PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 :

GO6F 17/21 A2

(11) International Publication Number:

(43) International Publication Date:

WO 00/28435

18 May 2000 (18.05.00)

(21) International Application Number: PCT/US99/26440

(22) International Filing Date: 9 November 1999 (09.11.99)

(30) Priority Data:

60/107,583 us

9 November 1998 (09.11.98)

(71) Applicant: VARIS CORPORATION [US/US]; 7500 Innova-
tion Way, Mason, OH 45040 (US).

(72) Inventor: WALKER, James, R.; 3151 Madiera Lane #8,
Maineville, OH 45039 (US).

(74) Agents: LEVY, Mark, P. et al.; Thompson, Hine & Flory LLP,
2000 Courthouse Plaza NE, P.O. Box 8801, Dayton, OH
45401-8801 (US).

(81) Designated States: CA, European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: METHOD AND SYSTEM FOR DYNAMIC FLOWING DATA TO AN ARBITRARY PATH DEFINED BY A PAGE

DESCRIPTION LANGUAGE

(57) Abstract

A method of associating
a particular path defined in
a page description language
specification with a plurality of

special attributes. The method 2
\

30

comprises the steps of monitoring

a first text string defined by a
first page description language
text command in the specification
for a first special character or a M~
first special string of characters,
the first special character or the Laa ™
first special string of characters
being indicative of a first special
attribute; monitoring a second

&

Yo

CIO,

text string defined by a second
page description language text
command in the specification for
a second special character or a
second special string of characters,
the second special character on the
second special string of characters
being indicative of a second

14 1

8%

-

special attribute; responsive to
a detection of the first special

character or the first string of characters in the first text string, identifying a path defined by a page description language path command
and having a predetermined relationship with the first text command in the specification as the particular path associated with the first
special attribute; and responsive to a detection of the second special character or the second special string of characters in the second text
string, identifying the path defined by the page description language path command and having a predetermined relationship with the
second text command in the specification as the particular path associated with the second special attribute.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG

BR
BY
CA

CcG
CH
CI

CcM
CN
Cu

DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
Mw
MX
NE
NL
NO
Nz
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
uG
us
vz
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 00/28435 PCT/US99/26440

METHOD AND SYSTEM FOR DYNAMIC FLOWING DATA TO AN
ARBITRARY PATH DEFINED BY A PAGE DESCRIPTION LANGUAGE

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority from U.S. Provisional Application No.
60/107,583 filed November 9, 1998.

BACKGROUND

The present invention relates to the high speed printing industry, and more
particularly a system and method for flowing variable data into a page description
language file in a high speed printing environment.

Application programs, such as word processors, illustrators, and
computer-aided design systems are software packages used to create a document
(text and graphics) on a computer screen and to simultaneously generate a page
description language ("PDL") specification, which is to be transferred to the printer or
to any other type of raster or output device for creating a hard copy or copies of the
document. Alternatively, a PDL specification can be generated by a programmer
without the assistance of an application program.

The printer executes the PDL specification to generate a bitmap of the
document, or a raster-data representation of a document, and eventually transfers
the bitmap or raster-data to the physical medium. A typical PDL language, such as
PostScript (a registered trademark of Adobe Corporation) defines a page of the
document as containing a number of data areas, where each data area contains
either graphic or alpha-numeric data. Each data area is defined by a "graphic state,"
which is a collection of parameters for controlling the representation and appearance
of text and graphics. For example, the graphic state can include a set of text
attributes such as scale-factor, type-font, etc. In PostScript, an example of a PDL

command used to build a graphic state can be: twenty rotate \Times-Roman
findfont 14 scalefont and setfont. Examples of PDL commands used to
define the graphic or alpha-numeric data that is displayed in the data area include: 0
0 moveto and (ABC) show. The entire group of PDL commands used to define a

document is hereinafter referred to as the "PDL specification."

WO 00/28435 PCT/US99/26440

In variable data printing each printed document shares a common template
and there is at least one area in the template that changes for each printing of the
template. Typical PDL languages are not designed for high-speed variable data
printing because, with PDL languages and PDL interpreters, even if a single item of
data in the document changes, an entirely new PDL specification must be created
and interpreted. For example, if one-hundred thousand copies of a mass-mailing
advertisement were to printed (i.e., each copy of which is identical except for the
mailing address), it is typically necessary to generate a new PDL specification for
each copy to printed. Hence, to generate one-hundred thousand advertisements, it
would be necessary to generate one-hundred thousand PDL specifications, even
though each advertisement is virtually the same except for the variable data area.
The processing time required to interpret and render one-hundred thousand PDL
specifications is enormous, significantly slowing the entire printing system.

Furthermore, typical PDL languages do not include any text or data flowing
capabilities. These features are usually implemented by the application program,
and when such an application program flows data (such as text) into a PDL
document, the calculations to determine where to place the data are completed
prior to the generation to the PDL specification. Accordingly, variable data cannot
be flowed into a template document without creating a new PDL specification for
each document. Accordingly, there is a need for a high-speed printing operation
having the ability to merge variable data into a template defined by a PDL
specification; and in particular, having the ability to flow variable data into a template

path defined by PDL specification in a high-speed printing operation.

WO 00/28435 3 PCT/US99/26440

SUMMARY

It is an object of the present invention to provide a system and method for
flowing variable data (such as text data, image data, bar code data and the like) into
a path of a template defined by a PDL specification in a high-speed printing
operation. It is a further object of the present invention to provide the ability to
generate a plurality of merged bitmaps, which are each essentially a copy of a
template, except for at least one portion of the template that contains an arbitrary
path. In that path, each merged bitmap can contain a different set of variable data
merged into it. The template is defined by a page description language, and the
page description language only needs to be processed or interpreted once before
creating all of the merged bitmaps, thus providing an extremely high-speed variable
data printing operation.

The computer implemented method for flowing data into an arbitrary path
defined by a page description language specification ("PDL specification") generally
comprises the steps of: processing (interpreting) the PDL specification to produce a
template; designating a path defined in the PDL specification as a wrapping path;
associating a block of variable data with the wrapping path; and merging variable
data, according to the path boundary and according to a predefined flow rule, into a
copy of the template.

The method of the present invention is accomplished by executing a control
task in conjunction with a PDL interpreter program. The control task generates a
template display list based upon the PDL commands in the PDL specification. The
display list includes a plurality of rendering commands, where each rendering
command designates a particular data area or object to be rendered, the graphics
state to be applied to the data area and the offset address at which the rendered
object, if any, in the data area is to be overwritten onto the final bit map. The
graphic states for each data area are set forth in the PDL specification, and pertain
to the print attributes that describe how particular graphic or alpha-numeric data is to
appear on the printed page. These attributes can include the size, font, position,
orientation, location, and the like.

The control task, during the PDL interpretation procedure, monitors the data

WO 00/28435 PCT/US99/26440

areas defined by the PDL specification to watch for variable data paths defined by
the PDL code. If the control task identifies a path as being a variable data path, it
reserves the graphic states associated with that variable data path in a cache or
memory, and then moves on to the next data area defined in the PDL specification,
preferably without allowing the path data to be added to the template display list.

Once the interpreter program completes its interpretation of the PDL
specification, the control task saves the template display list in memory without
dispatching a bitmap of the template to the printer. Subsequently, a merge task is
initiated which accesses a variable data record from a merge file; associates the
variable data record to a particular variable data path; creates representations of the
variable data, such as rendering commands according to the reserved graphic states
pertaining to that particular variable data path, according to the boundary of the
particular variable data path and according to a predefined flow rule: and then
generates a merged bitmap by processing the template display list and the variable
data rendering commands. The final merged bitmap that may then be dispatched to
the printer. This merge task is repeated for each variable data record in the merge
file associated with that particular variable data path to create a plurality of the
merged bitmaps.

Thus, the PDL specification of the template need only be interpreted once,
saving significant processing time for the variable printing operation, because the
reserved graphic states may be utilized over and over again to create the flowed
data bitmap for each variable data record contained in the merge file.

How the control task identifies a particular PDL path defined in the PDL
specification as being unique, i.e., as being identified as a wrapping path, is an
important step in the above process. This is accomplished by providing a text
command in the PDL specification that defines one or more characters that are
recognized by the control task as being special characters, as opposed to merely
being characters that are to be included on the printed page. The control task
monitors all text strings defined by the PDL specification for such special characters,
and responsive to a detection of the special character in the text string defined by
the text command, the control task identifies the path command that has a

predetermined relationship with the text command in the PDL specification. This

WO 00/28435 PCT/US99/26440

predetermined relationship can be satisfied by the first path command to follow the
text command in the PDL specification or by the path command that is "grouped"
with the text command in the PDL specification.

In the preferred embodiment of the present invention, the characters "<<" and
">>" are used as part of a special text string to define an area as a variable data
area. And if that special text string also includes the string wrap then the control
task will recognize that the very next path command appearing in the PDL
specification will be a unique path, in this case a path for flowing variable text

bitmaps into.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1is a is a schematic, block-diagram representation of a high-speed

printing system according to the present invention;

Fig. 2 is a first example of a job ticket file for use with the present invention:

Fig. 3 is a second example of a merge file for use with the present invention:

Fig. 4 is a graphical representation of data contained in a first example PDL
specification for use with the present invention:

Fig. 5 is a graphical representation of a process step of the present invention
operating on data contained in the PDL specification of Fig. 4;

Fig. 6 is a graphical representation of a process step of the present invention
following the process step of Fig. 5;

Fig. 7 is a graphical representation of a process step of the present invention
following the process steps of Figs. 5 and 6;

Fig. 8 is a graphical representation of a process step of the present invention
following the process steps of Figs. 5 and 6;

Fig. 9 is an example of a merged document created by the process and
system of the present invention;

Fig 10 is an example of a merged document created by the process and
system of the present invention;

Fig. 11 is a flow chart representation of a process of the present invention:

Fig. 12 is an example of a merged document created by the process and

system of the present invention;

WO 00/28435 PCT/US99/26440

Fig. 13 is an example of a merged document created by the process and
system of the present invention;

Fig. 14 is a second example of a job ticket file for use with the present
invention;

Figs 15A and 15B are a second example of a merge file for use with the
present invention;

Fig. 16 is a graphical representation of data contained in a second example
PDL specification for use with the present invention:

Figs. 17A-17C are graphical representations of process steps of the present
invention operating on data contained in the PDL specification of Fig. 16, the job
ticket of Fig. 14 and the merge files of Figs. 15A-15B: and

Figs. 18A-18C are examples of merged pages created by the process of the
present invention using the PDL specification of Fig. 16, the job ticket of Fig. 14 and
the merge files of Figs. 15A-15B.

DETAILED DESCRIPTION

As shown in Fig. 1, a system for performing the method of the present

invention includes a printer controller 10 having access to a job ticket file 12, a page
description language ("PDL") file 14, a source of variable data such as a merge file
16, and an optional printer configuration file 18. The system also contains an
operator control terminal 20 for providing operator controls such as indicating the
name and path of the job ticket file 12 for the specific print job.

The job ticket file 12 contains the guidelines for the print job which can include
the names and locations of the PDL file(s) 14, the merge file(s) 16, the configuration
file(s) 18, etc.; and may also include special instructions pertaining to features such
as data wrapping, described below. The PDL file 14 is preferably a PostScript®
(registered TM of Adobe Systems, Inc.) specification created by an application
program, such as a word processor, illustrator, or computer-aided design system.
The merge file 16 contains platform independent data, such as text data, image
data, bar-code data and the like, which is to be merged into a template bitmap
defined by the PDL file during the merging task, as will be described in detail below.

