDMI) and Mobile High-definition Link (MHL) have specified various transmission formats of image data, audio signals, and control signals.
- [3] First, with the development of multimedia environments, studies into transmission formats for multi-channel audio signals for the purpose of transmitting and receiving high-quality sound are actively conducted. Up to now, formats for audio channels from 2 channels to 8 channels have been proposed. However, in a future multimedia environment, a transmission format for audio signals having 9 channels or more will be newly proposed.
- [4] Also, a transmission format for multi-stream audio signals for a multi-view environment that allows different viewers to watch different contents through a single display will be proposed.
- [5] In this situation, there is a need for a format which informs a source device of information about audio channels of 9 channels or more, supported by a display, and information about a multi-stream audio specification.

Disclosure of Invention

- [6] Exemplary embodiments of the application overcome the above disadvantages and other disadvantages not described above. Also, the exemplary embodiments are not required to overcome the disadvantages described above, and an exemplary embodiment may not overcome any of the problems described above.
- [7] The exemplary embodiments provide a data transmitting apparatus, a data receiving

apparatus, a data transceiving system, a data transmitting method, and a data receiving method, for providing a source device with information about audio channels of 9 channels or more, supported by a display, and/or information about a multi-stream audio specification,

- [8] According one exemplary embodiment, a data transmitting apparatus includes a block generator which generates an Extended Display Identification Data (EDID) block regarding multi-channel audio data, and a transmitter which transmits the EDID block to a data receiving apparatus, the EDID block includes at least one of a first sub block representing 3D audio characteristics of the multi-channel audio data, a second sub block representing 3D speaker placement information of the multi-channel audio data, and a third sub block representing multi-stream audio characteristics of the multi-channel audio data.
- [9] The first sub block may include at least one of a field representing information about the number of 3D audio descriptors, and a 3D audio descriptor field representing information about 3D audio data supported by the data transmitting apparatus.
- [10] The 3D audio descriptor field may include at least one of a first sub field representing format information of the multi-channel audio data, a second sub field representing the number of channels of the multi-channel audio data, and a third sub field representing sampling frequency information of the multi-channel audio data.
- [11] The second sub block may include a 3D speaker placement description field representing speaker placement information of the multi-channel audio data.
- [12] The 3D speaker placement descriptor field may include at least one of a fourth sub field representing information about a channel allocation standard type of the multi-channel audio data, and a fifth sub field representing information about speaker placement and arrangement of the multi-channel audio data.
- [13] The channel allocation standard type may be a channel allocation standard type regarding at least one of 10.2 channels, 22.2 channels, 30.2 channels, multiple channels more than 30.2 channels, and multiple channels less than 10.2 channels.
- [14] The third sub block may include at least one of a field representing the number of streams of multi-stream audio supported by the data transmitting apparatus, and a shortened audio descriptor field representing the characteristics of audio corresponding to the individual streams.
- Identification Data (EDID) block regarding multi-channel audio data from a data transmitting apparatus, and an analyzer which analyzes the EDID block, the EDID block includes at least one of a first sub block representing 3D audio characteristics of the multi-channel audio data, a second sub block representing 3D speaker placement information of the multi-channel audio data, and a third sub block representing multi-

stream audio characteristics of the multi-channel audio data.

The first sub block may include at least one of a field representing information about the number of 3D audio descriptors, and a 3D audio descriptor field representing information about 3D audio data supported by the data transmitting apparatus.

- [17] The 3D audio descriptor field may include at least one of a first sub field representing format information of the multi-channel audio data, a second sub field representing the number of channels of the multi-channel audio data, and a third sub field representing sampling frequency information of the multi-channel audio data.
- [18] The second sub block may include a 3D speaker placement description field representing speaker placement information of the multi-channel audio data.
- [19] The 3D speaker placement descriptor field may include at least one of a fourth sub field representing information about a channel allocation standard type of the multi-channel audio data, and a fifth sub field representing information about speaker placement and arrangement of the multi-channel audio data.
- [20] The channel allocation standard type may be a channel allocation standard type regarding at least one of 10.2 channels, 22.2 channels, 30.2 channels, multiple channels more than 30.2 channels, and multiple channels less than 10.2 channels.
- [21] The third sub block may include at least one of a field representing the number of streams of multi-stream audio supported by the data transmitting apparatus, and a shortened audio descriptor field representing the characteristics of audio corresponding to the individual streams.
- A data transceiving system includes a data transmitting apparatus which generates an Extended Display Identification Data (EDID) block regarding multi-channel audio data, and to transmit the EDID block to a data receiving apparatus, and a data receiving apparatus which receives and analyze the EDID block, the EDID block includes at least one of a first sub block representing 3D audio characteristics of the multi-channel audio data, a second sub block representing 3D speaker placement information of the multi-channel audio data, and a third sub block representing multi-stream audio characteristics of the multi-channel audio data.
- A data transmitting method includes generating an Extended Display Identification Data (EDID) block regarding multi-channel audio data; and transmitting the EDID block to a data receiving apparatus. The EDID block includes at least one of a first sub block representing 3D audio characteristics of the multi-channel audio data, a second sub block representing 3D speaker placement information of the multi-channel audio data, and a third sub block representing multi-stream audio characteristics of the multi-channel audio data.
- [24] The first sub block may include at least one of a field representing information about the number of 3D audio descriptors, and a 3D audio descriptor field representing in-

- formation about supportable 3D audio data.
- [25] The 3D audio descriptor field may include at least one of a first sub field representing format information of the multi-channel audio data, a second sub field representing the number of channels of the multi-channel audio data, and a third sub field representing (sampling) frequency information of the multi-channel audio data.
- A data receiving method includes receiving an Extended Display Identification Data (EDID) block regarding multi-channel audio data from a data transmitting apparatus, and analyzing the EDID block, the EDID block includes at least one of a first sub block representing 3D audio characteristics of the multi-channel audio data, a second sub block representing 3D speaker placement information of the multi-channel audio data, and a third sub block representing multi-stream audio characteristics.
- [27] The first sub block may include at least one of a field representing information about the number of 3D audio descriptors, and a 3D audio descriptor field representing information about 3D audio data supported by the data transmitting apparatus.
- [28] According to the exemplary embodiments, as described above, by generating an Extended Display Identification Data (EDID) block including at least one of 3D audio characteristics, 3D speaker placement information, and multi-stream audio characteristics of multi-channel audio data and transmitting the EDID block, it is possible to provide a format which comprising a source of audio channels of 9 audio channels or more, supported by a display, and a multi-stream audio specification.
- [29] Additional and/or other aspects of the exemplary embodiments will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the application.

Brief Description of Drawings

- [30] The above and/or other aspects will be more apparent by describing certain exemplary embodiments with reference to the accompanying drawings, in which:
- [31] FIG. 1 is a view illustrating a transmission timing of a 3D audio signal.
- [32] FIG. 2 is a block diagram showing a configuration of a data transceiving system according to an exemplary embodiment.
- [33] FIG. 3 is a block diagram showing the configuration of a data transmission apparatus of the data transceiving system.
- [34] FIG. 4 is a block diagram showing the configuration of a data receiving apparatus of the data transceiving system.
- [35] FIG. 5 is a view illustrating a transport stream packet of audio samples in accordance with an exemplary embodiment.
- [36] FIG. 6 is a view illustrating a transport stream packet of audio samples of another exemplary embodiment.

- [37] FIG. 7 is a view showing a transmission stream format of tan exemplary embodiment.
- [38] FIG. 8 is a view illustrating a transport packet stream of audio samples according to an exemplary embodiment.
- [39] FIGS. 9 and 10 are views illustrating a transmission stream of multi-streams audio sample packet according to an exemplary embodiment.
- [40] FIG. 11 is a view illustrating a transmission stream of a multi-streams audio sample packet according to an exemplary embodiment.
- [41] FIG. 12 is a mimetic diagram showing the transmission of the speaker position information using CEC.
- [42] FIG. 13 is a view illustrating a step in which a 3D audio sample is transmitted from a Blu-ray disk player (BDP) to a television (TV).
- [43] FIG. 14 is a view illustrating a step in which multi-streams audio is transmitted from a BDP to a TV.
- [44] FIG. 15 is a view showing the placement of the speakers for 3D audio channel.
- [45] FIGS. 16 and 17 are flow charts illustrating a data transmission method and a data receiving method according to various exemplary embodiments.

Best Mode for Carrying out the Invention

- [46] Certain exemplary embodiments will now be described in greater detail with reference to the accompanying drawings.
- In the following description, same drawing reference numerals are used for the same elements even in different drawings. The matters defined in the description, such as detailed construction and elements, are provided to assist in a comprehensive understanding of the application. Thus, it is apparent that the exemplary embodiments may be carried out without those specifically defined matters. Also, well-known functions or constructions are not described in detail since they would obscure the exemplary embodiments with unnecessary detail.
- [48] Multi-channel audio means the audio signal with multiple audio channels. The multi-channel audio is generally classified into two-dimensional (2D) audio channels and three-dimensional (3D) audio channels. 2D audio channels hold between 2 audio channels to 8 audio channels, and these audio channels refer to the audio channel where the speakers corresponding to each channel are placed on the plane. On the other hand, 3D audio channels hold more than 9 audio channels, and speakers corresponding to each channel are arranged in three-dimensional space including the plane.

 3D audio, for example, uses a layout of the channels that are defined in TTA (10.2ch), SMPTE2036-2 (22.2ch) or IEC62574 (30.2ch). 3D audio includes a down-mixed audio stream as defined herein.

[49] Multiple audio streams is an audio signal including the audio signal identifying and corresponding to each view in a multi-view environment where over two identical contents may be watched. Audio signals for each view may be a multi-channel audio. For example, the Multi-Stream Audio may be a set of audio streams related in the video stream which is transmitted by using a 3D video format when supporting multi-view video such as a dual view or quad view game.

- [50] An audio for a high-speed wired interface on the basis of the 3D Audio of 32 channels (or more) and multi-stream audio (Multi-Stream Audio) for multi-view displays will be discussed later. In particular, the changes which will be described below are included to support the new audio features.
- [51] However, the exemplary embodiments may be applied to various high-speed wired interface transmission standards which include HDMI and MHL standard in the equivalent range of the technical concept of the exemplary embodiments, so the extent of a right of the exemplary embodiments may also pertain to similar high-speed wired transmission interface standards.
- The definition of a new high-speed wired interface packet (3D Audio Sample Packet, 3D One Bit Audio Sample Packet, Audio Metadata Packet, Multi-Stream Audio Sample Packet and Multi-Stream One Bit Audio Sample Packet) transmitted through the data island period, the packetization process for the packet, and the definition of high-speed wired interface audio data block within E-EDID to support the discovery of the ability in accordance with the new features, will be discussed later. The present specification will be described using HDMI as an example, so the specifications that are not newly defined in the specification basically conform to the HDMI 1.4b and have not been changed from HDMI 1.4b.
- The content that is disposed with HDMI 1.4b herein, will be replaced by newly disclosed contents, however, the contents which have been disposed are compatible with the content described in HDMI 1.4b. Also the newly disclosed contents may be applied in other high-speed wired interface environments including MHL.
- [54] The present disclosure refers to the following.
- [55] HDMI, HDMI Licensing, LLC, "High-Definition Multimedia Interface Specification Version 1.4b", October 11, 2011
- [56] The True Audio (TTA), TTAK.KO-07.0098, "Audio Signal Formats for Ultra High Definition (UHD) Digital TV", December 21, 2011
- [57] SMPTE, SMPTE 2036-2:2008, "UHDTV Audio characteristics and audio channel mapping for program production", 2008
- [58] IEC, IEC 62574 ed 1.0, "Audio, video and multimedia systems General channel allocation of multi-channel audio, April 7, 201 1
- [59] MHL, LLC, "Mobile High-definition Link version 2.0", February, 2012

- [60] *TTA: Telecommunications Technology Association
- [61] Overview
- Basic audio function includes L-PCM audio stream of IEC 60958 having a sample rate of 32 kHz, 44.1 kHz, or 48 kHz. It may accommodate a normal stereo stream. It may be assumed that there is a high-speed wired interface environment which may optionally transmit the audio with audio channels 3-32 in sample rate of 192 kHz. In addition, it is available to transmit the audio stream of IEC 61937 compressed format with a bit rate of up to 49.152 Mbps.(For example, surround sound) It is available to transmit one bit audio in compressed form which is called as audio channels 32 and DST in one bit audio 2 under the high-speed wired interface environment. Also, the speaker may transmit a 3D audio stream which may be anywhere to 3D space. The 3D audio stream may include up to 32 audio channels, and is transmitted in a data island period through continuous packets. In addition, when supporting the multi-view video streaming, a plurality of audio streams may be transmitted. (eg, in case of a dual- view / quad view game with a plurality of audio per a view). In such case, 4 stereo audio streams may be supported.
- [63] Definition of Packet in Data Island Period
- [64] Table 5-8 is replaced with Table 1 below in section 5.3.1 Packet Header of specification HDMI 1.4b.
- [65] Table 1 Packet Types
- [66]

Packet Type	Packet Type	Described in
V a lue		Section
0x00	N v 11	5.3.2
0 x 0 1	Audio Clock Regeneration (N/CTS)	5.3.3
0x02	Audio Sample(L-PCM and IEC 61937 compressed formats)	5.3.4
0x03	General Control	5.3.6
0x04	A CP Packet	5.3.7
0x05	ISRC1 Packet	5.3.8
0x06	ISRC2 Packet	cc
0x07	One Bit Audio Sample Packet	5.3.9
0x08	DST Audio Packet	5.3.10
0x 09	High Bitrate(HBR) Audio Stream Packet (IEC 61937)	5.3.11
0x 0 A	Gamut Metadata Packet	5.3.12
0x 0 B	3D Audio Sample Packet	5.3.13
0x 0 C	3D One Bit Audio Sample Packet	5.3.14
0x 0 D	Audio Metadata Packet	5.3.15
0x0E	Multi-Stream Audio Sample Packet	5.3.16
0 x 0 F	Multi-Stream One Bit Audio Sample Packet	5.3.17
0 x 80 + Info Fra	Info Fram e Packet	5.3.5
ше Туре		
0x 81	V en dor-Specific Info Fram e	8.2.3
0x 82	AVI InfoFrame	8.2.1
0x 83	Source Product Descriptor Info Frame	-
0x84	Audio InfoFram e	8.2.2
0x85	MPEG Source InfoFrame	-

- * The layout of packets for the InfoFrames refers to the Section 8.2 of the specification HDMI 1.4b.
- As illustrated in Table 1, the new packet is defined in the sections from OxOB to OxOF. At OxOB, a 3D Audio Sample Packet is defined, and a 3D One bit Audio Sample Packet is defined at OxOC. Also, an Audio Meta Data Packet is defined at OxOD, a Multi-Stream Audio Sample Packet is at OxOE, and a Multi-Stream One bit Audio Sample Packet is defined at OxOF. The present disclosure will describe the newly defined packet in detail.
- In addition, other various exemplary embodiments that do not newly define the packet as above will also be described in the present disclosure. The packet proposal of Table 1 is named as the first exemplary embodiment. Various exemplary embodiments will be named as the second exemplary embodiment, the third exemplary embodiment and so on. Various exemplary embodiments will be described mainly with regard to their differences with the first exemplary embodiment.

[70]

[75]

- [71] 1.1. 3D Audio Sample Packet
- [72] The first exemplary embodiment

[73] In the first exemplary embodiment, 3D audio in Linear Pulse Code Modulation (L-PCM) audio format is transmitted using 3D audio sample packets that are newly defined. As described above, the 3D audio is defined as audio where speakers may be disposed at a position each determined by the 3D audio standards (eg 10.2ch, 22.2ch, such 30.2ch) in 3D space.

[74] A 3D audio stream includes up to 32 audio channels (or more) and is transmitted via continuous packets in the data island period. Each packet contains up to 8 audio channels. To indicate the position of the packet within the 3D audio sample, the packet header contains a sample start and a sample_present bit. This will be explained later. The following table shows the 3D audio sample packet header.

Table 2 - 3D Audio Sample Packet Header

[76]	Byte/Bit #	7	б	5	4	3	2	1	0
	HB0	0	0	0	0	1	0	1	1
	HB1	Rsvd (0)	Rsvd (0)	R svd (0)	sample_ start	sample_ present sp3	Sample_ present sp2	Sample_ present spl	Sample_ present sp0
	HB2	B3	B2	B1	B0	sample_ flat_sp3	sample_ flat_sp2	sample_ flat spl	sample_ flat_sp0

- [77] Each field contains the following information.
- [78] In Table 2, sample_start:[1 bit] indicates if sample start is 1, current packet indicates that it is the first packet of 3D audio samples. In other words, sample_start indicates the start of the 3D audio stream. Sink identifies the beginning part of the sample using a sample_start sink.
- [79] Besides that, the current 3D audio sample packet is the first packet of the 3D audio sample. Sample_start = 1 also indicates that it has been completely packetized as the 8 audio channels. However, when transmitting the down mixed 3D audio below the 8 audio channels, it may be packetized only below 8 audio channels.
- [80] Also, sample_start = 0 indicates that the current 3D audio sample packet is the middle or the last packet of the 3D audio sample and that it contains 8 or less audio channels. Only setting of 5 valid sample_present bits for 3D audio sample packet exists.
- In addition, sample_present.spX: [4 fields, 1 bit each] indicates whether sub-packet X contains the audio sample or not. One 3D audio sample data is included in more than two of 3D audio sample packets, and each 3D audio sample packet includes four sub-packets. Therefore, each 3D audio sample packet header includes a total of four sample_present bits corresponding to each sub-packet. Each sample_present bit indicates whether a corresponding sub-packet contains a part of the 3D audio or not.

- Further, sample_flat.spX: [4 fields, 1 bit each] sub-packet X indicates whether it represents a sample of a flatline. It is only valid, if sample_present.spX is set. If there is no useful audio data that is available in sources, four sample_flat.spX bits are set. This happens while there are changes in sampler rate or temporary stream interruptions. When sample_flat. spX is set, the sub-packet X still represents a sample period, yet does not contain useful audio data. Sample_flat.spX bit is only valid if the corresponding sample_present.spX bit is set.
- [83] Adjacent 3D audio samples packets may be used to transmit single 3D audio samples including 32 channels of the L-PCM audio 9. (Ie, frames of 5 -16 IEC 60958).
- [84] Table 3 shows the valid values of Sample_Present Bit.
- [85] Table 3 Valid Sample_Present Bit Configurations for 3D Audio transmission

[86]	SPO	3P1	ΞP1	SP3	D escripti on
	0	0	0	0	No Subpackets contain parts of the audio sample
	1	0	0	0	Only Subpacket 0 contains one par of the audio sample
	1	1	0	0	Subpackets 0 and 1 contain two contiguous parts of the audio sample
	1	1	1	0	Subpackets 0, 1 and 2 contain three contiguous parts of the audio sample
	1	1	1	1	Subpackets 0, 1 and 3 contain four contiguous parts of the audio sample

- [87] In Table 3, B.X : [4 fields, 1 bit each] indicates that when sub-packet X includes the first frame among 192 frames that are composing IEC 60958 block, it becomes B.X = 1. Otherwise B.X = 0.
- [88] The 3D audio sample packet includes audio samples packet header shown in Table 2 and four sub-packets. Each sub-packet of the 3D audio sample packet includes a 3D audio sample data that is defined as IEC 60958.
- [89] If the source needs 3D down mix audio stream, down-mixed audio stream may be transmitted using the 3D audio sample packet. If Sink does not support the 3D audio, the source may not transmit the 3D audio sample packets. Converting the 3D audio into legacy audio format is beyond the range of the disclosure. A number of different sub-packet layouts exist based on the number of the channel. Tables 4-6 below each show an example of the 3D audio packet layout for channel 12, 24, and 32.
 - Table 4 Example of 3D Audio Sample Packet Layout for 12 channels

[91]	Pack et #	sample_sta rt Value	Num Channels	Samples	Subpkt 0	Subpkt 1	Subpkt 2	Subpkt3
	0	1	12	1	Chnl 1,2 (sample 0)	Chnl 3,4 (sample 0)	Chnl 5,6 (sample 0)	Chni 7,8 (sample 0)
	1	0	12	1	Chnl 9, 10 (sample 0)	Chml 11,12 (sample 0)	em pty	empty

[92] Table 5 Example of 3D Audio Sample Packet Layout for 24 channels

[93]

[90]

Packet #	Sample_stat Value	Num Ch _{an} nels	samples	Subpkt 0	Subpkt 1	Subpfct 2	Subpkt 3
0	1			Chnl 1,2 (sample 0)	Chnl 3,4 (sample 0)	Chnl 5,6 (sample 0)	Chnl 7,8 (sample 0)
1	0	24	1	-	-	-	-
2	0			Chnl 17, 18 (sample 0)	Chnl 1 ⁹ ,20 (sample cp	Chnl 21,22 (sample 0)	Chnl 23,24 (sample cp

[94] Table 6 Example of 3D Audio Sample Packet Layout for 32 channels (Max)

					1	•		`
[95]	Packet #	Sample_start Value	Num Channels	samples	Subpkt 0	Subpkt 1	Subpkt 2	Subpkt 3
	0	1			Chml 1,2 (sample 0)	Chml 3,4 (sample 0)	Chml 5,6 (sample 0)	Chnl 7,8 (sample 0)
	1	0	32		-	-	-	-
	2	0	(Max)	1	-	-	-	-
	3	0			Chril 25,26 (sample 0)	Chnl 27,28 (sample 0)	Chnl 29,30 (sample 0)	Chni 31,32 (sample 0)

[96] FIG. 1 is a diagram illustrating a transmission timing of a 3D audio signal.

[97] FIG. 1 shows that a horizontal blanking interval transmits three channel 8 2D audio signal samples. In a 3D audio signal of the channel 24, one sample is transmitted for the same period of time.

[98] [99]

Video Dependency

[100] Table 7 shows sample rates that are available for transmission of 3D audio in the timing of the various video formats that are specified in CEA-861-F the (D or E is available). Here, it is assumed that 58 TMDS clock period of horizontal blanking interval is necessary for content protection re-synchronization. 3D audio transmission may be supported by the 3D audio sample packets.

[101] Table 7 represents maximum sampling frequencies of 3D Audio for 24 bits video format timing (informative).

[102] Table 7 Maximum Sampling Frequency of 3D Audio for Video Format Timing [103]

[103]

Description	Format Timing	Ploei Repetition	Vertical Freq (Hz)	Max fs 10.20h (NHZ)	Max fs 22.201 (NHz)	Max 15. 30.2cm (kHz)	Max frame rate - 2ch, comp*
YGA	640x420o	none	59.94.60	32 No.	X	· · · · · X	256
# \$0	144074904	7	SO DURY)	64.1	Χ	X	256
49)	2690(450)	4	55),94,60	1961	48	49	768
240p	1440(2400	2	39.9480	44.1	Ж	X	256
260p	2830x240p	4	59 94/50	90	48	48	768
480p	720n460p	none	59.9450	X	Х	X	192
450p	14-40x/6-0p	2	59.946.0	882	49	441	705,8
450p	2880x480p	4	59 94350	192	. 195	96	1538
720p	128017200	none	59,9460	192	96	98	1536
rosu:	19205-10901	none	558,94850	96	43	49	768
1030p	1970a1080p	none +	39.9400	172	96	95	- 133
2160p	3940h() 190p	nona	50,0000	192	102	192	
216Commenter	4096:2160p	none	59.9460	192	192	192	1536
4909120	1440)(480)	2	119,09/120	1962	48	44,1	705.6
4500/120	720:4600	none	119.88/120	48	32	X	384
720p/120	12800720p	none	119.88/120	192	192	192	1536
100400120	1950×1080	none	110,690170	189	16	W	1508
106010120	1920at080p	none	119.63/120	192	192	192	1538
4809240	1440×480	2	239.76/240	1764	96	88.2	1411.2
1800/340	720M800	nome	239.76/200	96	43	45	700
50Hz Formats	and the second		No marketing to the second	*			
576	14405764	2	50.	44.1	X	Х	258
5700	258005751		34440 S SO 2237043	98	49	49	768
268p	1440x230m	2	50z y	44.1	mod v X (sur	· X	256
258p	2820x256p	4	50	96	43	48	768
576p	720:5760	none	50	X .₹,	X	X	192
570p	(4401576p	X	20	10.2	28	441	7088
576p	2890h576p	4	50 ·	192	96	98	1536
7200/50	1290/7700	none	50	192	192	26	1535
1000000	# 02 On 10 Str	none	1.00		1764		15,18
1030rx50	1920:(1090p	RIGH	. (50)	1972	192		1528 1538
2100r	2840121602	DODA!	- 0	183	10		1536
2000ccmpre)	4056121800	none		192	192	192	15%
10/204 V250 best	1920/1080/	none	50	96	59.2	48	1024
5760100	144015768	2	100		49	44.1	707.6
5766/100r	720:6750	_ one	100		32	×	384
130-1110	1300 30p	TICI)® -	100	192		182	150
10900100	1920/10801	, none	100	1882			1538
1080pr100 5769200	1920x1090p	ралу:	100 200	192	192	192 88.2	1536
5/65/200	72005760	bone	200	1 (C).44	48	43	758
		LAUINE)		(· ~(D)++.	~~3	
24-30H-82 Forms		CHAPTER COMP. IN ACCOUNT	-	·	alamonia inggress contrata	management, and the same	COLUMN TO SERVICE COLUMN
73Up	1280x7200	noise	24	190	182	192	1558
7200	1290x720p	none.	25 26 97/00	192	102	1902	1538 1538
720p	1920x1090p	none none	24	192	192	192 96	1536
1090p	1920:10900	none	25	192	178.4	96	1536
10900	1920210900	none	29.97/30	96	44	49	788
216Co	3940:021600	none	24	192	192	192	1536
216Cp	3840:02150p	none	25	192	192	192	1538
21600	3830501600	none	29.97/00	192	192	192	1536
2160NSMPTEK	2096x21600	none	24.	192	192	192	1536
210000SMPTE	409672160p	none	250000	15/2	192	192	1508
2160orsMPTEX		none	29,97/30	192	96	95	1536

[104] Second Exemplary Embodiment

[105] Unlike the first exemplary embodiment, it is also available to consider the use of the related art audio sample packet format by modifying it.

As shown below in Table 8, the reserved area of related art audio sample packet may be used as a segment_indicator. In one exemplary embodiment, the segment_indicator may be expressed as two bits. If segment_indicator = 00, it represents the start packet, if segment_indicator = 01, it represents odd packet among middle packets, if segment_indicator = 10, it represents even packet among middle packets, and if segment_indicator = 11, it represents the last packet. Of course, these examples are in one exemplary embodiment, and packets matching bits may vary.

[107] This structure makes it is available to FIG. out whether the segment is lost or not. If there is a loss in the segment, there is a plan of dropping the entire "sample Nth" which

contains the corresponding segment or just discarding the lost Audio Sample Packet. Here, a segment is a term referring to an individual Audio Sample Packet which includes the group when more than one Audio Sample Packet is grouped.

[108] The layout in HDMI 1.4b displays the information on the number of channels and samples. For example, one audio sample packet includes four audio samples of 2 channels or one audio sample of 8 channels. The exemplary embodiments may extend it and leave layout_ext field in the related art reserved area and display the information about whether to provide 3D audio along with the layout or not.

- [109] For example, if layout_ext = 0 & layout = 0, 1, it still represents the number of channels and 2D audio samples, but if layout_ext = 1 & layout = 0, it represents the 3D audio samples. If layout_ext = 1 & layout = 1, it is also available to display the multistream audio samples.
- [110] Fields other than the fields which are described specifically with regard to the second exemplary embodiment, may be the same as the first exemplary embodiment.
- [111] Table 8 Modified Audio Sample Packet

[112]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit1	Bit 0
	Packet type - 0x02 (Audio Sample Packet)							
	Segment	indictaor	Layout ext	layout	Sample_pres	Sample_pres	Sample_pres	Sample_pres
		-		,	<u>ent.sp3</u>	ent.sp2	ent.sp1	ent.sp0
	B.3	B.2	B.1	B.0	Sample_flat.	Sample_flat.	Sample_flat.	Sample_flat.
	5.5	D.2	B.1	D.0	<u>sp3</u>	<u>sp2</u>	<u>sp1</u>	<u>sp0</u>
			A	udio Samp	le Subpacktet (0 (7Bytes)		
			A	udio Samp	le Subpacktet :	1 (7Bytes)		
	Audio Sample Subpacktet 2 (7Bytes)							
			A	udio Samp	le Subpacktet i	3 (7Bytes)		

[113] Table 8-1 segment_indicator field

[114]

Segment_ indicator	Description
00	Start_segment
01	mid_segment(odd)
10	mid_segment(even)
11	End_segment

[115] Table 8-2 retation between layout and layout_exit: refer to table7-6 HDMI 1.4b

[116]

Layout _exit	1ayout	Description
0	0	2ch / 4 samples
0	1	8ch / 1 samples
1	0	3D Audio
1	1	Reserved

- [117] FIG. 5 illustrates a transport stream of an audio sample packet according to the second exemplary embodiment.
- FIG. 5 shows settings of values for each field when transmitting two sample packets in the horizontal blanking interval in the case of 3D audio of 22.2 channels. The first packet is segment_indicator = 00, the second packet is segment_indicator = 10, and the last packet is segment_indicator = 11. Since all are 3D audio signals layout_ext = 1, and layout = 0. Similar value of a field is shown in 3D audio of 10.2 channels.

