
(19) United States
US 20080298392A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0298392 A1
Sanchez et al. (43) Pub. Date: Dec. 4, 2008

(54) PACKET PROCESSING

(76) Inventors: Mauricio Sanchez, Roseville, CA
(US); Bruce E. LaVigne, Roseville,
CA (US); Alan R. Albrecht,
Granite Bay, CA (US)

Correspondence Address:
HEWLETT PACKARD COMPANY
P O BOX 272400, 3404 E. HARMONY ROAD,
INTELLECTUAL PROPERTY ADMINISTRA
TION
FORT COLLINS, CO 80527-2400 (US)

Publication Classification

(51) Int. Cl.
H04.3/16 (2006.01)

(52) U.S. Cl. .. 370/469
(57) ABSTRACT

Network devices, systems, and methods are provided for
packet processing. One method includes receiving a checking
functionality rule set as an input to a distribution algorithm.
The method includes bifurcating and providing configuration
instructions, as an output from the distribution algorithm, to a
first logic plane associated with a first logical entity and a
second logic plane associated with a second logical entity. A

(21) Appl. No.: 11/809,512 collaboration algorithm is used to provide processing coordi
nation between the first logical entity and the second logical

(22) Filed: Jun. 1, 2007 entity.

MANAGEMENT REMOTEACCESS
to STATION SERVER (DIALUP)

f 72
FAT CENTS O ff-3 770-8

774-7 D sitti
ASEY M EFSF ff-7

(ONLINE)
AFE f73-f f764 f73-3 FILE

f74-W SERVER s EEE ZH
ROUTER f50 APPLICATION

e f 194 SERVER AyA f2f NETWORK f705

ff.5-f WRLEss- 119 ||PACE
(182 f f6-5 ff0-6

115-M.-fi Al-MACAA I
e DATABASE

. AuMAs a SA SERVER
ff6-f I

Ayy HE al s

THIN CLIENTS EEE INTRANE
ff f ff0-f ROUTER f70-4 SERVER
s ff02 (FIREWALL) ff6-2

f703 f2O

I RE
Proxy SERR (FIREWALL) al a e

MAIL SERVER WEESERVE (FIREWALL)

Dec. 4, 2008 Sheet 1 of 7 US 2008/0298392 A1 Patent Application Publication

HOINS
2-8 //

zu (L)

SINH|TO IW

NJ
00/

Dec. 4, 2008 Sheet 2 of 7 US 2008/0298392 A1 Patent Application Publication

9

8/

/

0

OZZ

£ 8,7

US 2008/0298392 A1

0982

EINWT, MOTS

Dec. 4, 2008 Sheet 3 of 7

20€

/08?

Patent Application Publication

ENWId || SWH

SOd

Patent Application Publication Dec. 4, 2008 Sheet 4 of 7 US 2008/0298392 A1

407

ORIGINAL RULE FILE

FAST/SLOW
PLANE .

DISTRIBUTION

474

FOR

cGEN c5 5.5 rail Sir
INSTRUCTIONS INSTRUCTIONS

(PRE-CONDITIONS)

FOR DATA
SWITCH PLANE/CONTROL
ASIC PLANE

DISTRIBUTION

ASIC CONFIGURATION
INSTRUCTIONS

MGMT. CPU
INSTRUCTIONS

Fig. 4

Patent Application Publication Dec. 4, 2008 Sheet 5 of 7 US 2008/0298392 A1

Fig. 5
FAST PLANE

500 FIG. 5AFIG. 5B
#1 N-TUPLE FLOW TRAFFIC CLASSIFIER

507

FOREACH FLOWN)-504

508
HASIPSTOLD US

TAKE ACTION
SEESYis DCTATED BY PS

FLOW2

572
MATCH BASED ON

FAST PLANE FORERFC
INSTRUCTIONS

576

TAKE ACTION DICATED
NEED TSND TO BY INSTRUCTIONS

YES 578

APPEND ASIC CONTEXT TO
PACKET (SID, UNIQUED,

FLOWID, ETC)

