

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

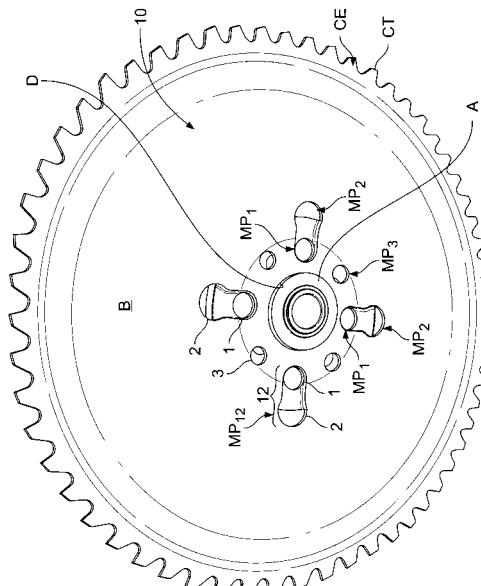
特開2014-180749
(P2014-180749A)

(43) 公開日 平成26年9月29日(2014.9.29)

(51) Int.Cl.	F 1	テーマコード (参考)
B23D 61/02 (2006.01)	B 23 D 61/02	Z
B23D 65/02 (2006.01)	B 23 D 65/02	
B23D 65/00 (2006.01)	B 23 D 65/00	

審査請求 未請求 請求項の数 16 O L 外国語出願 (全 30 頁)

(21) 出願番号	特願2014-50252 (P2014-50252)	(71) 出願人	505333849 アーウィン インダストリアル トゥール カンパニー
(22) 出願日	平成26年3月13日 (2014.3.13)	(72) 発明者	アメリカ合衆国 ノース カロライナ ハ ンターズビル ノース ポイント エグゼ クティブ ドライブ 8935
(31) 優先権主張番号	61/800,433	(74) 代理人	110001210 特許業務法人 YK I 国際特許事務所
(32) 優先日	平成25年3月15日 (2013.3.15)	(75) 代理人	ケネス ホール
(33) 優先権主張国	米国(US)	(76) 代理人	アメリカ合衆国 マサチューセッツ イー スト ロングメドウ キビー ロード 2 72
(31) 優先権主張番号	13/887,927		
(32) 優先日	平成25年5月6日 (2013.5.6)		
(33) 優先権主張国	米国(US)		


(54) 【発明の名称】多数の取付穴パターンを含む丸鋸刃

(57) 【要約】

【課題】従来技術の欠点および/または短所の一つ以上を克服する。

【解決手段】丸鋸刃は、切削歯を周囲に画定する概ね円形の本体を包含する。本体の第1穴は、丸鋸刃を取り付けるため、第1取付ピンパターンを画定する第1丸鋸機の取付ピンを収容するための第1取付穴パターンを画定する。本体の第2穴は、丸鋸刃を取り付けるため、第1取付ピンパターンと異なる第2取付ピンパターンを画定する第2丸鋸機の取付ピンを収容するための第1取付穴パターンと異なる第2取付穴パターンを画定する。第1穴の少なくとも一つと第2穴の少なくとも一つとは、(i) (a) 径方向と (b) 周方向の少なくとも一方において相互にずれているとともに、(ii) 相互に (a) 重複するか (b) 接続されるかの少なくとも一方である。

【選択図】図1

【特許請求の範囲】**【請求項 1】**

丸鋸刃であつて、

複数の切削歯を周囲に画定する丸鋸刃本体と、

前記丸鋸刃を第1丸鋸機に取り付けるための第1取付ピンパターンを画定する前記第1丸鋸機の複数の取付ピンを収容するように構成された、第1取付穴パターンを画定する前記本体の複数の第1穴と、

前記丸鋸刃を第2丸鋸機に取り付けるための前記第1取付ピンパターンと異なる第2取付ピンパターンを画定する前記第2丸鋸機の複数の取付ピンを収容するように構成された、前記第1取付穴パターンと異なる第2取付穴パターンを画定する前記本体の複数の第2穴と、

を包含し、

前記第1穴の少なくとも一つと前記第2穴の少なくとも一つとが、(i)(a)径方向と(b)周方向の少なくとも一方において相互にずれないとともに、(ii)相互に(a)重複するか(b)接続されるかの少なくとも一方である、

丸鋸刃。

【請求項 2】

前記複数の第1穴の各々が、(i)(a)径方向と(b)周方向の少なくとも一方においてそれぞれの第2穴からずれないとともに、(ii)前記穴と(a)重複するか(b)接続されるかの少なくとも一方である、請求項1に記載の丸鋸刃。

10

20

【請求項 3】

前記第1穴の少なくとも一つと前記第2穴の少なくとも一つとが連続長穴を形成する、請求項1に記載の丸鋸刃。

【請求項 4】

前記連続長穴が、(i)径方向と(ii)周方向の少なくとも一方において少なくとも部分的に延在する、請求項3に記載の丸鋸刃。

30

【請求項 5】

前記少なくとも一つの第1穴の円周の少なくとも約90°が、前記少なくとも一つの第2穴の円周の少なくとも約90°と(i)重複するか(ii)接続されるかの少なくとも一方である、請求項1に記載の丸鋸刃。

【請求項 6】

前記少なくとも一つの第1穴の前記円周の約90°から約180°の間が、前記少なくとも一つの第2穴と(i)重複するか(ii)接続されるかの少なくとも一方である、請求項5に記載の丸鋸刃。

【請求項 7】

前記少なくとも一つの第1穴の前記円周の約180°が、前記少なくとも一つの第2穴の前記円周の約180°と(i)重複するか(ii)接続されるかの少なくとも一方である、請求項5に記載の丸鋸刃。

【請求項 8】

前記丸鋸刃を第3丸鋸機に取り付けるため、第3取付ピンパターンを画定する前記第3丸鋸機の複数の取付ピンを収容するように構成された、第3取付穴パターンを画定する前記本体の複数の第3穴をさらに包含し、前記第3穴が、(a)径方向および(b)周方向の少なくとも一方において前記第1および第2穴からずれないとともに、前記第1および第2穴と重複することも接続されることもない、請求項1に記載の丸鋸刃。

40

【請求項 9】

前記丸鋸刃を第4丸鋸機に取り付けるため、第4取付ピンパターンを画定する前記第4丸鋸機の複数の取付ピンを収容するように構成された、第4取付穴パターンを画定する前記本体の複数の第4穴をさらに包含し、

前記第4穴が、(a)径方向と(b)周方向の少なくとも一方において前記第1および第2穴からずれないとともに、前記第1および第2穴と重複することも接続されること

50

もなく、

前記第3穴の少なくとも一つと前記第4穴の少なくとも一つとが(i)(a)径方向と(b)周方向の少なくとも一方において相互にずれているとともに、(ii)相互に(a)重複するか(b)接続されるかの少なくとも一方である、

請求項8に記載の丸鋸刃。

【請求項10】

丸鋸刃であって、

切削のための第1手段を周囲に画定する丸鋸刃本体、
を包含し、

前記刃本体が、前記丸鋸刃を第1丸鋸機に取り付けるため、第1取付ピンパターンを画定する前記第1丸鋸機の複数の取付ピンを収容するための複数の第2手段を有し、

前記刃本体がさらに、前記丸鋸刃を第2丸鋸機に取り付けるため、前記第1取付ピンパターンと異なる第2取付ピンパターンを画定する前記第2丸鋸機の複数の取付ピンを収容するための複数の第3手段を有し、

前記第2手段の少なくとも一つと前記第3手段の少なくとも一つとが、(i)(a)径方向と(b)周方向の少なくとも一方において相互にずれているとともに、(ii)相互に(a)重複するか(b)接続されるか少なくとも一方である、
丸鋸刃。

【請求項11】

前記第1手段が複数の切削歯を包含し、前記第2手段が第1穴を包含し、前記複数の第2手段が第1取付穴パターンを画定し、前記第3手段が第2穴を包含し、前記複数の第3手段が前記第1取付穴パターンと異なる第2取付穴パターンを画定する、請求項10に記載の丸鋸刃。

【請求項12】

丸鋸刃を製造する方法であって、

実質的に円形の刃本体を金属ブランクから切削するステップと、

複数の切削歯により画定される切削端を前記刃本体の周囲に設けるステップと、

前記丸鋸刃を第1丸鋸機に取り付けるため、第1取付ピンパターンを画定する前記第1丸鋸機の複数の取付ピンを収容するように構成された第1取付穴パターンを画定する複数の第1穴を前記刃本体に設けるステップと、

前記丸鋸刃を第2丸鋸機に取り付けるため、前記第1取付ピンパターンと異なる第2取付ピンパターンを画定する前記第2丸鋸機の複数の取付ピンを収容するように構成された、前記第1取付穴パターンを異なる第2取付穴パターンを画定する複数の第2穴を前記刃本体に設けるステップと、

を包含し、

前記複数の第1および第2穴を設ける前記ステップが、(i)(a)径方向と(b)周方向の少なくとも一方において相互にずれているとともに(ii)相互に(a)重複するか(b)接続されるかの少なくとも一方である前記第1穴の少なくとも一つと前記第2穴の少なくとも一つとを設けることを含む、

方法。

【請求項13】

複数の第1穴と複数の第2穴とを設ける前記ステップが、レーザ切削と噴射水切削と打抜加工のうち少なくとも一つを含む、請求項12に記載の方法。

【請求項14】

切削端を設ける前記ステップが前記切削端の機械加工を含む、請求項12に記載の方法。

【請求項15】

複数の第1および第2穴を設ける前記ステップが、第2穴と(a)重複するか(b)接続されるかの少なくとも一方である第1穴により各々が画定される複数の連続長穴を前記刃本体に設けることを包含する、請求項12に記載の方法。

10

20

30

40

50

【請求項 1 6】

複数の連続長穴を前記刃本体に設ける前記ステップが、前記第1穴の円周の少なくとも約90°を前記第2穴の円周の少なくとも約90°と(i)重複させるか(ii)接続するかの少なくとも一方を包含する、請求項15に記載の方法。

【発明の詳細な説明】**【技術分野】****【0001】**

関連出願の相互参照

本特許出願は、2013年3月15日に出願された類似の名称の米国仮特許出願第61/800,433号について、特許法第119条に基づく優先権を主張し、本開示の一部としてその全体が参照により組み込まれる。 10