The configuration file 18 defines the print engines and post processing

WO 00/28435 PCT/US99/26440

equipment and other options to be executed.

Initially, the path and name of the job ticket file 12 is specified by the operator
using the operator control terminal 20. The printer controlier 10 retrieves the job
ticket file 12 and then retrieves the PDL files 14 and merge files 16 that are specified
in the job ticket file. Next the controller 10 initiates a control task 22 in conjunction
with a page description code interpreter program.

The control task interprets the PDL specification from the PDL file 14 and
monitors data areas defined in the PDL specification to watch for areas defined by
the specification to become variable. If the control task identifies a data area as
being a variable data area, it reserves the graphic states 23 of that variable data
area in memory 24 and then moves on to the next data area defined by the PDL
specification, usually without allowing any data defined by the variable data area to
be added to the template bitmap. Preferably, the control task 22 will also create a
font cache (an entire set of character bitmaps generated according to the reserved
graphic states) for the reserved graphic states, which will be linked to the reserved
graphic states in memory 24. Once the control task completes its processing of the
PDL specification, the control task saves the template bitmap 25 in memory 26.

The control task 22 may also create a template display list 25 of static data
defined by the PDL file 14. The display list 25 will include a plurality of rendering
commands, where each rendering command designates a particular static data area
or object to be rendered, the graphics state to be applied to the static data area and
the offset address at which the rendered object, if any, in the static data area is to be
overwritten onto the final bit map. As mentioned above, the graphic states for each
data area are set forth in the PDL specification, and pertain to the print attributes
that describe how particular graphic or alpha-numeric data is to appear on the
printed page. Once the control task completes its processing of the PDL
specification, the control task may save the template display list 25 in memory 26. If
the PDL file 14 does not include code for any static data, the control task may
generate an empty template display list 25 or may decide not to create a template
display list at all. _

Next, a merge task 28, having access to the variable data records 17 from the

merge file 16, is executed to apply the reserved graphics states 23 and associated

WO 00/28435 PCT/US99/26440

font cache to the variable data records 17, creating rendering commands for that
variable data record as defined by the graphic states. The merge task 28 retrieves a
copy 25' of the template display list 25 from the memory 26 and merges the variable
data rendering commands with the template display list to create a merged display
list 30. Finally, the controller 10 performs a rendering task 32 to render the merged
display list 30 into a plurality of bitmap bands 34 for dispatching to at least one print
engine 36.

A method for performing the above control task and merge task is described
in U.S. Pat. No. 5,729,665 entitled "Method of Utilizing Variable Data Fields with a
Page Description Language,” the disclosure of which is incorporated herein by
reference. A method and system architecture for performing the above merging,
banding and dispatching operations are respectively described in U.S. Pat. Nos.
5,594,860 5,796,930, the disclosures of which are also incorporated herein by
reference.

A first embodiment of the present invention is illustrated by way of example in
Figs 2-10. As illustrated in Fig. 2, the job ticket file 12 can contain a file path 38 for
determining the location and name of the PDL file, and can contain a file path 40 for
determining the location and name of the merge file. The job ticket file 12 can also
contain a descriptive name of a path 42, in this case, named "Shape," for identifying
a name of a path in the PDL file that is to have variable data flowed into it during the
merge task. The variable data to be flowed into the path, text data in this case, will
be taken from the file designated by the file path 40 of the merge file. In this case
the merge file is named "info.text." The group header 44 "[Wrap]" indicates that the
group is defining a wrapping path. After the wrapping path "Shape" has been
defined in the job ticket file, a second group header 46 "[Shape]" can be thereafter
defined in the job ticket file to provide information about the wrap path; such as
defining the fill rule 48 to be used in the wrapping operation, and such as defining a
path drawing rule 50, i.e., whether the path is to be drawn in the final rendered
image. Other definable wrapping commands for the particular path "Shape" can
include defining the top, bottom or side margins, defining the justification, setting the
number of paths to flow the data into, defining an overflow path, etc. A complete

description of the different elements that can be defined for the wrapping path in the

WO 00/28435 PCT/US99/26440

job ticket file is described in detail in the Appendix, below.

As illustrated in Fig. 3, the merge file 16 is a platform-independent data file
that contains the "variable" data to be merged into the path defined in the PDL
specification. The merge file can contain a field name 52, corresponding to a field
name that will be defined in the PDL specification, which is associated with a
particular variable data path. The merge file will also contain a number of variable
data blocks 54, text blocks in this case, corresponding to the field name 52. One
variable data block 54 will be merged into the variable data path, defined in the PDL
specification, at a time.

As illustrated in Fig. 4, the designer will utilize an application program to
create a document containing a path 56 and attribute data, such as an attribute
string 58, to be associated with the path 56. The application program will then be
directed to create a PDL specification of the document by the designer. The
attribute string 58 contains a field name 60 surrounded by special characters, "<<"
and ">>", a wrap attribute command string 62, and a path identifier 64. The PDL
specification generated by the application program will include the graphic states of
the attribute string 58. These graphic states can include the font size (i.e., 10 point),
the type-font (i.e., Script) the orientation (i.e., angled upwardly at 50°) and the like.

As discussed above, and referring again to Figs. 1-4, the control task 22 will
execute a PDL interpreter program to interpret the PDL specification created by the
application program to generate a template bitmap 25 of the document, and to also
monitor for any variable data paths defined in the PDL specification.

In the preferred embodiment, the control task 22 monitors for variable data
areas defined by the PDL specification by monitoring for special characters in the
text strings defined by text commands in the PDL specification. As shown in Fig. 4,
the special characters "<<" and ">>" surround the field name 60. The control task,
upon identifying the special characters in the text command for the attribute string
will thus know that the attribute string 58 is defining a variable data area, and is not
merely defining a text string to appear on the printed page (the attribute string will
not appear on the final printed page unless the control task is directed to by the job
ticket file). The field name 60 surrounded by the special characters identifies the

associated field name 52 present in the merge file 16. During the processing of the

WO 00/28435 PCT/US99/26440
10

text command for the attribute string 58, the control task will also monitor for the
wrap string 62 within the attribute string, which also includes the path identifier string
64 associated therewith. If found, the control task will know that a path defined in
the PDL specification that has a predetermined relationship with the text command
for the attribute string will be a wrapping path, where the wrapping path has the
wrapping attributes defined in the job ticket file 12 for the particular group header 44
and descriptive name of a path 42 matching the path identifier string 64 set forth in
the attribute string 58.

Preferably, the predetermined relationship is satisfied by the first path
command to follow the text command for the attribute string in the PDL specification.
This can be accomplished by using the application program to sequentially type the
attribute string 58 and then draw the path 56, such that the path command will be
the first path command to follow the text command in the PDL specification created
by the application program. Alternatively the predetermined relationship can be
satisfied by the path command that is “grouped” with the text command for the
attribute string in the PDL specification. This can be accomplished by using a
"GROUP" tool as provided by many application programs to group the attribute
string 58 and path 56 together. It will be apparent to one of ordinary skill in the art
that there are many similar predetermined relationships available between the text
command for the attribute string and the path command for the wrapping path that
can be established in the PDL specification, all of which fall within the scope of the
present invention.

Thus, during the execution of the PDL interpreter program, the control task 22
will match the wrap attribute command string 62 and path identifier 64 with the group
header 44 and descriptive name of the path 42 defined in the job ticket file 12. Once
the attribute string 58 is identified as defining a variable data path by the control task
22, the control task will save the graphic states 23 of the attribute string 58 in
memory. The control task may also create a font cache according to the graphic
states 23, and store the font cache along with the graphic states in memory 24. The
control task will also save the field name 60 along with the graphic states 23 in
memory so that the particular graphic states can be matched to the blocks of text

data in the merge file 16 under the matching field name 52, as will be described

WO 00/28435 PCT/US99/26440
11

below. The merge task 28 will apply these graphic states 23 and associated font
cache to the variable data 54 prior to merging and flowing the variable data into the
path 56.

Once the control task 22 has identified the path as being a variable data path,
and has reserved the graphic states 23 of the attribute string 58 associated with the
path in memory 24, the control task 22 advances to the next data area in the PDL
specification, preferably without allowing the attribute string data or the path to be
added to the template display list 25 stored in memory 26. And once the PDL
interpreter program has completed interpreting the PDL specification, the control
task 22 then passes authority to the merge task 28.

The merge task 28 first accesses a set of the saved graphic states 23 and
identifies the field name 60 associated with these graphic states. The merge task 28
then accesses the merge file 16 and searches the merge file for a field name 52
matching the field name 60 associated with the graphic states. The merge task then
accesses a variable data block 54 associated with the field name 52 and then
generates rendering commands for the variable data block according to the graphic
states 23, the predefined flow rule 48 and the boundary of the path 56. The
predefined flow rule 48 may or may not be defined by the job ticket file 12.
Accordingly, when the rendering command is executed the bit map data defined by
the rendering command will flow within the path 56 according to a predefined flow
rule.

As shown in Fig. 11, and as illustrated in Figs. 5-10, a method for merging
and flowing the variable text data into the path 56 is as follows: as indicated in step
100 and illustrated in Fig. 5, preferably the control task will first "flatten” the path,
which involves breaking the complex path 56 (which may contain ellipses and
curves) into a series of simple straight lines 64 (i.e., converting the path into a series

of "move to"and "line to"commands). Each straight line 64 will comprise a

particular portion of a boundary 65, into which the variable data is to be positioned.
Alternatively, it is within the scope of the present invention to have the path 56 itself
define the boundary into which the variable data is to be positioned. As will be
described below, the extent of the boundary may also be defined, in part, by the

designation of margins, or the creation of additional paths, etc. As indicated in step

WO 00/28435 PCT/US99/26440

12

102 and as also illustrated in Fig. 5, a horizontal axis 67 of a coordinate system 69
will be aligned with the attribute string 58. As indicated in step 104 and as illustrated
in Fig. 6, a new equivalent boundary 65' is created, whose coordinates are those of
the original boundary 65, but rotated into the same coordinate system 69 as the
attribute string 58 (for example, as shown in Fig. 5, the attribute string 58 is rotated a
negative 50° in the document, and therefore, in Fig. 6 the boundary 65' is rotated by
a positive 50°).

As indicated in step 106, the stored graphic states 23 (e.g., font-type and
point size) are applied to a variable data block 54 to be merged into the boundary
65' and to calculate the dimensions of a plurality of word bitmaps, the word bitmaps
being defined by a collection of characters separated from the rest of the data by
white space characters (e.g., a space, tab, new line, etc.). The dimensions of
paragraphs can be calculated by defining a paragraph as a collection of word
bitmaps separated from other paragraphs by "new line" characters. Assuming that
the text flow direction will be from top to bottom and left to right, as indicated in step
108 and as illustrated in Figs. 7 and 8, the "top" or highest point 66 of the path 65' is
determined and a top margin 68 is applied to the boundary 65' by measuring a
distance downward from the highest point 66 of the boundary. The top margin 68
can be pre-defined, defined in the job ticket file 12, or by any other sufficient means.

