Office de la Proprieté

Canadian CA 2453776 A1 2005/06/19

Intellectuelle Intellectual Property
du Canada Office (21) 2 453 776
v organisme An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2003/12/19 (51) CL.Int.”/Int.CI.” GOBF 9/45
(41) Mise a la disp. pub./Open to Public Insp.: 2005/06/19 (71) Demandeur/Applicant:

IBM CANADA LIMITED-IBM CANADA LIMITEE, CA

(72) Inventeurs/Inventors:
INGLIS, DEREK B., CA;
SHEIKH, ALI I., CA

(74) Agent: ROONEY, MONICA L.

(54) Titre : OPTIMISATION DE COMPILATEUR
54) Title: COMPILER OPTIMIZATION

(57) Abréegée/Abstract:

110

DEVIRTUALIZE

PROCEDURE

100 l 120

PRIVATIZE
PROCEDURE
PARAMETER

OBJECT

130

CREATE GUARD
ASSUMPTION
ASSOCIATED

WITH OBJECT

140

APPLY COMPILER
OPTIMIZATION
WITH RESPECT
TO OBJECT

W

A method for compiler optimization particularly well suited to object-oriented language that permit dynamic class loading. The

method permits the compiler optim
virtual procedure where the proced

zation of code associated with a potentially polymorphic object that is a call parameter to a

Ure Is a candidate for devirtualization through Inlining. The method includes steps for guarded

devirtualizing of the procedure, insertion of code to ensure privatization of the object before the procedure Is executed, creation of a

guard assumptions associated with
object.

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

the object and application of known optimization techniques to the code associated with the

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

OPIC - CIPO 191




CA 02453776 2003-12-19

Abstract

A method for compiler optimization particularly well suited to object-oriented language that
permit dynamic class loading. The method permits the compiler optimization of code associated
with a potentially polymorphic object that i1s a call parameter to a virtual procedure where the
procedure is a candidate for devirtualization through inlining. The method includes steps for
guarded devirtualizing of the procedure, insertion of code to ensure privatization of the object
before the procedure is executed, creation of a guard assumptions associated with the object and

application of known optimization techniques to the code associated with the object.

P N AT TR AN N WERA IR AT 4 o 0 g AL AL 057 477 S A I M LM 14701258 ST TIPS . MY ot ot R = b8 L AL sty € TR HCEETLSH A e s NS 250 o) PRI /1 - - 1muats



10

|

20

25

CA 02453776 2003-12-19

COMPILER OPTIMIZATION

Field of Invention

The present invention relates to the field of compilers for computer executable instructions. In
particular, to a method for optimizing the computer executable instructions generated by a

compiler.

Background

The time required to execute computer executable instructions (i.e. programs) can be reduced by
applying compiler optimizations. Programs that consist of many short procedures benefit 1n
particular from inter-procedural optimizations. The object-oriented approach to programming
promotes the use of short procedures (commonly known as methods) to encapsulate functionality

and to provide modularity and abstraction. These procedures are frequently virtual procedures.

A common inter-procedural optimization technique is inlining. Inlining reduces the overhead of
a procedure call by replacing the procedure call with a called (i.e. target) procedure directly In
the body of a calling procedure. Inlining also increases the opportunities for applying other
compiler optimization techniques. An exemplary description of inlining 1s provided in A4
Comparative Study Of Static And Dynamic Heuristics For Inlining, Matthew Arnold, Stephen
Fink, Vivek Sarkar, and Peter F. Sweeney, ACM SIGPLAN Workshop on Dynamic and
Adaptive Compilation and Optimization, January 2000 which is incorporated in its entirety

herein by reference.

When a virtual procedure call is executed, a declared procedure or one of several procedures that
can override it is actually invoked. The declared procedure and the overriding procedures are
known as target procedures of the virtual procedure call. The overriding of a target procedure
for a virtual procedure call is a function of the dynamic class definition (i.e. polymorphism) of an
object containing the virtual procedure. The dynamic nature of virtual procedures creates

important challenges for implementing inter-procedural optimizations. An approach known as

CA9-2003-0116 1



10

13

20

235

CA 02453776 2003-12-19

call devirtualization can be used to introduce compiler optimization in the case of a virtual

procedure call.