[119]

- [120] Third Exemplary Embodiment
- [121] The third exemplary embodiment also modifies and uses the related art audio sample packet format, but displays brief information compared to the second exemplary embodiment.
- [122] As shown below in Table 9, a reserved area of the related art audio sample packet

may be used as a multi-channel_indicator. The multi-channel_indicator displays only the information on 3D audio of an audio sample packet, unlike the segment_indicator of the second exemplary embodiment. The information that the layout field shows, is different depending on the bit information of the multi-channel_indicator.

Therefore, the multi-channel_indicator may be expressed with one bit. If the multi-channel_indicator = 0, layout field refers to the channel / sample layout that has been defined in the existing HDMI 1.4b. If the multi-channel_indicator = 1, layout field refers to the layout that transmits a multi-channel audio sample data of more than 8 channels. The layout field is used to refer to the start of a sample at this time. If layout = 1, current audio sample packet means that it comprises the beginning part of a sample. If layout (start) = 0, current audio sample packet means that it does not comprise the beginning part of a sample. Of course, this example is one exemplary embodiment, and packets matching the bits may vary. Fields other than the fields described with special reference to the third exemplary embodiment are the same as the first exemplary embodiment.

[124] Table 9 Modified Audio Sample Packet Header

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bitl	Bit 0			
	Packet $typs$; = $0x02$ (Audio Sample P acket)									
rese	r∀ed	Multichannel _indicator	Layout/ start	3ample_prese n t. sp3	3ample_prese nt.sp2	Sample_prese nt.spl	3ample_prese nt.spO			
B.3	B.2	B.1	B.O	Sample _flats p3	Sample _flats p2	Sample _flat s	Sample _flat.s p O			
			Audio	sample subpacket	0 (7Bytes)					
			Audio	sample subpacket	1 (7Bytes)					
	Audio sample subpacket 2 (7 B y te s)									
	Audio sample subpacket 3 (7Bytes)									

Table 9-1 Multichannel_indicator and Layout/start

[126] [127]

[125]

Multichannel _indicator	Layout/start	Description		
0	0	2ch / 4 samples		
0	1	8ch / 1 sample		
1	0	Multi-channel / 1 sample (Non-start of sample)		
1	1	Multi-channel / 1 sample (start of sample)		

This structure has the advantage of having a simple packet structure compared to the second exemplary embodiment, since it minimizes the changes of the reserved area in existing audio sample packets, and may indicate at the same time whether it comprises 3D audio or not, with only the audio sample packet.

- [129] FIG. 6 is a diagram representing a transmission stream of an audio sample packet of the third exemplary embodiment.
- [130] FIG. 6 shows settings of values for each field when transmitting two sample packets in the horizontal blanking interval in the case of 3D audio of 22.2 channels. The first packet is layout=1, the second and third packets are layout=0. Since all packets are 3D audio signals, so multi-channel_indicator=1. Similar value of a field are shown in 3D audio of 10.2 channels.

[131]

[138]

- [132] Fourth Exemplary Embodiment
- [133] Similarly, the fourth exemplary embodiment modifies and uses the related art audio sample packet format, and provides more information whether it provides multi-stream audio or not, compared to the second exemplary embodiment.
- As shown below in Table 10, a reserved area of the related art audio sample packets may be used as a Stream_ID, and a multiASP_layout. The multiASP_layout has the same function as the multi-channel_indicator in the third exemplary embodiment. That is, it shows whether it provides 3D audio or not. Information that the layout field shows is different depending on the bit information of the multiASP_layout.
- [135] Stream_ID indicates the stream number when multi-stream audio is provided. In an exemplary embodiment, one bit may be used in Stream_ID, and the first stream is displayed when it is 0. Of course, this example is only exemplary, and packets matching bits may vary.
- [136] When assuming that one view of multi-stream audio holds an audio signal under 8 channels, Stream_ID and multiASP_layout may not be 1 at the same time with regard to a single audio sample packet.

[137] Table 10 Modified Audio Sample Packet Header

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
HB0		Packet type = 0x02								
HB1	Stream _ID	multiA SP_lay out	res erv ed	Layout / start	Sample_pres ent.sp3	Sample_pres ent.sp2	Sample_pres ent.sp1	Sample_pres ent.sp0		
HB2	B.3	B.2	B.1	B.0	Sample_flat. sp3	Sample_flat. sp2	Sample_flat. spl	Sample flat. sp0		
SPO				Audio	Sample Subpac	ktet 0 (7Bytes))			
SP1				Audio	Sample Subpac	ktet 1 (7Bytes))			
SP2		Audio Sample Subpacktet 2 (7Bytes)								
SP3		Audio Sample Subpacktet 3 (7Bytes)								

[139] Table 10-1 Description of Stream ID

[140]	Stream_ID	description
	0	1 stream
	1	2 stream

[141] In terms of being able to display all the information about the 3D multi-stream audio

and 3D audio using a single data sample packet, this structure has the advantage of compatibility. Additionally, since each identification becomes available when transmitting a plurality of streams when placing Stream_ID field and stream identifier, multi-stream audio sample data exceeding the size of one packet may be transmitted. Fields, other than the fields described with special reference to the fourth exemplary embodiment, are the same as the fields of the first exemplary embodiment.

An audio data transmission stream in accordance with a combination of the value of the Stream_ID field, multiASP_layout field, and layout / start field may be considered. If multiASP_layout = 1, it represents the transmission stream of 3D audio, and this time layout / start displays the starting position information of the packet. If Stream_ID = 1, it displays the multi-stream, and the number of samples and the channel is set based on the layout/start. For example, Sink which received the packet of Stream_ID = 1 recognizes that multi-stream audio data is transmitted, and at the same time recognizes the currently received packet as the second stream of audio data out of two multi-stream audio data.

[143]

[151]

- [144] Fifth Exemplary Embodiment
- [145] Likewise, the fifth exemplary embodiment modifies and uses the related art audio sample packet format.
- [146] As shown below in Table 11, a reserved area of the related art audio sample packets may be used as a Supports_Multistream, and a multiASP_layout. The multiASP_layout has the same function as the multiASP_layout discussed in the fourth exemplary embodiment. That is, it shows whether it provides 3D audio or not. Information that the layout field shows may differ depending on the bit information of the multiASP_layout.
- [147] The Supports_Multistream shows information about whether the multi-stream audio is provided or not. In an exemplary embodiment, one bit may be used in Supports_Multistream, and the multi-stream audio is provided when it is 0, Of course, this example is only one exemplary embodiment, and packets matching bits may vary.
- [148] An audio sample packet in accordance with the fifth exemplary embodiment may comprise at most four 2 channels multi-stream audio samples in one audio sample packet, and audio samples for each view may be transmitted corresponding to each four sub-packets.
- [149] If one view of the multi-stream audio holds audio signals less than 8 channels, Supports_Multistream and multiASP_layout would not be 1 at the same time in terms of one audio sample packet.
- [150] Table 11 Modified Audio Sample Packet Header

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
HB0	Packet type = 0x02									
НВ1	Supp orts_ Multi strea m	multiA SP_layo ut	reser ved	Layout / start	Sample_pres ent.sp3	Sample_pres ent.sp2	Sample_pres ent.spl	Sample_pres ent.sp0		
HB2	B.3	B.2	B.1	B.0	Sam ple_flat. sp3	Sample_flat. sp2	Sample_flat. spl	Sample flat. sp0		
SP0		Aı	udio Sar	nple Subp	acktet 0 (7Byte	es) : Reserved	for 1 stream			
SP1		Αι	udio Sar	nple Subp	acktet 1 (7Byte	s) : Reserved	for 2 stream			
SP2	Audio Sample Subpacktet 2 (7Bytes) : Reserved for 3 stream									
SP3		A۱	udio San	nple Subp	acktet 3 (7Byte	es) : Reserved	for 4 stream			

- In terms of being able to display all the information about the multi-stream audio and 3D audio using a single data sample packet, this structure has the advantage of compatibility. In addition, there is an advantage that it is available to describe all the features that are supported in one audio sample packet. Fields other than the fields described with special reference to the fifth exemplary embodiment is the same as fields of the first exemplary embodiment.
- A feature of an audio data transmission stream in accordance with a combination of the value of the Supports_Multistream field, multiASP_layout field, and layout / start field may be considered. If Supports_Multistream = 0 and multiASP_layout=l, it represents the transmission stream of 3D audio, and this time layout / start displays the starting position information of the packet. If Supports_Multistream = 1, it displays the multi-stream, and the number of samples and the channel is set based on the layout/ start.

[154]

- [155] Sixth Exemplary Embodiment
- [156] The sixth exemplary embodiment provides a plan that has modified the related art audio sample packet format which is similar to the fourth exemplary embodiment.
- Therefore, as shown below in Table 12, a reserved area of the related art audio sample packets may be used as a Stream_ID, and a multiASP_layout. The Stream_ID and the multiASP_layout each have the same functions as the Stream_ID and the multiASP_layout in the fourth exemplary embodiment. Information that the layout field shows, differs depending on the bit information of the multiASP_layout.
- [158] However, four stream numbers may be shown when multi-stream audio is provided since Stream_ID is expressed as 2 bits. Each combination of different bits corresponds to the view of the different contents.
- [159] If one view of the multi-stream audio holds audio signals less than 8 channels, Stream_ID may not be more than 1 and at the same time multiASP_layout may be 1 in terms of one audio sample packet.
- [160] Table 12 Modified Audio Sample Packet Header

1	Г1	_	1	7
		n		ı
1	1	v	1	- 1

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
HB0		Packet type = 0x02 (Audio Sample packet)									
HB1	Stream_ID multiA SP_1ay out		Layout / start	Sample_pres ent.sp3	Sample_pres ent.sp2	Sample_pr esent.sp1	Sample_pres ent.sp0				
HB2	B.3	B.2	B.1	B.0	Sample_flat. sp3	Sample_flat. sp2	Sample_fl at.spl	Sample flat. sp0			
SPO				Audio San	aple Subpackte	t 0 (7Bytes)					
SP1				Audio San	nple Subpackte	t 1 (7Bytes)					
SP2		Audio Sample Subpacktet 2 (7Bytes)									
SP3				Audio San	aple Subpackte	t 3 (7Bytes)	·				

[162]

Table 12-1 Description of Stream __ID

[163]

Stream_ID	description
00	1 stream
01	2 stream
10	3 stream
11	4 stream

[164]

In terms of being able to display all the information about the multi-stream audio and 3D audio using a single data sample packet, this structure has the advantage of compatibility. In particular, more multi-streams may be identified compared to the fourth exemplary embodiment. Fields other than the fields described with special reference to the sixth exemplary embodiment are the same as the first exemplary embodiment.

[165]

Table 13 displays a feature of an audio data transmission stream in accordance with a combination of the value of the Stream_ID field, multiASP_layout field, and layout / start field. If multiASP_layout=l, it represents the transmission stream of 3D audio, and this time layout / start displays the starting position information of the packet. If Stream_ID = 01-11, the number of samples and the channel is set based on the layout/ start.

[166]

Table 13 Capability to deal with proposed features according to exemplary embodiments

[167]

ASP header fields						
Stream_ID	multiASP_ layout	Layout/start	Description			
00ъ	0	L ayout=0	24bits-sample + default (2ch/4sample)			
00ъ	0	Layout=1	24bits-sample + default (8ch/lsample)			
00ъ	1	Start=0	24bits-sample + 3D audio-channel non-start ('N'ch/l sample)			
00ъ	1	Start=1	24bits-sample + 3D audio-channel start ('N'ch/1 sample)			
005~115	0	Layout=0	24bits-sample + Multi-stream (2ch/4 sample)			
00ხ~11ხ	0	Layout=1	24bits-sample + Multi-stream (8ch/1 sample)			
1	1	0	Not supported (refer to the '2 Analysis of propeosed			
1	1	1	features (1/2) slide, page 8)			

[168]

Seventh Exemplary Embodiment

[169]

The seventh exemplary embodiment uses 3D audio sample packets which are newly defined in the first exemplary embodiment to transmit the 3D audio sample packets and multi-stream audio samples packets.

- [170] The seventh exemplary embodiment is similar to the first exemplary embodiment, but it has more ext_layout fields indicating whether the multi-stream is transmitted or not. That is, if the ext_layout = 0, it means transmission of the multi-stream audio, and if ext_layout = 1, it means transmission of the 3D audio.
- [171] Sample_start field, sample_present.spX field, and sample_flat.spX field are the same as the first exemplary embodiment, so an overlapping description is omitted. Table 16 shows the structure of the audio sample packet based on the seventh exemplary embodiment.

[172] Table 14 Extended Audio Sample Packet (24Channels Fs=96kHz)

[173]	N / Chan 1, 2	N / Chan 9, 10	N / Chan 17, 18	N+1 / Chan 1,2
	N / Chan 3, 4	N / Chan 11, 12	N / Chan 19, 20	N+1 / Chan 3, 4
	N / Chan 5, 6	N / Chan 13, 14	N / Chan 21, 22	N+1 / Chan 5, 6
	N / Chan 7, 8	N / Chan 15, 16	N / Chan 23, 24	N+1 / Chan 7, 8

Table 14-1 Example of Extended Audio Sample Packet

[175]	Byte / Bit#	7	6	5	4	3	2	1	0		
	HB0	0	0	0	0	1	0	1	1		
	HB1	0	0	Sample _start= 1	Ext_la yout=1	Sample_p resent.sp3	Sample_p resent.sp2	Sample_p resent.sp1	Sample_p resent.sp0		
	HB2	B.3	B.2	B.1	B.0	Sample_fl at.sp3	Sample_fl at.sp2	Sample_fl at.sp1	Sample fl at.sp0		
	PB0~PB6		Channel 1, 2 audio data / sample N								
	PB7~PB13		Channel 3, 4 audio data / sample N								
	PB14~PB2 0		Channel 5, 6 audio data / sample N								
	PB21~PB2 7	Channel 7, 8 audio data / sample N									

Table 15 shows the body structure of a packet which follows the field value of the ext_layout field. As illustrated, in the case of multi-stream, an audio signal corresponding to one view may consist of 2 channels, and therefore a single packet may comprise audio signals for four views. For 3D audio signals, the audio signal for a plurality of channels may be displayed. Though 32 channels are shown in various exemplary embodiments described above, the exemplary embodiments are not limited thereto and may comprise audio signals of more than 32 channels.

[177]

[174]

[178] Table 15 EASP packetization

[179]

WO 2013/122387	PCT/KR2013/001130
WO 2013/122387	PCT/KR2013/001130

Ext_layout Value	Sample_statt V alue	Max Num Channels	samples	Subpkt 0	Subpkt 1	Suhpkt 2	Subpkt 3
0	X	2	4	Chrd 1,2 Stream 0 (Sample M)	Chrd 1,2 Stream 1 (Sample M)	Chnl 1,2 Stream 2 (Sample M,i	Chnl 1,2 Stream 2 (Sample M,i
1	1			Chrd 1,2 Stream 0 (Sample M)	Chrd 3,4 Stream 0 (Sample M)	Chnl 5,6 Stream 0 (Sample M)	Chnl 7,8 Stream 0 (Sample M)
1	0	N	1	-	-	-	-
1	0			Chrl N-7.N-6 Stream 0 (Sample M)	Chnl N- i,N-4 Stream 0 (Sample M)	Chrd N- 3,N-2 Stream 0 (Sample M)	Chrd N- 1,N Stream 0 (Sample M)

- [180] Meanwhile, in the exemplary embodiments described above, multi-stream audio signals may be transmitted by being included in the area corresponding to the area where video data of each view are located in the vertical synchronization blanking period. FIG. 7 is a diagram illustrating a transmission stream format of such a case. The audio signal corresponding to left area of the video signal of each view may be shown in FIG. 7.
- [181] 1-2. 3D One Bit Audio Sample Packet
- [182] First Exemplary Embodiment
- In the first exemplary embodiment, 3D audio of one bit audio format is transmitted [183] by using the 3D one bit audio sample packets that are newly defined. As described above, 3D audio is defined as audio in which speakers may be located anywhere on 3D space.
- [184] The 3D one bit audio stream comprises 32 audio channels (or more), and is transmitted via continuous packets to a data island period. To indicate the position of the packet within the one bit audio sample as shown below in Table 16, a packet header comprises a sample_start and a sample_present bit.

[185] Table 16 One Bit 3D Sample Packet Header

[186]	Byte/Bit#	7	6	5	4	3	2	1	0
	HB0	0	0	0	0	1	1	0	0
	HB1	Rsvd (0)	Rsvd (0)	Rsvd (0)	sample_ start	sam ples_ present sp3	Samples_ present sp2	Samples _ present sp1	Samples _ present sp0
	HB2	Rsvd (0)	Rsvd (0)	Rsvd (0)	Rsvd (0)	Samples _invaild sp3	Samples_ invalids p2	Samples invalid. sp1	Samples — invalid. sp0

In "sample_start: [1 bit]", if sample_start = 1, the current packet is the first packet of [187] 3D one bit audio samples. The sample_start is the same as what was described in the first exemplary embodiment of the 3D audio packets, so the overlapping description is omitted.

- In "samples_present.spX: [4 fields, 1 bit each]", Sub packet X indicates whether it comprises invalid audio sample or not. If samples_invalid=1, samples of sub-packet are not valid. If samples_invalid=0, samples are valid. These bits are valid only when samples_present.spX is set. If there is no useful audio data that is available in the source, four samples_invalid.spX bits are set. When samples_invalid.spX is set, sub-packet X continues to show the sample period, but do not comprise any useful data.
- [189] Sample frequency information in 3D one bit audio are transmitted by being included in Audio InfoFrame. (Refer to the HDMI 1.4b Section 8.2.2)
- [190] A 3D one bit audio sample packet includes a one bit audio sample packet header and four sub-packets that are listed in Table 16. Each sub-packet may comprise one bit audio bit for up to four audio channels.
- [191] Adjacent 3D one bit audio sample packets may be utilized to be transmitted between 9 audio channels to 32 audio channels of 3D one bit audio sample. A useful combination of samples_present bits for 3D one bit audio sample packets is determined by allowed channel share. The reason why the 3D one bit audio sample packet does not hold B0-B3 fields unlike the 3D audio sample packet is that 3D one bit audio sample packet does not follow IEC 60958 block format.

[192]

- [193] Various Alternatives
- [194] Meanwhile, 3D one bit audio sample packets corresponding to each exemplary embodiment of the 3D audio sample packets described above may be defined. That is, besides the samples_invalid.spX, 3D one bit audio sample packets may be defined in the same manner as 3D audio sample packets, and only B0-B3 fields may be excluded in 3D audio sample packets. A detailed description thereof will be omitted since the contents of the other exemplary embodiments overlap.

[195]

- [196] 1-3. Multi Stream Audio Sample Packet
- [197] The following describes the structure of a multi-stream audio sample packet that has been newly proposed. First, the first exemplary embodiment will be described, and various alternatives focusing on differences from the first exemplary embodiment will be described.
- [198] First Exemplary Embodiment
- [199] In the first exemplary embodiment, a plurality of audio streams of L-PCM and IEC 61937 audio compression formats are transmitted by using a multi-stream audio sample packet. Each audio stream that is included in the multi-stream audio sample comprises 2 audio channels (or more). The setting of the sub-packet is determined by stream_present bit of a packet header. Table 17 shows the structure of the packet

header of the multi-stream audio sample packet.

[200] Table 17 Multi-Stream Audio Sample Packet Header

[201]	Byte/Bit#	7	6	5	4	3	2	1	0
	HB0	0	0	0	0	1	1	1	0
	HB1	Rsvd (0)	Rsvd (0)	Rsvd (0)	Rsvd (0)	stream_ present	stream_ present	stream_ present	stream_ present
		(0)				sp3	sp2	sp1	sp0
	HB2	B.3	B.2	B.1	B.0	Stream_fl	Stream_fl	Stream_fl	Stream_fl
						at.sp3	at.sp2	at.sp1	at.sp0

- In "stream_present.spX: [4 fields, 1 bit each]", sub packet X indicates whether it comprises an audio sample of stream X or not. Four stream_present bits exist in the multi-stream audio sample packet header, and each bit is for sub-packets.

 Stream_present bit indicates whether the corresponding sub-packet comprises an audio stream or not.
- [203] Since stream_present.spX has substantially the same function as the sample_present.spX of 3D audio sample packets described above, a detailed description thereof will be omitted in the overlapping ranges.
- In "stream_present.spX: [4 fields, 1 bit each] ", sub packet X indicates whether it shows a flatline sample of stream X. It is valid only when stream_present.spX is present. That is, four stream_flat.spX bits are set when useful audio data that is available in the source is not available. It happens when sample rate changes or while there is a temporary stream interruption. Once stream_flat.spX is set, sub-packet X continues to show the sample period, but does not comprise the useful audio data. Since stream_flat.spX is substantially the same as sample_flat.spX of the 3D audio sample packet described above, a detailed description thereof will be omitted.
- [205] When sub-packet X comprises the first frame among 192 frames that includes IEC 60958 block, B.X=1. Otherwise B.X=0.
- [206] The multi-stream audio sample packet uses a packet header and four sub-packets that are shown in Table 17. All sub-packets have the same structure.
- The high-speed wired interface environment allows the source to transmit four audio streams at the same time if it supports multi-view video streaming. (For example, dual view / Quad view game with different audio for each view). Each audio stream that is included in the multi-channel audio sample is related to one single view, and comprises 2 audio channels. Sub-packet of each multi-stream audio sample packet may comprise IEC 61937 block frame or IEC 60958 block frame that is defined with zero or one IEC 60958. Three sub-packet layouts are defined. Table below shows an example of the multi-stream audio packet layout for two, three and four audio streams.
- [208] Table 18 Example of Multi-Stream Audio Sample Packet Layout for 2 Audio Streams

[209]

Num Stream s	Packet #	Max Num Channels	samples	Subpkt 0	Subpkt 1	Subpkt 2	Subpkt 3
	0	2 ch /stream	1 sample /stream	Chnl 1,2 Stream 0 (Sample a)	Chnl 1,2 Stream 1 (Sample b)	Empty	empty
2	1	2 ch /stream	1 sample /stream	Chnl 1,2 Stream 0 (Sample a+1)	Chnl 3,4 Stream 1 (Sample b+1)	empty	empty
				-	-	-	
	N	2 ch /stream	1 sample /stream	Chnl 1,2 Stream 0 (Sample a+N)	Chnl 1,2 Stream 1 (Sample b+N)	empty	empty

[210] Table 19 Example of Multi-Stream Audio Sample Packet Layout for 3 Audio Streams

[211]

Num Streams	Packet #	Max Num Chammels	samples	Subpkt 0	Subpkt 1	Subpkt 2	Subpkt 3
	0	2 ch /stream	1 sample /stream	Chml 1,2 Stream 0 (Sample a)	Chnl 1,2 Stream 1 (Sample b)	Chnl 1,2 Stream 2 (Sample c)	empty
3	1	2 ch /stream	1 sample /stream	Chnl 1,2 Stream 0 (Sample a+1)	Chnl 1,2 Stream 1 (Sample b+1)	Chnl 1,2 Stream 2 (Sample c+1)	empty
				-	-	-	
	N	2 ch /stream	1 sample /stream	Chml 1,2 Stream 0 (Sample a+N)	Chnl 1,2 Stream 1 (Sample b+N)	Chnl 1,2 Stream 2 (Sample c+N)	empty

[212] Table 20 Example of Multi-Stream Audio Sample Packet Layout for 4 Audio Streams

[213]

Num Streams	Packet #	Max Num Channels	samples	Subpkt 0	Subpkt 1	Subpkt 2	Subpkt 3
	0	2 ch /stream	1 sam ple /stream	Chn1 1,2 Stream 0 (Sample a)	Chml 1,2 Stream 1 (Sample b)	Chn1 1,2 Stream 2 (Sample c)	Chn1 1,2 Stream 2 (Sample d)
4	1	2 ch /stream	1 sample /stream	Chnl 1,2 Stream 0 (Sample a+1)	Chnl 1,2 Stream 1 (Sample b+1)	Chnl 1,2 Stream 2 (Sample c+1)	Chnl 1,2 Stream 3 (Sample d+1)
				-	-	-	
	И	2 ch /stream	1 sam ple /stream	Chml 1,2 Stream 0 (Sample a+N)	Chml 1,2 Stream 1 (Sample b+N)	Chnl 1,2 Stream 2 (Sample c+N)	Chnl 1,2 Stream 3 (Sample d+N)

- [214] FIG. 8 is a diagram representing a transmission stream of an audio sample packet of the first exemplary embodiment.
- [215] FIG. 8 illustrates that one sample packet comprises two samples, and may be

transmitted in a horizontal blanking interval in the case of a 2 audio channels sample packet for dual-view. In case of a 2 audio channels sample packet for quad-view, one sample packet comprises four samples, and may be transmitted in a horizontal blanking interval. In FIG. 8,, a maximum of 2 channels of multi-stream audio sample transmission is described as an example, but multi-stream audio samples with multi-channels of more than 2 channels may be transmitted through one multi-stream audio sample packet.

- [216] In short, the audio for each view is transmitted through a corresponding sub-packet. Also, multi-stream audio sample data with one multi-channel (more than 2 channels) may be transmitted via more than one sequential multi-stream audio sample packets.
- [217] Multi-stream audio sample packets transmit four stereo audio samples. Each sample corresponds to a separate audio stream. For example, when high-speed wired interface source transmits two different audio streams, sub-packet 0 may be used to transmit an audio sample of stream 0, and sub-packet 1 may be used to transmit an audio sample of stream 1.

[218]

- [219] Second Exemplary Embodiment
- [220] The second exemplary embodiment modifies and uses the related art audio sample packet format, and provides more information whether it provides multi-stream audio or not. As shown below in Table 21, the related art audio sample packet of a reserved area may be used as the stream_identifier. Stream_ID displays a stream number when multi-stream audio is provided. Two bits may be used in Stream_ID in one exemplary embodiment and a first stream is displayed when Stream_ID is 00, and second stream is displayed when Stream_ID is 01. Each stream corresponds to a view for different contents. Of course, these examples are one exemplary embodiment, and packets matching bits may vary.
- [221] Layout displays the information on the number of samples and channels under high-speed wired interface. For example, one audio sample packet may comprise four samples of 2 audio channels or one sample of 8 audio channels.

[222] Table 21 Modified Audio Sample Packet Header

[223]

	Bit7	Bitő	Bit5	Bit4	Bit3	Bit2	Bitl	BitO
НВО	Packet type = 0x02 (Audio Sample Packet)							
HBl	Stream_	l den ti Eer	rese rved	Layout	Sample_pres ent sp3	Sample_pres ent sp2	Sample_pres ent spl	Sample_pres entspO
нв2	В.3	B.2	B.l	B.0	Sample_flat. sp3	Sample_flat. sp2	S ample_flat. spl	S ample flat.
SPO	Audio Sample Subpacktet 0 (7Bytes)							
SP1	Audio Sample Subpacktet 1 (7Bytes)							
SP2	Audio Sample Subpacktet 2 (7Bytes)							
3P3				Audio	Sample Subpack	tet 3 (7Bytes)		

[224] Table 21-1 Description of Stream_Identifer

Stream_3

Stream 4

[225]	Stream_Identifer	Description
	00	Stream_1
	01	Stream_2

10

11

- [226] These structures have the advantage of being able to provide a multi-stream ID easily by using the existing reserved area.
- [227] FIGS. 9 and 10 are views representing a transmission stream of a multi-stream audio sample packet of the second exemplary embodiment.
- [228] FIG. 9 shows that one sample packet comprises four sample data of identical contents which may be transmitted in a horizontal blanking interval in the case of a 2 audio channels sample packet for dual-view.
- That is, one sample packet comprises audio signals of one view. Four sample packets of four views are transmitted in horizontal blanking interval in case of a 2 audio channels sample packet for quad-view. In addition, a sample packet of any view may be transmitted in a row like the exemplary embodiment of view 2, or it may be transmitted in turns with another view. In FIG. 9, a 2 audio channels sample packet has been described as an example. However,, the description would the same for a multichannel audio sample packet of more than 2 channels. In addition, sample data comprising a fixed number of sample data for each view may be transmitted as illustrated. However, a different number of sample data may also be transmitted.
- FIG. 10 illustrates the state of transmitting two sample packets which comprise sample data indicating 8 channels in a horizontal blanking interval in case of an 8 audio channels sample packet for dual-view. Transmission of sample data on one view is completed through one sample packet. A sample packet of each view may be transmitted in a row, or may be transmitted in turns with a sample packet of another view. For an 8 audio channels sample packet for quad view, it is the same as one sample packet including sample data on one content and may be transmitted in a horizontal blanking interval. However, it is preferable if each sample packet of four views is transmitted.
- [231] When Stream_Identifier is used as described in the second exemplary embodiment, video and audio may be synchronized more efficiently if this information is included in an audio clock regeneration packet. The following table is a table showing the structure of modified audio clock regeneration packet for the second exemplary embodiment.
- [232] Table 22 Audio Clock Regeneration Packet Header and Subpacket
- [233] Table 22-1 Audio Clock Regeneration Packet Header

12	2	ı
14	\mathcal{I}	ı

Byte/Bit#	7	6	5	4	3	2	1	0
HB0	0	0	0	0	1	0	1	1
HB1	0	0	0	0	0	0	0	0
HB2	0	0	0	0	0	0	0	0

[235] Table 22-2 Audio clock Regeneration subpacket

|--|

Byte/Bit#	7	6	5	4	3	2	1	0
SB0	0	0	0	0	0	0	Stream i	identifier
SB1	0	0	0	0	CTS 19	-	-	CTS 16
SB2	CTS 15	-	-	-	-	-	-	CTS 8
SB3	CTS 7	-	-	-	-	-	-	CTS 0
SB4	0	0	0	0	N 19	-	-	N 16
SB5	N 15	-	-	-	-	-	-	N 8
SB6	N 7	-	-	-	-	-	-	ИО

[237] Table 22-3 Description of Stream_Identifer

[238]

Stream_Identifer	Description
00	Stream_1
01	Stream_2
10	Stream_3
11	Stream_4

[239] As shown in Table 22 above, synchronization between video and audio of multiviews systems may be efficiently performed by using information on the index of the multi-stream in a reserved area of the audio clock regeneration packet. In particular, in case of a system where multi-views are not displayed at the same time, the structure of this packet would be useful.