Aig. 54

Patent Application Publication

522

FOREACH PACKETIN FLOWN
RECEIVED FROM ASIC

524

EXTRACT ASC CONEXT
AND ASSOCATE WITH

LOCAL CONTEX

MATCH BASED ON
SLOWPLANE

INSTRUCTIONS

TAKE ACTION DICATED BY
INSTRUCTIONS (ALERT, LOG

PACKET, ETC)

DO
INSTRUCTIONS
STATE TO BLOCK
ALL ADDITIONAL

TRAFFIC2

YES 539
#14 TELL, SWITCH FLOW N

S TO BE BLOCKED

Dec. 4, 2008 Sheet 6 of 7

SLOWPLANE

ARE THERE STILL
MATCHES THAT

CONCEIVABLY COULD HIT
WITH ADDITIONAL

TRAFFIC?

FORWARD PACKET
NOMINALLY

US 2008/0298392 A1

TELL, SWITCH
FLOWNNO
LONGER NEED
BESENT TOPS

Patent Application Publication Dec. 4, 2008 Sheet 7 of 7 US 2008/0298392 A1

670

RECEIVING ACHECKING FUNCTIONALITY RULE SETAS AN INPUT
TO A DISTRIBUTIONALGORTHM

BIFURCATING AND PROVIDING CONFIGURATION INSTRUCTIONS,
BASED ON AN OUTPUT FROM THE DISTRIBUTIONALGORITHM, TO
AFIRST LOGIC PLANE ASSOCATED WITH A FIRST LOGICAL ENTITY

AND A SECOND LOGICPLANE ASSOCATED WITH A SECOND
LOGICAL ENTITY

USINGA COLLABORATIONALGORTHM TO PROVIDE PROCESSING
COORDINATION BETWEEN THE FIRST LOGICAL ENTITY AND THE

SECOND LOGICAL ENTITY

Fig. 6

US 2008/0298392 A1

PACKET PROCESSING

BACKGROUND

0001 Computing networks can include multiple network
devices such as routers, Switches, hubs, servers, desktop PCs,
laptops, and workStations, and peripheral devices, e.g., print
ers, facsimile devices, and Scanners, networked together
across a local area network (LAN) and/or wide area network
(WAN).
0002 Networks can include a network appliance (NA),

e.g., intrusion prevention system (IPS) and/or intrusion detec
tion system (IDS) that serves to detect unwanted intrusions/
activities to the computer network. Unwanted network intru
sions/activities may take the form of attacks through
computer viruses and/or hackers, among others, trying to
access the network. To this end, a NA can identify different
types of Suspicious network traffic and network device usage
that can not be detected by a conventional firewall. This
includes network attacks against Vulnerable services, data
driven attacks on applications, host based attacks such as
privilege escalation, denial of service attacks, port scans,
unauthorized logins and access to sensitive files, viruses,
Trojan horses, and worms, among others. A NA can also
include other forms of diagnostic devices, accounting
devices, counting devices, etc., operable on network packets
of interest.

0003 Network appliances are a class of products that pro
vide network security services such as firewalling, intrusion
detection, content filtering, spam filtering, and/or virtual pri
vate networks (VPNs). Network appliances arose and
evolved independently of traditional high-speed network
infrastructure devices Such as routers, Switches, bridges, etc.
However, the underpinnings of modern network appliances
are in fact a bridging or routing engine that in many instances
replicates the functionality of the traditional high-speed net
work infrastructure device.