As indicated in step 110 and illustrated in Figs. 7 and 8, a rectangular
insertion area 70 is defined, having a vertical height corresponding to the calculated
vertical height of the bitmap representation of the first word (the point size of the
text) to be flowed into the boundary 65', and having a top horizontal border 72
abutting the top margin 68. As indicated in step 112, this insertion area 70 will be
overlayed onto the entire boundary 65' at that present vertical level to establish at
least one intersection point 74. As indicated in step 114, only those areas between
adjacent intersection points 74 will be considered valid candidates for receiving the
bitmap representations of the text data. If there are more than two intersection
points present within the insertion area, then the particular flow rule being utilized will
determine between which of the intersection points that the bitmap representations

of the text data will be inserted. As illustrated in Figs. 7 and 8, when only two

WO 00/28435 PCT/US99/26440
13

intersection points are established, the bitmap representations of the text data will
typically be inserted therebetween.

Once two adjacent intersection points 74 are determined to be candidates for
receiving bitmap representations of the text data, as indicated in step 116 and
illustrated in Fig. 8, left and right margins will then be measured inwardly from each
of the intersection points 74 to define left and right borders 77 within the rectangular
insertion area 70. Between the left and right borders 77, therefore, is defined a text
placement area 78 for merging the bitmap representations of the text data therein.
The left and right margins 76 can be pre-defined, defined in the job ticket file 12, or
determined by any other sufficient means.

As indicated in step 118, the rendering commands to create the bitmap
representations of a word of the text data as merged into the text placement area
are created and added to the display list 25, depending upon whether the calculated
width of the bitmap is equal to or less than the available width calculated to remain in
the text placement area. The rendering commands will define the proper orientation
of the bitmap representation of the word rotated back into the original orientation of
the attribute string.

As illustrated in Fig. 8, in the first text placement area 78, bitmap
representations of the words "in" and "a" were able to fit therewithin, however, the
bitmap representation of the word "world" was too wide for the remaining width.
Accordingly, in the final merged bitmap only the bitmaps representing the words "in"
and "a" will be rendered into the first text placement area 78. If no word bitmaps are
capable of fitting within the text placement area, then the area is left blank.

As indicated in step 120 and illustrated in Fig. 8, a line-spacing 79 is
measured below the present insertion area and then the next rectangular insertion
area 80 is created and overlayed onto the boundary 65' below the line-spacing 79 in
the same manner as defined above for the first rectangular insertion area 70. As
indicated in step 122, if the new insertion area extends below the lowest point of the
boundary 65' (or below the bottom margin) or if there are no more words to insert,
then the merging process for this particular boundary and text block is finished as

shown in step 124. If the insertion area does not extend below the lowest point of

WO 00/28435 PCT/US99/26440
14

the boundary and there are more bitmaps representing words to insert, then the
process returns to step 114, described above. Essentially, steps 114-122 will be
repeated thereafter until step 124 is reached. As illustrated in Fig. 8, bitmaps
representing the words "world" and "of" were able to be rendered into the second
rectangular insertion area 80 and bitmaps representing the words "interactive,”
"media" and "and" were able to rendered into third rectangular insertion area 82.

Subsequent to step 122, the merge task will then search for additional
variable data areas or variable data paths in which to merge variable data blocks. If
no more of such variable data areas or variable data paths exist for the particular
document, then the merged display list 30 is transferred to the rendering task 32, as
described above, to generate the bitmap bands 34 for printing. Fig. 9 illustrates the
entire block of text 54 from the merge file 16 formatted according to the above
process and merged into the path 56 to create a first finished document 84. Fig. 10
illustrates the appearance of the next block of text 54' from the merge file 16
formatted according to the above process and merged into the path 56 to create a
second finished document 86.

Preferably, in the above step 118, the height of the rectangular insertion area
is determined by the dimensions calculated for the first word bitmap. And if, for
whatever reason, a next word bitmap is calculated to be higher than the first or
previous word bitmap, and higher than all other word bitmaps inserted thus far into a
particular text placement area, then the entire rectangular insertion area is thrown
out, and steps 116 and 118 are repeated again for the higher rectangular insertion
area generated according to this higher word bitmap.

As discussed above, a number fill rules are available for flowing the word
bitmaps into the boundary. Accordingly, the merge task can mark the path
intersections 74 as "positive," "negative” or "neutral" based upon whether the path
enters and leaves from the top or the bottom of the insertion area, or whether it
enters and exits the insertion area from the same direction. All of the available fill
rules will be apparent to one of ordinary skill in the art, and are thus within the scope

of the present invention.

WO 00/28435 PCT/US99/26440
15

As discussed above, text flowing into the boundary 65" will continue until it is
determined that there are no more word bitmaps to flow into the boundary or until it
is determined that there is no more text areas available to flow the word bitmaps
into. In the case of the latter, it is within the scope of the invention to define a path
as an "overflow" path for continuing the flowing of the text therein, until this overflow
path runs out of room. This overflowing process can continue until once again it is
determined that there are no more text areas to flow text into. Text can also flowed
into more than one path at a time.

For illustration, as shown in Fig. 12, if the job ticket file defines the number of
flow paths as two, and the two flow paths are the circle and square paths,
designated as numerals 88 and 90, respectively; then the two paths essentially
comprise one boundary, and text will flow directly from the circle path 88 into the
square path 90. Note that the 2nd through 8th lines of text flow from the circle path
88 directly into the square path 90. But when the text reaches the end of the square
path 90, the flowing operation stops because the area within the two flow paths has
been used up. Accordingly, as illustrated in Fig. 13, if an "overflow path" is
designated in the job ticket file to be the triangle path 92, the text flowing will
continue into the triangle path 92 until there is no more text to be merged or until the
path runs out of additional room.

The operation of the present invention is illustrated by way of a second
example as shown in Figs. 14-18. This second example illustrates the use of the
present invention in constructing a book having variable text and picture placement,
where a character name presented in the book may also be customized. Once
customized, the text and pictures will flow into the pages of the book regardless of
the size differences between the substituted character names. For example, if a
substituted character name is substantially longer or shorter than the original
character name in the text, the text and pictures will flow throughout the book such
that no noticeable gaps or overflows are detectable. In order to perform such a task,
the present invention allows a plurality of different merge files or data items to be
flowed into a single path; the present invention allows text to flow around pictures

that are inserted into the path; and by utilizing special delimiters within the merge

WO 00/28435 PCT/US99/26440
16

file, the merged task is able to recognize points in the merge data where the graphic
states to be applied to such merge data are to be changed in accordance with a next
attribute string in the PDL Specification. This is all explained in detail as follows:

As illustrated in Fig. 14, the job ticket file 12 contains a group header,
“[PageDescriptionLanguageFile]” 126 specifying the file path(s) defined thereunder
as determining the locations of the ‘template’ PDL files. In the present example, the
template PDL file path 128 defines the location of the template (PostScript) file
“jungle.ps” as shown graphically in Fig. 16. Next, the job ticket file 12 lists a group
header, “[MergeFiles]” 144 specifying the labels (“names” and “rikkitxt”) of the
merge files to be accessed by the merge task. The group header "[names]" 146 is
thereafter defined in the job ticket file to provide information about the merge file
“names.txt” located in the file path 130. As indicated by the definitions following the
group header "[names]" 146, this merge file is a delimited merge file where the
record delimiters are /n’ and the field delimiters are ‘|'. In this merge file, the
definition DoGlobalSubstitution is set to FALSE, which indicates that substitutions of
the text within the merge file are not to be performed by the merge task during the
merging operation. The group header "[rikkitxt]" 148 provides information about the
merge file “rikki.txt” located in the file path 132. The MergeType definition is set to
“field", which indicates that the merge file only contains a single record; and
therefore requires no record delineations. The MergeHeader definition is set as NO,
which indicates that the merge file will not include a merge header (because there is
only one record in the merge file). As also defined under the “[rikkitxt]” group header
is that the field delimiter will be ‘#' character, the page break delimiter will be the ‘~'
character and the paragraph delimiter will be the ‘@’ character. Finally, the
definition DoGlobalSubstitution is set to TRUE which means the merge task is to
look for text phrases within the rikki.txt merge file and replace them with variable
data as defined in the job ticket file as follows.

The group header 150 "[mergefile:substitution]" establishes the global
substitutions for the “rikki.txt” merge file as described above. Accordingly, within the
body of the “rikki.txt” merge file, every instance of the name Mowgli is to be changed

to the variable data name listed under the “name1" heading (which is present in the

WO 00/28435 PCT/US99/26440
17

‘names” merge file -- not shown). Furthermore, any occurrence of the name Teddy
within the “rikki.txt" merge file will be replaced with the same variable data name as
listed under the “name1" heading in the “names” merge file. This substitution is
preferably performed by the merge text when creating bitmaps for the merge data in
the “rikki.txt” merge file that are to be merged into the template defined in the
“jlungle.ps” file (Fig. 16).

The next group header 136 “[Wrap]” in the job ticket file 12 contains a
descriptive name of a path 134 (in this case, named "path”) for identifying a name of
a path in the PDL file that is to have variable data flowed into it during the merge
task. The group header 136 "[Wrap]" indicates that the group is defining a wrapping
path. After the wrapping path "path" has been defined in the job ticket file, a next
group header 138 "[path]" is thereafter defined to provide information about the wrap
path, such as defining the FillRule 140 as using the even/odd rule, defining the
DrawPath definition as FALSE 142 to indicate that the path is not to be drawn. The
other definable wrapping commands for the particular path "path" are described in
detail in the appendix below.

Although not shown in Fig. 14, the job ticket file 12 includes attribute
definitions defining the print job as a ‘book’ job, which directs the merge task to
repeatedly access templates and flow bitmaps into the path(s) in the templates until
the merge task reaches the end of the merge file.

As illustrated in Figs. 15A and 15B, the merge file “rikki.txt” 16 is a platform
independent data file that contains the ‘variable’ data to be merged into the path
defined in the PDL specification (Fig. 16). In the present example, this merge file
does not contain a field name because the MergeHeader definition in the job ticket
file 12 was set to NO. In the present example, the mergefile is a single data record
consisting of the text of the Rikki-Tikki-Tavi story of the Jungle Book. Paragraph
delimiters 154 (‘@’) are placed at selected points within the text to inform the merge
task where to start a new paragraph during the merging operation. Field delimiters
156 (‘#) are also placed in selected areas of the text to indicate to the merge task
when a particular field of the merge file has ended and a next field of the merge file

is to begin. The use of the field delimiters 156 will be described in greater detail

WO 00/28435 PCT/US99/26440
18

below.

As illustrated in Fig. 16, the designer will utilize an application program to
create a template document 157 containing a path 158 and several attribute data
strings 160. As discussed above, the designer will associate the attribute data
strings 160 with the path 158 by assuring that the path 158 is the first path drawn
after the insertion of the attribute data strings 160 or by using a "GROUP" feature of
the application program to group the attribute data strings 160 with the path 158. As
also shown in Fig. 16, the template document 157 also contains static data 162
which will remain constant during every printing of the merged document. Once the
template document 157 has been created, the application program will then be
directed to create at PDL specification 14 of the document. Each attribute string 160
contains a field name 164 surrounded by special characters, a wrap attribute
command string 166, and a path identifier 168 if the attribute data is to be
associated with a path. The PDL specification generated by the application program
will include the graphic states of the attribute strings. For example, the graphic

states for first attribute string 170 include a bold/italics font attribute and a

larger point size attribute; the graphic states for second attribute string 172 include
an italics font attribute and a smaller point size attribute than the first attribute string;
the graphic states for third attribute string 178 include a standard font attribute, etc.