[240]

[241] Third Exemplary Embodiment

[242] The third exemplary embodiment is similar to the fourth exemplary embodiment of the 3D audio sample packet, and modifies and uses the related art audio sample packet format. The third exemplary embodiment may provide multi-stream identification information.

[243] As shown below in Table 23, the reserved area of the related art audio sample packet may be used as a Stream_ID and multiASP_layout. In terms of the Stream_ID and the multiASP_layout, it is the same as described in the fourth exemplary embodiment of the 3D audio sample packet.

[244] Table 23 Modified Audio Sample Packet Header

[245]

	Bit7	Bitó	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
HB0	Packet type = 0x02)								
HB1	Stream _ID	multiAS P_layou t	reser ved	Layout / start	Sample_pres ent.sp3	Sample_pres ent.sp2	Sample_pres ent.spl	Sample_pres ent.sp0	
HB2	B.3	B.2	B.1	B.0	Sample_flat. sp3	Sample_flat. sp2	Sample_flat. sp1	Sample flat. sp0	
SPO				Audio :	Sample Subpact	ktet 0 (7Bytes)		-	
SP1				Audio :	Sample Subpact	ktet 1 (7Bytes)			
SP2	Audio Sample Subpacktet 2 (7Bytes)								
SP3				Audio :	Sample Subpaci	ktet 3 (7Bytes)			

[246] Table 23 -1 Description of Stream_Identifer

[247] Stream_Identifer Description

0 1 Stream

01 2 Stream

[248] This structure has the advantage of compatibility in terms of being able to display all of the information about the multi-stream audio and the 3D audio through one data sample packet.

The feature of the audio data transmission stream in accordance with a combination of the values of the Stream_ID field, the multiASP_layout field, and layout / start field is the same as described in the fourth exemplary embodiment of 3D audio sample packet.

[250]

[251] Fourth Exemplary Embodiment

[252] Likewise, the fourth exemplary embodiment modifies and uses the related art audio sample packet format. The fourth exemplary embodiment corresponds to the fifth exemplary embodiment of the 3D audio sample packet.

[253] As shown in Table 24 below, the reserved area of the related art audio sample packet may be used as Supports_Multistream and multiASP_layout. Supports_Multistream, and multiASP_layout are the same as described in the fifth exemplary embodiment of the 3D audio sample packet.

[254] Table 24 Modified Audio Sample Packet Header

[255] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 HB0 Packet type = 0x02) Suppor m ultiAS ts_Mul Sample_pres Sample_pres reser Layout Sample_pres Sample_pres HB1 P_layou tistrea ved / start ent.sp3 ent.sp2 ent.sp1 ent.sp0t. m Sample flat. Sample_flat. Sample_flat. Sample_flat. HB2 B.3 B.2 sp3 sp2sp1 sp0SPO Audio Sample Subpacktet 0 (7Bytes) : Reserved for 1 SP1 Audio Sample Subpacktet 1 (7Bytes) Reserved for 2 Audio Sample Subpacktet 2 (7Bytes) : Reserved for 3 SP2 SP3 Audio Sample Subpacktet 3 (7Bytes) : Reserved for 4 stream

[256] This structure has the advantage of compatibility in terms of being able to display all

the information about the multi-stream audio and the 3D audio through one data sample packet. In addition, it has the advantage of being able to list all features that are supported in one audio sample packet.

- [257] The feature of the audio data transmission stream in accordance with a combination of the values of the Supports_Mutistream field, the multiASP_layout field and layout/ start field may be considered. The contents of each field value are the same as described in Table 13 of the 3D audio sample packet.
- [258] Meanwhile, in the stated alternative, a multi-stream audio signal may be transmitted by being included in the area corresponding to the area where video data of each view is located in the vertical synchronization blanking period. This is described in FIG. 7 as described above.

[259]

- [260] Fifth Exemplary Embodiment
- [261] The fifth exemplary embodiment provides a plan that modifies the related art audio sample packet format which is similar to the third exemplary embodiment.
- [262] Therefore, as shown in Table 25 below, the reserved area of the related art audio sample packet may be used as Stream_ID and multiASP_layout. Stream_ID, and multiASP_layout each have the same function as Stream_ID and multiASP_layout of the third exemplary embodiment.
- [263] However, four stream numbers may be shown when multi-stream audio is provided, since Stream_ID is represented with two bits. Different bit combinations correspond to a view of different contents.
- [264] If one view of multi-stream audio holds an audio signal less than 8 channels, Stream_Id may not be more than 1 and multiASP_layout may not be 1 at the same time in one audio sample packet.
- [265] Table 25 Modified Audio Sample Packet Header

[266]

	Bit7	Bitó Bit5		Bit4	Bit3	Bit2	Bit1	Bit0	
HB0	Packet type = 0x02 (Audio Sample Packet)								
НВ1	Stream_ID multiAS P_layout			Layout / start	Sample_prese nt.sp3	Sample_prese nt.sp2	Sample_prese nt.sp1	Sample_prese nt.sp0	
нв2	8.3	8.2	8.1	8.0	Sample_flat.s p3	Sample_flat.s p2	Sample_flat.s p1	Sample flat.s p0	
SPO				Audio	Sample Subpact	ktet 0 (7Bytes)	<u> </u>	-	
SP1				Audio	Sample Subpaci	ktet 1 (7Bytes)			
SP2	Audio Sample Subpacktet 2 (7Bytes)								
SP3				Audio	Sample Subpact	ktet 3 (7Bytes)			

Table 25-1 Description of Stream_Identifer

[267] [268] [269] This structure has the advantage of compatibility in terms of being able to display all the information about multi-stream audio and the 3D audio through one data sample packet. In particular, it may identify more multi-stream compared to the third exemplary embodiment.

30

Table 26 shows a feature of the audio data transmission stream in accordance with a combination of the values of the Stream_ID field, the multiASP_layout field, and the layout / start field. If multiASP_ layout = 1, it represents the transmission stream of 3D audio, and at this time layout / start displays the starting position of the packet. If Stream_ID = $0.1 \sim 11$, multi-stream is displayed, and the number of samples and channels is set based on the layout / start.

[271]

[272] Table 26 Capability to deal with Proposed Features According to Exemplary Embodiments

[273]

	ASP header fields		Description
Stream_ID	multiASP_1ayout	Layout/start	7
00ъ	0	Layout=0	24bits-sample+default (2ch/4sample)
00ზ	0	Layout=1	24bits-sample+default (8ch/1sample)
00ხ	1	Start=0	24bits-sample+3D-audio-channel non-start('N'
			ch/1 sam ple)
006	1	Start=1	24bits-sample+3D-audio-channel start('N'
			ch/1 sam ple)
00 ხ~1 1 ხ	0	Layout=0	24bits-sample+Multi-stream(2ch/4sample)
00ხ~11ხ	0	Layout=1	24bits-sample+Multi-stream(8ch/1sample)
1	1	0	Not supported
1	1	1	(refer to the 2. Analysis of proposed features
			(1/2)" slide. Poage8)

[274] Sixth Exemplary Embodiment

The sixth exemplary embodiment is a plan that adds Stream_ID in an audio sample packet in accordance with the first exemplary embodiment. The Stream_ID is the same as described above, and other fields are the same as described in the first exemplary embodiment. Table 27 indicates an audio sample packet header in accordance with the sixth exemplary embodiment. However, Stream_ID is set as 4 bits in the following table, but it is available to be set as 1~3bits or more than 5 bits. Here, the packet type refers to the packet type that is newly defined.

[276] Since the Stream_ID is used to identify the audio of each stream, unlike the first exemplary embodiment, the audio sample data for one stream is included in one multi-stream audio sample packet.

[277] Table 27 Extension Audio Sample Packet

[278]		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bitl	BitO			
	HB0	B0 Packet type = 0x02 (Multi-Stream Audio Sample Packet)										
	HB1		Strean	a_ID		Sample_pres ent.sp3	Sample_pres ent.sp2	Sample_pres ent.sp1	Sample_pres ent.sp0			
	HB2	B.3	B.2	B.1	B.0	Sample_flat. sp3	Sample_flat. sp2	Sample_flat. sp1	Sample flat. sp0			
	SPO		Audio Sample Subpacktet 0 (7Bytes)									
	SP1	SP1 Audio Sample Subpacktet 1 (7Bytes)										
Audio Sample Subpacktet 2 (7Bytes)												

[279] Seventh Exemplary Embodiment

SP2 SP3

[280] The seventh exemplary embodiment uses a 3D audio sample packet that is newly defined in the first exemplary embodiment of 1.1 to indicate a 3D audio sample packet and a multi-stream audio sample packet.

Audio Sample Subpacktet 3 (7Bytes)

- [281] The seventh exemplary embodiment is similar to the first exemplary embodiment, but it has more ext_layout fields indicating whether it transmits the multi-stream or not. That is, if ext_layout = 0, it means transmitting the multi-stream audio, and if ext_layout = 1, it means transmitting the 3D audio.
- [282] Since the sample_start field, sample_present.spX field, and sample_flat.spX are identical to the first exemplary embodiment, overlapping description will be omitted. Table 28 shows the audio sample packet structure in accordance with the seventh exemplary embodiment.
- [283] Table 28 Extended Audio Sample Packet(2channels 2streams Fs=96kHz)

[284]	N/chan 1,2	N/chan 1,2	N/chan 1,2
. ,	(Stream 1)	(Stream 1)	(Stream 1)
	N/chan 1,2	N/chan 1,2	N/chan 1,2
	(Stream 1)	(Stream 1)	(Stream 1)
	-	-	-
	-	-	-

[285] Table 28 -1 Example of extended audio sample packet

[286]	Byte / Bit#	7	6	5	4	3	2	1	0			
	HB0	0	0	0	0	1	0	1	1			
	нв1	0	0	Sample _start= _X	Ext_lay out=0	Sample_p resent.sp3 =0	Sample_p resent.sp2 =0	Sample_p resent.sp1 =1	Sample_p resent.sp0 =1			
	HB2	B.3	B.2	B.1	B.0	Sample_fl at.sp3	Sample_fl at.sp2	Sample_fl at.spl	Sample fl at.sp0			
	PB0~PB6		Channel 1, 2 audio data / sample N(Stream 1)									
	PB7~PB13	Channel 1, 2 audio data / sample M(Stream 2)										
	PB14~PB20					-						
	PB21~PB27					-						

[287] Table 29 shows the body structure of a packet according to the value of the ext_layout field. As illustrated, in the case of multi-stream, an audio signal corre-

sponding to one view may be formed by 2 channels. Therefore, one packet may comprise audio signals of four views. On the other hand, audio signals of a multichannel may be displayed for a 3D audio signal. In various exemplary embodiments that are described herein, 3D audio of up to 32 channels will be described. However, the exemplary embodiments are not limited to this, but may be applied to more than 32 channels of audio signal.

[288] Table 29 EASP packetization

Ext_layout Value	Sample_start Value	Max Num Channels	Samples	Subpkt 0	Subpkt 1	Subpkt 2	Subpkt 3
0	х	2	4	Chnl 1,2 Stream 0 (Sample M)	Chml 1,2 Stream 1 (Sample M)	Chnl 1,2 Stream 2 (Sample M)	Chnl 1,2 Stream 3 (Sample M)
1	1			Chnl 1,2 Stream 0 (Sample M)	Chnl 3,4 Stream 0 (Sample M)	Chnl 5,6 Stream 0 (Sample M)	Chnl 7,8 Stream 0 (Sample M)
1	0	И	1	-	-	-	-
1	0			Chni N- 7,N-6 Stream 0 (Sample M)	Chn1 N- 5,N-4 Stream 0 (Sample M)	Chn1 N- 3,N-2 Stream 0 (Sample M)	Chn1 N- 1,N Stream 0 (Sample M)

[290] Table 30 presents valid Sample_Present bits.

[291] Table 30 Valid Sample_Present Bit Configurations for Multiple Audio Stream Transmission

[292]

S_{PO}	SPl	SPI	SP3	D escription
0	0	0		No Subpackets contain audio samples.
1	0	0	0	Only Subpacket 0 contains audio samples for stream 0
1	1	0	0	Subpackets 0 and 1 contain audio samples for stream 0 and 1
1	1	1	0	Subpackets 0, 1 and 2 contain audio samples for stream 0,1 and 2
1	1	1	1	All subpackets contain audio samples for stream 0,1,2, and 3

[293] FIG. 11 is a view representing a transmission stream of a multi-stream audio sample packet of the seventh exemplary embodiment.

[294] FIG. 11 illustrates that the multi-stream audio sample packet may be transmitted in a sample of two views in one sample packet in horizontal blanking interval in case of a 2 audio channels sample packet for dual-view. The multi-stream audio sample may be transmitted by including samples of four view in one sample packet in horizontal blanking interval in case of 2 audio channels sample packet for quad-view. That is, the multi-stream audio sample is transmitted by including samples of 4 views in one sample packet. In FIG. 11, a 2 audio channels sample packet has been described as an example. However, the discussion will the same in the case of a multi-channel audio sample packet of more than 2 channels.

[295] In the various exemplary embodiments, multi-stream audio signals may be transmitted by being included in the area corresponding to the area where each video data of views is located in a vertical synchronization blanking period. FIG. 7 described above is a view illustrating a transmission stream format in such a case. The transmission stream format as illustrated in FIG. 7 may also include audio signals.

[296]

- [297] 1-4. Multi-Stream One Bit Audio Packet
- [298] First Exemplary Embodiment
- [299] A new packet for a multi-stream one bit audio may be defined. The new packet corresponds to a 3D audio sample packet.
- [300] When transmitting a multi-stream one bit audio, each sub-packet may comprise one audio bit for zero, one, or two (or more) audio channels. Multi-stream one bit audio samples comprise four stream_present bits, and each stream_present bit is for sub-packet.
- [301] If the sub-packet comprises audio samples of each individual stream, a corresponding bit will be set. Four stream_invalid.spX bits are set when there is no useful audio data that is available in the source. When stream_invalid.spX is set, sub-packet X continues to indicate the sample period, but it does not contain any useful data.

[302] Table 31 Multi-Stream One Bit Audio Packet Header

[303]	Byte/Bit#	7	6	5	4	3	2	1	0
[J	_								
	HB0	0	0	0	0	1	1	1	1
			_	_	_	_	_	_	_
	HB1	Rsvd	Rsvd (0)	Rsvd (0)	Rsvd (0)	samples_	Samples_	Samples_	Samples_
		(0)				present	present	present	present
						sp3	sp2	sp1	_ sp0
	HB2	Rsvd	Rsvd (0)	Rsvd (0)	Rsvd (0)	Samples_	Samples_	Samples_	Samples_
		(0)				invaild.sp	invalid sp	invalid	invalid.
						3 .	2	sn1	sen∩ I

- [304] In stream_present.spX: [4 fields, 1 bit each], sub-packet X indicates whether it comprises audio sample of stream X. Since stream_present.spX has substantially the same function as sample_present.spX of the 3D audio sample packets described above, a detailed description thereof will be omitted in the overlapping ranges.
- In stream_invalid.spX: [4 fields, 1 bit each], sub-packet X shows sub-packet X whether it comprises invalid sample of stream X. Stream_invalid = 1, if samples comprised in the sub-packet X are not valid. Otherwise Stream_invalid = 0. Bit is valid only when relevant stream_present.spX is set. Since stream_present.spX has sub-stantially the same function as sample_present.spX of the 3D audio sample packet described above, a detailed description thereof will be omitted in the overlapping ranges.
- [306] The sample frequency information about multi-stream one bit audio is transmitted by being included in audio InfoFrame (Reference to section 8.2.2 of HDMI 1.4b).

[307] A multi-stream one bit audio sample packet uses four sub-packets that are identical with one bit audio sample sub-packet shown in Table 31. The reason that one bit multistream audio sample packet does not hold BO~B3 fields, unlike the multi-stream audio sample packet, is because it does not follow IEC 60958 block format.

[308]

- [309] Various Alternatives
- [310] One bit multi-stream audio sample packets each corresponding to various exemplary embodiments of the multi-stream audio sample packet described above may be defined. That is, one bit multi-stream audio sample packets may be defined identically as the multi-stream audio sample packet besides the samples invalid.spX described above, and only B0-B3 fields may be excluded in the multi-stream audio sample packet. A detailed description thereof will be omitted since other contents overlap.
- 2-1. InfoFrame for 3D Audio/Metadata Packet [311]
- First Exemplary Embodiment [312]
- [313] In the first exemplary embodiment, additional information related to the 3D audio instead of the infoframe as described above may be transmitted by using a newly defined audio metadata packet. The source transmits audio Meta data in two video fields at least once, always when 3D audio stream is transmitted.
- [314] Audio Meta data may comprise the number of channels, Audio Channel Allocation Standard Type (ACAT), and the channel/speaker of the 3D audio stream. Table 32 below shows the header of the audio Meta data packets that are newly defined.
- [315] Table 32 Audio Metadata Packet Header

[316]	Byte/Bit#	7	6	5	4	3	2	1	0
	HB0	0	0	0	0	1	1	0	1
	HB1	Rsvd (0)	Rsvd (0)						
	HB2	Rsvd (0)	Rsvd (0)						

[317] Table 33 Audio Metadata Packet Contents

[318]	Byte/Bit#	7	6	5	4	3	2	1	0
	PB0	Rsvd (0)	Rsvd (0)	Rsvd (0)	3D_CC4	3D_CC3	3D_CC2	3D_CC1	3D_CC0
	PB1	Rsvd (0)	Rsvd (0)	Rsvd (0)	Rsvd (0)	ACAT3	ACAT2	ACAT1	ACAT0
	PB2	3D_CA 7	3D_CA 6	3D_CA5	3D_CA4	3D_CA3	3D_CA2	3D_CA1	3D_CA0
	PB2 PB27	Reserved (0)							

- [319] Each field of the packet is defined as follows.
- [320] 3D_CC: [5 bits] indicates a channel count of the transmitted 3D audio. If an audio channel count (CCO.. CC2) in an audio infoframe does not match the 3D audio channel count (3D CC0 ... 3D CC4) of the audio Meta data packet, the channel count of the audio infoframe will be ignored. Table 34 shows the audio channel in accordance with

the value of 3D_CC.

[321] ACAT: [4 bits] indicates ACAT that is provided by the source. Table 35 below shows the value of the ACAT field. Table 36 describes the allocation of the position of the speaker, when ACAT is set to 0x01 (10.2 channels), Similarly, Table 38 and Table 37 each comprises information for 22.2 channels and 30.2 channels.

[322] 3D_CA: [8bits] shows the channel/speaker allocation for 3D audio. Detailed contents will be illustrated in Table 36- Table 38. 3 D_CA field is not valid for IEC 61937 compressed audio stream.

[323] [324]

Table 34 3D_CC Field

[325]

3D_CC4	3D_CC3	3D_CC2	3D_CC 1	3D_CC0	Audio Channel Count
0	0	0	0	0	Refer to Stream
					H€ader
0	0	0	0	1	2 channels
0	0	0	1	0	3 channels
0	0	0	1	1	4 channels
0	0	1	0	0	5 channels
0	0	1	0	1	6 channels
0	0	1	1	0	7 channels
0	0	1	1	1	S channels
0	1	0	0	0	9 channels
0	1	0	0	1	10 channels
0	1	0	1	0	11 channels
0	1	0	1	1	12 channels
-	-	-	-	-	
1	1	1	1	1	32 channels

Table 35 Audio Channel Allocation Standard Type Field

[326] [327]

ACAT3	ACAT2	ACAT1	ACAT0	Description
0	0	0	0	Reserved
0	0	0	1	Refer to 10 2 channels (TTA Standard)
0	0	1	0	Refer to 22 2 channels (SMPTE2036 -2)
0	0	1	1	Refer to 30 2 channels (IEC62574/Ed 1)
0	1	0	0	reserved
1	1	1	1	

Table 36 3D_CA Field for 10.2 channels (ACAT=0x01)

[328] [329]

			3D_ (bin	CA ary)				3D_C A (hex)				Ch	annel	Numl	ber					
7	6	5	4	3	2	1	0		12 11 10 9 S 7 6 5 4 3 2 1											
0	0	0	0	0	0	0	0	0x00											FR	FL
0	0	0	0	0	0	0	1	0x01							RS	LS	FC	LFE1	FR	FL
0	0	0	0	0	0	1	0	0x02					BR	BL	RS	LS	FC	LFE1	FR	FL
0	0	0	0	0	0	1	1	0x03	TpFC	LFE2	TpFR	TpFL	BR	BL	RS	LS	FC	LFE1	FR	FL
0	0	0	0	0	1	0	0	0x04					_							
													Res	erved						
1	1	1	1	1	1	1	1	OxFF												

[330] Table 37 3D_CA Field for 22.2 channels (ACAT=0x02)

[331]

				CA ary)				3D_CA (hex)				(Chann	el Nu	m ber					
7	6	5	4	3	2	1	0		12	11	10	9	8	7	6	5	4	3	2	1
0	0	0	0	0	0	0	0	0x00	x00 FR FL											
0	0	0	0	0	0	0	1	0x01							SiR	SiL	FC	LFE1	FR	FL
0	0	0	0	0	0	1	0	0x02					BR	BL	SiR	SiL	FC	LFE1	FR	FL
0	0	0	0	0	0	1	1	0x03	TpFC	LFE2	TpFR	TpFL	BR	BL	SiR	SiL	FC	LFE1	FR	FL
0	0	0	0	0	1	0	0	0x04	TpFC	LFE2	TpFR	TpFL	BR	BL	SiR	SiL	FC	LFE1	FR	FL
0	0	0	0	0	1	0	1	0x05												
													Re	serve	d					
1	1	1	1	1	1	1	1	0xFF												

[332]

			3D_ (bin					3D_CA (hex)					С	hammel l	Num ber					
7	6	5	4	3	2	1	0		24	23	22	21	20	19	18	17	16	15	14	13
0	0	0	0	0	0	0	0	0x00	00											
0	0	0	0	0	0	0	1	0x01	-	-	-	-	-	-	-	-	-	-	-	
0	0	0	0	0	0	1	0	0x02	-	-	-	-	-	-	-	-	-	-	-	-
0	0	0	0	0	0	1	1	0x03	-	-	-	-	-	-	-	-	-	-	-	-
0	0	0	0	0	1	0	0	0x04	BtFC	BtFR	BtFL	TpC	TpSIR	TpSiL	TpBC	TpBR	TpBL	BC	FRC	FLC
0	0	0	0	0	1	0	1	0x05						_	_					
														Reser	ved					
1	1	1	1	1	1	1	1	OxFF												

Table 38 3D_CA Field for 30.2 channels (ACAT=Ox03)

[333] [334]

			3D_ (bina					3D_CA (hex)					Channe	el Nui	mber					
7	6	5	4	3	2	1	0		12	11	10	9	8	7	6	5	4	3	2	1
0	0	0	0	0	0	0	0	0x00	0x00 FR FL											
0	0	0	0	0	0	0	1	0x01							SiR	SiL	FC	LFE1	FR	FL
0	0	0	0	0	0	1	0	0x02					BR	BL	SiR	SiL	FC	LFE1	FR	FL
0	0	0	0	0	0	1	1	0x03	TpFC	LFE2	TpFR	TpFL	BR	BL	SiR	SiL	FC	LFE1	FR	FL
0	0	0	0	0	1	0	0	0x04	TpFC	LFE2	TpFR	TpFL	BR	BL	SiR	SiL	FC	LFE1	FR	FL
0	0	0	0	0	1	0	1	0x05	TpFC	LFE2	TpFR	TpFL	BR	BL	SiR	SiL	FC	LFE1	FR	FL
0	0	0	0	0	1	1	0	0x06												
													Re	serv e	d					
1	1	1	1	1	1	1	1	OxFF												

[335]

			3D_ (bin	-				3D_C A (hex)					С	hammel l	√umber					
7	6	5	4	3	2	1	0		24	23	22	21	20	19	18	17	16	15	14	13
0	0	0	0	0	0	0	0	0x00	-	-	-	-	-	-	-	-	-	-	-	-
0	0	0	0	0	0	0	1	0x01	-	-	-	-	-	-	-	-	-	-	-	-
0	0	0	0	0	0	1	0	0x02	-	-	-	-	-	-	-	-	-	-	-	-
0	0	0	0	0	0	1	1	0x03	-	-	-	-	-	-	-	-	-	-	-	-
0	0	0	0	0	1	0	0	0x04	BtFC	BtFR	BtFL	TpC	TpSIR	TpSIL	TpBC	TpBR	TpBL	BC	FRC	FLC
0	0	0	0	0	1	0	1	0x05	BtFC	BtFR	BtFL	TpC	TpSIR	TpSIL	ТрВС	TpBR	TpBL	вс	FRC	FLC
0	0	0	0	0	1	1	0	0x06			•			•		•	•	•		
														Reser	ved					
1	1	1	1	1	1	1	1	0xFF												

[336]

			3D_ (bin					3D_CA (hex)			Cha	nnel l	Numb	er			
7	6	5	4	3	2	1	0		32	31	30	29	28	27	26	25	
0	0	0	0	0	0	0	0	0x00	-	-	-	-	-	-	-	-	
0	0	0	0	0	0	0	1	0x01									
0	0	0	0	0	0	1	0	0x02	-	-	-	-	-	-	-	-	
0	0	0	0	0	0	1	1	0x03	-	-	-	-	-	-	-	-	
0	0	0	0	0	1	0	0	0x04	-	-	-	-	-	-	-	-	
0	0	0	0	0	1	0	1	0x05	TpRS	TpLS	RSd	LSd	RS	LS	FRW	FLW	
0	0	0	0	0	1	1	0	0x06		•			•	•			
												Reser	ved				
1	1	1	1	1	1	1	1	0xFF									

Whenever an active 3D audio stream is transmitted, an accurate audio metadata packet may be transmitted to two video fields at least once. If there is a start of a new 3D audio stream or there is a change included in a 3D audio stream which may be displayed by audio metadata packet and audio infoframe, a modified and accurate audio metadata packet may be transmitted no later than one video frame following a non-silent audio sample which is first affected. This may occur just before the first

- audio sample that is affected is transmitted. In terms of a 3D one bit audio stream, audio metadata may be transmitted before the firstly affected sample. An audio metadata packet may be transmitted at any time including the vertical blanking period or horizontal blanking period within the data island period. When 3D audio is streamed, the sink ignores CC and CA fields included in audio infoframe and instead refers to 3D_CC and 3D_CA that are included in the audio metadata.
- [338] However, when transmitting the audio metadata described above, the existing Audio Info Frame is still available. In other words, in the case that audio metadata is newly used for the channel allocation for 3D audio, audio infoframe is used for channel allocation for 2D audio.
- [339] The ACAT in the exemplary embodiment described above has described 10.2 channels, 22.2 channels, and 30.2 channels. However,, the exemplary embodiments may be applied in a case of less than 10.2 channels, more than 30.2 channels, or between 10.2 channels and 30.2 channels.
- [340] Further, although a metadata packet is not illustrated in Table 38 above, metadata packet may comprise at least one more field among fields indicating the number of fields and an entire stream that represents stream identification information corresponding to the multi-channel audio data.
- [341] Hereinafter, the data transceiving system 1000 according to the first exemplary embodiment described above will be described.
- [342] FIG. 2 is a block diagram showing the configuration of the data transceiving system 1000, FIG. 3 is a block diagram showing the configuration of a data transmitting apparatus 100 of the data transceiving system 1000, and FIG. 4 is a block diagram showing the configuration of a data receiving apparatus 200 of the data transceiving system 1000.
- [343] As shown in FIG. 2, the data transceiving system 1000 includes the data transmitting apparatus 100 and the data receiving apparatus 200.
- [344] As shown in FIG. 3, the data transmitting apparatus 100 includes a block generator 110 and a transmitter 120.
- [345] The block generator 110 generates an Extended Display Identification Data (EDID) block for multi-channel audio data. The EDID block includes at least one of a first sub block representing 3D audio characteristics of the multi-channel audio data, a second sub block representing 3D speaker placement information of the multi-channel audio data, and a third sub block representing multi-stream audio characteristics of the multi-channel audio data.
- [346] The transmitter 120 transmits the EDID block to a data receiving apparatus.
- [347] The EDID block generated and transmitted by the data transmitting apparatus 100 has been described in the first exemplary embodiment.