0004 Network appliances, e.g., IPS/IDSs, counting/ac
counting, or diagnostic devices, may be slower than other
network devices, such as Switches and routers, and hence
have slower throughput. Additionally, network appliances
tend to replicate bridging and routing functions that have
already been well-optimized and are significantly faster in
network infrastructure devices, e.g., routers, Switches, etc.
For example, network devices have become more “intelli
gent' in their decision making capability at very fast speeds,
e.g., 100+ Gbps. In contrast, network appliances can be sev
eral orders of magnitude slower in terms of throughput as
compared to Such modern high-speed network devices. Net
work appliances also tend to introduce latency issues when
compared to network devices. Latency is a troublesome facet
to introduce into a network because it negatively effects real
time applications such as Voice over IP (VoIP), e.g., latency
can cause choppiness in conversations, etc., or storage area
networks (SANs), e.g., latency can cause slow file operations.
0005 Previous approaches have endeavored to put more
processing power in the network appliance. However, while
adding more raw processing power to a network appliance
does improve its capability, the net return on improvement
does not usually justify the cost added to realize that improve
ment.

Dec. 4, 2008

BRIEF DESCRIPTION OF THE DRAWINGS

0006 FIG. 1 is an example of a computing device network
in which certain embodiments of the invention can be imple
mented.
0007 FIG. 2 illustrates a portion of a network, such as
shown in FIG. 1, which includes network devices in which
certain embodiments of the present invention can be imple
mented.
0008 FIG. 3 illustrates one embodiment implementing a
distribution algorithm and a collaboration algorithm in asso
ciation with a first logical entity and a second logical entity.
0009 FIG. 4 is a flow diagram illustrating an operation for
one embodiment of a distribution algorithm.
0010 FIG. 5 is a flow diagram illustrating an operation for
one embodiment of a collaboration algorithm.
0011 FIG. 6 illustrates a method for packet processing
according to an embodiment of the present invention.

DETAILED DESCRIPTION

0012 Embodiments of the present invention may include
network devices, systems, and methods for packet process
ing. One method includes receiving a checking functionality
rule set as an input to a distribution algorithm. The method
includes bifurcating and providing configuration instruc
tions, as an output from the distribution algorithm, to a first
logic plane associated with a first logical entity and to a
second logic plane associated with a second logical entity.
The method further includes using a collaboration algorithm
to provide processing coordination between the first logical
entity and the second logical entity.
0013. In some embodiments, the method includes config
uring a first logical entity, e.g., a network device, with a
number of pre-conditions which have to be met before a
pattern search is invoked on network packets by a second
logical entity, e.g., a checking functionality. The method
includes using the first logical entity to process packet header
information, such as those in layer 2 to layer 4, associated
with network packets. The method includes determining
whether the number of pre-conditions has been satisfied
while processing packet header information. The method fur
ther includes providing bi-directional communication
between the first logical entity and the second logical entity.
Embodiments described herein allow for the efficient col
laboration of checking functionality and a network device to
reduce work duplication and increase performance.
0014. As used herein, “checking functionality” (CF)
means an intrusion prevention system (IPS), an intrusion
detection system (IDS), and can also include other forms of
security devices, diagnostic devices, accounting devices,
counting devices, etc., operable on network packets of inter
est, whether connected as a network appliance (e.g., 250-1 or
250-2 as described in connection with FIG. 2) or whether
provided as logic integral to a particular network device (e.g.,
241, 270, 260, or 265, as described in connection with FIG.
2).
0015. A checking functionality can include a network
appliance Supplied by a third party vendor of network security
devices or otherwise. As used herein, the term “network
appliance' is used to mean an add-on device, e.g., "plug-in
or “application module' (as defined below), to a network as
contrasted with a "network device', e.g., router, Switch, and/
or hub, etc., which are sometimes considered more as “back
bone' component devices to a network. The operations of