As discussed above, referring to Fig. 1 and Figs. 14-17, the control task 22
will execute a PDL interpreter program to interpret the PDL specification created by
the application program to generate a template bit map 25 of the template
document 157, and to also monitor for any variable data paths defined in the PDL
specification 14 . During the execution of the PDL interpreter program, the control
task 22 will match the path identifier 168 in each wrap attribute command string 166
with the group header 136 and descriptive name of the path 134 defined in the job
ticket file 12 . Once the attribute string 166 is identified as defining a variable data
path by the control task 22, the control task will save the graphic states 23 of the
attribute string 166 in memory (which is preferably a stack). The control task may
also create a font cache according to the graphic states 23 , and store the font

cache along with the graphic states to memory 24. The control task will also link the

WO 00/28435 PCT/US99/26440
19

graphic states 23 with the merge file defined by the job ticket file having a name
matching the field name 164 (“rikitxt” for the first, second, third and fifth attributes
strings 170, 172, 178, 182 and 190). The merge task 28 will apply these saved
graphic states 23 and the associated font cache to the variable data prior to merging
and flowing the variable data into the path 158.

Once the control task 22 has identified the path as being a variable data path,
and it has reserved the graphic states 23 of the attribute strings 166 associated with
the path in memory 24, the control task 22 advances to the next data area in the
PDL specification, preferably without allowing the attribute strings or the path to be
added to the template display list 25 stored in memory 26. Once the PDL
interpreter program has completed interpreting the PDL specification, the control
task 22 then passes authority to the merge task 28.

The merge task 28 first accesses a first set of graphic states 23 from memory
24 and identifies the particular field name 164 associated with these graphic states.
The merge task 28 then accesses the merge file 16 associated with this field name
and graphic states. The merge task then accesses a variable data block associated
with a first variable data block in the merge file and then generates rendering
commands for the variable data block according to the graphic states 23 , the
predefined flow rule 140 and the boundary of the path 158.

As illustrated in Figs. 17A-17C, a method for merging and flowing the text
data in the merge file into the path 158 of the document 157 to create the variable
length book is as follows. Upon initiation, the merge task will first access the saved
graphic states and attributes associated with the first attribute string 170 defined in
the PDL specification. As shown in Fig. 16, the field name is "rikkitxt" and the path
associated with the attribute string 170 is the path 158 (because the path 158 is the
first path created after the attribute string 170). Referring to Fig. 14, the merge task
matches the field name “rikkitxt” 164 in the first attribute string 170 with the group
header 148, and accesses the merge file identified by the path 132. As shown in
Fig. 15A, a first text-block 171 is taken from the beginning of the mergefile until a
first field delimiter 156a is encountered. The saved graphic states 23 associated

with the first attribute string 170 are applied to this text block to create a bit map for

WO 00/28435 PCT/US99/26440
20

the text block which is then flowed into the path 158 as shown by numeral 172 in
Fig. 17A. Note that the attribute string 170 included an attribute command "textc,"
which caused the control task to add an additional text centering attribute to the
saved graphic states 23 . Accordingly, the bit map 172 associated with the text
string and applied graphic states is centered in the path 158. The paragraph
delimiter 154 in the mergefile causes the merge task to add a line space after the
insertion of the bit map 172.

Because the merge task reaches the first field delimiter 156a in the mergefile,
the merge task refers back to memory to retrieve the reserved graphic states 23
attributed to the second attribute string 172. The field name 164 identified by the
second attribute string 172 is "rikkitxt" as in the first attribute string 170; and
therefore, the merge task will again refer to the mergefile 152 when retrieving
variable data to insert into the path. It is should be apparent to those of ordinary skill
in the art that the field name 164 may also refer to a different merge file and the
merge task would thus access data from the different merge file. As with the first
attribute string 170, the second attribute string 172 includes the additional attribute
commands such as "textc" and "padjust=0." Referring again to Fig. 15A, the merge
task will access the next block of data 173 between the first field delimiter 156a and
the second field delimiter 156b. The merge task will then apply the graphic states 23
corresponding to the second attribute string 172 to this text data to form the bit map
data block 174 to be merged into the path 158. Once this bit map block has been
merged into the document, the merge task accesses the graphic states associated
with the next attribute string 178 from memory.

Because the field name 164 in the third attribute string 178 is “rikkitxt” as with
the first two attribute strings, the merge task will refer back to the mergefile 152 and
will extract the block of data 179 after the second field delimiter 156b and before the
third field delimiter 156¢. The graphic states 23 associated with the third attribute
string 178 will be applied to this text data to create bit map data which is merged and
flowed into the path 158 according to the steps described herein. Once the merge
text reaches the end of the path 158, the merge task will know to access another

copy of the template from memory because a "book" attributes have been

WO 00/28435 PCT/US99/26440
21

predefined in the job ticket file. The second template bit map is indicated in Fig.
17B. Note that the block of text flows beyond the path 158 of the second template
bitmap shown in Fig. 17B and into the path 158 of the third template bitmap shown
in Fig. 17C. Once this block 180 has been mapped and the merge task reaches the
third field delimiter 156¢, the merged task refers back to the graphics states 23 in
memory to obtain the graphic states associated with the fourth attribute string 182.

The field name 164 in this attribute string 182 refers to "rpic1", which is
defined in the job ticket file as a bit map of a picture to be inserted at this point. Note
that this attribute string also includes additional attribute commands: "text|" and
"dropcap”. This indicates that the picture bit map is to have left justification and is to
be treated as a drop-cap character. As shown in Fig. 17C, the picture bitmap is
inserted into the path 158 with left justification after the block of bit map data 180. If
the drop-cap command had not been specified in the attribute string, the next block
of data would be inserted at point 185 after the picture bit map. However, it is often
desirable to include pictures within the text of a book and then have text appear to
flow around the picture. Accordingly, the drop-cap attribute definition indicates to the
merged text to treat the bit map defined in the attribute string as a drop-cap
character. When the merged task sees this command, after inserting the picture 183
into the path 158 the merged task adds the boundary 184 of the picture to the path
158 and then moves the insertion point of the next bit map data to the beginning 186
of the picture bit map 183. However, because the boundary 184 of the picture bit
map 183 has been combined with the boundary 158 of the path, the next insertion
point will be at point 188 to the right of the picture bit map.

Once this step is completed, the merge task will access the graphic states 23
associated with the next attribute string 190 from memory. The field name “rikkitxt”
164 in this next attribute string 190 indicates to the merge task to access data again
from the merge file 152. Referring to Fig. 15C, the next point to access data for the
merge file is the block of data indicated by numeral 192, between the third and
fourth field delimiters 156¢, 156d. The graphic states 23 of this next attribute string
190 will be applied to this block of data 192 and the bit maps will thus be flowed into
the path 158 as discussed above. This block of data 192 is the first block including

WO 00/28435 PCT/US99/26440
22

a character name ‘Teddy’ which the job ticket directs as needing to be replaced by a
variable data name from the ‘names.txt’ merge file as discussed above. In the
present example, the first variable name listed in the ‘names.txt’ merge file is
“Ranen.” Accordingly, merge file will replace all instances 193 within the block of
data 192 where the name ‘Teddy’ appears with the ‘Ranen’ bitmaps 195 in the
printed document. This process will continue until the merge task reaches the end
of the mergefile 152, indicating to the merge task that the book has been created.
Figs. 18A-18C illustrate the appearance of the pages of the book as prepared in the
example described above.

Accordingly, the present invention provides capability of identifying particular
paths defined in a page description language as data flowing paths, and provides
the capability for flowing data within such paths. In addition, the present invention
allows the user to specify margin, paragraph formatting, fill rules, and justification
parameters on a path by path basis.

Having described the invention in detail and by reference to the drawings, it
will be apparent to one of ordinary skill in the art that variations and modifications are
possible without departing from the scope of the invention as defined on the
following claims.

The following appendix provides a preferred compilation of text wrapping
commands and parameter definitions that can be specified in the job ticket file 12.
Each entry provides the particular command header, the syntax for the command,
any relevant remarks for the use of the command, examples, etc. As will be
apparent to one of ordinary skill in the art, it is within the scope of the present
invention to include the means to provide for any of the attributes, or similar

attributes, as defined in the Appendix.

APPENDIX
COMMAND HEADER = [Wrap]
A group that provides a list of tags which you create to describe the text

flowing (wrap) path(s) to be used in the print job. Each tag will become a
user-defined group of additional information about the wrap path.

WO 00/28435 PCT/US99/26440

23

Syntax [Wrap]
<Path Tag X.>
<Path Tag Y>
<Path Tag Z>

Remarks Optional. Each tag that appears under this [Wrap] group will
optionally become a new group name in a succeeding section of the Job Ticket.

Explanation <Path Tax X>
Create a descriptive name for a wrap path used in the print job.
Note: Fields on a template that you wish to be flowed into a particular
path will use a field attribute of the format:

<<fieldname>> wrap=<name>

The <name> argument of the wrap attribute must match a path
tag listed in the [Wrap] group.

Example [Wrap]
Circle
Square
Triangle

COMMAND HEADER = [<Path Tag>]

A user-defined tag name for a group that provides information about the wrap
path and corresponds to the descriptive tag that you create under the initial [Wrap]
group.

Syntax [<Path Tag>]

Baseline Adjust =
Bottom Margin =
Clobber Path =

Draw Path =

Enforce paragraph Spacing =
Fill Rule =

Fit Last Name =
Justify =

Left Margin =

Margins =

Min Paragraph Lines =
Number Of Paths =
Overflow =

Paragraph Adjust =
Reverse Flow =

WO 00/28435 20 PCT/US99/26440

Reverse Path =
Right Margin =
Top Margin =

Remarks A separate [<Path>] group defines path information for each
descriptive tag listed under the initial [Wrap] group.

If a [<Path Tag>] group is not defined for a path listed under the
[Wrap] group, that path will receive the default values for all
of the [<Path Tag>] elements.

Explanation [<Path Tag>]
Take the descriptive tag under the initial [Wrap] group and write
it here as a group name within the brackets [].

Baseline Adjust =
(See the Baseline Adjust element description)

Bottom Margin =
(See the Bottom Margin element description)

Clobber Path =
(See the Clobber Path element description)

Draw Path =
(See the Draw Path element description)

Enforce Paragraph Spacing =
(See the Enforce Paragraph Spacing element

description)
Fill Rule =
(See the Fill Rule element description)
Fit Last Line =
(See the Fit Last Line element description)
Justify =
(See the Justify element description)
Left Margin =
(See the Left Margin element description)
Margins =

(See the Margins element description)

MinParagraph Lines =

WO 00/28435

Examples

PCT/US99/26440
25

(See the MinParagraph Lines element description)

Number Of Paths =
(See the Number Of Paths element description)

Overflow =
(See the Overflow element description)

Paragraph Adjust =
(See the Paragraph Adjust element description)

Paragraph Indent =
(See the Paragraph Indent element description)

Reverse Flow =
(See the Reverse Flow element description)

Reverse Path =
(See the Reverse Path element description)

Right Margin =
(See the Right Margin element description)
Top Margin =
(See the Top Margin element description)

[Circle]

Fill Rule = EvenOddRule

DrawPath = False

Overflow = Square
[Square]

FillRule = WindingRule

DrawPath = True

Overflow = Triangle
[Triangle]

FillRule = EvenOddRule

DrawPath = False

Overflow = Square
[Square]

FillRule = WindingRule

DrawPath = True

Overflow = Triangle
[Triangle]

FillRule = EvenOddRule

WO 00/28435

PCT/US99/26440
26

DrawPath False

PARAMETER = Baseline Adjust

An element that determines the adjustments made to each baseline of text
drawn within the path.