- [348] As shown in FIG. 4, the data receiving apparatus 200 includes a receiver 210 and an analyzer 220.
- The receiver 210 receives an EDID block regarding multi-channel audio data from the data transmitting apparatus 100. The EDID block includes at least one of a first sub block representing 3D audio characteristics of the multi-channel audio data, a second sub block representing 3D speaker placement information of the multi-channel audio data, and a third sub block representing multi-stream audio characteristics of the multi-channel audio data.
- [350] The analyzer 220 analyzes the EDID block, and processes data included in each sub block.
- [351] The EDID block received and processed by the data receiving apparatus 200 has been described in the first exemplary embodiment.
- [352] Second Exemplary Embodiment
- [353] Unlike the first exemplary embodiment, to the second exemplary embodiment changes an Audio Infoframe that is defined by the related art high-speed wired interface standards. Table 39 shows the audio info frame structure in such a case. CC field indicates the channel count of transmitted audio, and CA field indicates channel/ speaker allocation information.
- [354] A related art CC field has been represented as three bits. However, the second exemplary embodiment uses two more bits of a reserved area for the CC field. In other words, channel count information is displayed by using five bits of CC0, CC1, CC2, CC3, and CC4.
- [355] Meanwhile, CEA861-D, channel/speaker allocation information is added to the reserved area of Table 20. Unlike the first exemplary embodiment, the second exemplary embodiment does not comprise the ACAT field.
- [356] Table 39 Modified Audio Infoframe
- [357] Table 39-1 Modified Audio InfoFrame Packet Header

[358]	Byte/Bit#	7	6	5	4	3	2	1	0
	НВО				P acket ¾rj	pe = 0x84			
	HB l			,	Version Num	$oldsymbol{1}$ ber $= 0x01$			
	нв2	0	0	0	Length =	10(0x0A)			

[359] Table 39 2 Audio infoframe Packet contents

[360]

WO 2013/122387 PCT/KR2013/001130

Packet	CEA-861-D	7	6	5	4	3	2	l 1	0				
Byte#	Byte #			_		_	_	_	_				
PB0	n a				C	hecksum							
PB1	Data Byte 1	CT3	CT2	CT1	CT0	Rsvd	CC2	CC1	CCO				
PB2	Data Byte 2	CC4	CC3		SF2	SF1	SF0	SS1	SSO				
PB3	Data Byte 3	Format depends on coding type (i.e. CT0CT3)											
PB4	Data Byte 4	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CAO				
PB5	Data Byte 5	DM_ INH	LSV3	LSV 2	LSV1	LSV0	Rsvd(0)	LFEP BL1	LFEP BL0				
PB6	Data Byte 6				R	eserved(0)							
PB7	Data Byte 7				R	eserved(0)							
PB8	Data Byte 8				R	eserved(0)							
PB9	Data Byte 9				R	eserved(0)							
PB10	Data Byte 10				R	eserved(0)							
PB11- PB27	n a				R	eserved(0)							

- Third Exemplary Embodiment [361]
- [362] Likewise, the third exemplary embodiment modifies the audio infoframe that is defined by the related art high-speed wired interface standard by extending the second exemplary embodiment. Table 40 shows the audio info frame structure in such a case. Similar to the second exemplary embodiment, CC field indicates channel count of transmitted audio, and CA field indicates channel/speaker allocation information.
- The third exemplary embodiment is basically similar to the second exemplary em-[363] bodiment, but it provides a plan to expand the CA field. When one bit of the reserved area is set as a channel extension bit, and a channel extension = 0, CC# and CA# fields that are defined in CEA861 are used as they are. In other words, 2D audio mode is supported. On the other hand, in the case of channel_extension = 1, PB2 [7:6] is used as extension bits (CC4, CC3) of CC, and the reserved area of PB6 is used as the CA_ext field. Extension bit for 3D audio is used.
- [364] In this case, related art CC field has been represented as three bits as described in the second exemplary embodiment. However, the second exemplary embodiment uses two more bits of a reserved area for the CC field. In other words, channel count information is displayed by using five bits of CC0, CC1, CC2, CC3, and CC4.
- [365] In addition, it may be used by adding PB6 field in existing CA bits (PB4). The definition of channel/speaker allocation information for audio more than 10.2ch is added in the reserved area of CEA861-D and Table 20. Extra table may be defined by standard. Consequently, multi-channel audio transmission may be available since CA field is expanded to 16 bits.
- [366] However, a new 8-bit field may be defined and may be used by replacing the existing CA field. For example, a new CA bit may be defined by using the PB6 field or the PB7

PCT/KR2013/001130

field. A new CA bit may be defined for the PB7 field and the PB6 field.

[367] Table 40 Modified Audio InfoFrame 2

[369]

[368] Table 40-1 Audio infoframe Pocket Header

Byte/Bit#	F acket type = 0x84 Version Number = 0x01										
НВО				Packet typ	pe = 0x84						
HB1			1	Version Nun	$nber = 0x^{0}$	1					
HB2	0	0	0	Length =	10(0×0A)						

[370] Table 40-2 Audio infoframe Pocket contents

F0713										
[371]	Packet	CEA-861-D	7	6	5	4	3	2	1	0
	Byte #	Byte #								
	PB0	n. a					hecksum			
	PB1	Data Byte 1	CT3	CT2	CT1	CT0	Rsvd	CC2	CC1	CCO
	PB2	Data Byte 2	CC4	CC3		SF2	SF1	SF0	SS1	SSO
	PB3	Data Byte 3]	ormat de	pends on	coding type	(i.e. CT0C	T3)	
	PB4	Data Byte 4	CA	CA6	CA5	CA4	CA3	CA2	CA1	CA0
			7							
	PB5	Data Byte 5	DM	LSV3	LSV2	LSV1	LSVO	R svd(0)	LFEP	LFEP
			_IN						BL1	BL0
			Н							
	PB6	Data Byte 6					CA ext			
	PB7	Data Byte 7				R	eserved(0)			
	PB8	Data Byte 8				R	eserved(0)			
	PB9	Data Byte 9				R	eserved(0)			
	PB10	Data Byte				R	eserved(0)			
		10								
	PB11-	n. a				R	eserved(0)			
	PB27									

[372] Fourth Exemplary Embodiment

[373] The fourth exemplary embodiment combines the second exemplary embodiment and the third exemplary embodiment. In the fourth exemplary embodiment, the related art audio infoframe comprises a 3D_CH_present field, a CA field of PB4, and a 3D_CC field of PB6.

The 3D_CH_present field performs the same function as the channel_extension in the third exemplary embodiment. In other words, if the 3D_CH_present = 0, CC # and CA # fields that are defined in the CEA861-D are used at they are. That is, 2D audio mode is supported. On the other hand, when 3D_CH_present = 1, PB6[4:0] is used as extension bit (CC4, CC3, CC2, CCl, CCO), and the reserved area of PB4 is used as the CA field as the second exemplary embodiment. An extension bit for 3D audio is used. Like the second and third exemplary embodiments, the ACAT field is not defined. Other contents that are not specially described are the same as the first to third exemplary embodiments described above.

[375] Table 41 Modified Audio InfoFrame 3

[376] Table 41-1 Modified Audio InfoFrame Packet Header

[377]	Byte/Bit#	7	6	J	4	3	2	1	0
	НВО				Packet typ	pe = 0x84			
	HB1			1	ersion Nun	nber = 0x01	1		
	нв2	0	0	0		Len	gth = 10(10x	OA)	

[379]

[380]

[378] Table 41-2 Modified Audio InfoFrame Packet Contents

Packet	CEA-861-D	7	6	5	4	3	2	1	0
Byte #	Byte #								
PB0	n. a				C	hecksum			
PB1	Data Byte 1	CT3	CT2	CT1	CT0	3D_CH	CC2	CC1	CCO
						present			
						=1			
PB2	Data Byte 2	I	Reserved	(0)	SF2	SF1	SF0	SS1	SSO
PB3	Data Byte 3]	Format d	epends on	coding type	e (i.e. CT0C	T3)	
PB4	Data Byte 4	CA	CA6	CA5	CA4	CA3	CA2	CA1	CA0
		7							
PB5	Data Byte 5	DM	LSV3	LSV2	LSV1	LSVO	Rsvd(0)	LFEP	LFEP
		_IN						BL1	BL0
PB6	Data Byte 6		Reserved	(a)	3D CC4	3D CC	3D CC2	3D C	3D C
	1			` '	_	3	_	cī	C0
PB7	Data Byte 7				R	eserved(0)			
PB8	Data Byte 8				R	eserved(0)			
PB9	Data Byte 9				R	eserved(0)			
PB10	Data Byte				R	eserved(0)			
	10								
PB11-	n. a				R	eserved(0)			
PB27									

2-2. InfoFrame for Multi-Stream Audio

[381] For multi-stream audio, a new metadata packet is not defined and infoframe that is defined by existing high-speed wired interface standard is used. If a plurality of active audio streams is transmitted by using multi-stream audio sample packets, accurate audio infoframe may be transmitted at least once per two video fields. In this case, the audio infoframe may be used to describe the audio features of all active audio streams.

[382] If there are some changes that are included in an audio stream that may be displayed by the start of a new audio stream, and a plurality of new audio streams, or an audio infoframe, a modified accurate audio infoframe may be transmitted no later than one video field followed by a first non-silent audio sample that is affected. This may occur just before the first audio sample that is affected is transmitted. An audio infoframe may be transmitted before the firstly affected sample in terms of one bit audio stream.

[383] Alteration of InfoFrame

In the case of the exemplary embodiment (the fourth and sixth exemplary embodiments of the 3D audio sample packet, and the second, third, fifth, and sixth exemplary embodiments of the multi-stream audio sample packet) using the stream_ID unlike the exemplary embodiment described above, the stream_ID may be included in an audio infoframe as shown below in Table 42.

In Table 42, stream_ID indicates stream ID of a current audio infoframe, and stream_count indicates the number of the entire transmitting audio stream. In the exemplary embodiment described above, the infoframe is not modified as the way of transmitting samples in four sub-packets composing the body of the multi-stream audio sample packet instead of using a stream identifier.

[386] Table 42 Modified InfoFrame

[387] Table 42-1 Audio InfoFrame Packet Header

[388]	Byte/Bit#	7	б	5	4	3	2	1	0				
	HB0		Packet type = 0x84										
	HB1		Version Number = 0x01										
	HB2	0 0 0 Length = 10(0x0A)											

Table 42-2 Audio InfoFrame Packet contents

Packet	CEA-861-D	7	6	5	4	3	2	1	0	
Byte#	Byte#									
PB0	n. a				C	Checksum				
PB1	Data Byte	CT3	CT2	CT1	CT0	3D_CH	CC2	CC1	CCO	
	1					_present				
PB2	Data Byte	F	Reserved	(0)	SF2	SF1	SF0	SS1	SS0	
	2									
PB3	Data Byte		Format depends on coding type (i.e. CT0CT3)							
	3									
PB4	Data Byte	CA	CA6	CA5	CA4	CA3	CA2	CA1	CA0	
	4	7								
PB5	Data Byte	DM	LSV3	LSV 2	LSV1	LSVO	Rsvd(0)	LFEP	LFEP	
	5	_IN						BL1	BLO	
		H								
PB6	Data Byte	F	Reserved	(0)	3D_CC4	3D_CC	3D_CC2	3D_C	3D_C	
	6					3		C1	CO	
PB7	Data Byte		Res	erved(0)		Stream	ı_count-l	Strea	m_ID	
	7									
PB8	Data Byte				$\mathbf{R}\epsilon$	eserved(0)				
	8									
PB9	Data Byte	Reserved(0)								
	9									
PB10	Data Byte				Re	eserved(0)				
	10									
PB11-		· ·				1400				
PB27	n. a				R	eserved(0)				

[391] 3-1. EDID for 3D Audio

[392] Information in an audio feature and speaker allocation on 3D audio may be included in EDID using one of the following methods (1) by modifying related art short audio descriptor and speaker allocation data block, (2) by defining new data blocks in a reserved area for audio-related blocks from Extended Tag Codes, and (3) by defining one new data block in a reserved area of HDMI Audio Data Block from Extended Tag Codes.

[393] For example, an EDID data block written in CEA-861-F (or D or E) may be used to indicate all of the sink audio features and the speaker allocation support. Sink audio feature and speaker allocation support are displayed on a series of short audio descriptors located in data block collection of the CEA Extension. These data comprise parameters that are related to each encoding which is the same as an audio encoding list supported by a sink and as the number of channel supporting formats thereof. Speaker allocation descriptor may be included in data block collection, and may be required in a sink supporting multi-channel (up to 8 channels) L-PCM for 2D audio or multi-channel (up to 8 channels) one bit audio.

[394]

[389]

[390]

[395] First Exemplary Embodiment

- [396] However, when a sink supports multi-stream audio and/or 3D audio transmission in the exemplary embodiments, HDMI audio data block (High Speed Cable Interface Audio Data Block) with an extended tag code 18 may be used to indicate a 3D audio feature, a 3D speaker allocation, and a multi-stream audio feature.
- [397] If a sink supports 3D audio transmission, the HDMI audio data block comprises more than one HDMI 3D audio descriptor (HDMI_3D_AD) with four bytes. The HDMI audio data block may include one HDMI 3D speaker allocation descriptor (HDMI_3D_SAD) followed by last HDMI 3D audio descriptor.
- [398] When a sink supports multi-steam audio transmission but does not support 3D audio transmission, an HDMI audio data block may include more than one CEA short audio descriptor (CEA_SAD) following 3 bytes. CEA short audio descriptor is displayed in CEA-861-F (D or E).
- [399] When the sink supports multi-stream audio transmission and 3D audio transmission, HDMI audio data block comprises more than one CEA short audio descriptor following HDMI 3D speaker allocation descriptor. For more information, see Table 43.
- [400] The above-mentioned HDMI 3D audio descriptor indicates the support for audio encoding that is defined in CEA-861-F (also D or E). A high-speed wired interface apparatus may support a 3D audio format following TTA (10.2ch), SMPTE2036-2 (22.2ch), and IEC62574 (30.2ch). A detailed content of Table 49 will be described in Table 45. These tables are categorized by the audio format code that is specified in Table 24 and Table 26 of CEA-861-F (also D or E).
- [401] HDMI 3D speaker allocation descriptor as described above may be included in HDMI audio data block, and may be required in a sink supporting 3D audio. The structure of an HDMI 3D speaker allocation descriptor is shown in Table 50. Sink shows an audio ability by indicating a pair of speakers, and sets the corresponding flag. HDMI 3D speaker allocation descriptor may comprise 4 bits ACAT field, and these indicate the type of audio channel allocation standard. A detailed content of Table 52 will be described in Table 50. CEA short audio descriptors may also be comprised in HDMI audio data block, and may be required in a sink supporting multi-stream audio transmission. These descriptors describe an audio feature of each audio stream. Maximum channel count is limited to 2 channels on each audio stream, but it may be more according to the exemplary embodiment.
- [402] Table 43 HDMI Audio Data Block

[403]

Byte/Bit #	7	6	J	4	3	2	1	0		
1	Tag co	od=7(U se Tag)	Extended	L*=Length of following data block payload (in bytes)						
2		Extended Tag $C \circ de = 18 (0x 12)$								
3	NUM_E	I DML_3	D_AD (=X)	NUM_	CEA_SA	AD(=Y)	Max_Str	eam_c oun		
(4)~(7)	(if NUN	(if NUM_HDMI_3D_AD>0) HDM_3D_AD _1								
(3*X+1)~(3*X+4)	(if NUN	/_HDMI_	3D_AD>0)	IDMI_3I	D_AD_X	:				
(N**)~(n+3)	(if NUN	/_HDMI_	3D_AD>0)	HDMI_3	BD_SAD)				
(N+4)~(N+i)	(if Max	_3tream_	Count.l>0		M_CEA SAD _1	_3AD>0)				
(N+(3*y+1))~(N-K3*Y+3)	(if Max_Stream_C ount-1>0 and NUM_CEA_3AD>0) CEA_SAD_Y									

- * The length of the following data block payload (in bytes), 2 + 4*X + 4 + 3*Y
- [405] ** 3 + 4*X + 1
- [406] It is as follows to describe each field of HDMI audio data blocks that have been illustrated in Table 43 above.
- [407] NUM_HDMI_3D_AD: [3 bits] indicates the number of HDMI 3D audio descriptors.
- [408] NUM_CEA_SAD:[3 bits] indicates the number of CEA Short Audio Descriptors.
- [409] Max_Stream_Count-1: [2 bits] indicates the number obtained when 1 is subtracted from the maximum stream count. Refer to Table 44.
- [410] HDMI_3D_AD: HDMI 3D Audio Descriptor.
- [411] HDMI_3D_SAD: HDMI 3D Speaker Allocation Descriptor.
- [412] CEA_SAD CEA: CEA Short Audio Descriptor).
- [413] Table 44 Max_Stream_Count 1 field

[414]	Max_Stream_Count-1`	Description
	00	Do not support Multi-Stream Audio
	01	2 audio streams
	10	3 audio streams
	11	4 audio streams

[415] Table 45 HDMI 3D Audio Descriptor for Audio Format Code = 1 (LPCM)

[416]	Byte/Bit#	7	6	5	4	3	2	1	0		
	1	0	0	0	0 Audio Format Code = 00016						
	2	0	0	0	Max Number of charmels-1						
	3	0	192 kHz	176.4kHz	96 kHz 88.2 kHz 48 kHz 44.1 32 kH kHZ						
	4	0	0	0	0	0	24 bit	20 bit	16 bit		

[417] Table 46 HDMI 3D Audio Descriptor for Audio Format Codes 2 to 8

[418]	Byte/Bit#	7	б	5	4	3	2	1	0			
	1	0	0	0	0 Audio Format Code							
	2	0	0	0	Max Number of channels-1							
	3	0	192 kHz	176.4kH	96 kHz	88.2	48 kHz	44.1	32 kHz			
				Z		kHz		kHZ				
	4			Maxim	num bitrate divided by 8kHz							

[419] Table 47 HDMI 3D Audio Descriptor for Audio Format Codes 9 to 13

[420]	Byte/Bit#	7	6	5	4 3 2 1							
	1	0	0	0	0 Audio Format Code							
	2	0	0	0	Max Number of channels-1							
	3	0	192 kHz	176.4kH	96 kHz	88.2	48 kHz	44.1	32 kHz			
				Z		kHz		kHZ				
	4			Audio	Format Code dependent value							

[421] Table 48 HDMI 3D Audio Descriptor for Audio Format Code 14 (WWA Pro)

[422]	Byte/Bit#	7	6	5	4	3	2	1	0	
	1	0	0	0	0 Audio Format Code=1110b					
	2	0	0	0	Max Number of charmels-1					
	3	0	192 kHz	176.4kH z	96 kHz	88.2 kHz	48 kHz	44.1 kHZ	32 kHz	
	4			Reserved (0)			Profile		

[423] Table 49 HDMI 3D Audio Descriptor for Audio Format Code 15 (Extension)

[424]	Byte/Bit#	7	6	5	4	3	2	1	0		
	1	0	0	0	0 Audio Format Code = 1111b						
	2	0	0	0	Max Number of channels-1						
	3	0	192 kHz	176.4kH z	96 kHz	88.2 kHz	48 kHz	44.1 kHZ	32 kHz		
	4		Audio Fo	ormat Code	Extension	0					

[425] Table 50 HDMI 3D Speaker Allocation Descriptor for 10.2 channels (TTA Standard)

[426]	Byte/Bit #	7	6	5	4	3	2	1	0
	PB1	FLW/FR W	BLC/BR C	FLC/FR C	BC	BL/BR	FC	LFE1	FL/FR
	PB2	TpSIL/T pSiR	SiL/SiR	TpBC	LFE2	LS/RS	TpFC	TpC	TpFL/Tp FR
	PB3	0	0	0	LSd/LRd	TpLS/TpR S	BtFL/Bt FR	BtFC	TpBL/TpB R
	PB4		ACAT :	(=0X01)		0	0	0	0

- [427] Bit presented in bold letter in Table 50 above is the specified speaker associated with the 10.2. channels.
- [428] Table 51 HDMI 3D Speaker Allocation Descriptor for 22.2 channels (SMPTE2036-2)

[429]

Byte/Bit #	7	6	J	4	3	2	1	0
PB1	FLW ⁷ FR W	BLC/BR C	FLC/FR C	ВС	BL/BR	FC	LFE1	FL/FR
PB2	Tp SsL/T pSiE	SiL/SiR	ТрВС	LFE2	L3/RS	TpFC	тр С	TpFL/Tp FR
PB3	0	0	0	LSd/LRd	TpLS/TpR S	BtFL/Bt FR	BtFC	Tp BL/Tp BR
PB4		ACAT	(=0X02)		0	0	0	0

- [430] Bit presented in bold letter in Table above is the specified speaker associated with the 22.2. channels.
- [431] Table 52 HDMI 3D Speaker Allocation Descriptor for 30.2 channels (IEC62574/Ed.

1)

[432]

Byte/Bit #	7	6	5	4	3	2	1	0
PB1	FLW/F RW	BLC/BR C	FLC/FR C	BC	BL/BR	FC	LFE1	FL/FR
PB2	Tp SIL/T p SiR	SiL/SiR	ТрВС	LFE2	LS/RS	TpFC	ТрС	TpFL/Tp FR
PB3	0	0	0	LSd/LR d	Tp LS/Tp RS	BtFL/Bt FR	BtFC	TpBL/Tp BR
PB4		ACAT	(=0X03)		0	0	0	0

- [433] Bit presented in bold letter in Table above is the specified speaker associated with the 30.2, channels.
- [434] In the first exemplary embodiment, speaker allocation of multi-channel 3D audio data is described with 3 bytes, but this is merely an example. More speaker allocation information may be needed for a 3D audio data of more than 30.2 channels, and 3D speaker allocation descriptor may display speaker allocation by using more than 4 bytes in this case.

[435] Table 53 Audio Channel Allocation Type (ACAT) Field

[436]

ACAT3	ACAT2	ACAT1	ACAT0	D escription
0	0	0	0	Reserved
0	0	0	1	Refer to 10 2 channels (TTA Standard)
0	0	1	0	Refer to 22 2 channels (SMPTE2036
0	0	1	1	Refer to 30 2 channels (IEC62i74/Ed
0	1	0	0	Reserved
1	1	1	1	

- [437] Meanwhile, remaining values of bits of ACAT field may be used by being allocated in various channel types (eg Dolby, USC, or a format of ITU-R which will be standardized in the future) in accordance with the manufacturer.
- [438] The second exemplary embodiment
- [439] Unlike the first exemplary embodiment, the second exemplary embodiment modifies

[442]

[445]

the audio data block. In particular, a reserved area of CEA Short Audio Descriptor may be used to extend and display max number of channel. For example, it may be extended by using Byte 1 [7] and Byte 2 [7] as shown in Table 54 below. Thus, 3D audio may be represented. CEA Short Audio Descriptor may hold a different field area in accordance with audio format.

[440] Table 54-1 CEA Short Audio Descriptor for Audio Code=1 (LPCM)

[441]		Bits									
	Byte#	7	6	5	4	3	2	1	0		
	1	F17=0	Audio Fort	udio Format Code = 0001				Max Number of channels - 1			
	2	F27=0	192 kHz	176.4	96 kHz	88.2 kHz	48 kHz	44.1 kHz	32 kHZ		
				kHz							
	3	F37=0	F36=0	F35=0	F34=0	F33=0	24 bit	20 bit	16 bit		

Table 54-2 CEA Short Audio Descriptor for Audio Codes 2 to 8

[443]		Bits									
	Byte#	7	6	5	4	3	2	1	0		
	1	F17=0	Audio Forr	nat Code			Max Number of channels – 1				
	2	F27=0	192 kHz	176.4	96 kHz	88.2 kHz	48 kHz	44.1 kHz	32 kHZ		
			kHz								
	3		Maimum bit rate divided by 8 kHz								

[444] Table 54-3 CEA Short Audio Descriptor for Audio Codes 9 to 15

	bits							
Byte#	7	6	5	4	3	2	1	0
1	F17=0	Audio Fort	nat Code			Max Num	ber of chan	nels – l
2	F27=0	192 kHz	176.4	96 kHz	88.2 kHz	48 kHz	44.1 kHz	32 kHZ
			kHz					
3		<u>D</u>	efault=0, un	less Defined	by Audio (odex Vend	or]	

ACAT (Audio Channel Allocation Standard Type) may be set by modifying speaker allocation data block independently from the second exemplary embodiment. ACAT may be identified by using Byte 3 [7:4], which is a reserved area of speaker allocation data block payload, speaker allocation data block for each type may be defined as a separate new table. The position of the ACAT field may be defined in a different position within the range of Byte 2 [7:3] ~ Byte 3 [7:0].

[447] As illustrated in Table 55 below, ACAT=0001 may indicate 10.2 channels of TTA standard, and ACAT=0010 may indicate 22.2 channels.

[448] Table 55 Speaker Allocation Data Block Payload (Refer to CEA86 1-E)

[449]			bits									
	Byte#	7	7 6 5 4 3 2 1									
	1	FLWFRW	RLC/RRC	FLC/FRC	RC	RL/RR	FC	LFE	FL/FR			
	2	F27=0	F26=0	F25=0	F24=0	F23=0	FCH	TC	FLH/FRH			
	3	F37=0	F36=0	F35=0	F34=0	F33=0	F32=0	F31=0	F30=0			

[450] Table 55-1 ACAT Field

[451]	ACAT	description
	0000	Refer to CEA861-D(E,F)
	0001	Refer to 10.2 channel (TTA Standard)
	0010	Refer to 22.2 channel (SMPTE2036-2)
	00 11-1 111	Reserved
	00 11-1 111	Reserved

[452] Table 55-2 Speaker Allocation Data Block Payload (for 22.2 channel)

[453]	Byte#/bit	7	6	5	4	3	2	1	0
	1	LFE2	SIL/SIR	FLC/FLR	BC	BL/BR	FC	LFE1	FL/FR
	2	BtFC	BtFL/BtFR	TpBC	TpSIL/TpSIR	TpBL/TpBR	TpC	TpFC	TpFL/TpFR
	3		ACA?	Г = 0010ъ		0	0	0	0

[454] Table 55-3 Speaker Allocation Data Block Payload (for 10.2 channel)

[455]	Byte#/bit	7	6	5	4	3	2	1	0
	1	CH	LC/RC	LB/RB	LS/RS	LFE2	LFE1	O	L/R
	2	0	0	0	0	0	0	0	0
	3		ACAT = 0010b				0	0	0

[456] However, the allocation data block of a speaker may be defined differently in accordance with the manufacturer. In this case, a plan of enhancing compatibility may be considered by utilizing a common speaker placement in accordance with the manufacturer. Table 56 below shows the SMPTE2036-2 standard for 3D audio of 22.2 channels. Bit presented in bold letter corresponds to common speaker placement of several manufacturers.

[457] Table 56 Speaker Allocation Data Block Payload 2 (Refer to CEA861-E)

[458]					Bit	ts					
	Byte#	7	7 6 5 4 3 2 1								
	1	FLWFRW	RLC/RRC	FLC/FRC	RC	RL/RR	FC	LFE	FL/FR		
	2	F27=0	F26=0	F25=0	F24=0	F23=0	FCH	TC	FLH/FRH		
	3	F37=0	F36=0	F35=0	F34=0	F33=0	F32=0	F31=0	F30=0		

[459] Table 56-1 ACAT Field

[466]

[460]	ACAT	Description
	0000	Refer to CEA861-D(E,F)
	0001	Refer to 10.2 chammel
		(TTA Standard)
	0010	Refer to 22.2 channel
		(SMPTE2036-2)
	0011~1111	Reserved

[461] Table 56-2 Speaker Allocation Data Block Payload (for 22.2 channel)

[462]	Byte#/bit	7	6	5	4	3	2	1	0
	1	FLWFRW	RLC/RRC	FL C/FR C	RC	RL/RR	FC	LFE	FL/FR
	2	ТрВС	Tp SIL/Tp SIR	Tp BL/TpBR	LFE2	SIL/SIR	FCH	TC	FLH/FRH
	3		ACAT = 0	0105		0	0	BtF C	BtFL/BtFR

[463] Table 56-3 Speaker Allocation Data Block Payload (for 10.2 channel)

[464]	Byte#/bit	7	6	5	4	3	2	1	0
	1	FLWFRW	RLC/RRC	FLC/FRC	RC	RL/RR	FC	LFE	FL/FR
			(LB/RB)			(LS/RS)			
	2	TpBC	TpSIL/TpSIR	TpBL/TpBR	LFE2	SIL/SIR	FCH	TC	FLH/FRH
	3		ACAT = 0010b				0	BtFC	BtFL/BtFR

[465] However, ACAT field is not defined separately in the exemplary embodiment of the speaker allocation data block payload described above, and classification of each type (eg 10. 2ch (TTA), 22.2ch (SMPTE2036-2), 13.1 ch (Dolby)) may be available in the source after checking the position and types of bits that are set in the speaker allocation data block payload. Accordingly, the number of channels that are available through modified audio data block may be known.

- [467] Third Exemplary Embodiment
- The third exemplary embodiment is not defined in the HDMI audio data block, but newly defines "Extended Speaker Allocation Data Block" type in the Extended Tag Code of EDID without having to define a new data block from the HDMI audio. The size of the new data block will be available up to a maximum of 32 bytes. Table 57 gives an example of a case of 4 bytes. The size of ACAT may be modified based on the needs of the user..
- [469] ACAT is identified by using reserved area (Byte 3 [7:4]), and speaker allocation data block for each type is defined. The configuration of payload may be the same as the exemplary embodiment described above. Of course, ACAT field may be located in different area other than the reserved area as described above.
- [470] A remaining bit value of the ACAT field may be used by being allocated to various channel types (e.g., Dolby, USC, or ITU-R format that will be standardized in the future) in accordance with the manufacturer.