【0002】

本発明は、丸鋸刃、より具体的には異なる取付パターンを有する丸鋸機へ取り付けられるように構成された丸鋸刃に関する。 20

【背景技術】**【0003】**

丸鋸刃は、切削要素を画定する切削端を刃の周囲に有する円板形の刃である。円形の刃がその中央軸を中心に高速で回転して工作物を切削する。丸鋸刃は、このような高い回転速度を達成するため動力付き丸鋸機に取り付けられる。これを行うために、丸鋸刃は、丸鋸機の心棒に取り付けられるように構成された中央ボアと、機械の対応の取付穴または溝と整合するように構成された複数の取付穴とを画定する。突出する取付ピンが刃の取付穴を通って機械の取付溝まで延出し、こうして刃を機械に固定するか確実な回転を提供するように、突出する取付ピンを有する取付板が機械に取り付けられる。 20

【0004】

異なる丸鋸機はたいてい同じ心棒サイズを有するが、このような機械が異なる取付溝構成を有することがある。一般的に、丸鋸刃の取付穴は、特定の丸鋸機の取付溝構成と整合するように構成された単一の取付穴パターンを共同で画定する。そのため、異なる鋸機を所有する消費者がたいてい遭遇する問題の一つは、目的とする工作物が同じままであっても、異なる鋸機のために異なる刃を購入しなければならないことである。例えば、第1丸鋸機に使用するための第1取付パターンを画定する、例えば金属、木材等の切削用途のために構成された第1丸鋸刃を消費者が購入することがある。その後、消費者が第2丸鋸機を利用したいと考えたとすると、消費者は、同じ切削用途のために構成されているが第2取付パターンを画定する第2の刃を購入せざるを得ない。 30

【0005】

この問題に対処する一つのアプローチは、第2パターンが第1パターンから径方向および/または周方向にオフセットするように、二つの異なる機械に使用するための二つの異なる取付穴パターンを画定する鋸刃を製造することであった。このアプローチと関連する一つの欠点は、製造プロセス中に現れ、一つではなく二つの異なる取付穴パターンの切り抜きが必要とされる。したがって、製造コストが上昇し、これが最終的には消費者に転嫁される。このアプローチと関連するまた別の欠点は、概して2種類の異なる取付穴パターンのみが一つの刃に切り抜かれることである。これは、一部には、一つの取付パターンについての穴の数(概して一つのパターンに4個の穴)と刃の構造的な剛性要件との組み合わせによるものであり、こうして購入されうる/刃に切り抜かれうる異なる穴の数が指定される。 40

【発明の概要】**【発明が解決しようとする課題】****【0006】**

上述した欠点および/または短所の一つ以上を克服することが、本発明の目的である。

【課題を解決するための手段】**【0007】**

第一の態様によれば、丸鋸刃は、複数の切削歯を周囲に画定する丸鋸刃本体と、第1取付ピンパターンを画定する丸鋸機に丸鋸刃を取り付けるため、第1取付ピンパターンを画定する丸鋸機の複数の取付ピンを収容するように構成された第1取付穴パターンを画定する本体の複数の第1穴と、第2取付ピンパターンを画定する丸鋸機に丸鋸刃を取り付けるため、第1取付ピンパターンと異なる第2取付ピンパターンを画定する丸鋸機の複数の取付ピンを収容するように構成された、第1取付穴パターンと異なる第2取付穴パターンを画定する本体の複数の第2穴とを包含する。第1穴の少なくとも一つと第2穴の少なくとも一つとは、(i)(a)径方向と(b)周方向の少なくとも一方において相互にずれているとともに、(ii)相互に(a)重複するか(b)接続されるかの少なくとも一方である。

10

【0008】

いくつかの実施形態では、複数の第1穴の各々は、(i)(a)径方向と(b)周方向の少なくとも一方において当該の第2穴からずれないとともに、(ii)この穴と(a)重複するか(b)接続されるかの少なくとも一方である。

【0009】

いくつかの実施形態では、第1穴の少なくとも一つと第2穴の少なくとも一つとが連続長穴を形成する。このようないくつかの実施形態で、連続長穴は、(i)径方向と(ii)周方向の少なくとも一方において少なくとも部分的に延在する。

【0010】

いくつかの実施形態では、少なくとも一つの第1穴の円周の少なくとも約90°が、少なくとも一つの第2穴の円周の少なくとも約90°と(i)重複するか(ii)接続されるかの少なくとも一方である。このようないくつかの実施形態では、少なくとも一つの第1穴の円周の約90°と約180°との間が、少なくとも一つの第2穴と(i)重複するか(ii)接続されるかの少なくとも一方である。他のこのようないくつかの実施形態では、少なくとも一つの第1穴の円周の約180°が、少なくとも一つの第2穴の円周の約180°と(i)重複するか(ii)接続されるかの少なくとも一方である。

20

【0011】

いくつかの実施形態では、丸鋸刃はさらに、丸鋸刃を丸鋸機に取り付けるため、第3取付ピンパターンを画定する丸鋸機の複数の取付ピンを収容するように構成された、第3取付穴パターンを画定する本体の複数の第3穴を包含する。第3穴は、(a)径方向と(b)周方向の少なくとも一方において第1および第2穴からずれないとともに、第1および第2穴と重複することも接続されることもない。このようないくつかの実施形態で、丸鋸刃はさらに、丸鋸刃を丸鋸機に取り付けるため、第4取付ピンパターンを画定する丸鋸機の複数の取付ピンを収容するように構成された第4取付穴パターンを画定する本体の複数の第4穴を包含する。第4穴は、(a)径方向と(b)周方向の少なくとも一方において第1および第2穴からずれないとともに、第1および第2穴と重複することも接続されることもなく、第3穴の少なくとも一つと第4穴の少なくとも一つとは、(i)(a)径方向と(b)周方向の少なくとも一方において相互にずれないとともに、(ii)相互と(a)重複するか(b)接続されるかの少なくとも一方である。

30

【0012】

別の態様によれば、丸鋸刃は、切削のための第1手段を周囲に画定する丸鋸刃本体を包含し、刃本体は、第1取付ピンパターンを画定する丸鋸機に丸鋸刃を取り付けるため、第1取付ピンパターンを画定する丸鋸機の複数の取付ピンを収容するための複数の第2手段を有する。刃本体はさらに、第2取付ピンパターンを画定する丸鋸機に丸鋸刃を取り付けるため、第1取付ピンパターンと異なる第2取付ピンパターンを画定する丸鋸機の複数の取付ピンを収容するための複数の第3手段を有する。第2手段の少なくとも一つと第3手段の少なくとも一つとは、(i)(a)径方向と(b)周方向の少なくとも一方において相互にずれないとともに(ii)相互に(a)重複するか(b)接続されるかの少なくとも一方である。

40

【0013】

50

いくつかの実施形態において、第1手段は複数の切削歯を包含し、第2手段は第1穴を包含して複数の第2手段が第1取付穴パターンを画定し、第3手段は第2穴を包含して複数の第3手段が第1取付穴パターンと異なる第2取付穴パターンを画定する。

【0014】

別の態様によれば、丸鋸刃を製造する方法は、
 (i) 実質的に円形の刃本体を金属ブランクから切り抜くステップと、
 (ii) 複数の切削歯により画定される切削端を刃本体の周囲に設けるステップと、
 (iii) 第1取付ピンパターンを画定する丸鋸機に丸鋸刃を取り付けるため、第1取付ピンパターンを画定する丸鋸機の複数の取付ピンを収容するように構成された、第1取付穴パターンを画定する複数の第1穴を、刃本体に設けるステップと、
 (iv) 第2取付ピンパターンを画定する丸鋸機に丸鋸刃を取り付けるため、第1取付ピンパターンと異なる第2取付ピンパターンを画定する丸鋸機の複数の取付ピンを収容するように構成された、第1取付穴パターンと異なる第2取付穴パターンを画定する複数の第2穴を刃本体に設けるステップと、
 を包含する。

【0015】

複数の第1および第2穴を設けるステップは、(i) (a) 径方向と(b)周方向の少なくとも一方において相互にずれないとともに(ii)相互と(a)重複するか(b)接続されるかの少なくとも一方である、第1穴の少なくとも一つと第2穴の少なくとも一つとを設けることを含む。

【0016】

いくつかの実施形態では、複数の第1穴と複数の第2穴とを設けるステップは、レーザ切削と水噴射切削と打抜加工の少なくとも一つを含む。いくつかの実施形態では、切削端を設けるステップはフライス加工と打抜加工の少なくとも一方を含む。いくつかの実施形態では、複数の第1および第2穴を設けるステップは、第2穴と(a)重複するか(b)接続されるかの少なくとも一方である第1穴により各々が画定される複数の連続長穴を刃本体に設けることを包含する。このようないくつかの実施形態では、複数の連続長穴を刃本体に設けるステップは、第1穴の円周の少なくとも約90°を第2穴の円周の少なくとも約90°と(i)重複させるか(ii)接続するかの少なくとも一方を包含する。

【0017】

本発明の目的と長所、および/または現時点で好適なその実施形態は、現時点で好適な実施形態についての以下の詳細な説明と添付図面とを考慮すると一層容易に明らかになるだろう。

【図面の簡単な説明】

【0018】

【図1】取付板の取り付けの前に丸鋸機に取り付けられた丸鋸刃の斜視図である。

【図2】丸鋸機に取り付けられた図1の丸鋸刃とこれに取り付けられる取付板との別の斜視図である。

【図3】丸鋸刃を機械に固定するように取付板が取り付けられた、図1の丸鋸刃の斜視図である。

【図4A】3種類の取付穴パターンの概略図である。

【図4B】単一の丸鋸刃において2種類のパターンを組み合わせた取付長穴と第3パターンとを図示するテンプレートである。

【図5A】2種類の取付穴パターンの概略図である。

【図5B】単一の刃において1種類のパターンの2個の取付穴を組み合わせた取付長穴パターンと第2取付穴パターンとを図示するテンプレートである。

【図6A】別の2種類の取付穴パターンの概略図である。

【図6B】単一の刃において2種類の取付穴パターンを組み合わせた取付長穴パターンを図示するテンプレートである。

【図7A】5種類の取付穴パターンの概略図である。

10

20

30

40

50

【図 7 B】单一の刃において 5 種類の取付穴パターンを組み合わせた 3 種類の取付長穴パターンを図示するテンプレートである。

【図 8 A】2 種類の取付穴パターンの概略図である。

【図 8 B】单一の刃において 2 種類の取付穴パターンを組み合わせた取付長穴パターンを図示するテンプレートである。

【図 9 A】2 種類の取付穴パターンの概略図である。

【図 9 B】個別の取付穴パターンが单一の刃にどのように現れるかを図示するテンプレートである。

【図 10 A】別の 2 種類の取付穴パターンの概略図である。

【図 10 B】個別の取付穴パターンが单一の刃にどのように現れるかを図示するテンプレートである。

【発明を実施するための形態】

【0 0 1 9】

図 1において、丸鋸刃は全体が参考番号 10 と記されている。刃 10 は、刃本体 B と、その周囲に延在する切削端 C E を含む。複数の切削要素 C T が切削端 C E を画定する。図の実施形態では、切削要素 C T は切削歯である。しかし、関連技術の当業者には理解されるはずであるように、切削要素は、例えば研磨面またはグリットなど、他の切削要素の形を取りうる。