Many devirtualization techniques are known for reducing the runtime overhead of virtual
procedure calls for various object-orient languages by inlining of the procedure or replacing the
virtual procedure call with a direct procedure call. One such technique is guarded
devirtualization. In guarded devirtualization a class or method (i.e. procedure) test is used to
ensure that the inlined procedure or the direct call to a target method is valid. This technique 1s
highly effective in dynamically-typed object-oriented languages but is much less effective 1n
statically-typed object-oriented languages such as. for example. Java. Exemplary descriptions of
guarded devirtualization are provided in Inlining of Virtual Methods, David Detlets and Ole
Agesen, ECOOP 99 and Thin Guards: A simple and Effective Technique for Reducing the
Penalry of Dynamic Class Loading (2202), Matthew Arnold, Barbara G. Ryder, Proceedings of
the Sixteenth European Conference on Object Oriented Programming (Malaga, Spain, June

2002) which are incorporated in their entirety herein by reterence.

Another devirtualization technique known as direct devirtualization eliminates the guard test by
applying whole program analysis and optimizations using a static compiler. Direct virtualization
is generally based on a closed-world assumption in which no dynamic class loading 1s allowed.
Therefore, this technique is less effective when applied to languages such as Java ™ which
permit dynamic class loading without placing generally unacceptable constraints on the use of

important features of the language.

Yet another technique known as direct devirtualization with code patching employs inlining of a
target procedure at the virtual procedure call site. The inlined instructions are executed until an
assumption that permits devirtualization is invalidated such as, for example when the target
procedure is overridden.  When the assumption is invalidated, the compiler pertorms code

patching to cause the virtual procedure call to be executed instead of the inlined procedure.

[n dynamic languages dynamically loaded classes may be encountered at runtime. Call
devirtualization based on inter-class analysis may be invalidated when new classes are loaded. A

mechanism for dealing with new classes that appear at runtime i1s to detect invalidated

CA9-2003-0116 2

. u..s'_"sm.:maﬂ,“wmmmme;,.'..'.- EE BT ELPEE SO ST AP DS PR SO D I B CLA R DA '".""""N*“%Wmmmmﬂym. PERT L IDN Y PR ) .. . . . s



10

15

20

23

CA 02453776 2003-12-19

optimizations at runtime and to correct them using recompilation. Such a deoptimization
mechanism can discover if a newly loaded class invalidates any existing inlinings and correct
every such inlining by recompiling the appropriate procedures. A difficulty with this mechanism
occurs when a procedure that needs to be recompiled 1s currently executing. There 1s a set of
circumstances (known as preexistence) that avert this complication. Currently-executing
procedures that contain invalidated inlinings are allowed to continue executing the original code

until they exit. Only subsequent invocations of the procedure are to execute the recompiled

code.

A further refinement of this approach is to correct invalidated inlining by replacing a single
instruction with a jump to the original virtual call. This reduces the runtime penalty associated
with recompiling and is known as code patching. An exemplary description of code patching 1s
provided in A Direct Devirtualization Technique with the Code Patching Mechanism, Kazuaki
[shizaki, Toshiaki Yasue, Motohiro Kawahito, Hideaki Komatsu, [PSJ Transactions on

Programming Vol. 43 No. SIG08-011, which is incorporated 1n its entirety herein by reference.

Invariant argument preexistence (herein after preexistence) i1s said to occur when the receiver
object for a procedure call has been allocated betore the invocation ot a caller procedure. When
preexistence occurs, the class of the receiver object does not change in the scope of invocation of
the caller procedure. Even when a class loading event that overrides the called procedure occurs,
the called procedure associated with the receiver object will not be overridden during the
execution of the caller procedure. This property can be exploited in implementing compiler
optimizations such as direct devirtualization. When preexistence occurs, the caller procedure
does not need to be recompiled during the execution of the calling procedure and theretfore
mechanisms such as backup paths, on-stack replacement and other similar mechanisms are not
required. The caller procedure does need to be recompiled or code patched at its next invocation
in which the called procedure has been overridden. An exemplary description of preexistence 1s

provided in /nlining of Virtual Methods (supra).

What 1s needed 1s a method that permits additional inter-procedural compiler optimizations of

computer executable instructions associated with objects subject to run-time polymorphism.