[47 1] Table 57 Modified Speaker Allocation Data Block

[472]	Extended Tag	Type of Data Block
[]	Codes	••
	0	Vieo Capability Data Block
	1	Vendor-Specific Video Data Block
	2	Reserved for VESA Video Display Device Information Data Block
	3	Reserved for VESA Video Data Block
	4	Reserved for HDMI Video Data Block
	5	Colormetry Data Block
	615	Reserved for video=relaesed blocks
	16	CEA Mrscellaneous Audio Fields
	17	V endor —Specific Audio Data Block
	18	Reserved for HDMI Audio Data Block
	19	Extended Speaker Allocation Data Block
	2031	Reserved for audio-related blocks
	32255	Reserved for general

[473] Table 57-1 ACAT Description

[474]	ACAT	description
	0000	CEA861-D(E,F)
	0001	10.2 channel
		(TTA Standard)
	0010	22.2 channel
		(SMPTE2036-2)
	0011~1111	Reserved

[478]

[475] Table 57-2 Extended Speaker Allocation Data Block Payload(for 10.2channel)

Bynte#/bi	7	6	5	4	3	2	1	0
t								
1	FLWFRW	RLC/RRC	FLC/FRC	RC	RL/RR	FC	LFE	FL/FR
2	TpBC	TpSIL/TpSIR	TpBL/TpBR	LFE2	SIL/SIR	FCH	TC	FLH/FRH
3	0	0	0	LSd/RSd	LS/RS	TpLS/TpRS	BtFC	BtFL/BtFR
4		ACAT =	00015		0	0	0	0
	t 1 2 3	t 1 FLWFRW 2 TpBC 3 0	t 1 FLW/FRW RLC/RRC 2 TpBC TpSIL/TpSIR 3 0 0	t l FLW/FRW RLC/RRC FLC/FRC 2 TpBC TpSIL/TpSIR TpBL/TpBR 3 0 0 0	t t 1 FLW/FRW RLC/RRC FLC/FRC RC 2 TpBC TpSIL/TpSIR TpBL/TpBR LFE2 3 0 0 0 LSd/RSd	t t L RLC/RRC FLC/FRC RC RL/RR 1 FLW/FRW RLC/RRC FLC/FRC RC RL/RR 2 TpBC TpSIL/TpSIR TpBL/TpBR LFE2 SIL/SIR 3 0 0 0 LSd/RSd LS/RS	t t FLW/FRW RLC/RRC FLC/FRC RC RL/RR FC 1 FpBC TpSIL/TpSIR TpBL/TpBR LFE2 SIL/SIR FCH 2 TpBC TpSIL/TpSIR TpBL/TpBR LFE2 SIL/SIR FCH 3 0 0 0 LS/drSd LS/RS TpLS/TpRS	t l FLW/FRW RLC/RRC FLC/FRC RC RL/RR FC LFE 2 TpBC TpSIL/TpSIR TpBL/TpBR LFE2 SIL/SIR FCH TC 3 0 0 LSd/RSd LS/RS TpLS/TpRS BtFC

[477] Table 57-3 Extended Speaker Allocation Data Block Payload(for 22.2channel)

Byte#/bi	7	6	J	4	3	2	1	0
t								
1	FLW/FRW	RLC/RRC	FLCFRC	RC	RL/RR	FC	LFE	FL/FR
2	TpBC	Tp SIL/Tp SIR	TpBL/TpBR	LFE2	SIL/SIR	FCH	TC	FLH/FRH
3	0	0	0	LS d'RS d	LS/RS	TpLS/TpRS	BtFC	BtFL/BtFR
4		ACAT =	0010b		0	0	0	0

[479] Table 57-4 Extended Speaker Allocation Data Block Payload(for 30.2channel)

[480]

Byte#/bi	7	6	5	4	3	2	1	0
t								
1	FLW/FRW	RLC/RRC	FLC/FRC	RC	RL/RR	FC	LFE	FL/FR
2	TpBC	Tp SIL/Tp SIR	Tp BL/Tp BR	LFE2	SIL/SIR	FCH	TC	FLH/FRH
3	0	0	0	L Sd/RSd	LS/RS	Tp LS/Tp RS	BtFC	BtFL/BtFR
4		ACAT =	00115		0	0	0	0

[481] Fourth Exemplary Embodiment

[482] The fourth exemplary embodiment is similar to the third exemplary embodiment, but it is different in that data blocks are added in extended tag codes after defining the data block for a speaker allocation standard type (e.g. 10.2ch(TTA), 22.2ch(NHK), 13.1 ch(Dolby)).

[483] For example, the block tag code 19 may indicate speaker allocation data block for TTA 10.2 channels, the data block tag code 20 may indicate speaker allocation data block for NHK 22.2 channels, and data block tag code 21 may indicate speaker allocation data block for Dolby 13.1 channels.

[484] [485]

Table 58 Modified Speaker Allocation Data Block

[486]

Extended Tag	Type of Data Block
Codes	
0	Vieo Capability Data Block
1	Vendor-Specific Video Data Block
2	Reserved for VESA Video Display Device Information Data Block
3	Reserved for VESA Video Data Block
4	Reserved for HDMI Video Data Block
5	Colormetry Data Block
615	Reserved for video=relaesed blocks
16	CEA Mrscellaneous Audio Fields
17	Vendor −Specific Audio Data Block
18	Reserved for HDMI Audio Data Block
19	HDMI Speaker Allocation Data Block for 10.2ch(TTA)
20	HDMI Speaker Allocation Data Block for 22.2ch(NHK)
21	HDMI Speaker Allocation Data Block for 13.lch(Doby)
2231	Reserved for audio-related blocks
32255	Reserved for general

[487] Table 58-1 Speaker Allocation Data Block payload(for multi-channel)

[488]

Byte#/bit	7	б	5	4	3	2	1	0
1	Pos.7		-	-	•	-	-	Pos.0
2	Pos.15	-	-	-	-	-	-	Pos.8
3	P os.23	-	-	-	-	-	-	Pos.16
4	P os.31	-	-	-	-	-	-	Pos.24

[489] Fifth Exemplary Embodiment

[490] The fifth exemplary embodiment defines an extended audio data block. The extended

[492]

audio data block corresponds to the value of an extended tag code. And the extended audio data block comprises more than one extension CEA short audio descriptor. Each extension CEA short audio descriptor comprises information on the number of channels. In this case, the size or the format of each field may be the same as a short audio descriptor of an audio data block, but it may be defined differently.

[491] Table 59 Extended Audio Data Block

Extended Tag	Type of Data Block
Codes	
0	Vieo Capability Data Block
1	V endor-Specific Video Data Block
2	Reserved for VESA Video Display Device Information Data Block
3	Reserved for VESA Video Data Block
4	Reserved for HDMI Video Data Block
5	Colonmetry Data Block
615	Reserved for video=relaesed blocks
16	CEA Mrscellaneous Audio Fields
17	V endor -Specific Audio Data Block
18	Reserved for HDMI Audio Data Block
19	Extended Audio Data Block (includes one or more Extended Short Audio Descriptors)
20	Extended Speaker Allocation Data Block
21	Multiple Audio Stream Data Block
2231	Reserved for audio-related blocks
32255	Reserved for general

[493] Table 59-1 Extended Audio Data Block

[494]	Byte#/bit	7	6	5	4	3	2	1	0
	PB1	Tag Cod	e=7 (USE	Extended			per of ex	tension audio	bytes
		Tag)			following	chis byte			
	PB2			Extended	data Block	c Tag Code	=13h		
	PB3								
	PB4		Extended	CEA Short	Audio Desc	criptor 1 (R	efer to tal	ole 8*25)	
	PB5								
					-				
	PB N-2								
	PB N-1]	Extended C	EA Short.	Audio Desc	riptor X (I	Refer to t	able 8*25)	
	PB N								

[495] Table 59-2 Extended CEA Short Audio Descriptor

[496]	Byte#/bit	7	6	5	4	3	2	1	0
	PB1	0	Uncompress Format Cod 01		Max number of channels - 1				
	PB2	0	192kHz	176.4kHz	96kHz	88.2kHz	48kHz	44.1 kHz	32kHz
	PB3	0	0	0	0	0	24bit	20bit	16bit

[497] An extension CEA short audio descriptor may comprise uncompressed audio format code as illustrated in Table 59 above. The uncompressed audio format code may be defined as follows.

[498] Table 60 Uncompressed Audio Format Code

[499]	Uncompressed Audio Format C ode	Description
	00	FCM
	0 1	One Bit Audio
	10	.
	11	Reserved

[500] At this time, an extended speaker allocation data block may be defined as the value of an extended tag code. Extended speaker allocation data block may include an ACAT field as the following table. A reserved area may be used for extension, or a remaining value of the bit may be used by being allocated in various channel types (e.g. Dolby, USC or ITU-R format which will be standardized in the future) in accordance with the manufacturer.

[501] Table 61 Extended Speaker Allocation Data Block

Extended Tag	Type of Data Block
Codes	
0	Vieo Capability Data Block
1	V endor-Specific Video Data Block
2	Reserved for VESA Video Display Device Information Data Block
3	Reserved for VESA Video Data Block
4	Reserved for HDMI Video Data Block
5	Colormetry Data Block
615	Reserved for video=relaesed blocks
16	CEA Mrscellaneous Audio Fields
17	V endor Specific Audio Data Block
18	Reserved for HDMI Audio Data Block
19	Extended Audio Data Block (includes one or more Extended Short Audio
	Descriptors)
20	Extended Speaker Allocation Data Block
21	Multiple Audio Stream Data Block
2231	Reserved for audio-related blocks
32255	Reserved for general

[503] Table 61-1 Extended Speaker Allocation Data Block

[504]	Byte#/bi	7	6	5	4	3	2	1	0	
r	t									
	PB1	Tag Codes	7 (USE Extend	ad Tarr	Length =	total nun	iber of ex	tension	audio	
		Tag Coue-) (ONE EVEU	en raß)	bytes fol:	lowing chi	s byte (=	5 byte)		
	PB2		Extended data Block Tag Code = 13h							
	PB3	FLw/FRw	RLC/RRC	FLC/FRC	RC	RL/RR	FC	LFE1	FL/FR	
	PB4	TpBC	TpSIL/TpSIR	TpBL/TpBR	1000	LFE2 SiL/SiR	FCM	TC	FLH/F	
		1 pbc	1 port/1 port	1 pbb2/1 pbic	LILZ	DIL ABIR	1 0 101	10	RH	
	PB5	0	0	0	LSd/LRd	LS/RS	TpLS/ TpRS	BtFC	BtFL/B	
		"	U	"	Laurka	Lotro	TpRS		tFR	
	PB6	ACAI	YAudio Channe	1 Attocation T	sme)	0	0	0	0	

[505] Table 61-2 ACAT Description

				_	
[506]	ACAT3	ACAT2	ACAT1	ACAT0	Description
	0	0	0	0	Refer to CEA861-D(or E, F)
	0	0	0	1	Refer to 10.2 channels (TTA Standard)
	0	0	1	0	Refer to 22.2 channels (SMRTE 2036-2)
	0	0	1	1	Refer to 30.2 chamnels (IEC62574Ed 1)
	0	1	0	0	Reserved
	1	1	1	1	

[507] In this exemplary embodiment, the payload of an extended speaker allocation data block is illustrated in the following table. The shaded area is used for speaker allocation of each channel allocation type.

[509] Table 62 Channel Allocation Compatibility

[510]

[508]

[502]

B yt e#/bit	7	6	J	4	3	2	1	0
PB 1	FLW/FR W	RLC/RRC	FLC/FRC	RC	RL/RR	FC	LFE 1	FL/FR
PB2	ТрВС	TpSIL/TpSI R	TpBL/TpB R	LFE2	SIL/SIR	F CH	TC	FLH/FR H
PB3	0	0	0	LSd/LRd	LS/RS	TpLS/TpR S	BtFC	B tFL/B tF R
PB4	ACAT(A	AucUo channel	Allocation	Type)	0	0	0	0

[511]

Byte#/bit	7	6	5	4	3	2	1	0
PB1	FLW/FR	RLC/RRC	FLC/FRC	RC	RL/RR	FC	LFE1	FL/FR
	W							
PB2	TpBC	TpSIL/TpSI	TpBL/TpB	LFE2	SIL/SIR	FCH	TC	FLH/FR
	_	R	R					H
PB3	0	0	0	LSd/LRd	LS/RS	TpLS/TpR	BtFC	BtFL/BtF
						្ន		R
PB4	ACAT	(Audio channe	l Allocation	0	0	0	0	

[512]

Byte#/bi	7	6	5	4	3	2	1	0
t								
PB1	FLW/FR W	RLC/RRC	FLC/FRC	RC	RL/RR	FC	LFE1	FL/FR
PB2	TpBC	Tp SIL/Tp SI	Tp BL/Tp B	LFE2	SIL/SIR	FCH	TC	FLH/FR
	_	R	R					Н
PB3	0	0	0	LSd/LR	LS/RS	TpLS/TpR	BtFC	BtFL/BtF
				đ.		ន		R
PB4	ACA:	Γ(Audio channe	1 Allocation T	0	0	0	0	

[513]

Byte#/bi	7	6	5	4	3	2	1	0
t								
PB1	FLW/FR	RLC/RRC	FLC/FRC	RC	RL/RR	FC	LFE1	FL/FR
	W							
PB2	TpBC	Tp SIL/Tp SI	Tp BL/TpB	LFE2	SIL/SI	FCH	TC	FLH/FR
	_	R	R		R			H
PB3	0	0	0	L Sd/LR	LS/RS	Tp L S/Tp R	BtFC	BtFL/BtF
				d		s		R
PB4	ACAT	(Audio channe	l Allocation T	ype)	0	0	0	0

[514] EDID/CEC for New Speaker Position

[515] In the exemplary embodiments, a speaker position data block for transmitting new speaker position information to the source may be defined. The data block comprises an arranged coordinate value and placement angle value of every speaker that is connected to the sink. The source may be used in various processing such as down mixing or object audio coding through this information. Since the value of extended tag code of the table below is one exemplary embodiment, the speaker position data block may be used by being defined with several data blocks that are defined above.

Table 63 Speaker Position Data Block

[517]

[516]

WO 2013/122387 PCT/KR2013/001130

Extended Tag Codes	Type of Data Block
0	^V ieo Capability Data Block
1	Vendor-Specific Video Data Block
2	Reserved for VESA Video Display Device Information Data Block
3	Reserved for VESA Video Data Block
4	Reserved for HDM Video Data Block
5	Colonmenty Data Block
615	Reserved for videc=relaesed blocks
IS	CEA Miscellaneous Audio Fields
17	Vendor -Specific Audio Data Block
18	Reserved for HDMI Audio Data Block
19	Reserved for audio-related blocks
20	Speaker Positiiiii Data Bkck 1
21	Speaker Positiiiii Data Bkck 2
22	Speaker Positiiiii Data Bkck 3
23	Speaker Positiiiii Data Bkck 4
31	Reserved for audio-related blocks
32255	Reserved for general

- [518] The speaker position data block may be defined by the following table. Byte [1] \sim [5] store position information of one speaker. Byte [6] \sim [30] store speaker position information in accordance with the same method. Byte 31 and 32 are defined as a reserved area.
- [519] When using the method of the example, a rounded up (N/6) speaker position data block may be needed to correspond with N channel since one data block may transmit a maximum of six speakers.

[520] Table 64 Speaker Position Data Block

[521]	Byte#/bit	7	6	5	4	3	2	1	0		
	1	hei	ght		Speaker_id						
	2	Ang.7	Ang.6	Ang.5	Ang.4	Ang.3	Ang.2	Ang.l	Ang.O		
	3		Offset_x								
	4		Offset_y								
	5				Offs	et_z					
	6~i0			2	sp eaker 1	osiiion dat	a				
	11-15			3t	h speaker	positiiiii da	ta				
	1≤~20			4	' speaker]	position dat	a				
	21-25		5 ' speaker position data								
	2≤~30		6 ' speaker position data								
	31-32				rese	rved					

[522] Table 64-1 Speaker_id field

[523]	Speaker_id	Description
	00000	FL
	00001	FR
	00010~11111	

- [524] Transmission of speaker position information using CEC
- [525] FIG. 12 is a schematic diagram showing the transmission of speaker position information using the CEC.
- [526] As illustrated in FIG. 12, when the source requests the speaker position of from the sink, the sink may tell the information about the speaker position.

[527]

[528] Transmitting Speaker Position Information using CEC

[529]

[530] 3-1. EDID for 3D Audio

[531] A new data block for multi-stream audio may be defined in extended tag code. The multi-stream audio data block comprises a Max_stream_count-1 field, and a CEA Short Audio Descriptor area. Max_stream_count-1 indicates the number of streams to be transmitted. There are more than one CEA Short Audio Descriptor, and they may be defined in accordance with CEA861-D.

[532] Table 65 Multi Stream Audio Data Block

[533]	Byte#/bit	7	6	5	4	3	2	1	0			
	1				Max_stream_count-							
	2		CEA Short Audio Descriptor 1									
	3											
	4											
	N			CEA	Short Audi	o Descript	or X					

[534] Table 65-1 CEA Data Block Tag Codes

Extended Tag Codes	Type of Data Block
0	Vieo Capability Data Block
1	Vendor-Specific Video Data Block
2	Reserved for VESA Video Display Device Information Data Block
3	Reserved for VESA Video Data Block
4	Reserved for HDMI Video Data Block
5	Colormetry Data Block
615	Reserved for video=relaesed blocks
16	CEA Mrscellaneous Audio Fields
17	Vendor –Specific Audio Data Block
18	Reserved for HDMI Audio Data Block
19	Reserved for audio-related blocks
XX	Multiple Audio Stream Data Block
31	Reserved for audio-related blocks
32255	Reserved for general

[536] Meanwhile, the Vendor-specific Data Block may be displayed whether multi-stream video/audio is provided or not. The Vendor-specific Data Block uses a multistream_in indicator field. When the sink supports multi-stream, multistream_indicator = 1. However, multistream_indicator field may be defined in other areas of the data block as well as HDMI VSDB.

[537]

[535]

[538] Table 66 Vendor-specific Data Block

[539]

WO 2013/122387 PCT/KR2013/001130 57

ъ.	7			1 4	3	1 2	1 1	1 0				
Byt e#	'/	6	5	4	3	2	1	0				
	X7 1		1 (2)			- 10 / ND						
0	V endor-	specific tag	, ,			en glh(=N)						
1			24-bit	IEEE Reg	istration (0x0	00c03)						
2												
3												
4			A			В						
5			С			D						
6	Su _{pp} o _r s AI	DC_40bi t	DCJOti t	DCJOti t	DC_Y444	Rsvd(0)	R3CD(0)	DVI _Du al				
7		Max_TMDS_Clock										
S	Latenc	I_Latenc	HDMI _	Rsvd(0)	CNC3	CNC2	CNC 1	CNC0				
	y_Fiel	y_Fields	Video_P									
	ds Present	_Present	resen									
(?)	1 10 bClit	Video_Latency										
(10)					_Latency							
(11)				Interacted_V	′id≋o_Lateno	У						
(12)				Inter acted_	Audio_L atenc	y						
(13)	3D_pr esent	3D_Multi_	_Present	Imag	e_s i?e	Rsvd(0)	RsvAO)	Multistre am_indic				
			1					ator				
(14)	_	/IC_LEN II VIC LEN	as ON		HDMI_3D	_LEN						
(12)		II_VIC_LEI	V >0)	нрм	I _VIC _1							
				TIDIVI								
				HDMI	_V IC_M							
	(if 3D_N	Ոulti_presei:	ut 01 or 10)									
					e_ALL_l 5.í							
				3D_Struct	ure_ALL_70							
	(if 3D_N	Iul1i_preseiit	1Ü)	_								
					ASK_7.0							
		25. 1	7 TC 1	3D_M	AS K_7.D	2D 2	. 1					
		3D_\	/ IC_1			3D_3truc	ture_l					

[540] Various multi-streams may be identified by defining the multistream_indicator using extra bits.

[541]

[542] Table 67 Vendor-specific Data Block

[543]

Byt e#	7	6	5	4	3	2	1	0						
0	V endor-	specific tag	code(=3)		Į	_en glh(=N)	•							
1			24-bit	IEEE Reg	istration (0x0	00c03)								
2	1													
3	1													
4			A			В								
5			С			D								
6	Suppor DC_40hi DC_30bi		DC_30bi	DC_Y444	Rsvd(0)	RSCD(0)	DVI_Du							
	s_AI	t	t	t				al						
7				Max_TM	IDS_Clock									
8	L at en C	I_Latenc	HDMI _	Rsvd(0)	CNC3	CNC2	CNC 1	CNCO						
	y _Fiel	y_Fields	Video_P											
	ds	_Present	resen											
,	Fresent	Present												
(?)					_Latency									
(10)					_Latency									
(11)					ideo_Latency									
(12)			_		Audio_L atanc									
(13)	3D_pr	3D_Multi_	_Present	Imag	ge_size	Mu	dtistream m	ode						
	esent													
(14)	HDMI_V				HDMI_3D	LEN_								
(15)	(if HDM	I_VIC_LEN>	0)											
				HDM	I _VIC _1									
					_V IC_M									
	(if 3D_N	Iul1i_present	01 or 10)		_									
					e_ALL_1 5.i	:								
				3D_Structu	re_ALL_70									
	(if 3D_N	fulli_present	10)											
					A3K_7.D									
				3D_M	AS K_7.D									
		3D_V	/ IC_1			3D_Struc	ture_l							

[544] Second Exemplary Embodiment

[545] The first exemplary embodiment newly defines multi-audio stream data block using extended tag code. The newly defined multi-audio stream data block comprises CEA short audio descriptor area, the length of audio stream, and Max_stream_count field. Since each field is the same as other exemplary embodiments described above, overlapping description thereof is omitted.

[546] Table 68 Multi Audio Stream Data Block

[547]

Extended Tag C odes	Type of Data Block
0	Vieo Capability Data Block
1	Vendor-Specific Video Data Block
2	Reserved for VESA Video Display Device Information Data Block
3	Reserved for VESA Video Data Block
4	Reserved for HDMI Video Data Block
5	Colonmetry Data Block
615	Reserved for video=relaesed blocks
16	CEA Mrscellaneous Audio Fields
17	V end or —Specific Audio D ata Block
IS	Reserved for HDMI Audio Data Block
19	Extended Audio Data Block (includes one or more Extended Short Audio Descriptors)
20	Extended Speaker Allocation Data Block
21	Multiple Audio Stream Data Block
2231	Reserved for audio-related blocks
32255	Reserved for general

[548] Table 68-1 Mu	ltiple Audio	Stream Data	a Block
---------------------	--------------	-------------	---------

[549]	Byte#/bit	7	6	5	4	3	2	1	0			
	PB1	Tag Code	=7 (USE E:	tended	Length = total number of extension audio bytes							
		Tag)			following this byte							
	PB2			Extende	d data Bloci	k Tag Code	=13h					
	PB3	0	0	0	0	0	0	Max_Stre				
	PB4											
	PB5			CEA	Short Audi	o Descripto:	r 1					
	PB6											
					-							
	PB N-2											
	PB N-1			CEA	Short Audio	Descriptor	1 X					
	PB N											

- [550] Third Exemplary Embodiment
- [551] Meanwhile, another method using an HDMI audio data block may be considered similar to the first exemplary embodiment.
- [552] Extended tag code is newly defined. As in the first exemplary embodiment, tag code 18 may be used to add extended HDMI audio data block.
- [553] The table below shows the structure of an extended HDMI audio data block. Extended HDMI audio data block in accordance with the third exemplary embodiment comprises Extended CEA Short Audio Descriptor (ECSAD), Extended Speaker Allocation Descriptor (ESAD), and Multiple Audio Stream Descriptor (MASD).
- [554] Extended CEA short audio descriptor (ECSAD) comprises descriptors as much as the value of Num_ECSAD field when the sink supports a 3D audio function. Extended speaker allocation descriptor (ESAD) comprises one descriptor when the value of Num_ECSAD field is more than 0, when the sink supports 3D-audio-channel function. Multi-audio stream descriptor (MASD) includes a descriptor as much as the value of the Num_MASD field when the sink supports multi-stream audio function.
- [555] The Max Stream_Count -1 field is defined as the number of maximum stream, which the sink may receive, -1. Audio stream for each view shows the same audio feature of having the same coding type and sampling frequency since the audio stream transmits multi-stream audio with one audio sample packet.
- [556] The Num_MASD field defines the number of extended short audio descriptor.

 Num_MASD field may comprise up to seven extended short audio descriptors. When

 Num_MASD field is 0, it means that this field does not support the 3D audio function.
- The Num_ECSAD field defines the number of multi-stream audio descriptors that are included in this data block. The Num_ECSAD field may include up to a maximum of four multi-stream audio descriptors. If this field is 0, it means that the field does not support multi-stream audio, and if Max Stream_Count- 1 is not 0, at least more than one MASD may certainly be defined. If ECSAD includes of method that is defined as 4 bytes, up to a maximum of 6 MASDs may be defined.
- [558] Table 69 Extended HDMI Audio Data Block

[559]	Byte#/bit	7	6	5	4	3	2	1	0				
	PB1	Tag Code Tag)	=7 (USE Ex	tended	Length = following		er of extens	ion audio by	rtes .				
	PB2			Extend	ied data Bio		de =13h						
	PB3	Max Stre	am Count- I		Num MASE)		Num ECSAD					
	PB4~PB6	(if Num_	CSAD(X)>	0)									
			Extended CEA Short Descriptor 1										
	PB(N-3)~	(if Num_I	f Num_ECSAD(X)>0)										
	PB(N-1)		Extended CEA Short Descriptor X										
	PB(N)~	(if Num_I	if Num_ECSAD(X)>0)										
	PB(N+3)			Extend	ed Speaker .	Allocation I	Descriptor						
	PB(N+4)~	(if Max S	tream_Coun	t-1>0 and 1	Num MASD	(Y)>0)							
	PB(N+6)			Multi	ple Audio S	tream Desc	riptor 1						
	PB(L-1)~ PB(L+1)	(if Max S	(if Max Stream_Count-1>0 and Num MASD(Y)>0)										
				Multij	ole Audio S	tream Desc	riptor Y						

[560] X: The number of ECSAD

[561] Y: the number of MASD

[562] Table 69-1 Stream Count-1 field

[563]	MaxStream Count-1	Description
	00	Do not support multiple audio stream
	01	2 audio streams
	10	3 audio streams
	11	4 audio streams

- [564] The third exemplary embodiment may consider alternatives that are transformed as follows.
- [565] For example, the method of including only ECSAD in extended HDMI audio data block, and of defining ESAD and MASD using other extended tag codes may be considered.
- [566] In this case, two descriptors that are defined as another extended tag code may be defined as one separate data block or as different data block. Max Stream_count -1 in field that is defined in PB3 is included in a data block in which the multi-stream audio descriptor is defined in the table described above.
- [567] Unlike the above, ECSAD and ESAD that are related to 3D audio are included in extended HDMI audio data block, and MASD may be defined by using another extended tag code.
- [568] The structure of ECSAD is described by referring to the table below. The structure corresponds to the shaded part of the table.
- [569] As shown in the table at the bottom left, this descriptor may currently select only two coding types of LPCM and DSD. However, other uncompressed audio formats may be included by using a reserved area of the UAFC field.
- [570] The number of channels may be selected up to a maximum of 32 since 5 bits are

allocated.