【0 0 2 0】

刃 B は中央ボア D を含む。中央ボア D は、鋸刃 10 を丸鋸機に取り付ける時に丸鋸機の心棒 A を密着状態で収容するような寸法を持つ。刃本体 B はさらに、下でさらに説明されるように、1, 2, 3 等の、周方向 / 角度方向にオフセットした複数の取付穴、および / または、12 等の取付長穴を含む。各取付穴セットおよび / または各取付長穴セットは、少なくとも一つの取付パターンを共同で画定する。概して、取付穴パターンは 2 または 4 個の穴を含む。関連技術の当業者には理解されるはずであるように、取付穴パターン構成は業界では「a / b / c」と指定され、「a」はパターン内の穴の数、「b」は穴直径（概して mm）、「c」は径方向に対向する穴の間の距離、例えばパターンの直径（概して mm）である。

【0 0 2 1】

図 1 乃至 3 に示されているように、刃 10 は、ボア D を機械の心棒 A に取り付けることにより丸鋸機に取り付けられる。次に、刃 10 の取付穴を機械の対応取付溝 S と整合させるように、刃 10 が回転される。刃 10 の取付穴は、機械の取付溝 S と同じ a / b / c パターンを有していかなければならない。その後、取付板 P が機械の心棒 A に取り付けられ（図 2）、取付板 P から突出して取付溝 S と同じ a / b / c 取付パターンを有する取付ピン P S が、刃 10 の取付穴を通って機械の取付溝 S まで延在する。取付板 P はその後、ボルト B T などで心棒 A に固定される（図 3）。

【0 0 2 2】

図 1 および 2 に示されているように、刃 10 は、2 種類の取付穴パターン M P₁ および M P₂ を含む。M P₁ は 4 個の取付穴 1 を包含する。M P₂ は、取付穴 1 と異なる a / b / c 構成を有する 4 個の取付穴 2 を包含する。取付穴 1 の少なくとも 1 個がそれぞれ取付穴 2 の少なくとも 1 個と重複するかあるいは接続されて单一の連続長穴 12 を形成するように、刃 10 において取付パターン M P₁ および M P₂ が配向される。取付穴 1 を画定する長穴の一部分が対応の第 1 取付溝構成を有する第 1 丸鋸機の取付溝と整合できて、取付穴 2 を画定する長穴の第 2 部分が第 2 取付溝構成を有する第 2 丸鋸機の取付溝と整合できるような構成つまり形状および寸法を、長穴 12 は持つ。長穴 12 は、機械のそれぞれの取付板に必要な取付ピン P S を確実に収容するような形状および寸法も持つ。

【0 0 2 3】

図示の実施形態では、第 2 取付パターン M P₂ の 4 個の取付穴 2 の各々は、第 1 取付パターン M P₁ のそれぞれの取付穴 1 に接続されることにより 4 個の長穴 12 を形成する。こうして 4 個の長穴 12 は、取付パターン M P₁ のような a / b / c 構成を有する取付溝

10

20

30

40

50

と取付パターンMP₂のようなa/b/c構成を有する取付溝の両方と整合するように構成された単一の取付長穴パターンMP_{1,2}を画定する。図2に示されているように、例えば、取付穴1が丸鋸機の取付溝Sと整合するように、刃10は取付長穴パターンMP₁を有する丸鋸機に載置される。図3で最もよく分かるように、取付穴2は取付板Pの取付ピンPSと嵌合しない。

【0024】

いくつかの実施形態では、取付穴1の円周の少なくとも約90°が取付穴2の円周の少なくとも約90°と重複するか接続される。このようないくつかの実施形態では、取付穴1の少なくとも約180°までが取付穴2の少なくとも約180°までと重複するか接続される。他のこの実施形態では、取付穴1の約180°以上が取付穴2の約180°以上と重複するか接続される。

10

【0025】

図1および2に示されているような、図示の実施形態では、刃10は3種類の異なる取付パターンとの適合性を持つ、つまりこれと整合可能である。つまり、刃10は、これら3種類の異なる取付パターンのいずれか一つを有する丸鋸機に固定されうるのである。上で説明されたように、長穴1,2は2種類の異なる取付パターンとの適合性を持つ。4個の穴3により画定される第3取付パターンMP₃は、長穴1,2から周方向にオフセットしている。適合機械の取付溝Sと穴3を整合させるように、刃10は周方向に回転されうる。取付穴3がさらに、長穴1,2または穴1および2のいずれかから径方向にオフセットしうることに注意すべきである。他の実施形態では、2種類の取付パターンとの適合性を持つ第2長穴セットによって穴3が置き換えられて、結果的に4種類の異なる取付パターンと適合性を持ちうる刃10が得られる。さらに他の実施形態では、刃10が、3個の長穴セットを含み、4個以上の取付パターンとの適合性を持つ。刃は、所望の取付パターンをどれだけ含んでいてもよい。

20

【0026】

図4乃至10は、本発明により、異なる取付穴パターンの取付穴がどのように組み合わされるか、例えば接続される、および/または少なくとも部分的に重複するかを図示したものである。異なる取付溝パターンを有する異なる丸鋸機への取付特性のため、単一の刃に取付長穴パターンが切り込まれている。例えば図4Bは、図1乃至3の刃10のためのテンプレートを図示している。図4Aは、3種類の異なる個別取付パターン4/16/80(MP₁)、4/21/120(MP₂)、4/11/80(MP₃)を示す。図4Bのテンプレートでは、上で説明したように、穴1および穴2は径方向に相互オフセットしているが、穴3から周方向にオフセットした長穴1,2を形成するように接続されている。

30

【0027】

図5Aは、2種類の個別取付パターンを図示する。2個の穴1を有する第1パターンは、2/9/55構成を画定する。穴2および3を有する第2パターンは、穴2については2/12/65構成を、穴3については2/15/80構成を画定する。図5Bのテンプレートでは、第2パターンの取付穴3と第1パターンの取付穴1とが接続されて、第2パターンの取付穴2から周方向にオフセットした長穴3,1を形成する。

40

【0028】

図6Aでは、4個の穴1を有する第1パターンが4/11/90構成を画定する。穴2および3を有する第2パターンは、すでに図5Aに示されているように、穴2については2/12/65構成を、穴3については2/15/80構成を画定する。図6Bのテンプレートでは、第2パターンの取付穴2は径方向にオフセットしているが第1パターンの穴1のうち2個と接続されて取付長穴2,1を形成し、第2パターンの取付穴3は第1パターンの穴1のうち他の2個と部分的に重複して取付長穴3,1を形成する。こうして、取付長穴3,1および2,1は一緒になって2種類の取付パターンのいずれかとの適合性を持つ。

【0029】

図7Aでは、2個の穴1を有する第1パターンが2/9/55構成を画定する。4個の穴2を有する第2パターンは、4/11/90構成を画定する。4個の穴3を有する第3

50

パターンは、4 / 11 / 80 構成を画定する。2 個の穴 4 と 2 個の穴 5 とを有する第 4 パターンは、穴 4 については 2 / 12 / 65 構成を、穴 5 については 2 / 15 / 80 構成を画定する。穴 6 および 7 を有する第 5 パターンは、穴 6 については 2 / 12 / 65 構成を、穴 7 については 2 / 15 / 80 構成を画定する。ともに 2 / 15 / 80 構成を有する取付穴 5 および 7 は重複している。図 7 B のテンプレートでは、取付穴 1 が取付穴 5 および 7 と接続されて長穴 571 を形成する。取付穴 2 は、取付穴 3 と部分的に重複して長穴 32 を形成する。取付穴 4 は取付穴 6 と部分的に重複して長穴 46 を形成する。こうして、刃は、5 種類の異なる取付パターンとの適合性を持つ。

【0030】

図 8 A では、4 個の穴 1 を有する第 1 パターンは 4 / 11 / 63 構成を画定する。やはり 4 個の穴 2 を有する第 2 パターンは、4 / 9 / 50 構成を画定する。図 8 B のテンプレートでは、取付穴 1 は取付穴 2 と部分的に重複して取付長穴 21 を形成する。

【0031】

図 9 A では、4 個の穴 1 を有する第 1 パターンは 4 / 11 / 80 構成を画定する。2 個の穴 2 と 3 個の穴 3 とを有する第 2 パターンは、穴 2 については 2 / 12 / 65 構成を、穴 3 については 2 / 15 / 80 構成を画定する。穴 2 は、他の穴 1, 3 から径方向にオフセットしている。図 9 B のテンプレートは、個別の取付穴パターンがどのようにしてパターンの重複なしで単一の刃に現れるかを示している。

【0032】

図 10 A では、4 個の穴 1 を有する第 1 パターンが 4 / 16 / 80 構成を画定する。やはり 4 個の穴 2 を有する第 2 パターンは、4 / 11 / 80 構成を画定する。この実施形態のいずれの穴も径方向に相互オフセットしていない。図 10 B のテンプレートは、個別の取付穴パターンがどのようにしてパターンの重複なしで単一の刃に現れるかを示している。

【0033】

上述した実施形態では、重複 / 接続された様々な穴取付パターンは径方向に相互オフセットしているが、同じ半径の穴取付パターンが重複するように周方向に若干オフセットされることにより重複 / 接続されることもある。こうすると、周方向に延在する長穴を形成することになるだろう。さらに、穴パターンが径方向と周方向の両方において重複するように、3 種類以上の取付パターンが重複することがある。こうして、形成される長穴は、T 字形、L 字形、十字形 (+) 等に似ている。パターンを単に周方向に整合させるのではなく径方向にオフセットしている 2 種類の取付穴パターンを有する、例えば径方向に延在する長穴を形成する、さらに他の実施形態において、径方向と周方向の両方で重複するようにパターンが周方向に若干オフセットし、例えば鈍角形状の長穴であってもよい。