Syntax
See Also

Remarks

Explanation

Example

Baseline Adjust = <BaseAdjustNum><Unit Type>
Paragraph Adjust, Enforce Paragraph Spacing.
Optional.

By default, the process will space successive text lines at 120%
of the font size. For example, a 12-point font will have the next
baseline set at 14.4 points (120% x 12) from the previous
baseline.

The Baseline Adjust element defines an offset from this default
value.

A positive Baseline Adjust value increases the space between
each baseline of text (essentially, moving the next line of text
down). A negative value decreases the space between each
baseline of text (essentially, moving the next line of text up).

The default value for Baseline Adjust is 0.

<BaseAdjustNum>
Enter the number of units.

<Unit Type>

Optional. Enter the abbreviation to identify the unit type if the
unit type for Baseline Adjust is different from the default unit
type defined in the Units element. Possible values are:

cm for centimeters

dots for dots

ft for feet

in for inch (default value)
mm for millimeter

pts for points

BaselineAdjust = 1pt

WO 00/28435

PCT/US99/26440
27

PARAMETER = Bottom Margin

An element that specifies the distance from the bottom of the path at which to

stop flowing text.
Syntax
See Also
Remarks

NOTE:

BottomMargin = <BottomMarginNum><Unit Type>
Margins, Overflow.
Options.

A non-zero value for the BottomMargin element overrides (for
the bottom margin only) the value set in the Margins elements.

For example, if Margins = 1in and BottomMargin = 2in, the path
will have 1-inch margins on the top, left, and right sides but will
have a 2-inch margin on the bottom side.

The default value for Bottom Margin is 0.

Explanation <BottomMarginNum>

Example

Enter the number of units.

<UnitType>

Optional. Enter the abbreviation to identify the unit type if the
unit type for Bottom Margin is different from the default unit type
defined in the Units element. Possible values are:

cm for centimeters

dots for dots

ft for feet

in for inch (default value)
mm for millimeter

pts for points

BottomMargin = 3mm

PARAMETER = Clobber Path

An element that specifies if two adjacent ON areas separated by a path
segment are treated as one area when determining text flow.

Syntax

See Also

ClobberPath = [True/False]

FillRule

WO 00/28435

True,

Remarks

Explanation

Example

PCT/US99/26440
28

Optional

This element affects the way in which text is flowed in adjacent
ON areas. It applies only to paths defined with FillRule =
WindingRule.

If ClobberPath is set to True, text is flowed across the two
adjacent ON areas as if they were one area. In this case, only
the "outer" margins of the combined areas would be
recognized. Text flow would be continuous across the "inner"
margins where the path segment intersects the adjacent areas.

If ClobberPath is set to False, text is flowed separately into each
area.

The default value of ClobberPath is True.

{True/False}

If two adjacent ON areas are to be treated as one area, type

If two adjacent ON areas are to be maintained separately, type

Faise.

ClobberPath = False

PARAMETER = DrawPath

Syntax

Remarks

Explanation

Example

An element that determines if the wrap path is actually drawn on the template.

DrawPath = {True/False}
Optional.
The default value for DrawPath is True.

{True/False}
If the wrap path is to be drawn on the template, type True.

If the wrap path is NOT to be drawn on the template, type False.

DrawPath = False

PARAMETER = EnforceParagraphSpacing

WO 00/28435 PCT/US99/26440
29

An element that determines if the next paragraph will always start at a
distance of the ParagraphAdjust value from any previous paragraphs that were set.

Syntax EnforceParagraphSpacing = {True/False}

See Also BaselineAdjust, ParagraphAdjust.

Remarks Optional.
If the text flowed into your path contains blank paragraphs, this
element determines how the blank paragraphs are to be
handled.
If you want your next paragraph to start at a distance of the
ParagraphAdjust value from your previous text paragraph
(thereby, "skipping" any blank paragraphs and permitting text to
continue to flow), set the EnforceParagraphSpacing value to
True.
If you want the blank paragraphs to be allotted the appropriate
space defined in ParagraphAdjust, set the
EnforceParagraphSpacing value to False.
The default value for EnforceParagraphSpacing is False.

Explanation {True/False}
If the next non-blank paragraph should start at a distance of the
ParagraphAdjust value from any previous paragraphs that were

set, type True.

If blank paragraphs are to be allocated their appropriate
paragraph space, type False.

Example EnforceParagraphSpacing = True
PARAMETER = FillRule

An element that provides the rules used to determine which areas of the path
should have text flowed into them and which areas should be blank.

Syntax FiliRule = {WindingRule/EvenOddRule}
See Also ClobberPath, ReversePath.

Remarks Optional.

WO 00/28435 PCT/US99/26440
30

Text is flowed into an area enclosed by ("inside") the current
path. If a path is simple, it is clear which areas are inside the
path. However, if a path is complex (for example, intersecting
itself or having one subpath that encloses another), it is not as
apparent which areas are inside. One of two fill rules will be
used to determine which areas lie inside a path.

The FillRule element defines if the non-zero winding rule
(WindingRule) or the even-odd rule (EvenOddRule) will be used
for the current path.

The non-zero winding rule determines whether a given area
along the proposed flow line is inside the path (and thus
receives text) by examining the places where a path segment
crosses the flow line. Path segments that cross (intersect) the
flow line from top to bottom are given a direction of 1. Path
segments that cross (intersect) the flow line from bottom to top
are given a direction of -1. Path segments that do not fully
cross the flow line (for example, entering and exiting the top of
the flow line) are given a direction of zero.

An on-going sum of all crossings is calculated from left to right.
If the sum of all crossings to that point is zero, the area
(immediately to the right) is outside the path. If the sum is
non-zero, the area is inside the path and will receive text.

The even-odd rule determines whether a given area long the
proposed flow line is inside the path (and thus receives text) by
counting the number of times a path segment crosses the flow
line. Path segments that fully cross (intersect) the flow line are
given a score of 1. Path segments that do not fully cross the
flow line are given a score of zero. An on-going sum of all
crossings is calculated from left to right. If the sum of all
crossings to that point is even, the area (immediately to the
right) is outside the path. If the sum is odd, the area is inside
the path and will receive text.

The default value for FillRuie is WindingRule.
Explanation {Winding Rule/EvenOddRule}
If the winding rule will determine which areas lie inside a path,

type WindingRule.

If the even-odd rule will determine which areas lie inside a path,
type EvenOddRule.

Example FillRule = EvenOddRule

WO 00/28435

PCT/US99/26440
31

PARAMETER = FitLastLine
An element that determines if the Fit justification rule is applied to the last line

of every paragraph.

Syntax
See Also

Remarks

Justify = Fit.

Explanation

Example

FitLastLine = {True/False}

Justify

Optional.

The FitLastLine element applies only to paths defined with

If FitLastLine is set to True, the text on the last line will be forced
to fit flush on the left and the right. Since the last line of a
paragraph may often contain less text than the other lines in a
paragraph, this justification will often result in more white space
between text on the last line.

The default value for FitLastLine is False.

{True/Faise}

If the last line of every paragraph should be aligned ab both the
left side and the right side of the path, type True.

If the last line of every paragraph should not be forced to fit flush
left and flush right, type False.

FitLastLine = False

PARAMETER = Justify

An element that specifies the type of justification (horizontal alignment) to be
applied to each line of text drawn in the path.

Syntax
See Also

Remarks

Justify = <JustifyRule>
FitLastLine
Optional.

The default value for Justify is Left.

WO 00/28435 PCT/US99/26440

32

Explanation <JustifyRule>
Enter the type of justification (horizontal alignment) to be applied
to each line of text drawn in the path. Possible values are:

Left (Default value) Text is aligned from the left side of the

path.

Right Text is aligned from the right side of the path.

Center Text is centered between the left side and right side of
the path.

Fit Text is aligned at both the left side and right side of the
path.

Example Justify = Center
PARAMETER = LeftMargin

An element that specifies the distance from the left side of the path at which
to start flowing text.

Syntax LeftMargin = <LeftMarginNum><UnitType>
See Also Margins
Remarks Optional.

NOTE: A non-zero value for the LeftMargin element overrides (for the
left margin only) the value set in the Margins elements.

For example, if Margins = 1in and LeftMargin = 2in, the path will
have 1-inch margins on the bottom, top, and right sides but will
have a 2-inch margin on the left side.

A default value for LeftMargin is 0.

Explanation <LeftMarginNum>
Enter the number of units.

<UnitType>

Optional. Enter the abbreviation to identify the unit type if the
unit type for LeftMargin is different from the default unit type
defined in the Units element. Possible values are:

cm for centimeters

dots for dots

ft for feet

in for inch (default value)

mm for millimeter

WO 00/28435

Example

PCT/US99/26440
33

pts for points

LeftMargin = 5 mm

PARAMETER = Margins

An element that specifies the same text margins for all four sides of the path
(top, bottom, left, and right).

Syntax
See Also
Remarks

Note:

Explanation

Margins = <MarginsNum><Unit Type>
BottomMargin, LeftMargin, Right Margin, TopMargin
Optional.

The value for the Margins element will be overridden on an
individual margin basis by any non-zero value defined for the
other specific margin attributes (BottomMargin, LeftMargin,
RightMargin, and TopMargin).

For example, if Margins = 1in and TopMargin = 2in, the path will
have 1-inch margins on the bottom, left, and right sides but will
have a 2-inch margin on the top.

The default value for Margins is 0.

<MarginsNum>
Enter the number of units.

<UnitType>
Optional. Enter the abbreviation to identify the unit type if the
unit type for Margins is different from the default unit type

defined in the Units element. Possible values are:

Example

cm for centimeters

dots for dots

ft for feet

in for inch (default value)
mm for millimeter

pts for points

Margins = 6 mm

WO 00/28435

PCT/US99/26440
34

PARAMETER = MinParagraphLines

An element that specifies the minimum number of lines of a paragraph to be
set before the paragraph is allowed to be split between path areas.

Syntax
See Also

Remarks

Explanation

Example

MinParagraphLines = <MinLinesNum>

NumberOfPaths, Overflow.

Optional.

If the minimum number of lines of a paragraph defined here
cannot be set consecutively in a path area, the entire paragraph
will be moved down to the next scanline that allows the
specified number of lines to be set consecutively.

The default value for MinParagraphLines is 1.

<MinLinesNum>

Enter the integer representing the minimum number of lines of a

paragraph to be set before splitting between path areas is
permitted.

MinParagraphLines = 2

PARAMETER = NumberOfPaths

An element that determines how many postscript paths on the template are
concatenated and treated as one path.

Syntax
See Also

Remarks

Explanation

NumberOfPaths = <PathsNum>
MinParagraphLines, Overflow.
Optional.

This element is used to combine multiple paths drawn on the
template and to treat them as a single path. The path to be
combined will be determined by the order in which they were
drawn.

The default value for NumberOfPaths is 1.
<PathsNum>

Enter the integer representing the number of paths to be
combined.