[573]

[571] Table 70 - Extended CEA Short Audio Descriptor

[572] Table 70-1 Extended HDMI Audio Data Block Structure

Byte#/bit	7	6	5	4	3	2	1	0				
PB1	Tag Code Tag)	=7 (USE E	xtended	Length = following		er of extens	sion audio	bytes				
PB2			Extend	ied data Bio	ock Tag Co	de =13h						
PB3	Max Stree	am Count- I	:	Num MASE)		Num ECSA	.D				
PB4~PB6	(if Num_	ECSAD(X)	· 0)			•						
		Extended CEA Short Descriptor 1										
PB(N-3)~	(if Num_	(if Num_ECSAD(X)>0)										
PB(N-1)			Exten	ded CEA S	hort Descr	ip tor X						
PB(N)~	(if Num_I	ECSAD(X)>	0)			•						
PB(N+3)			Extende	ed Speaker .	Allocation I	Descriptor						
PB(N+4)~	(if Max S	stream_Cour	it-1>0 and	Num MASI	O(Y)>0)							
PB(N+6)			Multi	ple Audio S	tream Desc	riptor 1						
PB(L-1)~ PB(L+1)	(if Max S	Stream_Cour	it-1>0 and	Num MASI	D(Y)>0)							
			Multij	ole Audio S	tream Desc	riptor Y						

[574] Table 70-2 Uncompressed Audio Format Code field

[575]	UAFC(Uncompressed Audio Format Code)	Description		
	00	LPCM		
	01	DSD		
	10	Reserved		
	11			

[576] Table 70-3 Extended CEA Short Audio Descriptor

[577]	Byte/Bit#	7	6	5	4	3	2	1	0
	PB1	0	UAFC		Max Numb	er of channe	els — 1		
	PB2	0	192 kHz	176.4 kHz	96 kHz	88.2 kHz	48 kHz	44.1 kHz	32 kHZ
	PB3	0	0	0	0	0	24bit	20bit	16bit

- [578] However, the following alternative on the method above may be considered.
- [579] The table below has extended the total size of the descriptor into 4 Bytes. In addition, the audio format code was referred to the table that is defined in CEA861-E. Therefore, all compression / non-compression coding types that are defined in CEA861-E may be designated.
- [580] Since the size of the descriptor is increasing, the number of extended CEA short audio descriptors (ECSAD) that may be included within the data block is limited to a maximum of six descriptors. Meanwhile, up to four descriptors may be included in the exemplary embodiment described above.
- [581] In response to changes in each audio format code type, syntax of PB3 and PB4 are defined in the same manner as the Byte 2 and 3 of Table $45 \sim 49$ of CEA861-E.
- [582] Table 71 Extended CEA Short Audio Descriptor
- [583] Table 71-1 Extended HDMI Audio Data Block Structure

[584]

Byte#/bit	7	6	5	4	3	2	1	0					
PB1	Tag Code=	7 (USE E	rtended	Length = following		of extensi	on audio b	ytes					
PB2			Extend	ed data Blo	ck Tag Co	de = 13t1							
PB3	Max Stream			Num MASD			Num ECSA	D					
PB4~PB ≤	(if Num_I	ECSAD(X)X	(J)										
		Extended CEA Short Descriptor 1											
PB(N-3)~	(if Num_I	(if Num_ECSAD(X)>())											
PB(N-1)			<u>Exten</u>	ded CEA S	Short Descr	iptor X							
PB(N)~	(if Num_E0	CSAD(X)>0)											
PB(N+3)			Extende	d Speaker	Allocation I	Descriptor							
PB(N+4)~	(if Max S	tream_C oun	t1 > 0 and	Num MASD	(YpO)								
PB(N+o)			Multir	ole Audio S	tream Descr	riptor 11							
PB(11)~ PB(L+1)	(if Max S	tream_C oun	t-1>0 and	Num MASE	O(Y)>0)								
			Multip	le Audio S	tream Descr	iptor Y							

[585] Table 71-2 Extended CEA Short Audio Descriptor

[586]

Byte/Bit#	7	6	5	4	3	2	1	0	
PB1	0	0	0	Max Number of channels — 1					
PB2	0	0	0	0	Audio Format Code				
PB3	0	192 kHz	176.4	96 kHz	88.2 kHz	48 kHz	44.1 kHz	32 kHZ	
			kHz						
PB4	0	0	0	0	0	24bit	20bit	16 bit	

- [587] The structure of ESAD is described in the third exemplary embodiment.
- [588] The structure corresponds to the shaded area in the table below.
- [589] ESAD may currently select speaker allocation information of up to a maximum of 30.2 channels. However, other speaker placement formats may be included by using the reserved area of the ACAT field.
- [590] Table 72 Extended Speaker Allocation Descriptor

[591] Table 72-1 Extended HDMI Audio Block Structure

[592]

Byte#/bit	7	6	J	4	3	2	1	0			
FBI	Tag Code=	:7 (USE E	rtended	1 ~	total number	r of extens	ion audio b	oytes			
рв2			Extende	ed data Blo	ck Tag Co	de =13h					
PB3	Max Stream			Num MASD			Num ECSAI)			
PB4-PBS	(if Num_E0	f Num_ECSAD(X)>0)									
		Extended CEA Short Descriptor 1									
PB(N-3)~	(if Num_E	(if Num_ECSAD(X)>0)									
PB(N-l)			Exten	ded CEA S	hort Descrip	otor X					
PB(N)~	(if Num_l	E CSA D(X)>	·O)								
PB(N+3)			Extended	l Speaker	Alio cation	Descriptor					
PB(N+4)~	(if Max S	tream_Count-	l >0 and	Num MASE	(YpO)						
PB(N-H5)			Multip	le Audio S	tream Descr	riptor 1					
PB(L-1)~ PB(L+1)	(if Max S	tream_Count-	l >0 and	Num MASE	(YpO)						
			Multipl	e Audio S	tream D esci	riptor Y					

WO 2013/122387 PCT/KR2013/001130 63

[593] Table 72-2 Audio Channel Allocation Type filed

[594]	A C A	A C A		A C A	Description
	T		T	T	
	3	2	1	0	
	0	0	0	0	Refer to CEA861-D(or E,F)
	0	0	0	1	Refer to 10.2 channels(TTA
					Standard)
	0	0	1	0	Refer to 22.2 channels(SMPTE2036- 2)
	0	0	1	1	Refer to 30.2 channels(IEC62574/Ed 1)
	0	1	0	0	Reserved
	1	1	1	1	

[595] Table 72-3 Extended Speaker Allocation Descriptor

[596]	Byte#/bi	7	6	5	4	3	2	1	0
	t								
	PB1	FLWFRW	RLC/RRC	FLC/FRC	RC	RL/RR	FC	LFE1	FL/FR
	PB2	TpBC	TpSIL/TpSIR	TpBL/TpBR	LFE2	SIL/SIR	FCH	TC	FLH/FRH
	PB3	0	0	0	LSd/LRd	LS/RS	TpLS/TpR	BtFC	BtFL/BtFR
	PB4	ACAT	(Audio Channel	Allocation T	уре)	0	0	0	0

[597] The following table is ESAD. The shaded part of each table is used in speaker allocation of channel allocation type.

[598] Table 73 Extended Speaker Allocation Descriptors

[599]	Byte#/bi	7	6	5	4	3	2	1	0
	t								
	PB1	FLW/FRW	RLC/RRC	FLC/FRC	RC	RL/RR	FC	LFE1	FL/FR
	PB2	TpBC	TpSIL/TpSIR	TpBL/TpBR	LFE2	SIL/SIR	FCH	TC	FLH/FRH
	PB3	0	0	0	LSd/LRd	LS/RS	TpLS/TpR	BtFC	BtFL/BtFR
	PB4	ACAT	(Audio Channel	Allocation Ty	тре)	0	0	0	0

[600] Byte#/bi 5 4 3 2 0 PB1 FLWFRW RLC/RRC RC RL/RR FC LFE1 FL/FR FLC/FRC PB2 TpBC TpSIL/TpSIR TpBL/TpBR LFE2 SIL/SIR FCH TC FLH/FRH PB3 0 0 LSd/LRd LS/RS TpLS/TpR BtFC BtFL/BtFR PB4 ACAT(Audio Channel Allocation Type)

[601]	Byte#/bi	7	б	5	4	3	2	1	0
	t								
	PB1	FLWFRW	RLC/RRC	FLC/FRC	RC	RL/RR	FC	LFE1	FL/FR
	PB2	ТрВС	Tp SIL/Tp SIR	TpBL/TpBR	LFE2	SIL/SIR	FCH	TC	FLH/FRH
	PB3	0	0	0	LSd/LRd	LS/RS	TpLS/TpR	BtFC	BtFL/BtFR
	PB4	ACA	T(Audio Channel	Allocation Ty	pe)	0	0	0	0

[602]	Byte#/bi	7	6	5	4	3	2	1	0
	t								
	PB1	FLW/FRW	RLC/RRC	FLC/FRC	RC	RL/RR	FC	LFE1	FL/FR
	PB2	ТрВС	Tp SIL/Tp SIR	TpBL/TpBR	LFE2	SIL/SIR	FCH	TC	FLH/FRH
	PB3	0	0	0	LSd/LRd	LS/RS	Tp LS/Tp R	BtFC	BtFL/BtFR
	PB4	ACA	T(Audio Channel	Allocation Ty	pe)	0	0	0	0

[603] The following describes the structure of ESAD of the third exemplary embodiment. The structure corresponds to the shaded area of the table.

[604] CEA short audio descriptor that is defined in CEA861-E is still used. However, new format that has partially modified/changed the placement or the size of existing field may be defined by including each field that is included in the CEA short audio de-

scriptor. This descriptor is included only in transmitting multi-stream audio, and at least one descriptor may be included when it is being used.

[605] Table 74 Multiple Audio Stream Descriptor

Table 74-1 Extended HDMI Audio Data Block Structure

[606] [607]

Byte#/bit	7 6	5	4	3	2	1	0								
PB1	Tag Code=7 (USE	•	Length =	total nun	ber of ex	tension au	dio bytes								
	Extended Tag)		following	this byte											
PB2		Extende	d data Blo	ck Tag C	ode =13h										
PB3	Max Stream Count-1	ŀ	lum MASI)	l	Num ECSA	AD								
PB4~PB7	(if Num_ECSAD()	ζ)>0)													
		Exten	ded CEA S	hort Desc	riptor 1										
		# N DCCAD/V\\0\													
PB(N-4)~	(if Num_ECSAD(X)>0)														
PB(N-1)		Extend	ied CEA S	hort Desc	riptor X										
PB(N)~	(if Num_ECSAD()	(0<(2													
PB(N+3)		Extended	l Speaker A	Allocation	Descriptor										
PB(N+4)~	(if Max Stream_C	ount-1>0	and Num	MASD(Y)>0)										
PB(N+6)		Multiple	Audio St	ream Des	criptor 1										
PB(L-1)~ PB(L+1)	(if Max Stream_Count-1>0 and Num MASD(Y)>0)														
		Multiple Audio Stream Descriptor Y													

[608] Table 74-2 Multiple Audio Stream Descriptor

[609]

Byte#bit	7	6		5	į	4	į	3	2	į	1	0
FBI					·							
PB2		CEA	Short	Audio	Descript	or for	each	Audio	Format	Code		
PB3												

- [610] The table below is a table that has newly defined the structure of the multi-stream audio descriptor. Instead of using CEA short audio descriptor as it is, a new descriptor is used here.
- [611] The number of channels of multi-stream audio is limited to two. Therefore, an unnecessary channel count field is removed from the descriptor and instead Max Number of Stream 1 is defined as 2-bit. At this time, Max_Stream_Count-1 that is defined in the extended HDMI audio data block is defined as a maximum value among Max_Stream_Count 1 of each descriptor.
- [612] Each table shows the descriptors for each audio format code.
- [613] Table 75 Multiple Audio Stream Descriptor
- [614] Table 75-1 Multiple Audio Stream Descriptor for Audio Format Code 1 (LPCM)

Byte/Bit# [615] 0 Audio Format Code = 0001 0 PB1 Max Stream_Count-1 PB2 0 176.4 96 kHz 48 kHz 44.1 kHz 32 kHZ 192 kHz 88.2 kHz kHz

[616] Table 75-2 Multiple Audio Stream Descriptor for Audio Format Code 2 to 8

[617]

Byte/Bit#	7	6	1 s	1 4	1 3	2	i	I 0			
FB I	0		Audio For	mat Code		0	Max Stream	n_Count-1			
PB2	0	192 kHz	176.4	96 kHz	SS.2 kHz	48 kHz	44.1 kHz	32 kHZ			
			kHz								
PB3		Maximum bit fate divided by 8kHz									

[618] Table 75-3 Multiple Audio Stream Descriptor for Audio Format Code 9 to 13

[619]	Byte/Bit#	7	б	5	4	3	2	1	0				
	PB1	0		Audio Fo	mat Code		0	Max Stream	m_Count-1				
	PB2	0	192 kHz	176.4	96 kHz	88.2 kHz	48 kHz	44.1 kHz	32 kHZ				
				kHz									
	PB3		Audio Format Code dependent value										

[620] Table 75-4 Multiple Audio Stream Descriptor for Audio Format Code 14 (WMA Pro)

[621]	Byte/Bit#	7	б	5	4	3	2	1	0
	PB1	0	Α	udio Format	Code = 11	10	0	Max Stream	m_Count-1
	PB2	0	192 kHz	176.4	96 kHz	88.2 kHz	48 kHz	44.1 kHz	32 kHZ
				kHz					
	PB3			Reserved				Profile	

[622] Table 75-5 Multiple Audio Stream Descriptor for Audio Format Code 15 (extension)

[623]	Byte/Bit#	7	6	5	4	3	2	1	0
	PB1	0	At	udio Format	0	Max Stream_Count-1			
	PB2	0	192 kHz	176.4	96 kHz	88.2 kHz	48 kHz	44.1 kHz	32 kHZ
				kHz					
	PB3		Audio Fo	rmat Code I	Extension	24 bit	20 bit	16 bit	

- [624] 4-1. Application Scenario for 3D Audio and Multi-stream Audio
- [625] In the following, application scenarios for 3D audio and multi-stream audio in accordance with the first exemplary embodiment are provided. These examples demonstrate the ability of a sink apparatus for transmission of HDMI 2.0 source, 3D audio and multi-stream audio.
- [626] Scenario for 3D Audio

[633]

- [627] FIG. 13 is a view showing how 3D audio samples may be transmitted from a Blu-ray disk (BDP) to a television (TV). This example proposes as follows.
- [628] Source (ex. BDP) and sink (ex. TV) are all high-speed wired interface apparatuses.
- [629] The source transmits L-PCM 48kHz 22.2 channels audio stream with the sink.
- [630] The sink may receive L-PCM 48kHz 22.2 channels audio samples, and may transmit each individual audio stream to the related speaker. The transmitted video packet is 1080p/60Hz.
- [631] The TV comprises compliant CEA-861-F(D or E) E-EDID data structure which may be accessed through DDC. E-EDID comprise HDMI audio data block by adding it into other required data block to support 3D audio transmission. The BDP receives HDMI audio data block and recognizes 3D audio ability of TV described in Table 76.
- [632] Table 76 Example of the HDMI Audio Data Block for 22.2 Channels

Byte/bi	7	6	5	4	3	2	1	0			
t #		L			_						
1	Tag ∪ ode=7	(Use Exten	ded Tag!		L=10(1 010b)						
2			Exten	ded Tag C	$C \circ de = 18(0x12)$						
3	NUM _HI	OMI _3D _AD=	=001 b	NU	M _CEA _3AD=	Max_S	tream_C ountl				
								=oob			
4	0	0	0 0 Audio Format Code = 1								
5	0	0	0	Max Number of channels -1 = 23 (10 111b)							
6	0	192 kHZ	176 A	96 kHz	SS 2 kHz	4S kHz	44 1	32 kHz			
		(0)	kHz	(1)	(1)	G)	kHz	(1)			
			(0)				G)				
7	0	0	0	0	0	24 bit	20	16 bit			
							bit				
S	FLW/FRW	BLC/ERC	FLC/FRC	BC	BL/BR	FC	LFE1	FL/FR			
	(0)	(0)	co	(1)	(1)	G)	G)	(1)			
9	TpSIL/TpSIR	SIL/SIR	TpBC	LFE2	LS/RS	TpFC	TpC	TpFL/TpFR			
	(1)	(1)	co	(1)	(0)	G)	G)	(1)			
10	0	0	0	LSowLRd	d TpLS/TpRS BtFL/BtFR BtFC TpBL/TpB						
				(0)	(0)	G)	G)	(1)			
11		ACAT=2(00)1 🛛 b)		0	0	0	0			

- Bytes 1, 2, and 3 show the header of the HDMI audio data block.

 NUM_HDMI_3D_AD indicates that it supports 3D audio transmission by being set to

 1. NUM_CEA_SAD, and Max_Stream_Count- 1 are set to 0 because BDP does not handle multi-stream audio on the scenario.
- [635] Bytes 4, 5, 6, and 7 include HDMI 3D audio descriptors that describe the features of the 3D audio of TV. Audio format code, Maximum number of channels -1, sampling frequency, and sample size are defined.
- [636] Bytes 8, 9, 10, and 11 include the HDMI 3D speaker allocation descriptor that describes the active speaker for 22.2. channels (SM PTE 2036-2).
- [637] The BDP transmits audio infoframe and audio metadata packets after receiving EDID from the TV. In this case, the channel count and channel/speaker allocation information are transmitted by using an audio metadata packet instead of using audio infoframe.
- [638] 3D_CC and 3D_CA that are included in the audio metadata packet each describe channel count and channel/speaker allocation information for 22.2 channels audio stream. Table 77 shows an example of an audio infoframe payload for 22.2 channels audio transmission. Table 78 also shows the payload of audio metadata packet for 22.2 channels audio transmission.
- [639] Table 77 Example of the Audio InfoFrame Payload for 22.2 Channels

[640]

- ·	-	-	-					
Packet	7	б	5	4	3	2	1	0
Byte#								
PB0				Chec	k sum			
PB1	CT3	CT2	CT1	CT0	Reserved	CC2	CC1	CCO
	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
PB2	R	eserved (0)	1	SF2	SF1	SFO	SS1	SS0
				(0)	(0)	(0)	(0)	(0)
PB3		F	ormat depe	nds on cod	ling type (i.	e CT0CT3)	
PB4	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CAO
	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
PB5	DM_INH	LSV3	LSV2	LSV1	LSVO	Rscd(0)	LFEP	LFEP
							BL1	BL0
PB6				Reserv	red (0)			
PB7				Reser	red (0)			
PB8				Reser	red (0)			
PB9				Reserv	red (0)			
PB10				Reserv	red (0)			
PB11-				Reserv	red (0)			
PB27								

[641] Table 78 - Audio Metadata Packet payload

[642]

Byte/Bit#	7	6	5	4	3	2	1	0	
PB0	Rsvd	Rsvd	Rsvd	3D_CC4	3D_CC3	3D_CC2	3D_CC1	3D_CC0	
	(0)	(0)	(0)	(1)	(0)	(1)	(1)	(1)	
PB1	Rsvd	Rsvd	Rsvd	Rsvd	ACAT = 0x02				
	(0)	(0)	(0)	(0)					
PB2	3D_CA7	3D_CA6	3D_CA5	3D_CA4	3D_CA3	3D_CA2	3D_CA1	3D_CA0	
	(0)	(0)	(0)	(0)	(0)	(1)	(0)	(0)	
PB2.PB27				Reserv	red (0)				

The BDP transmits 22.2 channels of audio samples through a 3D audio sample packet. Each 3D audio sample packet supports up to 8 audio channels, therefore three consecutive 3D audio sample packets are needed to transmit 22.2 channels audio sample. Sample_start is used to specify the first 3D audio sample packet. As shown in Tables 79-81, three 3D audio sample packets may be defined in this exemplary embodiment.

[644] Table 79 Example of First 3D Audio Sample Packet for 22.2 Channels

[645]

[646] [647]

Byte/bit#	7	-	5	4	2	2	1	0
_ ·	,	6	_	4	3	2	1	0
HBO	0	0	0	0	1	0	1	1
HB1	0	0	0	Sample _	Sample_	Sample_	Sample_	S ample_
				Start (1)	Present	Present	Present	Present
					sp3	sp2	spl	spO
					(1)	G)	G)	(1)
HB2	B 3	B 2	B 1	B 0	Sample _fla	Sample _f	Sample _f	Sample _f
					$t_{sp3(0)}$	lat	lat spl	lat
						sp2(0)	(0)	sp0(0)
SB0-SB2				Channel	1 / Sample	N	•	
SB3~SBJ				Channel	2 / Sample	N		
ΞВб		PCUV	of Ch 2			PCUV o	f Ch 1	
SB7~SB9				Channel	3 / Sample	N		
SB 10~SB 12				Channel	4 / Sample	N		
3B13		PCUV	of Ch 4			PCUV o	f Ch 3	
SB 14~SB 16				Channel	5 / Sample	N		
SB17~SB 19				Channel	6 ! Sample	N		
3B20		PCUV	of Ch 6			PCUV o	f Ch J	
SB2 1-SB23				Channel	7 / Sample	N		
SB24~SB26				Channel	S / Sample	N		·
3B27		PCUV	of Ch S			PCUV o	f Ch 7	

Table 80 Example of Second 3D Audio Sample Packet for 22.2 Channels

Byte/bit#	7	6	5	4	3	2	1	0	
HB0	0	0	0	0	1	0	1	1	
HB1	0	0	0	Sample_	Sample_	Sample_	Sample_	Sample_	
				Start (0)	Present sp3	Present	Present	Present	
					(1)	sp2	sp1	sp0	
						(1)	(1)	(1)	
HB2	B 3	B 2	B 1	B 0	Sample_flat	Sample_f	Sample_f	Sample_f	
					sp3(0)	1at	lat spl	1at	
						sp2(0)	(0)	sp0(0)	
SB0~SB2		Channel 9 / Sample N							
SB3~SB5		Channel 10 / Sample N							
SB6		PCUV	of Ch 10				f Ch 9		
SB7~SB9				Channel	11 / Sample	N			
SB10~SB12				Channel	12 / Sample				
SB13		PCUV	of Ch 12				Ch 11		
SB14~SB16				Channel	13 / Sample				
SB17~SB19				Channel	14 / Sample				
SB20		PCUV	of Ch 14				Ch 13		
SB21~SB23				Channel	15 / Sample	N			
SB24~SB26				Channel	16 / Sample				
SB27		PCUV	of Ch 16			PCUV of	Ch 15		

[648] Table 81 Example of Third 3D Audio Sample Packet for 22.2 Channels

		1				1				
[649]	Byte/bit#	7	6	5	4	3	2	1	0	
	HB0	0	0	0	0	1	0	1	1	
	HB1	0	0	0	Sample_	Sample_	Sample_	Sample_	Sample_	
					Start (0)	Present sp3	Present	Present	Present	
						(1)	sp2	sp1	sp0	
							(1)	(1)	(1)	
	HB2	B 3	B 2	B 1	B 0	Sample_flat	Sample_f	Sample_f	Sample_f	
						sp3(0)	lat sp2(0)	lat spl	1at sp0(0)	
								(0)		
	SB0~SB2	Channel 17 / Sample N								
	SB3~SB5	Chammel 18 / Sample N								
	SB6		PCUV	Ch 17						
	SB7~SB9				Channel	19 / Sample	N			
	SB10~SB12				Channel	20 / Sample	N			
	SB13		PCUV	of Ch 20			PCUV of	Ch 19		
	SB14~SB16				Channel	21 / Sample	N			
	SB17~SB19				Channel	22 / Sample	le N			
	SB20		PCUV	of Ch 22			PCUV of	Ch 21		
	SB21~SB23				Channel	23 / Sample	N	•	·	
	SB24~SB26				Chamnel					
	SB27		PCUV	of Ch 24			PCUV of	Ch 23		

- 4-2. Example of Scenario for Multi-stream Audio [650]
- [651] FIG. 14 is a view showing how multi-stream audio is transmitted from the BDP to the TV. It proposes the example below.
- Source (for example, the BDP) and sink (for example, the TV) are all high-speed [652] wired interface apparatuses. The source / sink enter into dual view game mode. The source transmits two audio streams of each view. The sink may transmit two audio streams to two different headphones. For example, a video format that is transmitted is HDMI 3D 1080p/60Hz.
- The TV includes the E-EDID data structure conforms C EA-861-F (also E or D) [653] which can be accessed via the DDC. In order to support multiple audio streams, in addition to other required data blocks, E-EDID is available to include a block of HDMI audio data. The BDP receives the HDMI audio data blocks, recognizes the ability of the TV audio multi-stream, such as described in table 76. The TV comprises CEA-861-F (also D or E) compliant E-EDID data structure) which may be accessed through

the DDC. In order to support multi-stream audio, E-EDID may include a HDMI audio data block by adding it to another required data block. The BDP receives the HDMI audio data block and recognizes multi-stream audio ability of the TV that is the same as described in Table 76.

[654] Table 82 Example of HDMI Audio Data Block for Two Audio Streams

[655]

[660]

Byte/bit	7	6	5	4	3	2	1	0			
#											
1	Tag Cod	ie=7 (Use H	Extended			L=8(1010t)				
		Tag)									
2			Extended Tag Code = 18(0x12)								
3	NUM_H	DMI_3D_A	.D=000b	MUM	CEA_SAD	=010b	Max_Strea	m_Count1			
							=0	16			
4	0	Au	idio Format	Code=0000	16	Max Nu	mber of cha	mne1 1 =			
							001b				
5	0	192	176.4	96 kHz	88 2	48 kHz	44 1	32 kHz			
		kHZ	kHz	(1)	kHz	(1)	kHz	(1)			
		(1)	(1)		(1)		(1)				
6	0	0	0	0	0	24 bit	20 bit	16 bit			
7	0	Audio Form at Code=0110b				Max Nu	mber of cha	nnel 1 =			
							001 ხ				
8	0	192	176.4	96 kHz	88 2	48 kHz	44 1	32 kHz			
		kHZ	kHz	(1)	kHz	(1)	kHz	(1)			
		(1)	(1)		(1)		(1)				
9			Maxim	um bit rate	divided by	y 8kHz					

- Bytes 1, 2, and 3 show the header of HDMI audio data block. NUM_CEA_SAD is set to 2, it is because the sink supports two types of audio format code for multi-stream audio. Max_Stream_Count- 1 is set to 1, because sink may handle two independent audio streams described above. NUM_HDMI_3D_A is set to 0, because the BDP does not handle 3D audio transmission on the scenario.
- Bytes 4, 5, and 6 include the first CEA short audio descriptors that describe audio features. In the case of multi-stream audio transmission, maximum channel count is limited to 2. For these reasons, Max Number of channels-1 will be 1.
- Bytes 7, 8, and 9 include the second CEA short audio descriptors that describe audio features. Max Number of channels- 1 will be 1 as described above. After receiving the EDID from the TV, the BDP may transmit audio infoframe to the TV. In contrast with the 3D audio transmission scenario, CC and CA each may be used to transmit channel count and channel/speaker allocation information. That is, audio metadata packet may not be used for multi-stream audio transmission. Table 83 shows an example of audio infoframe payload for transmitting two audio streams.
- [659] Table 83 Example of Audio InfoFrame Payload for Two Audio Streams

Packet	7	6	5	4	3	2	1	0
Byte#								
PB0				Chec	k sum			
PB1	CT3	CT2	CT1	CT0	Reserved	CC2	CC1	CCO
	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
PB2	R	eserved (0)		SF2	SF1	SF0	SS1	SSO
				(0)	(0)	(0)	(0)	(0)
PB3		F	ormat depe	nds on cod	ling type (i.	e CTOCT3)	
PB4	CA7	CA6	CA5	CA4	CA3	CA2	CAI	CAO
	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
PB5	DM_INH	LSV3	LSV2	LSV1	LSVO	Rscd(0)	LFEP	LFEP
	_						BL1	BL0
PB6				Reserv	red (0)			
PB7				Reserv	zed (0)			
PB8				Reserv	red (0)			
PB9				Reserv	red (0)			
PB10				Reserv	zed (0)			
PB11-				Reserv	red (0)		•	•
PB27								

PCT/KR2013/001130

[661] The BDP transmits the multi-stream audio sample packet including stereo audio samples for two independent audio streams. That is, the first sub-packet includes the stereo audio sample of the first audio stream, and the second sub-packet comprises the stereo audio sample of the second audio stream. In this example, multi-stream audio sample packet may be defined as shown in Table 84.

Table 84 Example of Multi-stream Audio Sample Packet for Two Audio Streams

Byte/bit#	7	6	5	4	3	2	1	0
HB0	0	0	0	0	1	0	1	1
	0	0	0	0	Stream	Stream	Stream	Stream
HB1					present sp3	present	present	present
					(0)	sp2 (0)	sp1 (1)	sp0 (1)
	B 3	B 2	B 1	B 0	Stream_flat	Stream_fl	Stream_fl	Stream_fl
HB2					sp3(0)	at sp2(0)	at spl	at sp0(0)
							(0)	
SB0~SB2			С	hannel 1 /	Sample N (St	ream 0)		
SB3~SB5			C	hannel 2 /	Sample N (St	ream 0)		
SB6	PC	UV of C1	h 2 (Strea	m 0)	PC	UV of Ch :	l (Stream 0))
SB7~SB9			С	hannel 1 /	Sample N (St	ream 1)		
SB10~SB12			С	hannel 2 /	Sample N (St	ream 1)		
SB13	PC	UV of C1	h 2 (Strea	m 1)	PC	UV of Ch :	l (Stream 1))
SB14~SB16								
SB17~SB19				I	Empty (0)			
SB20								
SB21~SB23								
SB24~SB26				F	Empty (0)			
SB27								

[664] 3D Audio Speaker Replacement and Channel Allocation

[662] [663]

[665] In the following, the speaker placement and channel allocation information for 3D audio transmission are provided.

[666] FIG. 15 is a view showing a speaker placement for channel of 3D audio.

In the case of 30.2 channels standard type of IEC among examples that are described in Table 85, FL indicates front left speaker, FR indicates front right speaker, LFF indicates low frequency effect 1 speaker, FC indicates front center speaker, BL indicates back left speaker, BR as back right speaker, FLW as front left wide speaker, FRW as front right wide speaker, TpFL as top front left speaker, TpFR as top front right speaker, BC as back center speaker, LS as left surround speaker, RS as right

surround speaker, LFE2 as low frequency effect 2 speaker, FLC as front left center speaker, FRC as front right center speaker, TpFC as top front center speaker, TpC as top center speaker, SiL as side left speaker, SiR as side right speaker, TpBL as top back left speaker, TpBR as top back right speaker, TpSiL as top side left speaker, TpSiR as top side right speaker, BtFC as bottom front center speaker, BtFL as bottom front left speaker, BtFR as bottom front right speaker, TpBC as top back center speaker, TpLS as top left surround speaker, TpRS as top right surround speaker, LSd as left surround direct speaker, and RSd as right surround direct speaker.