【0034】

関連技術の当業者には理解されるはずであるように、丸刃 10 は、例えば鋼製の刃など、金属薄板から刃を切り抜くことにより製造される。刃本体 B は、例えばレーザ切削、打抜加工、水噴射等を介して薄板から切り抜かれる。その後、取付長穴および / または取付穴が、レーザ、打抜加工、水噴射など類似の手法で刃本体 B から切り抜かれる。刃本体の周囲は、切削端を形成するように機械加工され、例えば、刃本体にフライス加工または打抜加工されるか、レーザ、水噴射、または研削される。いくつかの実施形態では、切削端を画定する切削要素は先端を含まずに形成されるが、代わりに、切削要素の上部、つまり先端を収容する切削要素の上部の表面に「シート」または「ポケット」が形成され、これは関連技術の当業者に周知の方法に従って行われるとよい。その後、刃本体のものとは別の材料、例えばカーバイドまたはサーメットを含有する先端が、これらの切削要素に、例えばシートまたはポケットに結合され、例えば溶着または蝋接されて、これが関連技術の当業者に周知の方法にしたがって行われるとよい。

【0035】

上述した刃構成と関連する一つの長所は、丸鋸刃製造における効率、ゆえに生産性の向上である。これは、各パターンの取付穴が個別に、または他のパターンの穴とは別に形成

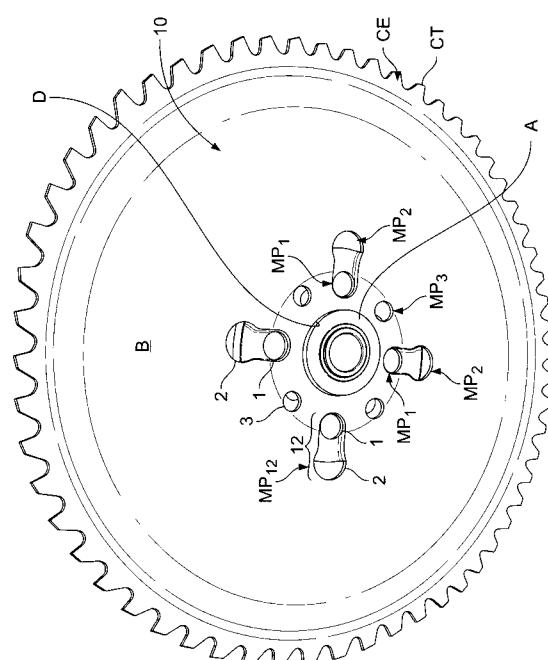
10

20

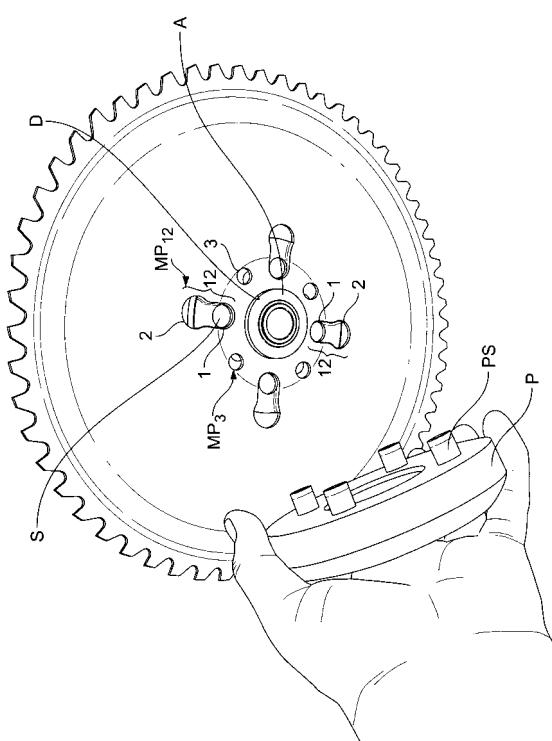
30

40

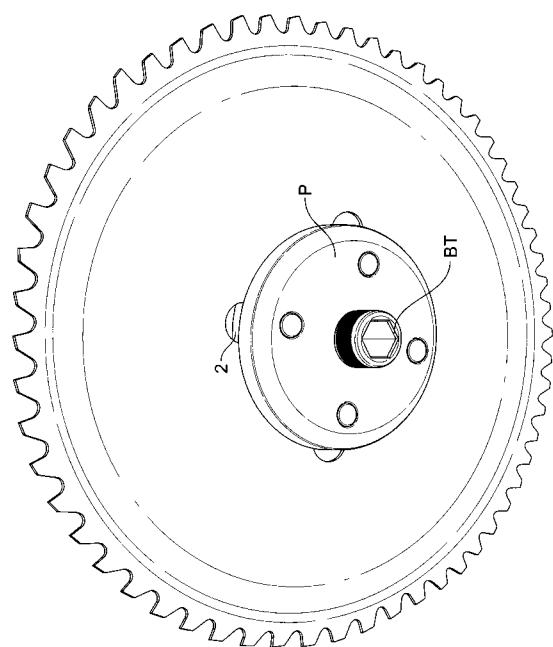
50

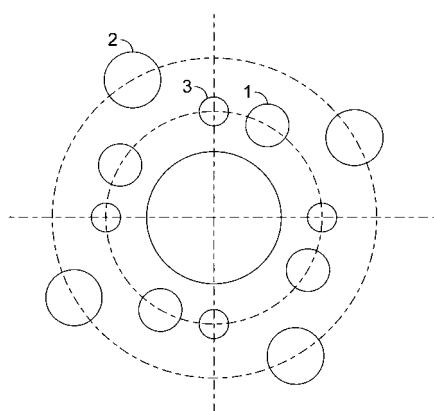

される周知の刃と比較して、多数の取付パターンとの適合性を持つ歯を達成するように形成される取付長穴の総数が少ないとすることによる。すなわち、各穴について別々に切り抜きを行うのではなく2個以上の穴が单一の長穴として形成されるため、一つのまとまった切り抜き（円形ではないが）が行われるだけでよい。これは、刃を製作するコストおよび時間を軽減する。上述した刃構成と関連する別の長所は、各取付パターンが個別の取付穴により画定される時よりも多くの取付パターンと適合するように刃が製造されうることである。製造される必要のある異なる刃の数は少なくなる。これは、異なる取付穴パターンを含む多数の鋸機を有するユーザにとってのコスト削減および利便性という結果も生じる。

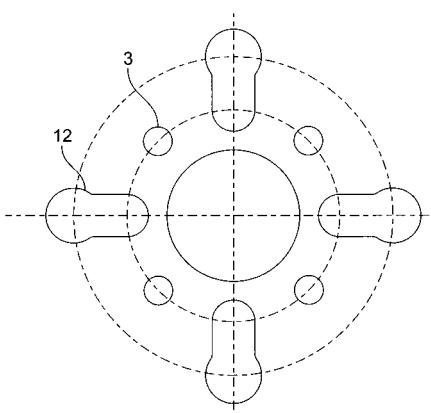
【0036】

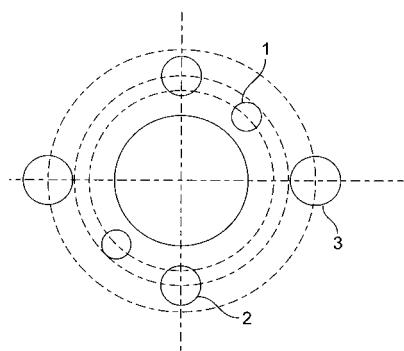

本書の教示に基づいて関連技術の当業者により認識されうるように、添付の請求項に記載される発明の範囲を逸脱することなく本発明の上記および他の実施形態に多数の変更および変形が加えられてもよい。したがって、この実施形態の詳細な説明は、限定的な意味とは対照的な例示的な意味で解釈されるべきである。