CA9-2003-0116 3

PRI RS Th MV NI L O ISR O AT A BT i U VAR ARG S M DUV M PR ST M R e A TSR A ettt h e 4



10

15

20

25

CA 02453776 2003-12-19

Summary of Invention

A method according an exemplary embodiment of the present invention, known as inner
preexistence, relates to the optimization of compiled computer executable instructions. The
method is particularly well suited to application to object-oriented computer languages that
support dynamic class loading such as, for example, Java. The method can be applied, for
example, when a computer executable procedure (commonly known in the field of object-
oriented programming as a method) is a virtual procedure and has as a call parameter a virtual
(a.k.a. non-final in Java) object. In the method according to the present invention, the procedure
is devirtualized at a call site, for the virtual procedure, by being inlined and by creating guard
code responsive to guard assumptions. Code (i.e. computer executable instructions) is inserted
before the inlined procedure to ensure that the virtual object (i.e. the call parameter) is privatized
(i.e. is thread local). A guard assumption associated with the object 1s added to the guard
assumptions for the procedure. As a result of the preceding steps. optimization to the computer
executable instructions associated with the object can be applied within the devirtualized

procedure.

In accordance with one aspect of the present invention, a method for optimization, by a compiler
of a non-final object-oriented language, of computer executable instructions associated with an
object that is a call parameter to a virtual procedure at a call site including the steps of: a)
devirtualizing the call site of the virtual procedure; b) adding computer executable instructions
for privatizing the object before the devirtualized call site; ¢) creating a guard assumption for the
devirtualized call site associated with the object; and d) applying optimization to computer

executable instructions associated with the object within the devirtualized call sitel.

In accordance with another aspect of the present invention, a method for enabling optimization,
by a compiler of an object-oriented language, of the computer executable instructions associated
with a non-final object that is a call parameter to a virtual procedure at a call site including the
steps of: a) devirtualizing the call site for the virtual procedure; b) adding computer executable
Instructions for privatizing the object before the devirtualized call site; and ¢) creating a guard

assumption for the devirtualized call site associated with the object.

CA9-2003-0116 4

Mo W g BRRIPELS A R It LI b 5 s TR B 18 P R A1 - 1 AP PP T et Mt ML iy CONATL 1 1S b AN A U HODCHAYTE WMLt s e '



10

15

20

CA 02453776 2003-12-19

In accordance with a further aspect of the present invention, a computer program product for
optimization, by a compiler of an object-oriented language, of computer executable instructions
associated with a non-final object that is a call parameter to a virtual procedure at a call site, the
computer program product including: computer readable program code devices for: a)
devirtualizing the call site of the virtual procedure; b) adding computer executable instructions
for privatizing the object before the devirtualized call site; ¢) creating a guard assumption for the
devirtualized call site associated with the object; and d) applying optimization to computer

executable instructions associated with the object within the devirtualized call site.

In accordance with yet another aspect of the present invention. a computer program product for
enabling optimization, by a compiler of a non-final object-oriented language, of the computer
executable instructions associated with a object that is a call parameter to a virtual procedure at a
call site, the computer program product including: computer readable program code devices for:
a) devirtualizing the call site of the virtual procedure; b) adding computer executable instructions
for privatizing the object before the devirtualized call site; and c) creating a guard assumption for

the devirtualized call site associated with the object.

Other aspects and features of the present invention will become apparent to those ordinarily
skilled in the art to which it pertains upon review of the following description of specific

embodiments of the invention in conjunction with the accompanying figures.
Brief Description of Drawings
The present invention will be described in conjunction with the drawings in which:

Fig. 1 is a flow diagram representing steps in an exemplary embodiment of a method according

to the present invention.

Fig. 2 is a schematic representation of an exemplary generic computing platform on which the

present invention can be practiced.