- [668] However, the name of the speaker may differ in accordance with types of standards. For example, front center speaker may be written as FC in the IEC standard described above, but front center speaker may be written as C in TTA standard. Various speaker names may exist besides the names that are illustrated in the tables below. That is, the contents illustrated in the table below and in FIG. 15 are only one exemplary embodiment, and speaker and channel allocation may be described differently.
- [669] However, 3D audio data in which multi-channels are supported has a common feature of having different speakers for each upper part, center part, lower part area of 3D space, unlike 2D audio data. Examples of spatial placement of these speakers are described in FIG. 15.
- [670] Table 85 Audio Channel Description & Abbreviation Comparison (CEA/TTA/SMPTE/IEC)

[671]

	Abbrev	iation		Desctiption
CEA_86 1	TTA(10 .2 ch)	SMPTE (22 .2 ch)	IEC (30 2 ch)	
FL	L	FL	FL	Front left
FR	R	FR	FR	Front right
LFE	LFE1	LFE1	LFE1	Low Frequency
				Effect 1
FC	C	FC	FC	Front center
RL	LB	E!L	BL	Back Left
RR	RB	BR	BR	Back Right
FLW			FLW	Front Left Wide
FRW			FRW	Front Right Wide
FLH	LH	TpFL	TpFL	Top Front Left
FRH	RH	TpFR_	TpFR	Top Front right
RC		BC	BC	Back Center
	LS		LS	Left Surround
	R3		R3	Right Surround
	LFE2	LFE2	LFE2	Low Frequency Effect 2
FLC		FLC	FLC	Front Left center
FRC		FRC	FRC	Front right Center
RLC				Rear Left Center
RRC				Rear Right Center
FCH		TpFC	TpFC	Top Front Center
TC		TpC	TpC	Top Center
		SiL	SiL	Side Left
		SiR	SiR	Side Right
		TpBL	TpBL	Top Back Left
		TpBR	TpBR	Top Back Right
		TpSiL	TpSiL	Top Side Left
		TpSiR	TpSiR	Top Side Right
		BtFC	BtFC	Bottom Front
		Dire	Burc	Center
		BtFL	BtFL	Bottom Front Left
		BtFR	BtFR	Bottom Front Right
	СН	ТрВС	TpBC	Top Back Center
			TpLS	Top Left Surround
			TpRS	Top right Surround
			LSd	Left surround direct
			RSd	Right Surround direct

- [672] 5. Data Transmitting Method and Data Receiving Method
- [673] Hereinafter, a data transmitting method and a data receiving method based on the format according to the first exemplary embodiment described in paragraph 3.1 will be described with reference to FIGS. 16 and 17.
- [674] FIGS. 16 and 17 are flowcharts showing the data transmitting method and the data receiving method.
- [675] First, referring to FIG. 16, the data transmitting method includes operation S1610 of generating an EDID block regarding multi-channel audio data, and operation S1620 of transmitting the EDID block to a data receiving apparatus. The EDID block includes at least one of a first sub block representing 3D audio characteristics of the multi-channel audio data, a second sub block representing 3D speaker placement information of the

multi-channel audio data, and a third sub block representing multi-stream audio characteristics of the multi-channel audio data.

- [676] The individual operations have been described in the first exemplary embodiment in paragraph 3.1, and accordingly, a repeated description will be omitted.
- Referring to FIG. 17, the data receiving method includes operation S1710 of receiving an EDID block regarding multi-channel audio data from a data transmitting apparatus, and operation S1720 of analyzing the EDID block. The EDID block includes at least one of a first sub block representing 3D audio characteristics of the multi-channel audio data, a second sub block representing 3D speaker placement information of the multi-channel audio data, and a third sub block representing multi-stream audio characteristics of the multi-channel audio data.
- [678] The individual operations have been described in the first exemplary embodiment in paragraph 3.1, and accordingly, a repeated description will be omitted.
- [679] 6. Multi-audio
- Supporting of multi-audio may be conducted under high-speed wired interface environment. The multi-audio environment means an environment that supports multi-audio for one content. For example, if two users are playing a game with the same screen then each user should receive different audio. In the following, transmission packet structure of a sink apparatus and a source apparatus is described when multi-audio is supported as described above.
- [681] 6.1. Audio Sample Packet Modification Plan
- [682] The first exemplary embodiment
- [683] As shown below in the table, the structure of multi-stream audio sample packet may be utilized.
- [684] Table 86 Multi-Stream Audio Sample Packet

[685]	Byte/Bit #	7	6	5	4	3	2	1	0
	HB0	0	0	0	0	1	1	1 1	
	HB1	Rsvd	Rsvd	MS_L	ayout	Stream_present.	Stream_present.	Stream_present.	Stream_present.
		(0)	(0)			Sp3	Sp2	Sp1	Sp0
	HB2	B3	B2	B1	B0	Stream_flat	Stream_flat	Stream_flat_sp	Stream_flat
						sp3	sp2	1	sp0
	PB0~PB6					Su	bpacket 0		
	PB7~PB13					Su	bpacket 1		
	PB14~PB20					Su	bpacket 2		
	PB21~PB27					Su	bpacket 3	•	

"MS_Layout" field for transmission of Multi-Audio for each view is newly defined in the header, but still Multi-Stream ASP structure is used. It is defined so that the layout structure of a sub-packet may differ in accordance with the MS_Layout field value. Additional information on each audio stream is transmitted through InfoFrame, Audio Metadata Packet, or newly defined audio description packet in the structure of transmitting multi-audio. The definition of the remaining field is the same as described in the defined Multi-Stream ASP.

13/122387 PCT/KR2013/001130

[687] The below table indicates MS_Layout value.

[688] Table 87 - MS_Layout

[689] MS_Layout Description

0 0 Normal Multi-Stream Audio Sample Packet

0 1 Dual View only

1 0 Multi-Audio only

1 Dual View and Multi-Audio

* In dual views, audio data for left bank (content 1) is transmitted through sub-packet 0 and 1, and audio data for right bank (content 2) is transmitted through sub-packets 2 and 3. Up to two samples per each audio data may be transmitted to one multi-stream.

** Multi-audio for single view may be transmitted through sub-packets 0-3. Multi-stream ASP may transmit only audio data for one single view. For example, only audio signals for the left bank may be transmitted in case of 3D video. Up to a maximum of four multi-audio data for one single view may be transmitted.

*** Audio data on left bank (content 1) may be transmitted through sub-packets 0 and 1 in the case of dual view multi-audio. Sub-packets 0 and 1 hold two different audio streams. For example, one stream comprises Korean audio data and other stream comprises English audio stream.

[693] However, the exemplary embodiment described above is only an exemplary embodiment, and the number of sub-packet for describing audio data may be extended. In addition, the order of sub-packet may be included differently from the above.

[694] The second exemplary embodiment

[697]

[695] The second exemplary embodiment is a plan of defining new ASP apart from Multi-Stream ASP as the below table and using new ASP only for multi-audio.

[696] Table 88 - Multi-Audio Audio Sample Packet

Byte/Bit #	7	6	5 4		3	2	1	0				
HB0		•	•	•	New packet	Type (TBD)	•					
HB1	Rsvd (0)	Rsvd (0)	Rsvd (0)	Rsvd (0)	Sample_pre sent.sp3	Sample_pre sent.sp2	Sample_pre sent.spl	Sample_prese nt.sp0				
HB2	B3	B2	B1	B0	Sample _flat sp3	Sample _flat sp2	Sample _flatsp1	Sample _flat sp0				
PB0~PB6					Subpac	ket O						
PB7~PB13					Subpac	ket 1						
PB14~PB20		Subpacket 2										
PB21~PB27					Subpac	ket 3						

The second exemplary embodiment defines a new packet apart from the Multi-Stream ASP and uses the new packet for transmission of multi-audio data for each view. However, the new packet may not be used in 3D Video format and may be used only when single video is transmitted. Sample data of one type of audio stream may be transmitted per each sub-packet and different types of audio stream may be used per sub-packet. In this case, a maximum of four audio steam sample data may be

transmitted simultaneously in terms of single video. Additional information for each audio stream is transmitted through InfoFrame, Audio Metadata Packet, or (newly defined) Audio Description Packet.

[699] The third exemplary embodiment

[700] The third exemplary embodiment is a plan that uses multi-stream ASP structure which has defined AS_ID (Audio stream Identifier) field as the below table.

[701] Table 89 - Multi-Audio Audio Sample Packet

Byte/Bit #	7	7 6 5 4		3 2		1	0						
HB0		Pad et Type = 0 0E 또는 0 (Mext) defined pad et type)											
HB1		S_ID			Sample_prese	Sample_present.	Sample_present.	Sample_present.s					
	Stream identifier)				nt.sp3	sp2	sp1	p0					
HB2	B3	B2	32 B1 B0 Sample_flat sp3		Sample _flat sp3	Sample _flat sp2	Sample _flat sp 1	Sample _flat sp0					
PB0~PB6				•		Subpacket 0		1					
PB7~PB13						Subpacket 1							
PB14~PB20		Subpacket 2											
PB21~PB27						Subpacket 3							

[703] Each ASP transmits only one type of audio stream sample data. For dual-view, one ASP will transmit an audio data of any one of content (left or right). For quad-view, one ASP will transmit audio stream that is related to one view (content) among left odd, left even, right odd, or right even view (contents).

[704] When transmitting multi-audio for each view, one ASP will transmit sample data of an audio stream corresponding to AS_ID among more than one audio stream that is related to left view (or right view). Additional information on which audio stream is an audio stream of which view that is transmitted from each ASP may be figured out through InfoFrame, Audio Metadata Packet, or (newly defined) Audio Description Packet.

[705] As an another alternative to this plan, there may be a method of defining differently by allocating different packet types in multi-stream audio and multi-audio ASP for each single view. Here, two ASP structures may be identical or may be different in some fields, but "AS_ID" field may certainly be included in both.

[706]

[702]

[707] The fourth exemplary embodiment

[708] The fourth exemplary embodiment is an improvement over the third exemplary embodiment, and distinguishes ID at two levels as the below table. That is, AS_ID is defined by dividing into AS_Major_ID and AS_Minor_ID.

[709] Table 90 - Multi-Audio Audio Sample Packet

[710]

WO 2013/122387	PCT/KR2013/001130
	76

Byte/Bit #	7	6	5	4	3	2	1	0				
НВО		Få.	1÷t T	9÷ = 9	⊕ _E ⊆= ⊹	N ÷ . 1.	efithed paid et	t, p÷.				
HB1	A3_Maj Or_I D		AS_Minor _I D		S ample_p resent.sp3	Sample_pre sent sp2	Sample_prese nt spl	Sample_presen t _{spO}				
HB2	В3	B2	Bl	ВО	Sample _flat sp3	Sample _flat sp2	Sample _flat sp 1	Sample _flat spO				
PB0~PB6					Subj	packet 0						
PB7-PB1 3					Subj	packet 1						
PB14-PB2 0		Subpacket 2										
PB2 1-PB2 7		Subpacket 3										

- [711] Each ASP transmits only one type of audio stream sample data. For dual-view, one ASP will transmit an audio data of any one of content (left or right). For quad-view, one ASP will transmit audio stream that is related to one view (content) among left odd, left even, right odd, or right even view (contents).
- [712] When transmitting multi-audio for each view, one ASP will transmit sample data of an audio stream corresponding to AS_ID among more than one audio stream that is related to left view (or right view). Additional information on which audio stream is an audio stream of which view that is transmitted from each ASP may be figured out through InfoFrame, Audio Metadata Packet, or (newly defined) Audio Description Packet.
- [713] As an another alternative to this plan, there may be a method of defining differently by allocating different packet types in multi-stream audio and multi-audio ASP for each single view. Here, two ASP structures may be identical or may be different in some fields, but "AS_ID" field may certainly be included in both.

[714]

- [715] The fourth exemplary embodiment
- [716] The fourth exemplary embodiment is an improvement over the third exemplary embodiment, and distinguishes ID at two levels as the below table. That is, AS_ID is defined by dividing into AS_Major_ID and AS_Minor_ID.
- [717] Table 90 Multi-Audio Audio Sample Packet
- [718] AS_ Major_ID is an ID that identifies multi-stream audio, and AS_Minor_ID is an ID that identifies multi-audio for each view. AS_Major_ID is an ID of higher level and AS_Minor_ID is defined per each value of AS_Major_ID.
- [719] The below table describes definition per each ID value.

[720]

[721] Table 91 - AS_Major_ID and AS_Minor_ID fields

[722]

AS_Maj	or_ID	AS_Min	or_ID	D ascription
0	0	0	0	1 audio stream Left Odd view
0	0	0	1	2 audio stream Left Odd view
0	0	1	0	3 audio stream Left Odd view
0	0	1	1	4 audio stream Left O dd view
0	1	0	0	1 audio stream Right Odd view
0	1	0	1	2 audio stream Right Odd view
0	1	1	0	3 audio stream Right O dd view
0	1	1	1	4 audio stream Right Odd view
1	0	0	0	1 audio stream Left Even view
1	0	0	1	2 audio stream Left Even view
1	0	1	0	3 audio stream Left Even view
1	0	1	1	4 audio stream Left Even view
1	1	0	0	1 audio stream Right Even view
1	1	0	1	2 audio stream Right Even view
1	1	1	0	3 audio stream Right Even view
1	1	1	1	4 audio stream Right Even view

[723] As an another alternative to this plan, there may be a method of defining seperately by allocating different packet type in multi-stream audio and multi-audio ASP for each view. Here, two ASP structures may be identical or may be different in some fields, but "AS_Major_ID" and "AS_Minor_ID" fields may certainly be included in both.

[724]

- [725] 6-2. Signaling data modification plan 1
- [726] The first exemplary embodiment.
- The first exemplary embodiment comprises a field (MS_Audio_Type) indicating whether multi-stream audio is transmitted to audio metadata packet or not, a field (Aux_Audio) indicating whether multi-audio data for each view is transmitted or not, and more than one audio/video mapping information (A/V Mapping Descriptor).

[728] Table 92 - Audio Metadata Packet Header

[729]	Byte/bit #	7	6	5	4	3	2	1
	HB0		Packet T	ype = 0x0D) 또는 OxX	X (Newly	defined pact	ket type)

HB0		Packet T	ype = 0x0I	또는 0xX	X (Newly	defined pac	ket type)	
HB1	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)
HB2	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)

[730] Table 93 - Audio Metadata Packet Contents

[731]	Byte/bit #	7	6	5	4	3	2	1	0			
	PB0	Rsvd(0)	Rsvd(0)	Rsvd(0)	3D_CC4	3D_CC3	3D_CC2	3D_CC1	3D_CC0			
	PB1	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	ACAT3	ACAT2	ACAT1	ACAT0			
	PB2	3D_CA7	3D_CA6	3D_CA5	3D_CA4	3D_CA3	3D_CA2	3D_CA1	3D_CA0			
	PB3	MS_Aud	io_Type	Aux_Audio	N	Num_AV_Mapping_Descriptor (=N)						
	PB4			AV	Mapping I	Descriptor :						
	PB(4+N)			AV	Mapping I	Descriptor 1	1					
	PB(4+N) PB27				Reserve	d (M)						

- [732] MS_Audio_Type indicates whether multi-stream audio is transmitted or not as described above. Field value is shown as the below table.
- [733] Table 94 MS_Audio_Type field

[734]	MS_Au	dio_Type	Description				
	0	0	Reserved				
	0	1	Transmits 2 audio streams for Dual view				
	1	0	Transmits 3 audio streams for Dual view				
	1	1	Transmits 4 audio streams for Dual view				

- [735] That is, it is described to transmit two audio streams for dual-view when the value of the field is 01, three audio streams for tri-view when the value is 10, and four audio streams for quad-view.
- [736] When the field value of Aux_Audio is 1 in the audio metadata packet, it means that more than two audio streams are being transmitted from any view. If the value is 0, it means that all views are transmitting only one audio stream.
- [737] Num_AV_Mapping_Descriptor means the number of AV Mapping Descriptor that is to be described after the byte in which this field belongs to.
- AV Mapping Descriptor comprises information showing which view of video of audio data each audio stream includes. AV Mapping Descriptors that are described in order correspond to Audio Stream ID (or Subpacket number) according to the order. That is, the first AV Mapping Descriptor becomes a descriptor on audio stream that is transmitted through ASP with 0 of Audio Stream ID value, when ASP uses Audio Stream ID. When ASP uses a structure that identifies multi-stream audio with subpacket unit in similar way, the first AV Mapping Descriptor becomes a descriptor on audio stream that is transmitted through sub-packet 0. A detail structure of AV Mapping Descriptor is as follows.
- [739] Table 95 A V Mapping Descriptor

[7 40]	PB(X)	Resed (fit)	Reset (0)	Rsvd (0)	Reset (0)	RE	IF	10.0	1 10
[/ 4 0]	1 1 1 (25)	103704 (0)	10314 (0)	10344 (0)	10344 (0)	100	LL	100	

- [741] Audio stream in which LO is set to 1 means audio data of Left View (the first content of Dual View) or Left Odd View (the first content of Quad View).
- [742] Audio stream in which RO is set to 1 means audio data of Right View (the second content of Dual View) or Right Odd View (the third content of Quad View).
- [743] Audio stream in which LES is set to 1 means audio data of Left Even View (the second content of Quad View). (This field is set to 0 in Dual View)
- [744] Audio stream in which RE is set to 1 means audio data of Right Even View (the fourth content of Quad View). (This field is set to 0 in Dual View)

[746] The second exemplary embodiment

[745]

[747] The second exemplary embodiment is similar to the first exemplary embodiment, but MS_Audio_Type, Aux_Audio, Num_AV_Mapping_Descriptor, and 3D_Audio field are defined in Audio Metadata Packet header.

[748] Table 96 - Audio Metadata Packet header

[749]	Byte/bit #	7	б	5	4	3	2	1	0			
	HB0		Packet Type = 0x0D 또는 0xXX (Newly defined packet type)									
	HB1	R.svd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	3D_Audio			
	HB2	N	um_AV_M	MS_Aud	lio_Type	Aux_Audio						

[750] Table 97 - Audio Metadata Packet contents

[751]	Byte/bit #	7	6	5	4	3	2	1	0	
	PB0	Rsvd(0)	Rsvd(0)	Rsvd(0)	3D_CC4	3D_CC3	3D_CC2	3D_CC1	3D_CC0	
	PB1	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	ACAT3	ACAT2	ACAT1	ACAT0	
	PB2	3D_CA7	3D_CA6	3D_CA5	3D_CA4	3D_CA3	3D_CA2	3D_CA1	3D_CA0	
	PB3		•	IA.	/ Mapping	Descriptor	1			
	PB(3+N)			AV	Mapping	Descriptor	N			
	PB(3+N).PB27		Reserved (0)							

[752] 3D_Audio shows whether 3D audio is transmitted to the Sink from the Source. PB0-PB2 of the audio metadata packet are included when the field value is set to 1. On the other hand, PB0-PB2 are omitted when the field value is set to 0. The definition of other fields is the same as the first exemplary embodiment.

[753]

[754] The third exemplary embodiment

The third exemplary embodiment is similar to the second exemplary embodiment, but Audio Metadata Descriptor is defined instead of AV Mapping Descriptor. This descriptor comprises AV Mapping information and Audio feature information (e.g. Channel Count, Sampling Frequency, Channel/Speaker Allocation, Level Shift Value, Downmix Inhibit, LFE Playback level information) for multi-audio on multi-stream and each view.

[756] Table 98 - Audio Metadata Packet Header

[757]	Byte/bit	7	6	5	4	3	2	1	0		
[···]	#										
	HB0		Packet Type = 0x0D 또는 0xXX (Newly defined packet type)								
	HB1	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	3D_Audio		
	HB2	Num_AV_Mapping_Descriptor (=N) MS_Audio_Type A									

[758] Table 99 - Audio Metadata Packet contents

[759]	Byte/bit #	7	6	5	4	3	2	1	0
	PB0	Rsvd(0)	Rsvd(0)	Rsvd(0)	3D_CC4	3D_CC3	3D_CC2	3D_CC1	3D_CC0
	PB1	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	ACAT3	ACAT2	ACAT1	ACAT0
	PB2	3D_CA7	3D_CA6	3D_CA5	3D_CA4	3D_CA3	3D_CA2	3D_CA1	3D_CA0
	PB3~PB6			A¹	V Mapping	Descriptor	1		•
	PB(3+4*N)~P			ΑV	Mapping	Descriptor	N		
	B(7+4*N)								
	PB(7+4*N). PB27				Reserv	ed (0)			

[760] Table 100 - Audio Metadata Description

[761]

PB(X+0)	Rsvd (0)	Rsvd (0)	Rsvd (Of)	Rsvd (0)	RE	LE	R O	L 0
PB(X+1)	LFEPBL	LFEPBL	SF2	SF1	SFO	CC2	CC 1	CCO
	1	0						
PB(X+2)	CA7	CAÓ	CA5	CA4	CA3	CA2	CAI	CAO
PB(X+3)	Rsvd (0)	Rsvd (0)	Rsvd (0)	DM INH	LSV3	LSV 2	L3 V 1	$_{ m LSV}_{ m O}$

- [762] Each field of RE, LE, RP, and LO that are defined in PB(X+0) are used as they are defined in the second exemplary embodiment.
- [763] Each field that is defined in $PB(X+1) \sim PB(X+3)$ is used in the same way as a field that is defined in Audio InfoFrame of CEA-861-F standard.
- [764] The following may be considered as an alternative of the third exemplary embodiment.
- [765] -The structure of Audio Metadata Packet is maintained as a form of the second exemplary embodiment.
- [766] Audio Stream ID is added to a reserved area of the Header of Audio InfoFrame or the Payload Byte. The Audio InfoFrame should be transmitted as much as audio streams. That is, it is a method of transmitting a plurality of Audio InfoFrame by including Audio Stream ID in Audio InfoFrame, instead of these fields that are defined in Audio Metadata Descriptor PB(X+1)~PB(X+3) of the third exemplary embodiment that are from the fields existing in Audio InfoFrame.

[767]

- [768] The fourth exemplary embodiment
- [769] The fourth exemplary embodiment is similar to the third exemplary embodiment but in the fourth exemplary embodiment, one audio metadata packet includes only signaling information on one view (content) by including AS_Major_ID, instead of MS_Audio_Type, in header of audio metadata packet. According to this plan, four audio metadata packets should be transmitted when transmitting Quad View, and each packet may be identified as AS_Major_ID.

[770] Table 101 - Audio Metadata Packet Header

[771]	Byte/bit #	7	6	5	4	3	2	1	0		
	HB0		Packet Type = 0x0D 또는 0xXX (Newly defined packet type)								
	HB1	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	3D_Audio		
	HB2	Num_AV _Mapping_Descriptor (=N)						apping_Descriptor (=N) AS_MAJOR_ID			

[772] Table 102 - Audio Metadata Packet contents

[773]	Byte/bit #	7	б	5	4	3	2	1	0
	PB0	Rsvd(0)	Rsvd(0)	Rsvd(0)	3D_CC4	3D_CC3	3D_CC2	3D_CC1	3D_CC0
	PB1	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	ACAT3	ACAT2	ACAT1	ACAT0
	PB2	3D_CA7	3D_CA6	3D_CA5	3D_CA4	3D_CA3	3D_CA2	3D_CA1	3D_CA0
	PB3~PB6			γA	/ Mapping	Descriptor	1		
	PB(3+4*N)~P			AV	Mapping	Descriptor	N		
	B(7+4*N)								
	PB(7+4*N)PB27				Reserv	ed (0)			

[774] In this plan, Audio Metadata Descriptors that are included in the payload comprise

feature information of multi-audios that are related to one view. Therefore, the first Byte comprising LO, RO, LE, and RE fields are not needed unlike audio metadata descriptors that are defined in the third exemplary embodiment.

PCT/KR2013/001130

- [775] Here, audio metadata descriptors that are placed in order indicate that they are descriptors that correspond to AS_Minor_ID according to the order. That is, the first audio metadata descriptor means a descriptor of audio stream in which AS_Minor_ID is 0. In a same way, the second audio metadata descriptor means a descriptor of an audio stream in which AS_Minor_ID is 1.
- In contrary to the plan reflecting AS_Minor_ID implicitly as above, a plan of explicitly including AS_Minor_ID field having 1 bit or more in the first Byte of each audio metadata descriptor may be considered. For example, if it is wanted to be used with ASP comprising 2 bits of AS_Minor_ID field, it should be defined by allocating 2 bits with AS_Minor_ID that is to be defined in audio metadata descriptor.
- [777] The 4-1 exemplary embodiment
- [778] Audio metadata descriptor may be defined as the following table. Here, each field that is defined $PB(X+0)\sim PB(X+2)$ may be used as the meanings of fields that are defined in audio infoframe of CEA-861-F standard.
- [779] Table 103 Audio Metadata Descriptor

[780]	PB(X+0)	LFEPBL	LFEPBL	SF2	SF1	SF0	CC2	CC1	CCO
		1	0						
	PB(X+1)	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
	PB(X+2)	Rsvd (0)	Rsvd (0)	Rsvd	DM_INH	LSV3	LSV2	LSV1	LSVO
				(0)					

- [781] The 4-2 exemplary embodiment
- [782] Audio metadata descriptor may be defined by including AS_Minor_ID as the following table, unlike the 4-1 exemplary embodiment. Here, each field that is defined in PB(X+0)~PB(X+2) may be used as the meanings of fields that are defined in audio infoframe of CEA-861-F standard.
- [783] Table 104 Audio Metadata Descriptor

[784]	PB(X+0)	Rsvd (0)	Rsvd (0)	R <i>s</i> vd	Rsvd (0)	Rsvd	Rsvd	AS_Minor_ID	
				(0)		(0)	(0)		
	PB(X+1)	LFEPBL	LFEPBL	SF2	SF1	SF0	CC2	CC1	CCO
		1	0						
	PB(X+2)	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
	PB(X+3)	Rsvd (0)	Rsvd (0)	Rsvd	DM_INH	LSV3	LSV2	LSV1	LSVO
				(0)					

- [785] The AS_Minor_ID field may be defined in the reserved area existing in the structure of the 4-1 embodiment without allocating separate Bytes.
- [786] In addition, there is a plan of defining the size of AS _Minor_ID field bigger than 2 bits or less. Here, it is needed to define as same as the bit size of other packets (e.g. Multi-Stream Audio Sample Packet, Audio Clock Regeneration Packet) that defines AS_Minor_ID field.
- [787] There is the following plan as an alternative of the fourth exemplary embodiment.

[788] AS_Major_ID and AS_Minor_ID are added in reserved area of header of audio infoframe or payload byte. And audio infoframe should be transmitted in the number of audio stream. Fields that are defined in Audio Metadata Descriptor PB(X+I)~PB(X+3) are from fields existing in audio infoframe, and instead it is a method of transmitting a plurality of audio infoframe comprising AS_Major_ID and AS_Minor_ID to audio infoframe.

[789]

- [790] 6-3 Signaling data modification plan -2
- [791] An audio description packet includes information that describes a feature of the data (e.g. language type, title, supplement) that are included in each audio stream is defined.
- [792] The first exemplary embodiment
- [793] Information that describes the feature of the data (e.g. language type, title, supplement) that are comprised in each audio stream is included as the below table.
- [794] Table 105 Audio Description Packet Header

[795]	Byte/bit	7	б	5	4	3	2	1	0
	#								
	HB0		Packet T	'ype = 0xX	X (Newly	defined p	acket type))	
	HB1	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)		Audio St	tream ID	
	HB2	EXD_Pressent	Audio_Information_Descriptors_Present						

- [796] Audio Stream ID is an identifier field to distinguish audio streams that are transmitted from each view, also this field is defined in Multi-Stream Audio Sample Packet and Audio Metadata Packet. Packets with the same value of this field are used in audio stream transmission.
- [797] Since EXD_Present (Extended Descriptors Present) is not defined in Audio_Information_Descriptors_Present so the field value is set to 1 when extension of descriptor is needed. Here, the first Byte of Audio Description Packet Payload is defined as Extended_Audio_Information_Descriptors_Present_field.
- [798] Audio_Information_Descriptors_Present is a field which determines whether to include certain descriptors in accordance with the setting of each bit. The Sub-field as follows is included.
- [799] Table 106 Audio_Information_Descriptors_Present

[800]	HB2	EXD_Presen	Rsvd	Rsvd	Rsvd	CAD	APD	PSD	MLD
			(0)	(0)	(0)				

- [801] MLD, PSD, PD, and CAD each are fields indicating whether Multi-Lingual Descriptor, Primary/Supplementary Descriptor, Audible Position Descriptor, and Content Advisory Descriptor are included or not.
- [802] A detailed structure of the descriptor is described in the following table. Reserved bits are space allocated to indicate whether the descriptor to be added in the future is included or not.

[803] Table 107 - MLD(Multi-Lingual Descriptor)

[804]	PB(X+0)	
	<u>PB(X+1)</u>	$ISO_{\leq 3£}$ >_Language_ $C \circ d^e (^3Bytes)$
	PB(X+2)	0 0

- [805] The type of language that is used in the audio stream may be described through language code that is defined in the ISO 639 standard. However, it does not exclude a language code in other standards.
- [806] Table 108 PSD(Primary-Supplementary Descriptor)

[807]	PB(X+0)	PS	PS_Type

- [808] If the PS field is 1, this indicates a primary audio, and if the PS field is 0, this indicates a supplementary audio.
- [809] If the value of the PS_Type field is 1, this indicates a primary audio, and if the value of the PS_Type field is 0, this indicates supplementary audio.
- [810] Table 109 PS_Type field if PS is set to 1(primary audio)

[811]	PS-Type	Description
	00x00~0x7E	Reserved (TBD)
	0x7F	Extends the PS_Type field

- [812] If field value of PS_Type is 0x00~0x7E, each field value indicates the type of primary audio, and if the field value of PS_Type is 0x7F, PSD is extended to 2 Bytes as follows and the second Byte is used as Extended_PS_Type field.
- [813] Table 110 PSD(Primary-Supplementary Descriptor) is PS_Type is set to 0x7F

[814]	PB(X+0)	PS	PS_Type = 0x7F
	PX((X+1)	Extended_PS_Type	

- [815] If Extended_PS_Type needs extension of PS_Type, Extended_PS_Type field may be added when the value of PS_Type is set to 0x7F.
- [816] If the field value of PS is set to 0, PS_Type works as a field informing type of supplementary audio. The field value of PS_Type means as the below table.
- [817] Table 111 PS_Type field if PS is set to 0(supplementary audio)

[818]	PS Type	Description
	0x00	Audio stream for Description Video (for visual
		impairment)
	0x01	Audio stream shifted to High Freq (for hearing
		impairment)
	0x02	Audio stream shifted to Low Freq (for
		hearingimpairment)
	0x03	Audio stream amplified in High Freq (for
		hearing impairment)
	0x04	Audio stream amplified in Low Freq (for
		hearing impairment)
	0x05~0x07E	Reserved (TBD)
	0x07F	Extends the PS_Type field

[819] If the value of PS_Type is 0x7F, Extended_PS _Type field is added and the specific method is the same as described in previous paragraph.