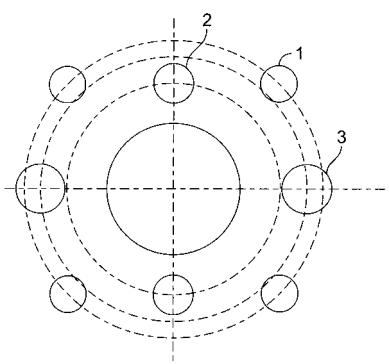
10

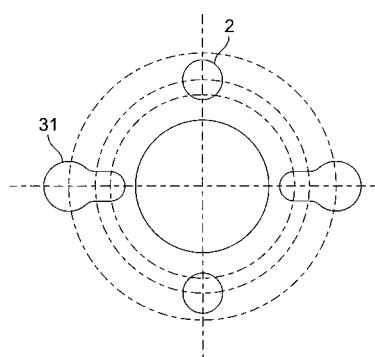

【図1】

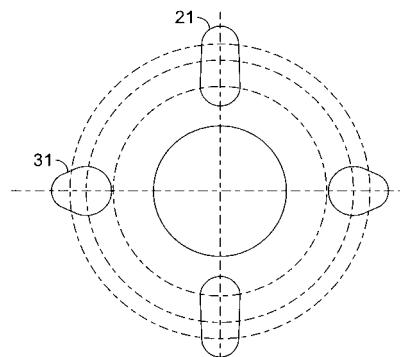

【図2】

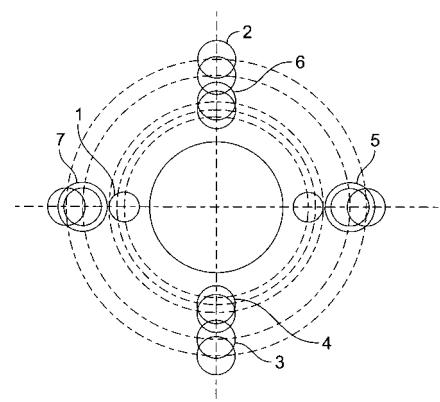

【図 3】

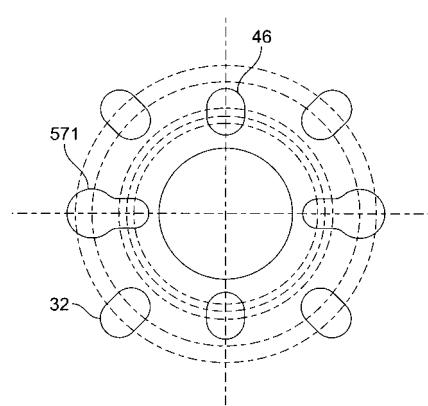

【図 4 A】

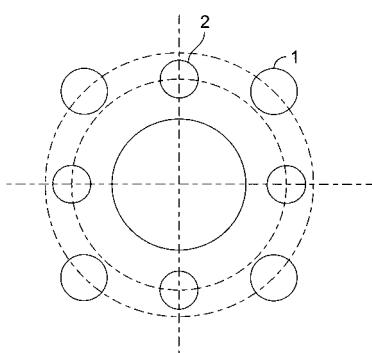

【図 4 B】

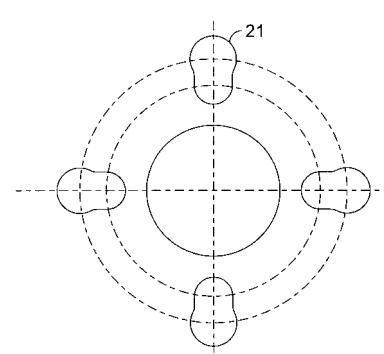

【図 5 A】

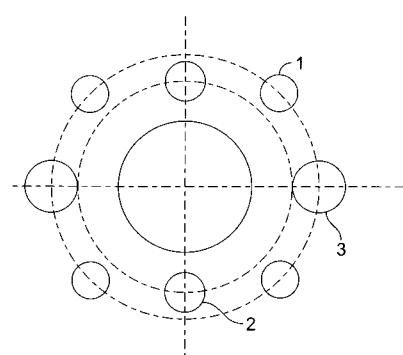

【図 6 A】

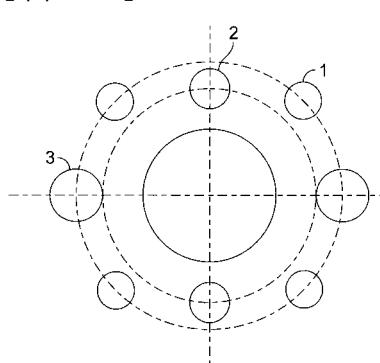

【図 5 B】

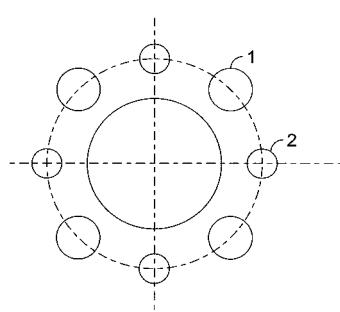

【図 6 B】

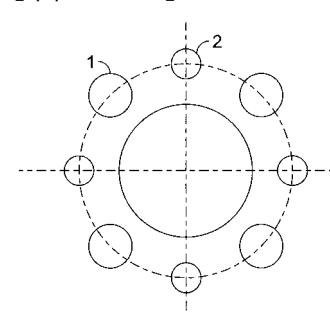

【図 7 A】


【図 7 B】


【図 8 A】


【図 8 B】


【図 9 A】


【図 9 B】

【図 10 A】

【図 10 B】

【外國語明細書】

CIRCULAR SAW BLADE WITH MULTIPLE MOUNTING HOLE PATTERNS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This patent application claims benefit under 35 U.S.C. § 119 to similarly-titled U.S. Provisional Patent Application No. 61/800,433, filed March 15, 2013, which is hereby incorporated by reference in its entirety as part of the present disclosure.

FIELD OF THE INVENTION

[0002] The present invention relates to circular saw blades, and more particularly to circular saw blades configured to mount onto circular saw machines having different mounting patterns.

BACKGROUND OF THE INVENTION

[0003] A circular saw blade is a disk shaped blade that has a cutting edge defining cutting elements about a periphery of the blade. A circular blade rotates at a high speed about a central axis thereof to cut through a work piece. Circular saw blades are mounted onto powered circular saw machines in order to achieve such high rotational speeds. To do so, a circular saw blade defines a central bore configured to mount onto an arbor of the circular saw machine, and a plurality of mounting holes configured to align with corresponding mounting holes or channels of the machine. A mounting plate having mounting pins projecting therefrom mounts onto the machine, such that the pins extend through the mounting holes of the blade and into the mounting channels of the machine, to, in turn, secure the blade to the machine or provide positive rotation.

[0004] While different circular saw machines often have the same arbor size, such machines can have different mounting channel configurations. Typically, the mounting holes of a circular saw blade collectively define a single mounting hole pattern, configured to align with a mounting channel configuration of a particular circular saw machine. Therefore, one issue often encountered by a consumer who has different saw machines is that he must purchase different blades for the different saw machines, even if the intended work piece remains the same. For example, a consumer may purchase a first circular saw blade configured for a cutting application, e.g., metal, wood, etc., defining a first mounting pattern for use with a first circular saw machine. Thereafter, should the consumer wish to utilize a second circular saw machine, the consumer is

obligated to purchase a second blade configured for the same cutting application but defining the second mounting pattern.

[0005] One approach for addressing this problem has been to manufacture saw blades defining two different mounting hole patterns, for use with two different machines, such that the second pattern is radially and/or circumferentially offset from the first pattern. One drawback associated with this approach is encountered during the manufacturing process, where cutting of two different mounting hole patterns is required rather than one. Accordingly, manufacturing costs are increased, which are ultimately imparted onto the consumer. Yet another drawback associated with this approach is that generally only two different mounting hole patterns can be cut into one blade. This is due, in part, to the combination of the number of holes per mounting pattern (generally 4 holes per pattern) and the structural rigidity requirements of the blade, thereby dictating the number of different holes that can be punched/cut into a blade.

SUMMARY OF THE INVENTION

[0006] It is an object of the present invention to overcome one or more of the above-described drawbacks and/or disadvantages.

[0007] In accordance with a first aspect, a circular saw blade comprises a circular saw blade body defining a plurality of cutting teeth at a periphery thereof; a plurality of first apertures in the body defining a first mounting hole pattern configured to receive a plurality of mounting pins of a circular saw machine defining a first mounting pin pattern thereof for mounting the circular saw blade to said circular saw machine defining the first mounting pin pattern; and a plurality of second apertures in the body defining a second mounting hole pattern different than the first mounting hole pattern configured to receive a plurality of mounting pins of a circular saw machine defining a second mounting pin pattern thereof different than the first mounting pin pattern for mounting the circular saw blade to said circular saw machine defining the second mounting pin pattern. At least one of the first apertures and at least one of the second apertures are (i) at least one of (a) radially and (b) circumferentially displaced from each other; and (ii) at least one of (a) overlap and (b) are connected to each other.

[0008] In some embodiments, each of the plurality of first apertures is (i) at least one of (a) radially and (b) circumferentially displaced from a respective second aperture; and (ii) at least one of (a) overlap and (b) are connected to said aperture.

[0009] In some embodiments, said at least one of the first apertures and at least one of the second apertures form a contiguous slot. In some such embodiments, the contiguous slot extends at least partially in at least one of (i) a radial direction and (ii) a circumferential direction.

[0010] In some embodiments, at least about 90° of a circumference of the at least one first aperture at least one of (i) overlaps with and (ii) is connected to at least about 90° of a circumference of the at least one second aperture. In some such embodiments, between about 90° and about 180° of the circumference of the at least one first aperture at least one of (i) overlaps and (ii) connects with the at least one second aperture. In other such embodiments, about 180° of the circumference of the at least one first aperture at least one of (i) overlaps and (ii) connects with about 180° of the circumference of the at least one second aperture.

[0011] In some embodiments, the circular saw blade further comprises a plurality of third apertures in the body defining a third mounting hole pattern configured to receive a plurality of mounting pins of a circular saw machine defining a third mounting pin pattern thereof for mounting the circular saw blade to said circular saw machine. The third apertures are at least one of (a) radially and (b) circumferentially displaced from the first and second apertures, and do not overlap or connect with said first and second apertures. In some such embodiments, the circular saw blade further comprises a plurality of fourth apertures in the body defining a fourth mounting hole pattern configured to receive a plurality of mounting pins of a circular saw machine defining a fourth mounting pin pattern thereof for mounting the circular saw blade to said circular saw machine. The fourth apertures are at least one of (a) radially and (b) circumferentially displaced from the first and second apertures, and do not overlap or connect with said first and second apertures, and at least one of the third apertures and at least one of the fourth apertures are (i) at least one of (a) radially and (b) circumferentially displaced from each other; and (ii) at least one of (a) overlap and (b) are connected to each other.

[0012] In accordance with another aspect, a circular saw blade comprises a circular saw blade body defining first means for cutting at a periphery thereof; the blade body having a plurality of second means for receiving a plurality of mounting pins of a circular saw machine defining a first mounting pin pattern thereof for mounting the circular saw blade to said circular saw machine defining the first mounting pin pattern. The blade body further has a plurality of third means for receiving a plurality of mounting pins of a circular saw machine defining a second mounting pin pattern thereof different than the first mounting pin pattern for mounting the

circular saw blade to said circular saw machine defining the second mounting pin pattern. At least one of the second means and at least one of the third means are (i) at least one of (a) radially and (b) circumferentially displaced from each other; and (ii) at least one of (a) overlap and (b) are connected to each other.

[0013] In some embodiments, the first means comprises a plurality of cutting teeth, the second means comprises a first aperture, said plurality of second means defining a first mounting hole pattern, and the third means comprises a second aperture, said plurality of third means defining a second mounting hole pattern different than the first mounting hole pattern.

[0014] In accordance with another aspect, A method of manufacturing a circular saw blade comprises the steps of:

- (i) cutting a substantially circular blade body from a metal blank;
- (ii) providing a cutting edge along the a periphery of the blade body defined by a plurality of cutting teeth;
- (iii) providing the blade body with a plurality of first apertures defining a first mounting hole pattern configured to receive a plurality of mounting pins of a circular saw machine defining a first mounting pin pattern thereof for mounting the circular saw blade to said circular saw machine defining the first mounting pin pattern; and
- (iv) providing the blade body with a plurality of second apertures defining a second mounting hole pattern different than the first mounting hole pattern and configured to receive a plurality of mounting pins of a circular saw machine defining a second mounting pin pattern thereof different than the first mounting pin pattern for mounting the circular saw blade to said circular saw machine defining the second mounting pin pattern.

[0015] The steps of providing the a plurality of first and second apertures include providing at least one of the first apertures and at least one of the second apertures (i) at least one of (a) radially and (b) circumferentially displaced from each other; and (ii) at least one of (a) overlapping and (b) connecting with each other.

[0016] In some embodiments, the steps of providing a plurality of first apertures and a plurality of second apertures include at least one of laser cutting, water jet cutting and punching. In some embodiments, the step of providing a cutting edge includes at least one of milling and punching. In some embodiments, the steps of providing a plurality of first and second apertures comprise providing the blade body with a plurality of contiguous slots each defined by a first

aperture at least one of (a) overlapping and (b) connecting with a second aperture. In some such embodiments, the step of providing the blade body with a plurality of contiguous slots comprises at least one of (i) overlapping and (ii) connecting at least about 90° of a circumference of the first aperture with at least about 90° of a circumference of the second aperture.