US 2008/0298392 A1

such devices will be recognized and understood by one of
ordinary skill in the art. A checking functionality can be
provided in the form of software, application modules, appli
cation specific integrated circuit (ASIC) logic, and/or execut
able instructions operable on the systems and devices shown
herein or otherwise.
0016 “Software', e.g., computer executable instructions
as used herein, includes a series of executable instructions
that can be stored in memory and executed by the hardware
logic of a processor (e.g., transistor gates) to perform a par
ticular task. Memory, as the reader will appreciate, can
include random access memory (RAM), read only memory
(ROM), non-volatile memory (such as Flash memory), etc.
0017. An “application module” means a self-contained
hardware or software component that interacts with a larger
system. As the reader will appreciate a software module may
come in the form of a file and handle a specific task within a
larger Software system. A hardware module may be a separate
set of logic, e.g., transistor/circuitry gates, that "plug-in” as a
card, appliance, or otherwise, to a larger system/device.
0018. In some embodiments, software and/or logic in the
form of hardware, e.g. application specific integrated circuits
(ASICs) on a network chip, receives a network packet. The
Software and/or logic processes networkpackets on ingress to
a network chip (defined below), e.g., using a first logical
entity (ASIC) for processing well-known packet header infor
mation, Such as layer 2 to layer 4, associated with the network
packets, in order to determine whether a number of pre
conditions have been met before higher orders of analysis,
Such as data content matching are invoked on the network
packets by a second logical entity, e.g., a checking function
ality. The software and/or logic is further operable to establish
a bi-directional communication path between the first logical
entity and the second logical entity
0019. According to embodiments, the software and/or
logic can dynamically configure the first logical entity with a
number of pre-conditions selected from the group of a physi
cal Source port, a source media access controller (MAC SA)
address, a destination media access controller (MAC DA)
address, a source IP address (IPSA), a destination IP address
(IPDA), a protocol (“traffic') type, a TCP/UDP source port
number, a TCP/UDP destination port number, an IP flow, a
port being connected to a wireless network, etc. The Software
and/or logic can additionally configure the second logical
entity with a set of pattern indices associated with the number
of pre-conditions. Embodiments, however, are not limited
using pattern indices to perform pattern matching, but can
include sample based analysis and behavioral analysis, etc.
0020. As explained in more detail below, embodiments of
the present invention use a combination of a distribution
algorithm and a collaboration algorithm. The distribution
algorithm executes instructions to decide how to distribute
packet analysis between different entities, e.g., a Switch and
an checking functionality, in a given network. The collabora
tion algorithm is used to communicate between the different
entities, e.g., the Switch and the checking functionality, that
there is some set of packets that need additional processing,
e.g., pattern matching.
0021. In some embodiments, the checking functionality
only operates, e.g., performs pattern searches, on packets
when a number of pre-conditions has been satisfied. Using the
bi-directional communication path checking functionality
communicates a status associated with packets which have
been operated on to the network device. The network device

Dec. 4, 2008

can then operate on network packets based on the status
communicated from the checking functionality. According to
Some embodiments, the checking functionality can operate
on a set of pattern indices associated with packet traffic and
communicate a status back to the network device without
processing the same packet information already processed by
the first logical entity. Hence, embodiments of the present
invention focus the efforts of the checking functionality on
the packet checking role while not duplicating the packet
processing functionality of the network device to improve
throughput and reduce latency issues for the network.
0022 FIG. 1 illustrates an embodiment of a computing
device network 100 in which some embodiments of the inven
tion can be implemented. As shown in FIG. 1, a number
devices can be networked together in a LAN, WAN and/or
metropolitan area network (MAN) via routers, hubs, switches
and the like. As used herein a "network device' means a
Switch, router, hub, bridge, etc., e.g., a device which may have
a processor and memory resources, and is connected to a
network 100, as the same will be understood by one of ordi
nary skill in the art. Although a switch will often be used in
this disclosure in describing certain embodiments of the
invention, those skilled in the art will realize that embodi
ments may be implemented with other network devices. As
the reader will appreciate, the term network device can also be
used to refer to servers, PCs, etc., as illustrated further below.
0023. As used herein, a “network' can provide a commu
nication system that links two or more computers and periph
eral devices, and allows users to access resources on other
computers and exchange messages with other users. A net
work allows users to share resources on their own systems
with other network users and to access information on cen
trally located systems or systems that are located at remote
offices. It may provide connections to the Internet or to the
networks of other organizations. Users may interact with
network-enabled Software applications to make a network
request, such as to get a file or print on a network printer.
Applications may also communicate with network manage
ment software, which can interact with network hardware to
transmit information between devices on the network.