[820] Table 112 - APD (Audible Position Descriptor)

[821]	PB(X+Ū)	Audible _Location	Position

[822] Table 113 - Audible Location field

[823]	Audible_Location	Description
	0x00	Stadium
	0x01	Indoor stadium
	0x02	Concert Hall
	0x03~0x0F	Reserved (TBD)

[824] Position field is the value indication of the position of the audio source within the place designated as Audible_Location.

[825] Table 114 - Position field

[826]	position	D escription
	0x00	1
	0x01	2
	0x02	3
	0x0F	16(Farthest)

[827] There may be several ways of describing the position. How far the audio source is apart from a position printed from the video may be expressed in numbers (1, 2, 3...). In other way, it may be defined to express certain positions by displaying position value in accordance with Audible_Location. For example, if the Audible_Location is a stadium, it may be defined as a broadcasting booth if the position is 0x00, as infield bleacher if position is 0x01, and as outfield bleacher if position is 0x02.

[828] Content Advisory Descriptor (CAD) is defined as descriptor displaying the listening rating of the audio stream as follows.

[829] Table 115 - CAD (Content Advisory Descriptor)

[050] Tauting_type (1 bits) Tauting_value (1bits)	[830]	PB(X+0)	Rating_iype (4 bits)	Rating_value (4bits)
---	-------	---------	----------------------	----------------------

- [831] Ratingjype is a field displaying the rating standard type by country and contents.

 Rating_value displays a type of each rating that is determined in accordance with the standard of Ratingjype.
- [832] CAD may be used as the purpose for including rating information of the video stream as well as the audio stream. To do so, additional modification of packet transmitting CAD or new definition is needed. For example, there may be a way of including a de-

scriptor holding information as CAD by newly defining the video description packet, separate from the audio description packet in which CAD is included. Another way to do this is to include description information on Audio/Video stream contents by redefining the audio description packet as AV description packet.

- [833] When newly defining the Video Description Packet, at least the following information should be included.
- [834] (1) ID information connecting the Video Description Packet and video stream (view) related to the video description packet.
- [835] (2) ID information that may connect the Video Description Packet and the audio stream related to the video description packet. The ID may have the same value as the ID defined in the first exemplary embodiment or may allocate separate ID value.
- [836] (3) The number of the descriptor, the type of the included descriptor, and the extension flag of the header or the payload are included to load more than one descriptor to the payload.
- [837] (4) Various information related to video contents such as the type of each video content, position information of views in multi-view, and information for immersive media, may be defined and included in various types of descriptors.
- [838] Table 116 Rating_type field

[839] Rating_type Description

| 0x00 Film_rating (US) |
| 0x01 TV rating (US) |
| 0x02 Video Game_rating (US) |
| 0x03 Film_ratin (EU) |
| 0x04 TV rating (EU) |
| ... |
| 0x0F Reserved

[840] Table 117 - Rating_value field

[841]

[844]

Rating_type	0x00	0x01	0x02	
0x00	G	TV-Y	EC	
0x01	PG	TY-Y7	E	
0x02	PG-13	TV-Y7-FV	Т	
0x03	R	TV-G	M	
0x04	NC-17	TV-PG	AO	
0x0F				

- [842] Another alternative for describing CAD is as follows.
- [843] Table 118 Country_Code, Rating_Type, Rating_Value

PB(X +0)	Country_Code
PB(X +1)	Rating_Type
PB(X +2)	Rating_V al ^U e

[845] It is a way of defining Country_Code by dividing it separately. There is a way of defining Country_Code field by allocating one bit or more. In addition, this field may be defined as the below table, or may be described as 3 bytes in accordance with ISO 3166 standard.

[846] Table 119 - Country_Code field

|--|

Rating-Type	Description
0x00	ABW (Aruba Island)
0x01	AFG (Afghanistan)
•••	
0xXX	KOR(Republic of Korea)

0xYY	USA(United States of America)
0xFF	ZWE(Zimbabwe)

[848] Table 120 - Rating_Type field

[849]

Rating_type	Description
0x00	Flim
0x01	TV
0x02	Video Game
OxFF	Reserved (TBD)

[850] Table 121 - Rating_value field (if Country_Code is set to OxYY(USA))

[851]

Rating_type	0x00	0x01	0x02	
0271				
0x00	G	TV-Y	EC	
	_			***
0x01	PG	TY-Y7	E	
	• •	/	-	
0x02	PG-13	TV-Y7-FV	T	
0x03	R	TV-G	M	
0X03	T.	1 V - G	IVI	
0x04	NC-17	TV-PG	AO	
0x0F	Reserved (TE	(D)		
	`	*		

[852] 6-4. EDID modification plan

[853] A flag that identifies whether multi-audio for a single view of a sink is supported or not is added in EDID. The flag may be included in HDMI Audio Data Block and VSIF(LLC or Forum), or may be included in a newly defined data block.

[854]

[855] 6-5. Definition of multi view field

[856] A field is added to describe support information of Dual/Tri/Quad-View or additional Multi-view in Vendor-Specific InfoFrame and Vendor-Specific Data Block..

PCT/KR2013/001130

[857] The first exemplary embodiment

[860]

[865]

[869]

[858] The first exemplary embodiment adds a 3D_MultiView field to describe support information of Dual /Tri/Quad-View or additional Multi-View in PB5 area of Vendor-Specific InfoFrame.

[859] Table 122 - Vendor-Specific InfoFrame Packet Contents

Packet Byte#	7	6	5	4	3	2	1	0
PB0	Checksum							
PB1		24bit IEEE Registration Identifier (0x000C03)						
PB2	(least significant byte first)							
PB3				-	•			
PB4	HDM	II_Video_Fo	orm at	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)
PB5				HDM	_VIC	•	•	
	3D_Structure Rsvd(0) 3D_MultiView Rsvd(Rsvd(0)	
(PB6)		3D_E	t_Data			Rsv	d(0)	
PB(Nv)				Reserv	ed (0)			

[861] The 3D_MultiView field indicates whether video data transmitted as 3D format is data of a normal 3D mode (transmission form before HDMI 1.4b) or data of a Multi-View (Dual/Tri/Quad). The meaning of the content in accordance with this field value is described in the table below.

Table 123 - 3D MultiView field [862]

[863]	3D M1	ultiV iew	Description		
	0	0	Normal 3D Mode		
	0	1	Dual-View		
		_			
	1	0	Tri-View		
		•	O 4 II:		
	1	1	Quad-View		

Meanwhile, it may be modified to express Multi-View over Quad-View by defining [864] the size of this field as more than 3 bits. In this case, the above table may also be extended.

[866] The second exemplary embodiment

[867] The second exemplary embodiment adds a 3D MultiView field to describe support information of Dual /Tri/Quad-View or additional Multi-View in PB7 area of Vendor-Specific InfoFrame.

[868] Table 124 - Vendor-Specific InfoFrame Packet Contents

Packet Byte#	7	6	5	4	3	2	1	0
PB0		Checksum						
PB1		24bit IEEE Registration Identifier (0x000C03)						
PB2	1	 least significant byte first / 						
PB3	1							
PB4	HDM	I_Video_Fo	ormat	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)
PB5				HD	MI_VIC			1
		3D_Sta	ucture		Rsvd(0)	3D_Mu	ltiView	Rsvd(0)
(PB6)		3D_Ex	t_Data			Rsv	rd(0)	
(PB7)				3D_A	ditionalInfo)		
	Rsvd(0)	Rsvd(0)	3D_M	ultiView	3D_ViewI	Dependency	3D_Prefe	rred2DView
.PB(Nv)		Reserved (0)						

- [870] The second exemplary embodiment adds 3D_MultiView similar to the first exemplary embodiment. However, there is a difference in position that 3D_MultiView is added to. 3D_MultiView is defined specifically in bit[5:4] within the structure of PB7.
- [871] In addition, 3D_MultiView may be defined in Vendor-Specific Data Block as the below table.
- [872] Table 125 Vendor-Specific Data Block

[873]

[877]

0 tag code(=S)Length (=N) V endor- specific 1 24-bit IEEE Registration Identifier (0x000C03) (least significant byte first) 2 3 4 Α В 5 С D Supports_AI DC_30bit Rsvd(0) 6 DC_4ibit DC_3dibit DC_Y444 Rsvd(0) DVI_Dual 7 _TMD3_Clock CNC2 CNC1 CNC0 Latency_Fields HDMI CNC3 8 I_Latency Rsvd(0)Video_presn Present Fields Present Video_L atency 10 Audio_Latency Interl aced_V i de o_L atency 11 12 Interl aced_Audio_L atency 13 3D_Multi_pre sent Im age_site MultiViewRsvcVO) 14 HDMI_VIC_LEN HDM_3D_LEN 15 (if HDMI_VIC_LEN>0) HDMI_VIC_1 HDM_VIC_M (if 3D_Multi_present=01 or 10) 3D_3tructure_ALL_ 3D_Structure_ALL

- [874] Multi-View field indicates Multi-View Capability of sink. Description for field values is as the following table.
- [875] In addition, it may be modified to define the size of the field as more than 3 bits, and to express Multi-View over Quad-View the size of the field. In this case, the below table should also be extended.
- [876] Table 126 Multi View field

3D_M	ulti Vi ew	Description
0	0	Reserved
0	1	Dual _view
1	0	Tti-V iew
1	1	Ouad-Wiew

[878] The foregoing exemplary embodiments are merely exemplary and are not to be construed as limiting the application. The present teaching may be readily applied to other types of apparatuses. Also, the description of the exemplary embodiments is intended to be illustrative, and not to limit the scope of the claims, and many alternatives, modifications, and variations will be apparent to those skilled in the art.

Claims

[Claim 1] A data transmitting apparatus comprising:

a block generator which generates an Extended Display Identification Data (EDID) block regarding multi-channel audio data; and a transmitter which transmits the EDID block to a data receiving apparatus,

wherein the EDID block comprises at least one of a first sub block which represents three-dimensional (3D) audio characteristics of the multi-channel audio data, a second sub block which represents 3D speaker placement information of the multi-channel audio data, and a third sub block which represents multi-stream audio characteristics of the multi-channel audio data.

The data transmitting apparatus of claim 1, wherein the first sub block comprises at least one of a field representing information about a number of 3D audio descriptors, and a 3D audio descriptor field which represents information about 3D audio data supported by the data transmitting apparatus.

The data transmitting apparatus of claim 2, wherein the 3D audio descriptor field comprises at least one of a first sub field which represents format information of the multi-channel audio data, a second sub field which represents a number of channels of the multi-channel audio data, and a third sub field which represents sampling frequency information of the multi-channel audio data.

The data transmitting apparatus of claim 1, wherein the second sub block comprises a 3D speaker placement description field which represents speaker placement information of the multi-channel audio data.

The data transmitting apparatus of claim 4, wherein the 3D speaker placement descriptor field comprises at least one of a fourth sub field which represents information about a channel allocation standard type of the multi-channel audio data, and a fifth sub field which represents information about speaker placement and arrangement of the multi-channel audio data.

The data transmitting apparatus of claim 5, wherein the channel allocation standard type is a channel allocation standard type regarding at least one of 10.2 channels, 22.2 channels, 30.2 channels, multiple channels comprising more than 30.2 channels, and multiple channels

[Claim 2]

[Claim 3]

[Claim 4]

[Claim 5]

[Claim 6]

91

comprising less than 10.2 channels.

[Claim 7] The data transmitting apparatus of claim 1, wherein the third sub block

comprises at least one of a field which represents a number of streams of multi-stream audio supported by the data transmitting apparatus, and a shortened audio descriptor field which represents characteristics of audio corresponding to individual streams of the multi-stream audio.

[Claim 8] A data receiving apparatus comprising:

> a receiver which receives an Extended Display Identification Data (EDID) block regarding multi-channel audio data from a data transmitting apparatus; and

an analyzer which analyzes the EDID block,

wherein the EDID block comprises at least one of a first sub block which represents three-dimensional (3D) audio characteristics of the multi-channel audio data, a second sub block which represents 3D speaker placement information of the multi-channel audio data, and a third sub block which represents multi-stream audio characteristics of the multi-channel audio data.

[Claim 9] The data receiving apparatus of claim 8, wherein the first sub block comprises at least one of a field which represents information about a number of 3D audio descriptors, and a 3D audio descriptor field which represents information about 3D audio data supported by the data

transmitting apparatus.

The data receiving apparatus of claim 9, wherein the 3D audio descriptor field comprises at least one of a first sub field which represents format information of the multi-channel audio data, a second sub field which represents a number of channels of the multi-channel audio data, and a third sub field which represents sampling frequency information

of the multi-channel audio data.

The data receiving apparatus of claim 8, wherein the second sub block comprises a 3D speaker placement description field which represents speaker placement information of the multi-channel audio data.

The data receiving apparatus of claim 11, wherein the 3D speaker placement descriptor field comprises at least one of a fourth sub field which represents information about a channel allocation standard type of the multi-channel audio data, and a fifth sub field which represents information about speaker placement and arrangement of the multichannel audio data.

The data receiving apparatus of claim 12, wherein the channel al-

[Claim 10]

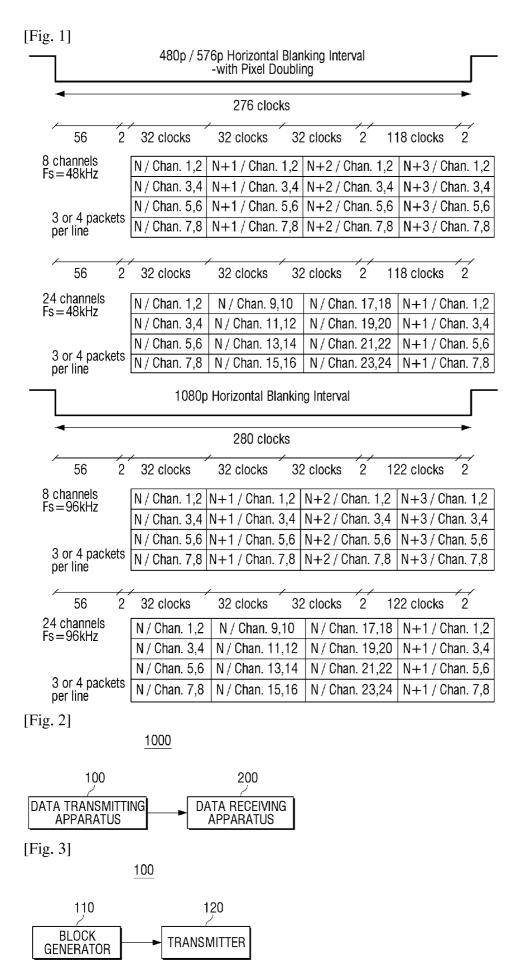
[Claim 11]

[Claim 12]

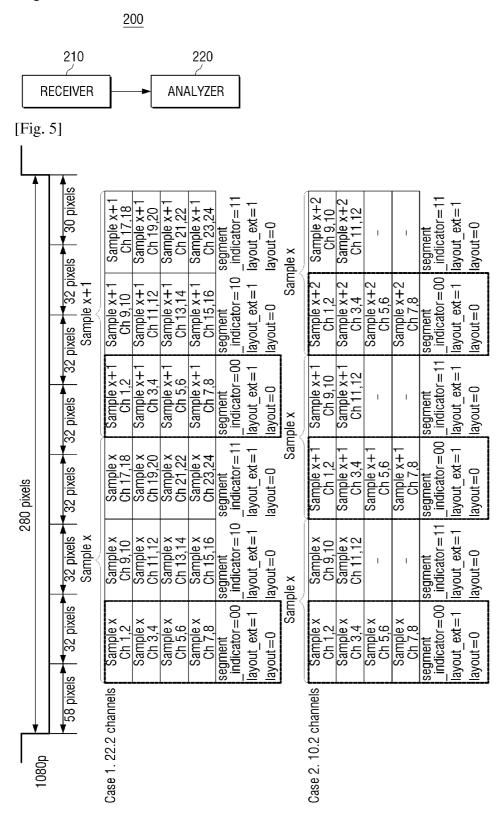
[Claim 13]

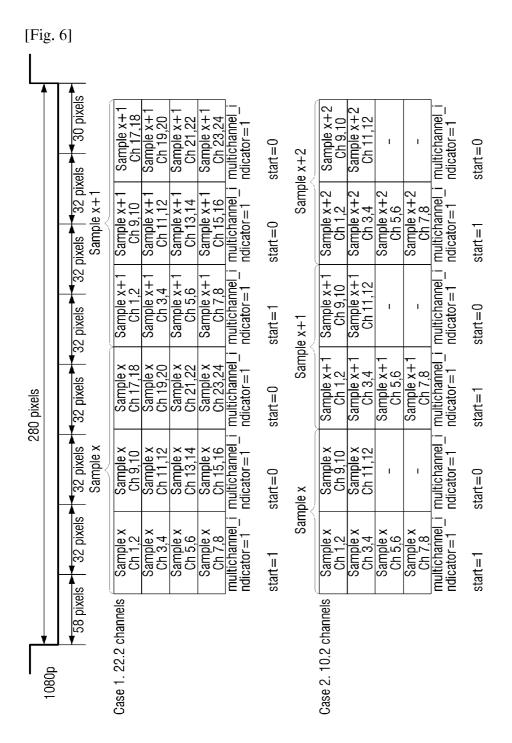
location standard type is a channel allocation standard type regarding at least one of 10.2 channels, 22.2 channels, 30.2 channels, multiple channels comprising more than 30.2 channels, and multiple channels comprising less than 10.2 channels.

[Claim 14]

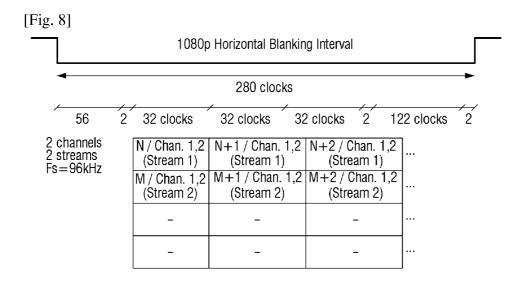

The data receiving apparatus of claim 8, wherein the third sub block comprises at least one of a field which represents a number of streams of multi-stream audio supported by the data transmitting apparatus, and a shortened audio descriptor field which represents characteristics of audio corresponding to the individual streams of the multi-stream audio.

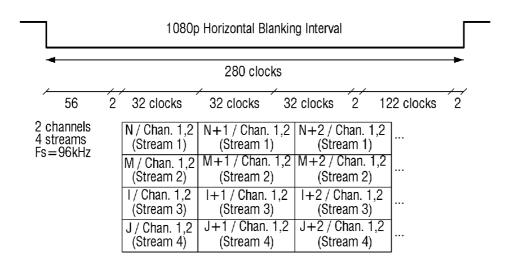
[Claim 15]

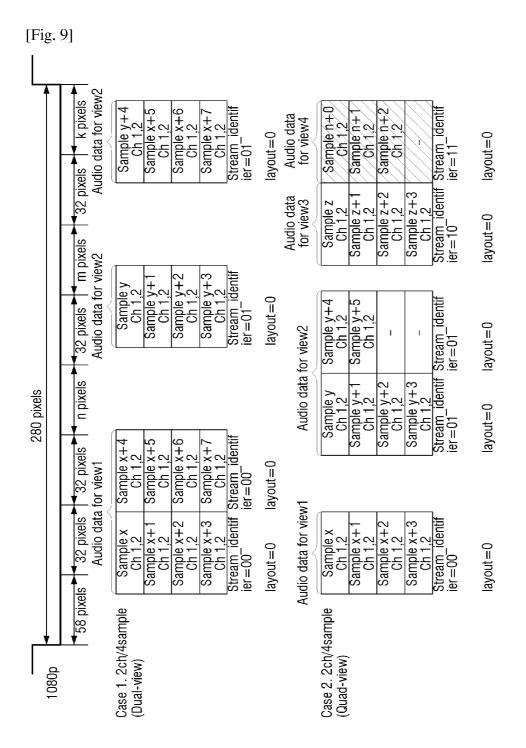

A data transceiving system comprising:

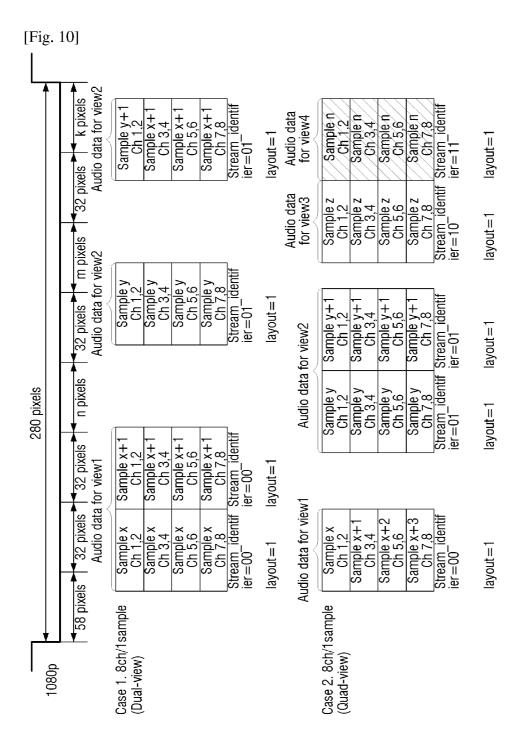

a data transmitting apparatus which generates an Extended Display Identification Data (EDID) block regarding multi-channel audio data, and transmits the EDID block to a data receiving apparatus; and a data receiving apparatus which receives and analyzes the EDID block,

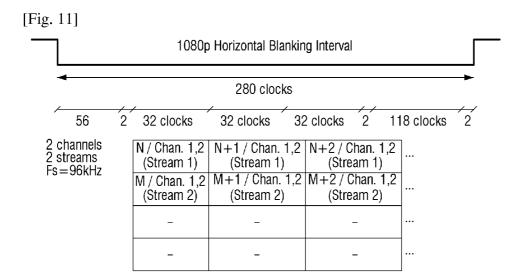
wherein the EDID block comprises at least one of a first sub block representing three-dimensional (3D) audio characteristics of the multi-channel audio data, a second sub block which represents 3D speaker placement information of the multi-channel audio data, and a third sub block which represents multi-stream audio characteristics of the multi-channel audio data.

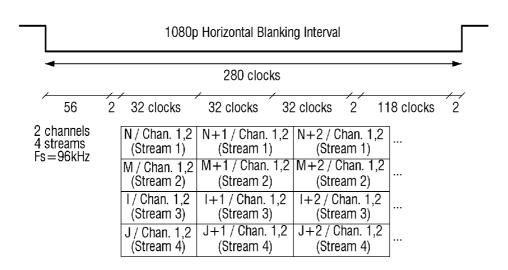

[Fig. 4]

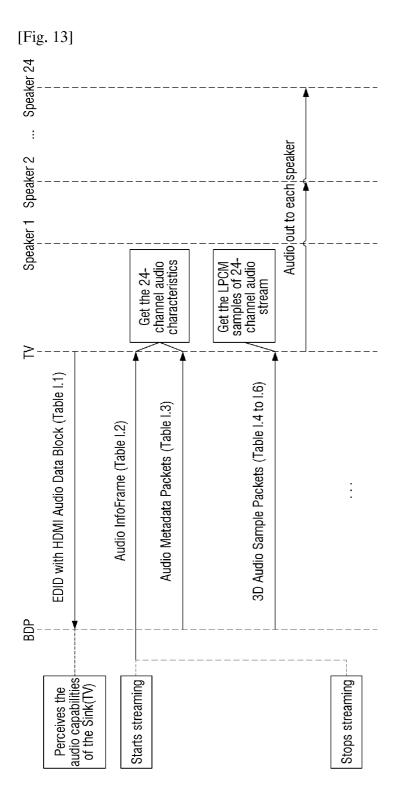


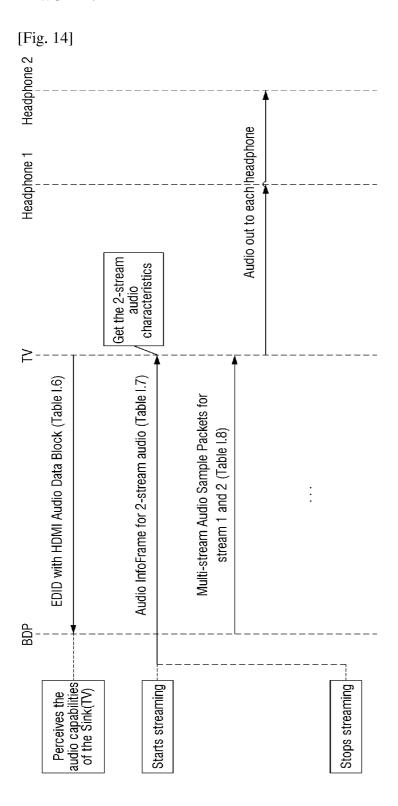


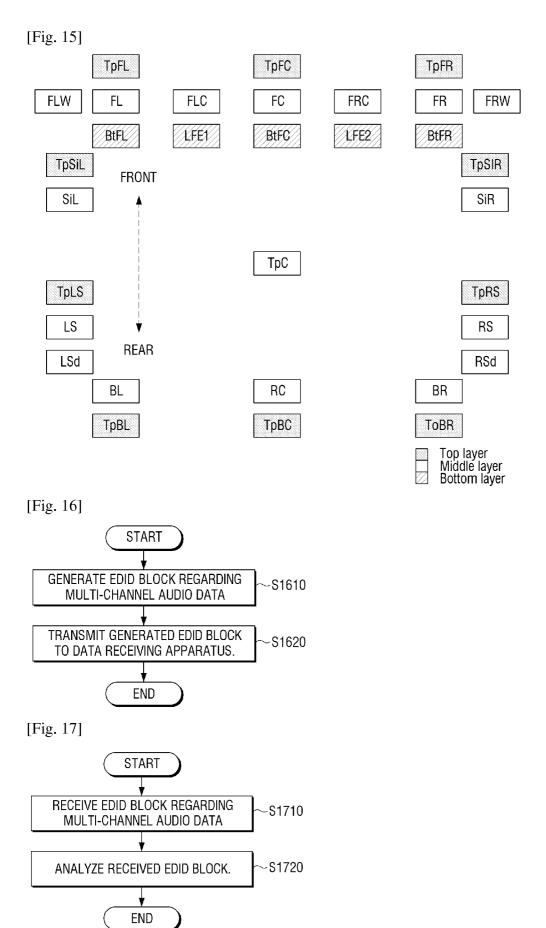

[Fig. 7]











[Fig. 12]

≥	peaker identifier] —	osition> oosition data]	CEC Figure 38 Typical operation to get the position of a speaker		Purpose	Used by a source to get the gap away from the default X of a speaker	Used by a source to get the gap away from the default Y of a speaker	Used by a source to get the gap away from the default Z of a speaker	Used by a source to get the gap away from the default angle of a speaker		Chanifian the time of encolver planement	operiiles tile type of speaker placeriierit	
	< Request Speaker Position > [Speaker identifier]	<response position="" speaker=""> [Speaker identifler][Speaker position data]</response>	ical operation to get th		Length	1 Byte	1 Byte	1 Byte	2 Bytes		ر باز د	J DIES	
	Request	Speal	e 38 Typ		ription					0x00	0x01	0x01	0x1F
Device			CEC Figur)escriptions	Range Description	"x_offset"	"y_offset"	"z_offset"	"Angle_offset"	"front left"	"front right" 0x01	:	"LFE2"
				CEC Table 29 Operand Descriptions	Name		Construction data	Lopeanel position data			[Speaker identifier]		

International application No. **PCT/KR2013/001130**

A. CLASSIFICATION OF SUBJECT MATTER

H04H 20/88(2008.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) H04H 20/88

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Korean utility models and applications for utility models

Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) eKOMPASS(KIPO internal) & keywords: audio, transmitting, block, generator, Extended Display Identification Data, EDID, three dimensional, speaker, multi channel, multi stream

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category'*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	KR 10-2008-0065820 A (SAMSUNG ELECTRONICS CO., LTD.) 15 July 2008 See paragraphs [0027], [0045] - [0055]; and f igure 2.	1-15
A	KR 10-2009-0066582 A (LG ELECTRONICS INC.) 24 June 2009 See paragraphs [0017] - [0020] ; and f igure 3.	1-15
A	JP 2011-124925 A (SONY CORP.) 23 June 2011 See paragraphs [0148] - [0178] ; and f igures 9, 10.	1-15
A	J P 2006-294120 A (MATSUSHITA ELECTRIC IND. CO., LTD.) 26 October 2006 See paragraphs [0043] - [0047] ; and f igure 4.	1-15
A	JP 2011-155640 A (PANASONIC CORP.) 11 August 2011 See abstract ; paragraphs [0014] -[0016] ; and f igure 3.	1-15

•	- _T					
I	■ Further	documents	are listed	in the	continuation	of Box C.

 \mathbf{X}

See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search 31 May 2013 (31.05.2013)

Date of mailing of the international search report 31 May 2013 (31.05.2013)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office 189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

LEE, Dong Yun

Telephone No. 82-42-481-8734

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/KR2013/001130

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
KR 10-2008-0065820 A	15 .07 .2008	None	
KR 10-2009-0066582 A	24.06.2009	None	
JP 2011-124925 A	23.06.2011	CN 102098473 A EP 2346045 A2 US 2011-0142245 AI	15 .06 .2011 20 .07 .2011 16 .06 .2011
JP 2006-294120 A	26.10.2006	JP 04613674 B2	19.01.2011
JP 2011-155640 A	11.08.2011	us 2011-0157308 Al	30.06.2011