[0017] Objects and advantages of the present invention, and/or of the currently preferred embodiments thereof, will become more readily apparent in view of the following detailed description of the currently preferred embodiments and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] FIG. 1 is a perspective view of a circular saw blade mounted onto a circular saw machine, prior to mounting thereon of a mounting plate;

[0019] FIG. 2 is another perspective view of the circular saw blade of FIG. 1 mounted onto a circular and a mounting plate to be mounted thereon;

[0020] FIG. 3 is a perspective view of the circular saw blade of FIG. 1, with the mounting plate mounted thereon to secure the blade to the machine;

[0021] FIG. 4A is a schematic illustration of three mounting hole patterns, and FIG. 4B is a template illustrating a mounting slot combining two of the patterns and the third pattern on a single circular saw blade;

[0022] FIG. 5A is a schematic illustration of two mounting hole patterns, and FIG. 5B is a template illustrating a mounting slot pattern combining two of the mounting holes of one pattern with the second mounting hole pattern on a single blade;

[0023] FIG. 6A is a schematic illustration of another two mounting hole patterns, and FIG. 6B is a template illustrating a mounting slot pattern combining the two mounting hole patterns on a single blade;

[0024] FIG. 7A is a schematic illustration of five mounting hole patterns, and FIG. 7B is a template illustrating three mounting slot patterns combining the 5 mounting hole patterns in a single blade;

[0025] FIG. 8A is a schematic illustration of two mounting hole patterns, and FIG. 8B is a template illustrating a mounting slot pattern combining the two mounting holes patterns on a single blade;

[0026] FIG. 9A is a schematic illustration of two mounting hole patterns, and FIG. 9B is a template illustrating how the individual mounting hole patterns would appear on a single blade; and

[0027] FIG. 10A is a schematic illustration of another two mounting hole patterns, and FIG. 10B is a template illustrating how the individual mounting hole patterns would appear on a single blade.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

[0028] In FIG. 1, a circular saw blade is indicated generally by the reference numeral 10. The blade 10 includes a blade body B, and a cutting edge CE extending about the periphery thereof. A plurality of cutting elements CT define the cutting edge CE. In the illustrated embodiment, the cutting elements CT are cutting teeth. However, as should be understood by those of ordinary skill in the pertinent art, the cutting elements can take the form of other cutting elements, such as, for example, an abrasive surface or grit.

[0029] The blade B includes a central bore D. The central bore D is dimensioned to fittingly receive an arbor A of a circular saw machine therethrough when mounting the saw blade 10 onto the circular saw machine. The blade body B further includes a plurality of circumferentially/angularly offset mounting holes, e.g., 1, 2, 3, and/or mounting slots, e.g., 12, as described further below. Each set of mounting holes and/or each set of mounting slots, collectively defines at least one mounting pattern. Generally, mounting hole patterns include two or four holes. As should be understood by those of ordinary skill in the pertinent art, a mounting hole pattern configuration is designated in the industry by “a/b/c”, where “a” is the number of holes in the pattern, “b” is the hole diameter (generally in mm), and “c” is the distance between diametrically opposed holes, e.g., diameter of the pattern (generally in mm).

[0030] As shown in FIGS. 1 and 3, a blade 10 is mounted onto a circular saw machine by mounting the bore D onto an arbor A of the machine. The blade 10 is then rotated to align the mounting holes of the blade 10 with corresponding mounting channels S of the machine. The mounting holes of the blade 10 must have the same a/b/c pattern as the mounting channels S of the machine. Thereafter, a mounting plate P is mounted onto the arbor A of the machine (FIG. 3) and mounting pins PS projecting therefrom, having the same a/b/c mounting pattern as the mounting channels S, extend through the mounting holes of the blade 10 and into the mounting

channels S of the machine. The mounting plate P is thereafter secured to the arbor A (FIG. 3), such as with a bolt BT.

[0031] As shown in FIGS. 1 and 2, the blade 10 includes two mounting hole patterns, MP₁ and MP₂. MP₁ comprises four mounting holes 1. MP₂ comprises four mounting holes 2 having a different a/b/c configuration than the mounting holes 1. The mounting patterns MP₁ and MP₂ are oriented on the blade 10 such that at least one of the mounting holes 1 partially overlaps with, or is otherwise connected to, at least one of the mounting holes 2, respectively, to form a single contiguous slot 12. The slot 12 is configured, i.e., shaped and dimensioned, such that a portion of the slot defining the mounting hole 1 can align with the mounting channels of a first circular saw machine having a corresponding first mounting channel configuration, and a second portion of the slot defining the mounting hole 2 can align with the mounting channels of a second circular saw machine having a second mounting channel configuration. The slot 12 is also shaped and dimensioned to securely receive the required mounting pins PS for the respective mounting plate of the machine.

[0032] In the illustrated embodiment, each of the four mounting holes 2 of the second mounting pattern MP₂ is connected to a respective mounting hole 1 of the first mounting pattern MP₁, thereby forming four slots 12. The four slots 12 thus define a single mounting slot pattern MP₁₂ configured to align both with mounting channels having an a/b/c configuration as that of the mounting pattern MP₁ as well as mounting channels having an a/b/c configuration as that of the mounting pattern MP₂. As shown in FIG 2, for example, the blade 10 is placed on the circular saw machine having a mounting slot pattern MP₁, such that mounting holes 1 align with the mounting channels S of the machine. As can be seen best in FIG. 3, the mounting holes 2 are not engaged by the mounting pins PS of the mounting plate P.

[0033] In some embodiments, at least about 90° of the circumference of a mounting hole 1 overlaps with, or is connected to, at least about 90° of the circumference of a mounting hole 2. In some such embodiments, up to about at least 180° of a mounting hole 1 overlaps with, or is connected to, up to about at least 180° of a mounting hole 2. In other such embodiments, more than about 180° of a mounting hole 1 overlaps with, or is connected to, more than about 180° of a mounting hole 2.

[0034] In the illustrated embodiment, as shown in FIGS. 1 and 2, the blade 10 is compatible with, i.e., can align with, three different mounting patterns. That is, the blade 10 can be secured

to a circular saw machine having any one of these three different mounting patterns. As explained above, the slots 12 are compatible with two different mounting patterns. A third mounting pattern MP_3 , defined by the four holes 3, is circumferentially offset from the slots 12. The blade 10 can be circumferentially rotated to align the holes 3 with the mounting channels S of the compatible machine. It should be noted that the mounting holes 3 can further be radially offset from the slots 12, or either of the holes 1 and 2. In other embodiments, the holes 3 can be replaced by a second set of slots that is compatible with 2 mounting patterns, resulting in a blade 10 compatible with four different mounting patterns. In yet other embodiment, a blade 10 can include three set of slots and is compatible with more than four mounting patterns. The blade can include any amount of desired mounting patterns.

[0035] FIGS. 4-10 illustrate several examples of how mounting holes of different mounting hole patterns can be combined, e.g., connect and/or at least partially overlap, according to the invention. The mounting slot patterns are cut into a single blade for mounting capability onto different circular saw machines having different mounting channel patterns. FIG. 4B, for example, illustrates a template for the blade 10 of FIGS. 1-3. FIG. 4A shows three different individual mounting patterns, 4/16/80 (MP_1), 4/21/120 (MP_2), and 4/11/80 (MP_3). In the template of FIG. 4B the holes 1 and the holes 2 are radially offset from each other but connected to form the slots 12, circumferentially offset from the holes 3, as explained above.

[0036] FIG. 5A illustrates two individual mounting patterns. The first pattern, having two holes 1, defines a 2/9/55 configuration. The second pattern, having holes 2 and 3, defines a 2/12/65 configuration for holes 2 and a 2/15/80 configuration for holes 3. In the template of FIG. 5B, mounting holes 3 of the second pattern and mounting holes 1 of the first pattern are connected to form slots 31, circumferentially offset from mounting holes 2 of the second pattern.

[0037] In FIG. 6A, a first pattern, having four holes 1, defines a 4/11/90 configuration. A second pattern, having holes 2 and 3, defines a 2/12/65 configuration for holes 2 and a 2/15/80 configuration for holes 3, as shown previously in FIG. 5A. In the template of FIG. 6B, the mounting holes 2 of the second pattern are radially offset but connected with two of the holes 1 of the first pattern to form mounting slots 21, and the mounting holes 3 of the second pattern are partially overlapped with the other two of the holes 1 of the first pattern to form mounting slots 31. Thus, mounting slots 31 and 21 together are compatible with either of the two mounting patterns.

[0038] In FIG. 7A, a first pattern, having two holes 1, defines a 2/9/55 configuration. A second pattern having four holes 2, defines a 4/11/90 configuration. A third pattern, having four holes 3, defines a 4/11/80 configuration. A fourth pattern, having two holes 4 and two holes 5, defines a 2/12/65 configuration for holes 4 and a 2/15/80 configuration for holes 5. A fifth pattern, having holes 6 and 7, defines a 2/12/65 configuration for holes 6 and a 2/15/80 configuration for holes 7. The mounting holes 5 and 7, both having a 2/15/80 configuration, are overlapping. In the template of FIG. 7B, the mounting holes 1 are connected with the mounting holes 5 and 7, to form slots 571. The mounting holes 2 are partially overlapped with the mounting holes 3, to form slots 32. The mounting holes 4 are partially overlapped with the mounting holes 6, to form slot 46. Thus, the blade is compatible five different mounting patterns.

[0039] In FIG. 8A, a first pattern, having four holes 1, defines a 4/11/63 configuration. A second pattern, also having four holes 2, defines a 4/9/50 configuration. In the template of FIG. 8B, the mounting holes 1 are partially overlapped with the mounting holes 2, to form the mounting slots 21.

[0040] In FIG. 9A, a first pattern, having four holes 1, defines a 4/11/80 configuration. A second pattern, having two holes 2 and two holes 3, defines a 2/12/65 configuration for holes 2 and a 2/15/80 configuration for holes 3. The holes 2 are radially offset from the other holes 1, 3. The template of FIG. 9B shows how the individual mounting hole patterns can appear on a single blade without overlapping of patterns.

[0041] In FIG. 10A, a first pattern, having four holes 1, defines a 4/16/80 configuration. A second pattern, also having four holes 2, defines a 4/11/80 configuration. None of the holes in this embodiment is radially offset from each other. The template of FIG. 10B shows how the individual mounting hole patterns can appear on a single blade without overlapping of patterns.