WO 00/28435

Example

lllustration

PCT/US99/26440
35

NumberOfPaths = 2

See Fig. 12 and corresponding description above

PARAMETER = Overflow

An element that specifies the name (tag) of the wrap path that will receive
overflow text from the current wrap path being described.

Syntax
See Also

Remarks

NOTE:

Explanation

Example

lllustration

Overflow = <PathTag>
MinParagraph Lines, NumberOfPaths.
Optional.

This element defines the use of an overflow feature. When
overflow is available, if the current path has no more space into
which text can flow, the text will continue to flow into the path
named in this element.

If the Overflow element references a wrap path that is not
named under the [Wrap] group, the print job will be aborted.

If the Overflow element is not defined, the system will assume
that no overflow will occur for the current path being described.
Therefore, text will flow into the current path until it is filled. No
overflow text will be printed.

<PathTag>

Enter the descriptive tag of the path into which overflow text
from the current path will flow. This value should correspond to
a descriptive tag that you created under the initial [Wrap] group.
Overflow = Square

See Fig. 13 and the corresponding description above.

PARAMETER = ParagraphAdjust

An element that determines the distance to adjust the baseline for the start of
the next paragraph within the path.

Syntax

ParagraphAdjust = <ParagraphadjustNum><Unit Type>

WO 00/28435

See Also

Remarks

Explanation

Example

PCT/US99/26440
36

BaselineAdjust, Enforce Paragraph Spacing.
Optional.

The ParagraphAdjust value overrides the Baseline Adjust value
only for the first baseline of text in each paragraph.

A position ParagraphAdjust value increases the vertical space
between the last baseline of text in each paragraph and the start
of the next paragraph (essentially, moving the start of the next
paragraph down). A negative value decreases the vertical
space between the last baseline of text in each paragraph and
the start of the next paragraph (essentially, moving the start of
the next paragraph up).

The default value for ParagraphAdjust is 0.

<ParagraphadjustNum>
Enter the number of units.

<UnitType>

Optional. Enter the abbreviation to identify the unit type if the
unit type for ParagraphAdjust is different from the default unit
type defined in the Units element. Possible values are:

cm for centimeters

dots for dots

ft for feet

in for inch (default vaiue)
mm - for millimeter

pts for points

ParagraphAdjust = 6pts

PARAMETER = Paragraphindent

An element that specifies the indentation from the left margin for the first line
of every paragraph in the path.

Syntax
See Also

Remarks

Paragraphindent = <ParagraphindentNum><UnitType>
ParagraphAdjust
Optional.

The default value for Paragraphindent is 0.

WO 00/28435 PCT/US99/26440
37

Explanation <ParagraphindentNum>
Enter the number of units.

<UnitType>

Optional. Enter the abbreviation to identify the unit type if the
unit type for Paragraphindent is different from the default unit
type defined in the Units element. Possible values are:

cm for centimeters

dots for dots

ft for feet

in for inch (default value)
mm for millimeter

pts for points

Example Paragraphindent = .5in
PARAMETER = ReverseFlow ‘

An element that determines if the text will be flowed from bottom to top in the
current path.

Syntax ReverseFlow = {True/False}
See Also FillRule
Remarks Optional.
The default value for ReverseFlow is False.

Explanation {True/False}
If the text will be flowed from bottom to top, type True.

If the text will be flowed from top to bottom, type False.

Example ReverseFlow = True

PARAMETER = ReversePath

An element that determines if the ON/OFF designations for areas in the path
will be reversed.

Syntax ReversePath = {True/False}
See Also FillRule

Remarks Optional.

WO 00/28435

Explanation

Example

PCT/US99/26440
38

The ReversePath element applies only to paths defined with
FillRule = EvenOddRule.

If ReversePath is set for True, the areas originally marked as
ON based on the EvenOddRule calculation will be set to OFF
and the areas originally marked as OFF based on the
EvenOddRule calculation will be set to ON.

If ReversePath is set to False, the EvenOddRule calculations
will be retained.

The default value for ReversePath is False.
{True/False}
If the ON/OFF designations for areas in the path will be

reversed, type True.

If the ON/OFF designations for areas in the path will be
retained, type False.

ReversePath = Trye

PARAMETER = RightMargin

An element that specifies the distance from the side of the path at which to
stop flowing test.

Syntax
See Also

Remarks

Explanation

RightMargin = <RightMarginNum><UnitType>

Margins

Optional.

NOTE: A non-zero value for the RightMargin element
overrides (for the right margin only) the value set
In the Margins element.

For example, if Margins = 1in and RightMargin = 2in, the path

will have 1-inch margins on the bottom, top, and left sides but

will have a 2-inch margin on the right side.

The default value for RightMargin is 0.

<RightMarginNum>
Enter the number of units.

<UnitType>

WO 00/28435

Example

PCT/US99/26440
39

Optional. Enter the abbreviation to identify the unit type if the
unit type for RightMargin is different from the default unit type
defined in the Units element. Possible values are:

cm for centimeters

dots for dots

ft for feet

in for inch (default value)
mm for millimeter

pts for points

RightMargin = 5mm

PARAMETER = TopMargin

An element that specifies the distance from the top of the path at which to

start flowing text.
Syntax
See Also
Remarks

NOTE:

Explanation

TopMargin = <TopMarginNum><UnitType>
Margins
Optional.

A non-zero value for the TopMargin element overrides (for the
top margin only) the value set in the Margins element.

For example, if Margins = 1in and TopMargin = 2in, the path will
have 1-inch margins on the bottom, left, and right sides but will
have a 2-inch margin on the top side.

The default value for TopMargin is 0.

<TopMarginNum>
Enter the number of units.

<UnitType>

Optional. Enter the abbreviation to identify the unit type if the
unit type for TopMargin is different from the default unit type
defined in the Units element. Possible values are:

cm for centimeters
dots for dots
ft for feet

in for inch (default value)

WO 00/28435 PCT/US99/26440
40

mm for millimeter
pts for points

Example TopMargin = .25in

What is claimed is:

WO 00/28435 PCT/US99/26440
41

1. A method of associating a particular path defined in a page description

language specification with a plurality of special attributes, comprising the steps of:

monitoring a first text string defined by a first page description
language text command in the specification for a first special character or a first
special string of characters, the first special character or the first special string of
characters being indicative of a first special attribute;

monitoring a second text string defined by a second page description
language text command in the specification for a second special character or a
second special string of characters, the second special character or the second
special string of characters being indicative of a second special attribute;

responsive to a detection of the first special character or the first
special string of characters in the first text string, identifying a path defined by a page
description language path command and having a predetermined relationship with
the first text command in the specification as the particular path associated with the
first special attribute; and

responsive to a detection of the second special character or the
second special string of characters in the second text string, identifying the path
defined by the page description language path command and having a
predetermined relationship with the second text command in the specification as the

particular path associated with the second special attribute.

2. The method of claim 1, wherein the predetermined relationship is
satisfied by the path command being the first path command to follow the first and

second text commands in the specification.

3. The method of claim 1, wherein the predetermined relationship is
satisfied by the path command being grouped with the first and second text

commands in the specification.

WO 00/28435 PCT/US99/26440

42

4, The method of claim 1, wherein the first special attribute is associated
with a first merge file and wherein the second special attribute is associated with a

second merge file.

5. A method for wrapping data to an arbitrary path defined by a page
description language, comprising the steps of:

(a) designating a path defined in a page description language
specification as a wrapping path, the wrapping path having a wrapping-path
boundary ;

(b) processing the specification to produce a template bitmap, the
template bitmap being a bitmap or raster-data representation of a template image
defined by the specification:

(c) associating a block of text with the wrapping path;

(d) associating an external bitmap with the wrapping path;

(e) merging the external bitmap into the template bitmap, the external
bitmap having an external-bitmap boundary;

(f) adding the external-bitmap boundary to the wrapping-path
boundary, forming a composite boundary; and

(9) merging bitmap representations of the text from the block of text,
according to the composite boundary and according to a predefined flow rule, into

the template bitmap to create a merged bitmap.

6. The method of claim 5 wherein the merging step (e) includes the step
of merging the external bitmap into the template bitmap according to the

wrapping-path boundary and according to the predefined flow rule.

7. A method for wrapping data to an arbitrary path defined by a page
description language, comprising the steps of:
designating a path defined in a page description language specification
as a wrapping path, the wrapping path having a boundary;
defining a first graphics state for the path;

WO 00/28435 PCT/US99/26440

43

defining a second graphics state for the path;

processing the specification to produce a template bitmap, the
template bitmap being a bitmap or raster-data representation of a template image
defined by the specification;

associating a text file with the wrapping path, the text file including a
first block of text separated from a second block of text by a field delimiter:

creating first bitmap representations of the first block of text by
applying the first graphics state to the first block of text;

merging the first bitmap representations of the text, according to the
boundary and according to a predefined flow rule, into the template;

creating second bitmap representation of the second block of text by
applying the second graphics state to the second block of text; and

merging the second bitmap representation of the text, according to the

boundary and according to the predefined flow rule, into the template bitmap.

8. A method for wrapping data to an arbitrary path defined by a page

description language, comprising the steps of:

designating a path defined in a page description language specification
as a wrapping path, the wrapping path having a boundary;

defining a graphics state for the path;

processing the specification to produce a template bitmap, the
template bitmap being a bitmap or raster-data representation of a template image
defined by the specification:;

associating a text block with the wrapping path, the text block including
a plurality of words:

replacing all occurrences of a predetermined word in the text block with
a substitute word;

creating bitmap representations of the text block by applying the
graphics state to the text block: and

merging the bitmap representations of the text block, according to the

boundary and according to a predefined flow rule, into the template.

WO 00/28435 PCT/US99/26440

44

9. A method for wrapping data to an arbitrary path defined by a page

description language, comprising the steps of;

designating a path defined in a page description language specification
as a wrapping path, the wrapping path having a boundary;

defining a graphics state for the path;

processing the specification to produce a template bitmap, the
template bitmap being a bitmap or raster-data representation of a template image
defined by the specification;

associating a text block with the wrapping path, the text block including
a plurality of words and a delimiter:

creating bitmap representations of the text block by applying the
graphics state to the text biock; and

merging the bitmap representations of the text block, according to the
boundary, according to a predefined flow rule and according to the delimiter, into the

template.

10. The method of claim 9, wherein the delimiter is a paragraph delimiter
and the merging step includes the step of merging a bitmap representation of an

indent or a line-space in place of the paragraph delimiter.

11. The method of claim 9, wherein the delimiter is an end-of-page
delimiter and the merging step includes the step of ceasing the merging of the

bitmap representations of the text block into the template.

12. A method for wrapping data to an arbitrary path defined by a page
description language, comprising the steps of: '

(a) designating a path defined in a page description language
specification as a wrapping path, the wrapping path having a wrapping-path
boundary;

(b) defining a graphics state for the path;

WO 00/28435 PCT/US99/26440
45

(c) processing the specification to produce a template bitmap, the
template bitmap being a bitmap or raster-data representation of a template image
defined by the specification;

(d) saving the template bitmap in memory;

(e) associating a block of text with the wrapping path;

(f) creating bitmap representations of the block of text by applying the
graphics state to the block of text:

(9) retrieving a first copy of the template bitmap from memory;

(h) merging the bitmap representations of the block of text, according
to the boundary and according to the predefined flow rule, into the first copy of the
template until an end of the boundary is reached:

(i) upon reaching the end of the boundary, retrieving a next copy of the
template bitmap from memory; and

(i) merging a remainder of the bitmap representations of the block of
text, according to the boundary and according to the predefined flow rule, into the

next copy of the template.