0024. The example network of FIG. 1 illustrates a print
server 110-1 and printer 111 to handle print jobs for the
network 100, a mail server 110-2, a web server 110-3, a proxy
server (firewall) 110-4, a database server 110-5, an intranet
server 110-6, an application server 110-7, a file server 110-8,
and a remote access server 110-9. The examples described
here do not provide an exhaustive list of servers that may be
used in a network.

0025. The network embodiment of FIG. 1 further illus
trates a network management station 112, e.g., a server, PC
and/or workstation, a number of “fat clients 114-1,
114-N which can also include PCs and workstations and/or
laptops, and a number of “thin clients 115-1,..., 115-M. As
used herein a “thin client can refer to a computing device that
performs little or no application processing and functions
more as an input/output terminal. That is, in this example, a
thin client generally relies on the application processing
being performed on a server networked thereto. Additionally,
a thin client can include a client in a server/client relationship
which has little or no storage, as the same will be understood
by one of ordinary skill in the art. In contrast, a “fat client' is
generally equipped with processor and memory resources, to
perform larger application processing and/or storage.

US 2008/0298392 A1

0026. The designators “N” and “M” are used to indicate
that a number of fat or thin clients can be attached to the
network 100. The number that N represents can be the same or
different from the number represented by M. The embodi
ment of FIG. 1, illustrates that all of these example network
devices can be connected to one another and/or to other
networks using routers, 116-1, 116-2, 116-3, and 116-4, and
hubs and/or switches 118-1, 118-2, 118-3, 118-4, and 118-5.
As noted above, Such network devices can include a processor
in communication with a memory and may include network
chips having hardware logic, e.g., in the form of application
specific integrated circuits (ASICs), associated with the num
ber of network ports. The term “network” as used herein is not
limited to the number, type, and/or quantity of network
devices illustrated in FIG. 1.

0027. Additionally as the reader will appreciate, a number
of mobile devices, e.g., wireless device 121, can connect to
the network 100 via a wireless air interface (e.g., 802.11)
which can provide a signal link between the mobile device
121 and an access point (AP) 119. The AP119 serves a similar
role to a base station in a wireless network, as the same will be
known and understood by one of ordinary skill in the art. As
shown in FIG. 1, the AP 119 can be linked to an access point
controller (APC) 123, as the same will be known and under
stood by one of ordinary skill in the art, which connects the
AP 119 over a packet switched signal link, e.g. an Ethernet
link, to other network devices, e.g., router 116-1.
0028 Program instructions (e.g., computer executable
instructions), as described in more detail here, can reside on
Some network devices. For example, program instructions in
the form of firmware, application modules, and/or Software
(both in the form of executable instructions) can be resident
on the network 100 in the memory of a network management
station 112 and/or one or more routers, 116-1, 116-2, 116-3,
116-4, hubs, and/or switches 118-1, 118-2, 118-3, 1184, 118
5, etc., and can be executable by the processor(s) and/or logic
(e.g., hardware in the form of transistor gates) thereon. Also,
program instructions can be resident in a number of locations
on some network devices in the network 100 as can be
employed in a distributed computing network. A “distributed
computing network” refers to the use of multiple computing
devices, e.g., having processor and memory resources, in a
network to execute various roles, e.g., application processing,
etc., as described herein.
0029. As one of ordinary skill in the art will appreciate,
each network device in the network 100 can be physically
associated with a port of a Switch to which it is connected.
Information in the form of network packets, e.g., data pack
ets, can be passed through the network 100. Users physically
connect to the network through ports or APCs 123 on the
network 100. Data frames, or packets, can be transferred
between network devices by means of a network devices,
e.g., Switch's, logic link control (LLC)/media access control
(MAC) circuitry, or “engines, as associated with ports on a
network device. A network switch forwards network packets
received from a transmitting network device to a destination
network device based on the header information in received
network packets. A network device can also forward packets
from a given network to other networks through ports on one
or more other network devices. As the reader will appreciate,
an Ethernet network is described herein. However, embodi
ments are not limited to use in an Ethernet network, and may
be equally well Suited to other network types, e.g., asynchro
nous transfer mode (ATM) networks, etc.