[0042] Although in the above-described embodiments the various hole mounting patterns that are overlapped/connected are radially offset from each other, hole mounting patterns that are at the same radius can also be overlapped/connected by slightly circumferentially offsetting them so that they overlap. Such would form slots that extend in the circumferential direction. Further, three or more mounting patterns can overlap so that the hole patterns are both radially and circumferentially overlapped. Thus, the formed slots can resemble T-shapes, L-shapes, cross-shapes (+), etc. In yet other embodiments having two mounting hole patterns that are radially offset, rather than merely circumferentially aligning the pattern, e.g., forming a radially-

extending slot, the patterns can also be slightly circumferentially offset, so as to overlap in both radial and circumferential directions, e.g., a slot in the shape of an obtuse angle.

[0043] As should be understood by those of ordinary skill in the pertinent art, circular blades 10 are manufactured by cutting the blade out of a metal sheet, such as, for example, a steel blade. The blade body B can be cut out of a sheet via, for example, laser cutting, punching, water jet, etc. Thereafter the mounting slots and/or mounting holes are cut out of the blade body B in similar manner, e.g., laser, punching, water jet. The periphery of the blade body is machined to form the cutting edge, e.g., milled or punched, or by laser, water jet, or ground in blade body. In some embodiments, the cutting elements defining the cutting edge are formed without a tip but instead are formed with a “seat” or “pocket,” at the top of the cutting element, i.e., a surface at the top of the cutting element for receiving a tip, which may be done in accordance with methods known by those of ordinary skill in the pertinent art. Thereafter, tips, which may contain another material than that of the blade body, e.g., carbide or cermet, are joined, e.g., welded, brazed, etc., onto those cutting elements, e.g., into the seats or pockets, which may be done in accordance with methods known by those of ordinary skill in the pertinent art.

[0044] One advantage associated with the above-described blade configuration is an increased efficiency, and thus productivity, in circular saw blade manufacturing. This is due to that fewer total mounting slots can be formed to achieve a blade compatible with multiple mounting patterns, compared to known blades where the mounting holes for each pattern are individually or separately formed from the holes of other patterns. That is, because two or more holes are formed into a single slot, instead of making a separate cut for each hole, only one total cut (albeit not round) need be made. This decreases cost and time to make the blade. Another advantage associated with the above-described blade configuration is that a blade can be manufactured to be compatible with more mounting patterns than when each mounting pattern is defined by individual mounting holes. Fewer different blades need to be manufactured. This also results in cost savings and convenience to users who have multiple saw machines with different mounting hole patterns.

[0045] As may be recognized by those of ordinary skill in the pertinent art based on the teachings herein, numerous changes and modifications may be made to the above-described and other embodiments of the present invention without departing from the scope of the invention as

defined in the appended claims. Accordingly, this detailed description of embodiments is to be taken in an illustrative, as opposed to a limiting sense.

What is claimed is:

1. A circular saw blade comprising:

a circular saw blade body defining a plurality of cutting teeth at a periphery thereof;

a plurality of first apertures in the body defining a first mounting hole pattern configured to receive a plurality of mounting pins of a first circular saw machine defining a first mounting pin pattern thereof for mounting the circular saw blade to said first circular saw machine; and

a plurality of second apertures in the body defining a second mounting hole pattern different than the first mounting hole pattern configured to receive a plurality of mounting pins of a second circular saw machine defining a second mounting pin pattern thereof different than the first mounting pin pattern for mounting the circular saw blade to said second circular saw machine;

wherein at least one of the first apertures and at least one of the second apertures are (i) at least one of (a) radially and (b) circumferentially displaced from each other; and (ii) at least one of (a) overlap and (b) are connected to each other.

2. A circular saw blade as defined in claim 1, wherein each of the plurality of first apertures is (i) at least one of (a) radially and (b) circumferentially displaced from a respective second aperture; and (ii) at least one of (a) overlap and (b) are connected to said aperture.

3. A circular saw blade as defined in claim 1, wherein said at least one of the first apertures and at least one of the second apertures form a contiguous slot.

4. A circular saw blade as defined in claim 3, wherein the contiguous slot extends at least partially in at least one of (i) a radial direction and (ii) a circumferential direction.

5. A circular saw blade as defined in claim 1, wherein at least about 90° of a circumference of the at least one first aperture at least one of (i) overlaps with and (ii) is connected to at least about 90° of a circumference of the at least one second aperture.

6. A circular saw blade as defined in claim 5, wherein between about 90° and about 180° of the circumference of the at least one first aperture at least one of (i) overlaps and (ii) connects with the at least one second aperture.

7. A circular saw blade as defined in claim 5, wherein about 180° of the circumference of the at least one first aperture at least one of (i) overlaps and (ii) connects with about 180° of the circumference of the at least one second aperture.

8. A circular saw blade as defined in claim 1, further comprising a plurality of third apertures in the body defining a third mounting hole pattern configured to receive a plurality of mounting pins of a third circular saw machine defining a third mounting pin pattern thereof for mounting the circular saw blade to said third circular saw machine, wherein the third apertures are at least one of (a) radially and (b) circumferentially displaced from the first and second apertures, and do not overlap or connect with said first and second apertures.

9. A circular saw blade as defined in claim 8, further comprising a plurality of fourth apertures in the body defining a fourth mounting hole pattern configured to receive a plurality of mounting pins of a fourth circular saw machine defining a fourth mounting pin pattern thereof for mounting the circular saw blade to said fourth circular saw machine, wherein:

the fourth apertures are at least one of (a) radially and (b) circumferentially displaced from the first and second apertures, and do not overlap or connect with said first and second apertures, and

at least one of the third apertures and at least one of the fourth apertures are (i) at least one of (a) radially and (b) circumferentially displaced from each other; and (ii) at least one of (a) overlap and (b) are connected to each other.

10. A circular saw blade comprising:

a circular saw blade body defining first means for cutting at a periphery thereof;

the blade body having a plurality of second means for receiving a plurality of mounting pins of a first circular saw machine defining a first mounting pin pattern thereof for mounting the circular saw blade to said first circular saw machine; and

the blade body further having a plurality of third means for receiving a plurality of mounting pins of a second circular saw machine defining a second mounting pin pattern thereof different than the first mounting pin pattern for mounting the circular saw blade to said second circular saw machine;

wherein at least one of the second means and at least one of the third means are (i) at least one of (a) radially and (b) circumferentially displaced from each other; and (ii) at least one of (a) overlap and (b) are connected to each other.

11. A circular saw blade as defined in claim 10, wherein the first means comprises a plurality of cutting teeth, the second means comprises a first aperture, said plurality of second means defining a first mounting hole pattern, and the third means comprises a second aperture, said plurality of third means defining a second mounting hole pattern different than the first mounting hole pattern.

12. A method of manufacturing a circular saw blade comprising the steps of:
cutting a substantially circular blade body from a metal blank;
providing a cutting edge along the a periphery of the blade body defined by a plurality of cutting teeth;
providing the blade body with a plurality of first apertures defining a first mounting hole pattern configured to receive a plurality of mounting pins of a first circular saw machine defining a first mounting pin pattern thereof for mounting the circular saw blade to said first circular saw machine; and
providing the blade body with a plurality of second apertures defining a second mounting hole pattern different than the first mounting hole pattern and configured to receive a plurality of mounting pins of a second circular saw machine defining a second mounting pin pattern thereof different than the first mounting pin pattern for mounting the circular saw blade to said second circular saw machine;
wherein the steps of providing the a plurality of first and second apertures include providing at least one of the first apertures and at least one of the second apertures (i) at least one of (a) radially and (b) circumferentially displaced from each other; and (ii) at least one of (a) overlapping and (b) connecting with each other.

13. A method as defined in claim 12, wherein the steps of providing a plurality of first apertures and a plurality of second apertures include at least one of laser cutting, water jet cutting and punching.

14. A method as defined in claim 12, wherein the step of providing a cutting edge includes machining said cutting edge.

15. A method as defined in claim 12, wherein the steps of providing a plurality of first and second apertures comprise providing the blade body with a plurality of contiguous slots each defined by a first aperture at least one of (a) overlapping and (b) connecting with a second aperture.

16. A method as defined in claim 15, wherein the step of providing the blade body with a plurality of contiguous slots comprises at least one of (i) overlapping and (ii) connecting at least about 90° of a circumference of the first aperture with at least about 90° of a circumference of the second aperture.

ABSTRACT OF THE DISCLOSURE

A circular saw blade comprises a generally circular body defining cutting teeth at a periphery thereof. First apertures in the body define a first mounting hole pattern for receiving mounting pins of a first circular saw machine defining a first mounting pin pattern thereof for mounting the circular saw blade thereto. Second apertures in the body define a second mounting hole pattern different than the first mounting hole pattern for receiving mounting pins of a second circular saw machine defining a second mounting pin pattern thereof different than the first mounting pin pattern for mounting the circular saw blade thereto. At least one of the first apertures and at least one of the second apertures are (i) at least one of (a) radially and (b) circumferentially displaced from each other; and (ii) at least one of (a) overlap and (b) are connected to each other.