13. A method for wrapping data to an arbitrary path defined by a page
description language, comprising the steps of:

(a) accessing a data area defined in a page description language
specification, the specification further defining a graphics state corresponding to the
data area, the graphics state including at least one print attribute which controls the
appearance of data in the data area;

(b) monitoring a text string defined in the data area for a first special
character or first string of characters, the first character or first string of characters
being indicative of a wrapping command;

(c) responsive to a detection of the special character or string of
characters in the text string, (i) identifying a path defined by the page description
language specification and having a predetermined relationship with the data area
as being associated with the wrapping command, the path having a boundary, and

(ii) storing the graphics state corresponding to the data area in memory;

WO 00/28435 46 PCT/US99/26440

(d) associating a block of text with the wrapping command;

(e) applying the stored graphics state to the block of text to generate
bitmap representations of the block of text; and

(g) arranging the bitmap representations of the block of text, according

to the boundary and according to a predefined flow rule.

14. The method of claim 13, further comprising the steps of:
(b1) monitoring the text string for a second string of characters
specifying a supplemental print attribute; and
(e1) applying the supplemental print attribute along with the stored
graphics state to the block of text to generate bitmap representations of the block of

text.

15. The method of claim 13, further comprising the steps of:
(b1) monitoring the text string for a second string of characters
specifying a supplemental print attribute; and
(g1) arranging the bitmap representations of the block of text,
according to the boundary, according to a predefined flow rule and according to the

supplemental print attribute.

PCT/US99/26440

WO 00/28435

18

OIOky

©

L Ol

e s 08 000
¢ o e g St s 3 g b o S o e S
b -

VTS e s o 8 T

PR -
D‘DI "‘ l" }
]lﬂ.ﬂl‘qﬁ.ﬂdﬂ!hﬂl.u

o
P

at

S~ |_— hi
81~ " ’
314 NOILVYIBIINOD 31 394N N S31 d
L\
e
H .llx!v...mnu
Ixngy
‘O !-J..Bs_
gt
kisdiad
s e

A

wo

00/28435 PCT/US99/26440

[PageDescriptionLangua%eFile]

AccessMethod=FT:

® T~ FilePath=c:\forms\wierd.pd|

[MergeFile]
AccessMethod=FTP

|

i

|

|

|

|

|

I

f

|

!

|

[

- FilePath=c:\data\info.txt |

/ i]

\Z 4 |
| 47

|

o [Wrap] o~ !

|

. |

|

{

|

§

l

I

|

Shape

[Shape] "

FillRule=EvenOddRule
48 ; DrawPath=True
sSo

—— —— — —

greeting"
In a world of interactive media and virtual reality Variable On-Pgmand a

cﬂgi}‘al printing holds a competitive advantage over traditional and less
flexible technologies.

Varis' products meet customized printing demands — 54
on the tightest deadiines with breakthrough electranics, industry standard

software and a philosophy that customer needs drive printing solotions,
not the other way around.

—-———-—-—--———_—_—___..____-..._—__—.---..__—...—___-—_—_-.—_—__

WO 00/28435 PCT/US99/26440

3 /18
\;\' X
._,__..l)
¥4
$ ¥ o
k 4 //____——g\\
bd:y\ (\ \\\\\
\\ \\
[— N
) \\ 4 \\\\ \
s \ \ ™~ ‘.
\\ N AN /
\, \ \ /
\ \\ b/
“~ "~ S/
S e—— _ DT T _//
FIG. 4
s8 5
YA
AN }R-'j// — .LN\.\
\\ Lu‘)"/ { \‘\\‘\\
AN \ N
U —— <
/ﬁ \\ U*_/ﬁ *\\\ \}
\ \ N)
G\ . ‘\\\ /) A
“ :
T — d ..\:-,é..-/

WO 00/28435 PCT/US99/26440

el

o —4——-\\
1/
/

50° \ \ \

»
»
/’/r —

FIGC. 6

WO 00/28435 PCT/US99/26440

WO 00/28435 PCT/US99/26440

6 / 18
56 84
T ——LZ
\ Y X)y‘}'ya"iy) (}) \\\\\\\
\ ")' ? \}a-" y'q Y,V \\\
\\ A}\} ’;'P‘ “}.« ;\" o _
WA ¢ T~ “\
\ Y V} (N \
\ ‘V,.) 3 Nd \\ ‘\\]
\ /{ \'y AN AN /
\\\ “)‘ \\\ y /
FIG. 9
_ . St 869
w:'; ’) y \}‘, e \\\ p——
\ quv@?_‘ %«*’Xi yﬁ,f’ ~
“\ ! yvy S f ,"’r T —— AN
\V T ~~ ‘
¥y & N~ % \
A \ N /
AN () J.'\? \ \ /'/
\\.\ \\\\\"__,./::z/

WO 00/28435 PCT/US99/26440
7 1 18

r/(00

! Elotten” Path

) y o
A\%/\ Ceactd note $Ys+<.v\ b
AHci bu ke $+r;/\.3

< ~104
RO“'O‘LQ Boundar {ato CCXJ’C{"’OLC
| Systea & Mirikute S‘h;ra
4 =106
APP,Y C‘fc‘;'wc,s Stave 4, Te <t Da“_q
to Colcolate Dimensions of Wurd E-"’Mrs

v

Locaie ““\;‘QS“F ?o'm-—l‘ OC Pa‘H«\ gou,\dar?/ - {08
o~ \Al)"z‘“/ TOP MCJC\ N

~110

Delire Ecc,-*ranc‘u;\ar {agzr% 0n AMq
3
O\:Q/'\G»((rseton Area onto il BOurdal/

* — — 1
A“)l\!- :low Rule '{'b De"‘.'\':’fr‘,q,l‘é. BC"’\UQU\ L\)l".-(,l'“ AC}JC’C&‘_‘-

>
v \nteorvge ct-0n Points +o Receire UL)o/cS EJMGPS
¥
APP‘\(QQ%{Z\Q\L%‘ /\V‘\OI_C\W‘S +D wg-x'v“\\lka' TQ‘L*- “(0
Plocere~t Areg ~
* o /~l18

| Ase+ Wotd B-H\’\a‘% tato Text ﬂacerv\a/-‘!‘ Area (3\(Creohn
Rendesing Comrnapnds Hot are added v 4k Displa dz,;si}
Unbl Cledioted Avaiabie LodHh is Saoltar +han
WL dEe ofF Naxd o1 d Z’x‘rrno,;) to lasert ’
¥ _

/\Yp'l\(Line. Spacrq, Create Next Rectargllasr~ iA(20
I~ sesdan Nea c~d Owesloy Next laserbyq A}eq :
O-"\'LC P;:!';"/‘. EO\//\C(Cuy(I

i

/ 12e
N be .

Maizin OF E oy N
U:;\.h,\ werd |

WO 00/28435

Ts Beatras:
Ween Mwﬁa%:z

a4 0. s Yo cam dee, the
e padi ({amdw;[‘.4 and ftls

fowing of £t conttuacca wtt

‘ﬁ“‘{‘-‘“{ awzdza’(; data

- T Bwthat:
When MaOﬁ?‘;g&:a

ad o, P8 gyou cam scc. the
i pati bswdanics and fills
fowing of txt contlmica wetl
speciicd warialle data

a3

PCT/US99/26440
8 / 18
40
ﬁ
Hese tua Aatis arne heated
& flows cffpntloasly acesa
bie combined arca. Thes qz-

Ve park i fled ar al th
@ wsed, :a(z/cwc commed
overfloca ca fmed, e fou

dbﬂd alex "0 mote 2osm (4

Fe.l o

o]
f’q

Biese Bus gatis are Beated
ke flows effpreleastly acrode
te combined anca. This
Wi parh i flUed on all the
@ wsed, whicheocn comed
swerflow & defred. te flow
dbpe whem m mote toome i

qz

ak“ an O“#‘a
patk & defred, e

d-&d f&l‘ ﬁld dc m%@ arzea

Fie. 13

WO 00/28435

18

PCT/US99/26440

. oy
[PageDescriptionLanguageFile} 2
FilePath = fusr/iobs/booksfungle.ps #~_ {28

[MergeFiles]“\’ 1+¢
names
rikkitxt

[names] €— l4e

FilePath = lustljobs/booksinames.ixt 4~ 130
Mergtype = delimited

MergeHeader = yes

RecordDelimiter = 1n’

FieldDelimiter = T

PageSelectField= book

DoGlobalSubstitution = False
DoDemoSubstitution = Trye

AIENdOfFile = Restart

[rikkitxt) ©~—148 132
FilePath = fusrfjobs/books/rikki.txt ¢~
MergeType = field
MergeHeader = no
AtEndOfFile = Restart
SmartQuoles = True
FieldDelimeter = #

PageBreakDelimiter = ~
ParagraphDelimiter = @
DoGlobalSubstitution = True

[MergeFile:substitution) &~ 159
Mowgli's = <<nametp>>
Mowgli = <<name{>>
Teddy's = <<nameip>>
Teddy = <<name1>>

Wrap] #—13¢
path . I3¢

(path) +~ 138
Justify = left
Overflow = path

Margins =0.10in - 2

D ath = False A~ 14
Paragraphindent = 0in
ParagraphAdjust =0.10in
MinPageBreakLines = 15
PageBreakLineAdjust =1in
FillRule = EvenOddRule +— Mo

[Sen’alizers]
pagenumber = numeric 5 10 start -3 step 1 dz ValueField stantpagenum

(DataField)
pict = A

Fie. 14

WO 00/28435

(]}

73

10 / 18

Rikki-Tikki-Tavi

e~ 159

¥ ~15Ca

e~135 ¢4 r_(S*

At the hole where he went in® ‘54_

Red-Eye called to Wrinkle-Skin.@™

Hear what little Red-Eye saith:@—~ 54

"Nag, come up and dance with death!g™~{S¢

e~ 154

Eye to eye and head to head,@™15%

(Keep the measure, Nag.)e~t$4 s4

This shall end when one is dead:@""

(At thy pleasure, Nag.)e~|s4 154

Turn for turn and twist for twist--&

(Run and hide thee, Nag.)e~i54

Hah! The hooded Death has missedt@™!S4

(Woe betide thee, Nagt)

FaS bkt g @1”15?

Ba)50b

@159

This is the story of the great war that Rikki-tikki-tavi fought
single-handed, through the bath-rooms of the big bungalow in
Segowlee cantonment. Darzee, the Tailorbird, helped him, and
Chuchundra, the musk-rat, who never comes out into the middle of
the floor, but always creeps round by the wall, gave him advice,
but Rikki-tikki did the real fighting.

eSS4

He was a mongoose, rather like a little cat in his fur and his
tail, but quite like a weasel in his head and his habits. His
eyes and the end of his restless nose were pink. He could scratch
himgelf anywhere he pleased with any leg, front or back, that he
chose to use. He could fluff up his tail till it looked like a
bottle brush, and his war ery as he scuttled through the long
grass was: "Rikk-tikk-tikki-tikki-tchki®)
e~15¢
One day, a high summer flood washed him out of the burrow
where he lived with his father and mother, and carried him,
kicking and clucking, down a roadside ditch. He found a little
wisp of grass floating there, and clung to it till he lost his
genses. HWhen he revived, he was lying in the hot sun on the
middle of a garden path, very draggled indeed, and a small boy was
saying, "Here's a dead mongoose. Let's have a funeral.*
@~ 54 ¢
"No," said his mother, "let's take him in and dry him.
Perhaps he isn't really dead."
@~15% :
They took him into the house, and a big man picked him up
between his finger and thumb and said he was not dead but half
choked. So they wrapped him in cotton wooleand warmed him over a
little fire, and he opened his eyes and sneezed.
0\.‘51} . ' .
"Now, " said the big man (he was an Englishman who had just

moved into the bungalow), "don't frighten him, and we'll see what
he'l) ‘do."