CA9-2003-0116 >

D e AT i wA e R S WS T s . ST Tt o e Ay AU A s - U A U S S AN TAEES NN A AR OIS A, -0 | AL\ S BV A4 S



10

15

20

25

CA 02453776 2003-12-19

Detailed Description

Figure 1 represents a flow diagram depicting steps in a method 100 according to an exemplary
embodiment of the present invention. The method 100 can be applied, for example, during
compiler optimization when there exists a non-final object (i.e. who's class can be extended or
sub-typed through polymorphism) as a call parameter for a procedure at a call site that can be
devirtualized as a result of compiler optimization. In the first step 110, the call site i1s
devirtualized by inlining of the procedure. That is, a virtual procedure call to the procedure is
replaced by a copy ot the procedure directly at the call site. Preferably, guard code that consists
of no operation (NOP) instructions is inserted betore the inlined procedure. Guard assumptions
are also created for invalidating the devirtualization of the procedure when the definition (1.e.
hierarchy) of a class declaring the procedure 1s extended or when the procedure 1s overridden.
Invalidation of a guard assumption results in the deoptimization ot the procedure call (i.e. code
patching 1s used to replace the inlined procedure with code for calling the virtual procedure) at
run-time. According to an alternative embodiment of the method 100 of the present invention,
guard code can be inserted and a null or no guard assumption created in a case where inlining of
the procedure would not normally require guard code to be inserted and a guard assumption
created (e.g. when the procedure 1s static or a class defining the procedure is final). The next
step 120 ensures that the object (i.e. the call parameter) will preexist an invocation of the
procedure. This is accomplished by privatizing the object by, for example, causing an evaluation
of the object in the computer executable code into which the calling procedure is inline before
the location of the inlined calling procedure. A guard assumption 1s created for the object 1n step
130. The guard assumption for the object invalidates the devirtualization of the procedure when,
for example, the definition of the class of the object is extended or when a procedure declared in
the class of the object is overridden. Invalidation of a guard assumption for the object results in
the deoptimization of the procedure call at run-time. In step 140 compiler optimization with
respect to the object can be applied. Compiler optimization can take the form of, for example,
inlining of a procedure declared in the class of the object, the elimination of run-time type-
checking functions, common sub-expression elimination, code motion transformations, bounds-

checking elimination and other similar compiler optimizations with respect to the object.

CA9-2003-0116 6

wl Bh e et e Sl e R L AN BT At | N R R AL AR Lid L1 gt s et P LAY | MM N w“Mulwm.ummuwmlmﬂhuuvﬂh L2 T O S R TRV . o .



10

15

20

25

CA 02453776 2003-12-19

The tollowing 1s a segment of Java code that is used to illustrate a scenario in which a method

according to the present invention can be applied.

class A {

public C ¢,

public void foo(B b) {b.bar(c), |
/
class B {

public void bar(C c) { c.goo( ); }
/
class C {

public void goo( ) {...}
/

The code segment includes declarative statements defining three object classes — A, B and C.
The definition of class A contains declarations of a public variable ¢ of type (i.e. class) C and of a
public method foo(B b) having a call parameter b of type B. Class 4 is said to define a method
Joo(B b) 1n the conventional sense of the term method as generally applied in the realm of object-
oriented programming to procedures assoclated with an object. For clarity all such methods of
objects will herein after be referred to by the term “procedure’. Therefore, restating — class A
contains a declaration of a public procedure foo(B b). Similarly, the definition of class B
contains a declaration of a public procedure bar(C’ ¢) having a call parameter ¢ of type C (herein

atter denoted as B::bar(C)). Finally the definition of class C defines a public procedure goo( ).

The procedure foo of class 4 contains a call to b.bar(c). The location of the call to b.bar(c) in
foo 1s referred to as a call site. Using known techniques, a compiler can optimize computer
executable instructions generated from the above code segment by inlining b.bar(c) into foo.
Inlining of the procedure is effected by replacing the call to b.bar(c) with a copy of b.bar(c) at
the call site. If the class B is polymorphic then the procedure B::bar(C) is subject to being
overridden. In order to guard against the inlined computer executable instructions corresponding

to b.bar(c) being invalidated by B::bar(C) being overridden, guard code can be inserted around

CA9-2003-0116 7

B N T e e L e e e e L e e T T e T L



10

15

20

25

CA 02453776 2003-12-19

the inlined call sight. The guard code imposes a run-time overhead cost which is undesirable.
The run-time overhead of the guard code can be mitigated using a technique called code
patching. The guard code can be replaced, using code patching, by NOP instructions. An
optimization assumption can be put in place that 1s triggered by, for example, any changes to the
definition of class B or more specifically to the definition of B.::bar(C). Should class B or
procedure b.bar(c) be subject to polymorphism such as, for example, by the overriding of
procedure B::bar(C) then an assumption that b.bar(c) 1s monomorphic 1s invalidated. The NOP
instructions are then overwritten with code to call the procedure b.bar(c). This overwriting of

the instructions is known as code patching. The result is deoptimization of the procedure

b.bar(c).