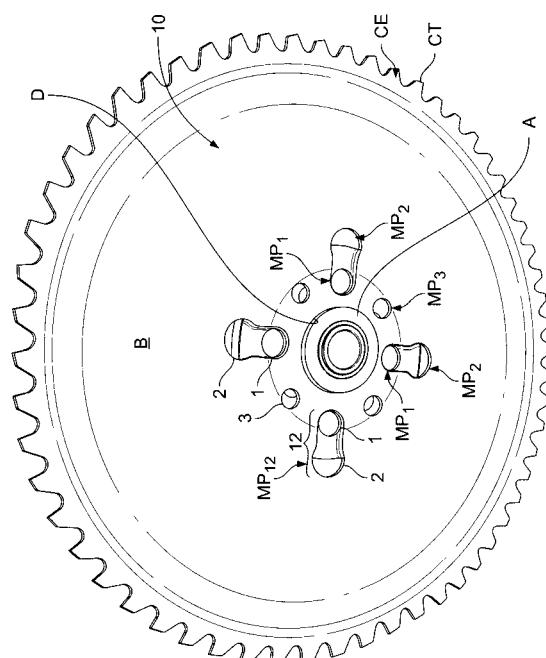


FIG. 1

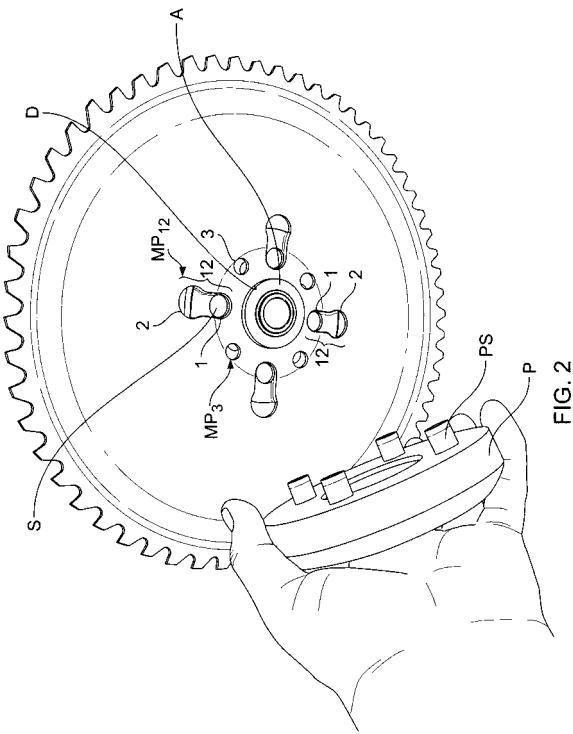


FIG. 2

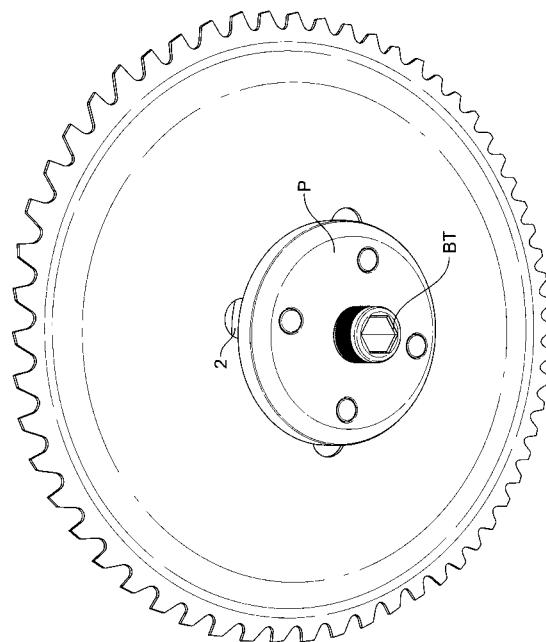


FIG. 3

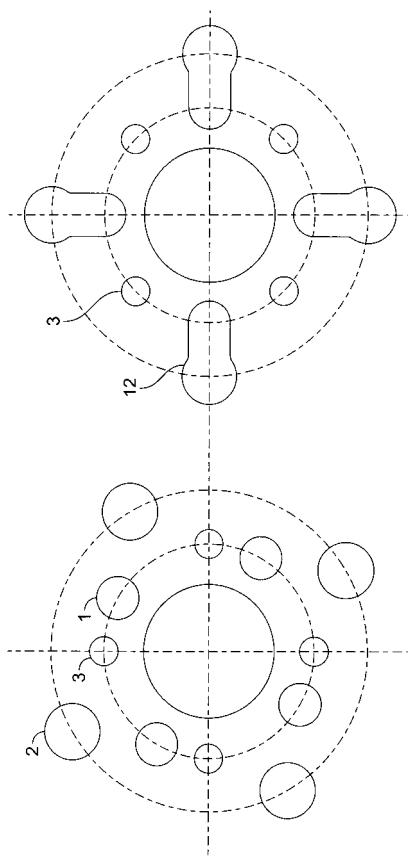


FIG. 4A

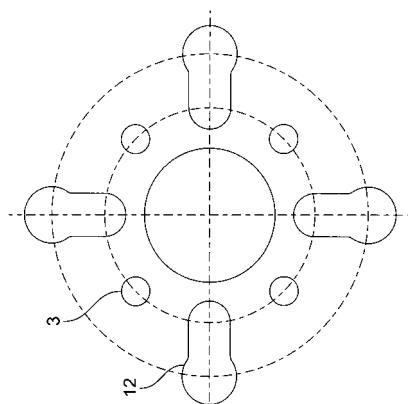
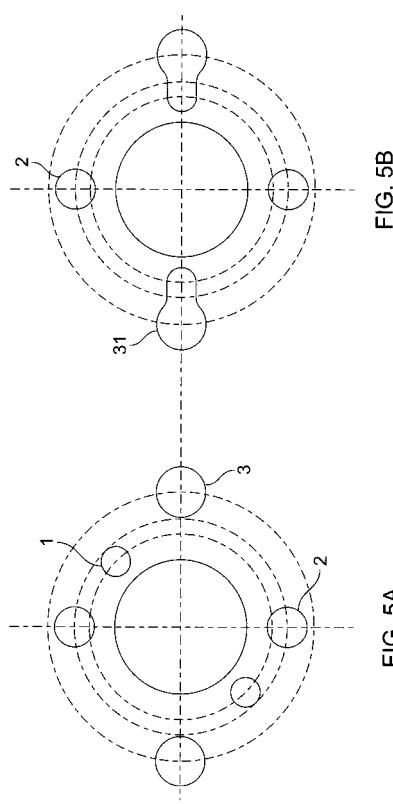
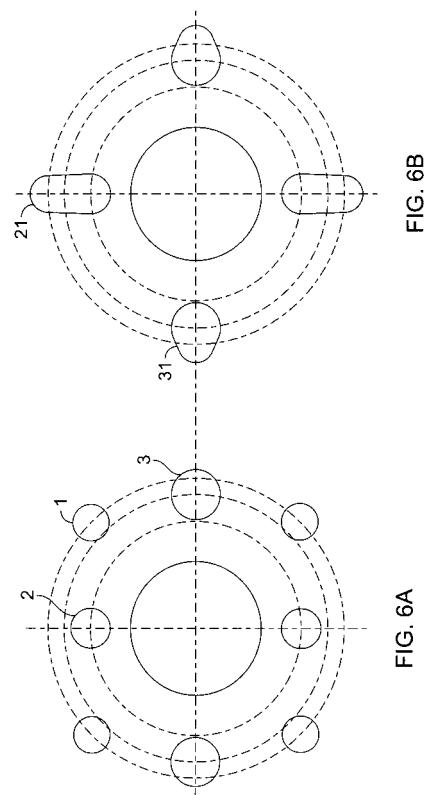
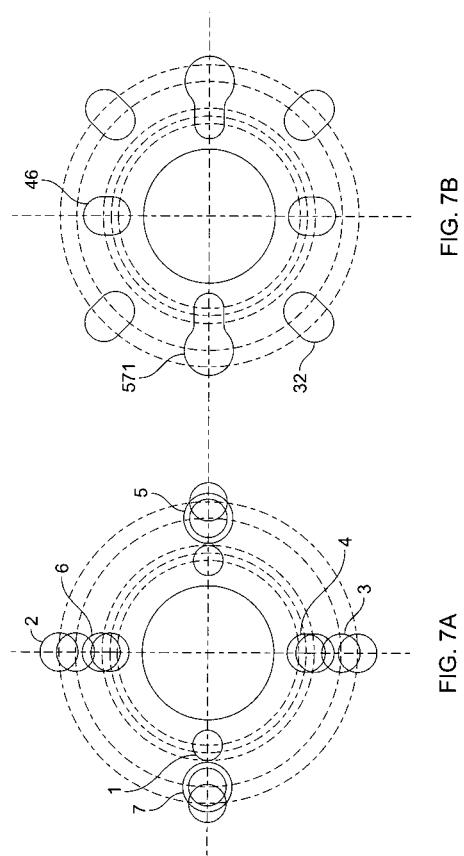
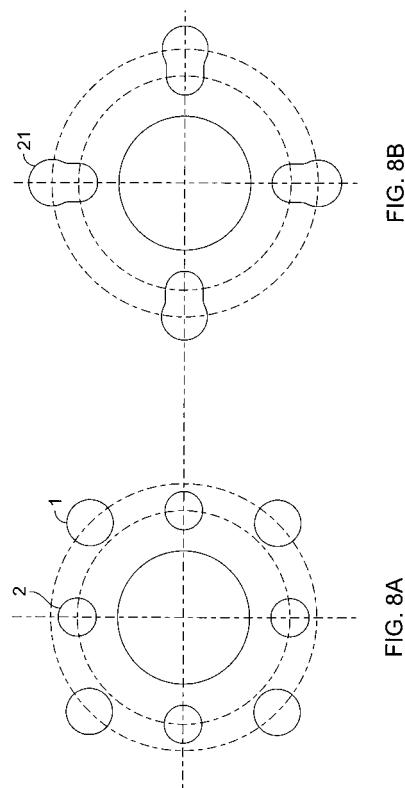
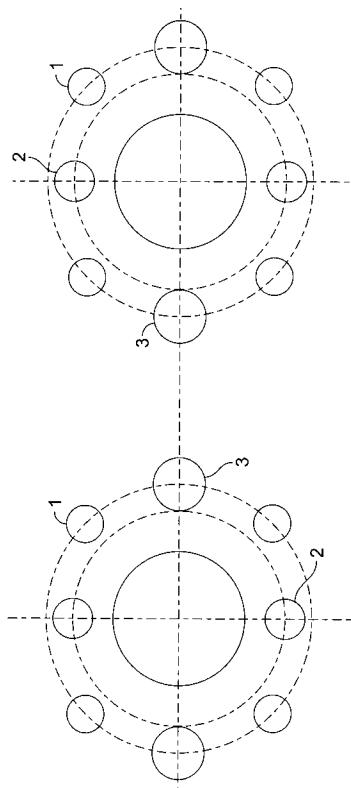
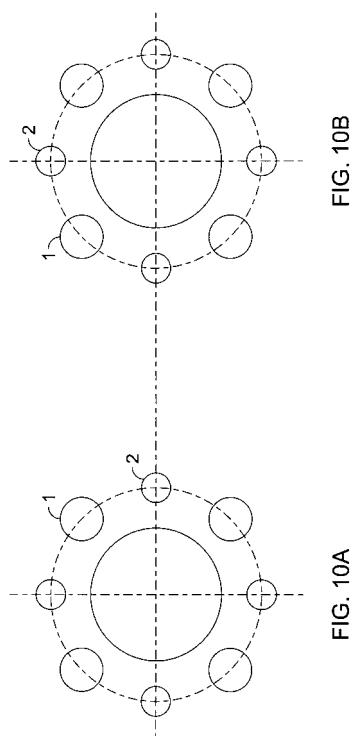








FIG. 4B

FIG. 5A
FIG. 5BFIG. 6A
FIG. 6BFIG. 7A
FIG. 7BFIG. 8A
FIG. 8B

FIG. 9A
FIG. 9BFIG. 10A
FIG. 10B