N

/]

Fie. ISA

PCT/US99/26440

(19

PCT/US99/26440
WO 00/28435
11 /7 18

It is the hardest thing in the world to frighten a mongoose, /\l_lq
because he is eaten up from nose to tail with curiosity. The
motto of all the mongoose family is "Run and find out,* and
Rikki-tikki was a true mongoose. He looked at the cotton wool,
decided that it was not good to eat, ran all round the table, sat

up and put his fur in crder, gcratched himgelf, and jumped on the
small boy's shoulder.

e~154 123

~150c

"Don't be frightened' said his father. “"That's his
way of making friends.

o154 193
"Ouch! He's tickling under my chin,* aaid

o 1S4

Rikki-tikki looked down between the boy's collar and neck,

snuffed at his ear, and climbed down to the floor, where he sat
rubbing his nose.

AN

oy 193
"Good gracious, * sai other, ®"and that's a wild
Creature! I suppose h&Ts—su~tame because we've been kind to him.*

o~154
"All mongooses are like that," said her husband. "Iflq3

doesn't pick him up by the tail, or try to put him in a cage,
he'll run in and out of the house all day long.
something to eat.*®
e~-(54

They gave him a little piece of raw meat. Rikki-tikki liked ’\"'qz
it immensely, and when it was finished he went out into the

veranda and sat in the sunshine and fluffed up his fur to make it

dry to the roots. Then he felt better.
o(\l54‘

Let's give him

"There are more things to find out about in this house, " he

said to himself, “"than all my family could find out in all their
lives. I shall certainly stay and find out."
54

He spent all that day roaming over the house. He nearly

drowned himself in the bath-tubs, put his nose into the ink on a
writing table, and burned it on the end of the big man's cigar,
la)f for he climbed up in the big man's lap to see how writing was

done. At nightfall he ran into Teddy's nursery to watch how

kerosene lamps were lighted, and when Teddy went to bed
Rikki-tikki climbed up too. But he was a restless tompanion,
because he had to get up and attend to every noise all through the
night, and find out what made it. Teddy's mother and father ‘came
in, the last thing, to look at their boy, and Rikki-tikki was
awake on the pillow. *I don't like that,* said Teddy's mother.
"He may bite the child.™ *®He'll do no such thing, * said the

father. "Teddy's safer with that little beAst than if he had a

bloodhound to watch him. If a snake came into the nursery now--*
e '

o~ 15C4
But Teddy's mother wouldn't think of anything so awful.

~i5¢
|

Fle, 158

WO 00/28435 PCT/US99/26440

12/18

17
i 7 M
—T~¥ <<rikkitxt>> textc wrap=path [all 168

(70 e wrap=path [all] -
|12 AW <<rikkitxt>> lﬁ: ezdju.s‘!=0 wrap=path [(all]

104 !
|5 <<cikkitxt>> Srap=path (all] 1
178 7 "4 b

f1>> wrab path textl dropcap
<<|'p|C =

T [t e e
/ <<nkkitxt>> Wrap=path (all]
140 — [

e

160
182

The Jungle Book —~'©%

S

i~~~ (57

<<pagc8umbcr>> textc 4160

164 ’\'lllb,

Fie. le

WO 00/28435 PCT/US99/26440

13/18

{_/
The Jungle Book
r _______________ t

t Rikki-Tikki-Tavi «—T¢

|
|
| 1
' |
| At the hole where he went in !
Red-Eye called to Wrinkle-Skin. '
’ Hear what little Red-Eye saith: |
} “Nag, come up and dance with death!”
) Eye to eye and head to head,
| (Keep the measure, Nag.) -
This shall end when one is dead;
- - (At thy pleasure, Nag.)
Turn for turn and twist for twist--
(Run and hide Hree, Nzg.)
k Hah! The hooded Death has missed!
(Woe betide thee, Nag!)

\'IA.'

| This is the story of the great war that Rikki-tikki-thvi

I fought single-handed, through the bath-rooms of the big

j bungalow in Segowlee cantonment. Darzee, the
Tailorbird, helped him, and Chuchundra, the musk-rat,
who never comes out into the middle of the/floor, but

| always creeps round by the wall, gave him advice, but

| Rikki-tikki did the real fighting, =~ -

o e — — — — —

~.)

|
]
i
|
l
I
!
!
I
!
!
l
l
|
. P1so
i

1

l

C
N ——

— Gm—® qumn e

105

Fie. TA

WO 00/28435 PCT/US99/26440

14 / 18

The Jungle Book

o —— —— et i s e —— m—— — — ———.—]

He was a mongoose, rather like a little cat in his fur and
} his tail, but quite like a weasel in his head and his habits.
l His eyes and the end of his restless nose were pink. He ‘

could scratch himself anywhere he pleased with any leg, |
I front or back, that he chose to use. He could fluff up his I

tail till it looked like a bottle brush, and his war cry as he
scuttled through the long grass was: !)

I

“Rikk-tikk-tikki-tikki-tchk!” /

] One day, a high summer flood washed him out of the j
burrow where he lived with his father and mother, and /
l carried him, kicking and dlucking, down a roadside ditch.
He found a little wisp of grass floating there, and clung to |
l it till he lost his senses. When he revived, he was lying in |
] the hot sun on the middle of a garden path, very draggled]
indeed, and a small boy was saying, “Here’s a.dead
_| mongoose. Let's have a funeral.” I
o

58~ — | “No,” said his mother, “let’s take him in and dry him.
Perhaps he isn't really dead.”

/180

|
|
They took him into the house, and a big man picked him |
up between his finger and thumb and said he was not |
dead but half choked. So they wrapped him in cotton |
| wool, and warmed him over a litfle fire, and he opened
l his eyes and sneezed. |

| “Now,” said the big man (he was an Englishmarwho had!|
just moved into the bungalow), “don’t frighten him, and |
| we'll see what he'll do.” I

. 1
Iy — oy e o

| 106

-

Fie. 178

WO 00/28435 PCT/US99/26440

15 / 18

(8%

7~

18d
\%\/H___ e ___]/ as

l

I

|

| Vs 195~ |

77 . — 1 “Good gracious,” sai
> l mother, “and that’s a wild creaturel I suppose he’s 50

|

as

The Jungle Book

r—-.——.——— — p—— ,—_q—.—_-—.—_,

|1t is the hardest thing in the world to frighten a l
mongoose, because he is eaten up from nose to tail with
lcuriosity. The motto of all the mongoose family is “Run | \L— 180
|and find out,” and Rikki-tikki'was a true mongoose, He
looked at the cotton wool, decided that it was not good to !
| eat, ran all round the table, sat up and put his fur in order,

scratched himself, and jumped on the small bo 5
s jump
| shoulder. 18 "

|
: I
l ”Don’tbefrightened,” l
2N\ said his father. “That’s way of
N | making friends.” |
' :
’ * “Ouch! He's tickling under my
S\ | chin,” saidRanely ~ /S |

Qo) Rikki-tikki looked down between |
NRY s | the boy’s collar and neck, snuffed |
histo "}?I at his ear, and climbed down to

P4 | the floor, where he sat rubbing |
SR "\.”,’:’;}w{, l his nose.

=i

) |
tame because we’ve been kind to him.”]
|

“All mongooses are like that,” said her husbénd. “If
«_Ranemdoesn't pick him up by the tail, or try to put him in |
12 cage, he'll run in and out of the house all day long. Let's |

107

WO 00/28435

16 / 18

PCT/US99/26440

The Jungle Book

Rikki-Tikki-Tavi

At the hole where he went in
Red-Eye called to Wrinkle-Skin.
Hear what little Red-Eye saith:

“Nag, come up and dance with death!”

Eye to eye and head to head,
(Keep the measure, Nag.)
This shall end when one is dead;
(At thy pleasure, Nag.)
Tumn for turn and twist for twist—
(Run and hide thes, Nag.)
Hah! The hooded Death has missed!
(Woe betide thee, Nag!)

This is the story of the great war that Rikki-tikki-tavi
fought single-handed, through the bath-rooms of the big
bungalow in Segowlee cantonment. Darzee, the |
Tailorbird, helped him, and Chuchundra, the musk-rat,
who never comes out into the middle of ﬂ\’é’ﬂOOt, but

always creeps round by the wall, gave him advice, but
Rikki-tikki did the real fighting.

105

Flo. 184

WO 00/28435
17 / 18

PCT/US99/26440

The Jungle Book

He was a mongoose, rather like a little cat in his fur and
his tail, but quite like a weasel in his head and his habis.
His eyes and the end of his restless nose were pink. He
could scratch himself anywhere he pleased with any leg,
front or back, that he chose to use. He could fluff up his
tail till it looked like a bottle brush, and his war cry as he
scuttled through the long grass was: .
“Rikk-tikk-tikki-tikki-tchk!”

One day, a high summer flood washed him out of the
burrow where he lived with his father and mother, and
carried him, kicking and clucking, down a roadside ditch.
He found a little wisp of grass floating there, and clung to
it till he lost his senses. When he revived, he was lying in
the hot sun on the middle of a garden path, very draggled
indeed, and a small boy was saying, “Here’s a dead
mongoose. Let’s have a funeral.”

“No,” said his mother, “let's take him in and dry him.
Perhaps he isn't really dead.”

They took him into the house, and a big man picked him
up between his finger and thumb and said he was not
dead but half choked. So they wrapped him in cotton
wool, and warmed him over a little fire, and he opened
his eyes and sneezed.

“Now,” said the big man (he was an Englishmap who had

just moved into the bungalow), “don’t frighten h{m, and
we'll see what he'll do.”

106

WO 00/28435 PCT/US99/26440
18 / 18

The Jungle Book

It is the hardest thing in the world to frightena
mongoose, because he is eaten up from nose to tail with
curiosity. The motto of all the mongoose family is “Run
and find out,” and Rikki-tikki'was a true mongoose. He
looked at the cotton wool, decided that it was not good to
eat, ran all round the table, sat up and put his fur in order,

scratched himself, and jumped on the small boy’s
shoulder.

“Don’t be frightened, Ranen,”
said his father. “That’s his way of
making friends.”

“Ouch! He's tickling under my
chin,” said Ranen.

N) Il Rikki-tikki looked down between
NN | the boy’s collar and neck, snuffed
\| B2 ["7 athis ear, and climbed down to
NI the floor, where he sat rubbing
his nose.

“Good gracious,” said Ranen's
mother, “and that's a wild creature! I suppose he's so
tame because we’ve been kind to him.”

“All mongooses are like that,” said her husband, “If
Ranen doesn't pick him up by the tail, or try to put him in
a cage, he’ll run in and out of the house all day long, Let's

107

Fle. 18C

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