The method 100 according to an exemplary embodiment of the present invention provides for the
procedure c.goo( ) to be inlined in the procedure b.bar(c) which itself i1s inlined. Using the
method 100 of the present invention, no guard code is placed around the call site of c.goo( ) in
the inlined computer executable instructions corresponding to b.bar(c). Code is also added
before the inlined computer executable instructions corresponding to b.bar(c) to, for example,
evaluate ¢ thus ensuring the preexistence of ¢ in the scope of execution of b.bar(c). An
additional optimization assumption is added to those created for the inlined b.bar(c) such that a
change to the definition of class C or to the definition of c.goo( ) will have similar effect as a
change to the definition of class B or to the definition of B..bar(C) as described above. That 1s,
the NOP instructions around the call site for the inlined b.bar(c) are overwritten with code to call
virtual procedure b.bar(c). This ensures that when the optimization assumption for class C or
procedure goo( ) is invalidated (i.e. the class C 1s polymorphic) that any new threads executing in

b.bar(c) will use the correct definition of goo( ).

The method 100 according to the present invention is not limited to the inlining ot a procedure.
The method 100 according to the present invention can also permit other forms of compiler
optimizations with respect to an object that is a call parameter to a virtual procedure which is
devirtualized by inlining. Compiler optimizations in the form of, for example, the elimination ot
run-time type-checking functions (e.g. in Java the use of checkcast which checks that an operand

can be cast to a given type and instanceof which tests whether an object reference or array

CA9-2003-0116 3



10

15

CA 02453776 2003-12-19

belongs to a given class), common sub-expression elimination (a.k.a. commoning), code motion
transformation (e.g. loop-invariant optimization), bounds-checking elimination (e.g. in Java
when accessing arrays), other similar compiler optimizations and combinations thereot can also

be applied in accordance with the method 100 of the present invention.

The method 100 according to the present invention can be tmplemented by a computer program

product comprising computer readable program code devices.

Fig. 2 is a schematic representation of an exemplary generic computing platform on which the
present invention can be practiced. A central processing unit (CPU) 300 provides main
processing functionality. A memory 310 is coupled to CPU 300 for providing operational
storage of programs and data. Memory 310 can comprise, for example, random access memory
(RAM) or read only memory (ROM). Non-volatile storage of, for example, data files and
programs is provided by a storage device 320 that can comprise, for example, disk storage. Both
memory 310 and storage device 320 comprise computer useable media that can store computer
program products in the form of computer readable program code. User input and output 1s
provided by an input/output (I/0) facility 330. The [/O facility 330 can include, for example, a

graphical display, a mouse and a keyboard.

[t will be apparent to one skilled in the art that numerous modifications and departures from the
specific embodiments described herein may be made without departing from the spirit and scope

of the present invention.

CA9-2003-0116 9

e e LN LAY L s an e WA 20 L A LEANI b AR, G A - S AT STURARTT ARG AN I YA s L e S KRR AL AR | Wt L AR A e - e e e - .



CA 02453776 2003-12-19

Claims

1. A method for optimization, by a compiler of an object-oriented language, of computer

10

15

20

25

executable instructions associated with a non-final object that is a call parameter to a virtual

procedure at a call site comprising the steps of:
a) devirtualizing the call site of the virtual procedure;

b) adding computer executable instructions for privatizing the object before the

devirtualized call site;

c) creating a guard assumption for the devirtualized call site associated with the object;

and

d) applying optimization to computer executable instructions associated with the object

within the devirtualized call site.

The method of claim 1 wherein the step of devirtualizing includes inlining computer

executable instructions associated with a target procedure for the virtual procedure.

The method of claim | wherein the computer executable instructions for privatizing includes

an evaluation of the object.

The method of claim 1 wherein the guard assumption includes invalidating the

devirtualization of the call site when the object is subject to polymorphism.

The method of claim 1 wherein the step of applying optimization includes inlining the
computer executable instructions associated with another virutal procedure contained in the

object.

The method of claim 1 wherein the step of applying optimization includes elimination of run-
time type-checking functions in the computer executable instructions associated with the

object.

The method of claim 1 wherein the step of applying optimization includes common sub-

expression elimination in the computer executable instructions associated with the object.