Dec. 4, 2008

0030. According to embodiments described herein, a
checking functionality, e.g., a network appliance intrusion
system (IS) which serves to detect and/or evaluate suspicious
activity, can be located in a “centralized location in network
100. As used herein, the term “centralized means a particular
location in the network 100 accessible from a number of
network devices, e.g., 118-1,..., 118-5, whether or not the
topographical location is in-line with a given packet's
intended network path or topographically central to the net
work 100. To further explain, in network 100 of FIG. 1,
certain network devices, e.g., switches 118-1, 118-2, and
118-5, may be referred to topographically as "edge network
devices” and other network devices, e.g., switches 118-3 and
router 116-4, may be referred to topographically as “central
network devices'. As used herein, "edge network devices’
topographically means network devices, e.g., 118-1, having
ports connected directly to network clients, 115 and 114-1, .
... 114-N on the "edge” of a network. The network clients can
include servers, “fat and “thin' clients, including mobile
network clients connected through an APC, etc., as discussed
above. As used herein, “central network devices' topographi
cally means network devices, e.g., 118-3, which are con
nected to other network devices, 118-2, but which are not
necessarily connected directly to network clients such as 115
and 114-1, ... 114-N, etc.
0031. However, the term “central in central network
devices is not to be confused with the use of the term “cen
tralized'. In some embodiments, a “centralized CF, as
defined above, may be integral to or associated with an edge
network device. That is, the topographical location in a given
network of the CF can be in association with Switch 118-1,
connected to “fat' and “thin' clients, 114-1,..., 114-N, and
115-1,..., 115-M, in FIG. 1, or equally in association with
switch 118-3, or switch 118-5, etc. Embodiments are not
limited to the examples described herein. As one or ordinary
skill in the art will appreciate, the intent is to placean CF in a
topographical location in network 100 which has a suffi
ciently high bandwidth associated therewith relative to the
bandwidth of other devices attached to the network 100 to
perform a sufficient throughput associated with a particular
CF. As the reader will appreciate, certain so termed "edge
network devices', e.g., Switch 118-1, may in fact have a large
network packet traffic bandwidth capability relative to other
network devices, e.g., 118-3, 1184, etc., in the network 100 so
as to be worthwhile candidates for associatinga CF therewith.
Embodiments are not limited to the examples given in con
nection with FIG. 1.

0032. In the example network implementation of FIG. 1, a
network appliance 150 is shown in association with switch
118-3. The network appliance 150 serves as a checking func
tionality. As the reader will appreciate, a network appliance
150 can include processor and memory resources capable of
storing and executing instructions to perform a particular role
or function. A network appliance can also include one or more
network chips (e.g., ASICs) having logic and a number of
ports.
0033. In certain embodiments, the checking functionality
performed by the network appliance 150 can perform the role
of an intrusion prevention system (IPS), as may be supplied
by a third party vendor of network security devices. In certain
embodiments, the checking functionality performed by the
network appliance 150 can perform the role of an intrusion
detection system (IDS), or another diagnostic device,
accounting device, counting device, etc., as may be supplied