CA9-2003-0116 10

T Bk n SR e AR RS SR A A g & LR S - AR S T MR I e AL S Pt v O SR A Sy g s 2 e s B s



10

15

20

10.

11.

12.

14.

CA 02453776 2003-12-19

The method of claim 1 wherein the step of applying optimization includes code motion

transformation of the computer executable instructions associated with the object.

The method of claim 1 wherein the step of applying optimization includes bounds checking

elimination in the computer executable instructions associated with the object.

The method of claim 1 wherein the step of applying optimization includes elimination ot run-

time type-checking functions in the computer executable instructions associated with the

object.

The method of claim | wherein the step of applying optimization includes common sub-

expression elimination in the computer executable instructions associated with the object.

The method of claim 1 wherein the step of applying optimization includes code motion

transformation of the computer executable instructions associated with the object.

. The method of claim 1 wherein the step of applying optimization includes bounds checking

elimination in the computer executable instructions associated with the object.

A method for enabling optimization, by a compiler of an object-oriented language, of the
computer executable instructions associated with a non-final object that is a call parameter to

a virtual procedure at a call site comprising the steps of:
a) devirtualizing the call site for the virtual procedure;

b) adding computer executable instructions for privatizing the object before the

devirtualized call site; and

¢) creating a guard assumption for the devirtualized call site associated with the object.

CA9-2003-0116 1



10

15

20

CA 02453776 2003-12-19

15. A computer program product for optimization, by a compiler of an object-oriented language,
of computer executable instructions associated with a non-final object that is a call parameter

to a virtual procedure at a call site, the computer program product comprising:
computer readable program code devices for:
a) devirtualizing the call site of the virtual procedure;

b) adding computer executable instructions for privatizing the object betfore the

devirtualized call site;

¢) creating a guard assumption for the devirtualized call site associated with the object:

and

d) applying optimization to computer executable instructions associated with the object

within the devirtualized call site.

16. The computer program product of claim 15, the computer readable program code devices tor
of devirtualizing includes inlining of computer executable instructions associated with a

target procedure for the virtual procedure.

17. The computer program product of claim 15, wherein the computer executable instructions for

privatizing includes an evaluation of the object.

18. The computer program product of claim 15, wherein the guard assumption includes

invalidating the devirtualization of the call site when the object is subject to polymorphism.

19. The computer program product of claim 15, wherein the computer executable instructions
applying optimization includes inlining the computer executable instructions associated with

another virutal procedure contained in the object.

CA9-2003-0116 12



CA 02453776 2003-12-19

20. A computer program product for enabling optimization, by a compiler of an object-oriented
language, of the computer executable instructions associated with a non-final object that 1s a

call parameter to a virtual procedure at a call site, the computer program product comprising:
computer readable program code devices for:
a) devirtualizing the call site of the virtual procedure;

b) adding computer executable instructions for privatizing the object before the

devirtualized call site; and

¢) creating a guard assumption for the devirtualized call site associated with the object.

CA9-2003-0116 13

e DA AN Lo M o B NN A MR | ROt PR it~ A $3 50 MBS E AN (RO M T LR SN 4 2o A 0 ST AN o 118 1y ¢ 61 s e 1 oo o



100 \

CA 02453776 2003-12-19

1/2
INGLIS
CA9-2003-0116

110

DEVIRTUALIZE
PROCEDURE

120

PRIVATIZE
PROCEDURE
PARAMETER
OBJECT

130

CREATE GUARD
ASSUMPTION
ASSOCIATED
WITH OBJECT

140

APPLY COMPILER
OPTIMIZATION
WITH RESPECT

TO OBJECT

FIGURE 1



CA 02453776 2003-12-19

2/2
CA9-2003-0116

310
MEMORY
330
300
/O CPU
C (30
STORAGE

FIGURE 2



1001

DEVIRTUALIZE
PROCEDURE

120

PRIVATIZE
PROCEDURE

PARAMETER
OBJECT

130

CREATE GUARD
ASSUMPTION
ASSOCIATED
WITH OBJECT

Nfuichd—

140

APPLY COMPILER
OPTIMIZATION
WITH RESPECT
TO OBJECT




	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - claims
	Page 13 - claims
	Page 14 - claims
	Page 15 - claims
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - abstract drawing