US 2008/0298392 A1

by a third party vendor. Embodiments are not limited to the
examples given here. The various configurations and opera
tions of such different checking functionalities are known and
understood by one of ordinary skill in the art.
0034 FIG. 2 illustrates a portion 200 of a network, e.g.,
network 100 shown in FIG. 1, including embodiments of
network devices, 218-1, 218-2, ... 218-N, e.g., “first logical
entities, suited to implement embodiments of the present
invention. By way of illustration and not by way of limitation,
Some of the network devices are "edge network devices', e.g.,
218-1, having ports connected directly to network clients,
210, . . . , 217. The network clients can include “fat' and
“thin' clients, including mobile network clients connected
through an APC 123, etc., as discussed above in connection
with FIG. 1. Additionally, by way of illustration and not by
way of limitation, some of the network devices are “central
network devices', e.g., 218-3 which are connected to other
network devices, e.g., 218-4, but which are not be connected
directly to network clients, 210,..., 217, mobile devices, etc.
0035. As described in connection with FIG.1, the network
devices, 218-1, 218-2, . . . 218-N, of FIG. 2 can include
switches, routers, hubs, etc. (shown as switches in FIG. 2).
Such network devices, 218-1, 218-2, ... 218-N, can include
processor, e.g., 236-1,..., 236-N, and memory, e.g., 238-1,
... , 238-N, resources. The network devices, 218-1, 218-2, .
... 218-N, can similarly include a number of printed circuit
boards, or “blades. 242-1,..., 242-M, which can include a
number of network chips, e.g., 240-1, ... , 240-N, including
logic circuitry (hardware). Each network chip, 240-1,
240-N, can include a number of network ports, 220-1, 220-2,
... , 220-P to send and receive data packets (network traffic)
throughout the network 200. The logic circuitry of the num
ber of network chips, e.g., 240-1,..., 240-N, can be in the
form of an application specific integrated circuit (ASIC) and
include logic to serve as a media access controller (MAC).
0036) As shown in FIG. 2, the number of ports 220-1,
220-2, ..., 220-P can be included on a network chip 240-1,
... , 240-N and have access to logic circuitry associated with
any of the network chips 240-1, . . . , 240-N and to the
processor 236-1,..., 236-N and memory 238-1,..., 238-N
through a crossbar, crosslink, and/or switching fabric 239-1,
... , 239-N as the same will be understood by one of ordinary
skill in the art. As used herein, the designators “M”, “N, and
“P” are used to illustrate that networks can have a number of
network devices, that a given network device may have a
number of blades, and that the network devices may support
or contain a different number of ports. Embodiments are not
limited to the example shown in FIG. 2.
0037. As shown in the embodiment of FIG. 2, network
appliances 250-1 and 250-2 can be connected to a network
device in a centralized location. The centralized location may
be connected to a central network device, e.g., 218-3 (net
work device not connected directly to network clients), or
may be connected to an edge network device, e.g. 218-4
(network device connected directly to network clients). As
shown in FIG.2, a given network appliance 250-1 can include
processor 251-1 and memory 252-1 resources capable of
storing and executing instructions to perform a particular role
or function. The network appliance can also include one or
more chips (ASICs), e.g., 253-1, having logic and a number of
ports 254-1, as the same have been described above.
0038. The network appliances 250-1 and 250-2 can serve
as a checking functionality, e.g., "second logical entity. As
also shown in the embodiment of FIG. 2, in some embodi

Dec. 4, 2008

ments, a checking functionality (CF), e.g., "second logical
entities”, may be embedded, either within a network device's
ASIC (e.g., 241), or on the port blades (265, 266), or just
within the network device itself, either as a service or security
plug-in blade (e.g., CF 260 on plug-in blade 261), or built in
to the network device (e.g., 270). Embodiments of the inven
tion are not limited to the actual location of the checking
functionality with the network 200.
0039. Although the illustration of FIG. 2 appears to illus
trate one network chip, e.g., 240-1, per blade, e.g., 242-1, and
two blades per network device, one of ordinary skill in the art
will appreciate that a given network device 218-1 can include
a number of blades, each having a number of network chips,
and each chip having a number of network ports.
0040. As described in connection with FIG. 1, the CF can
bean intrusion detections system (IDS), or another diagnostic
device, accounting device, counting device, etc., as may be
Supplied by a third party vendor of network checking devices.
Embodiments are not limited to the examples given here.
0041. In the embodiment of FIG. 2, a network packet, e.g.,
data packet, is received by a port, e.g., 220-1, on a network
device, e.g., Switch 218-1, from a network client, e.g., 210.
According to embodiments, the network device is configured
with a number of pre-conditions which the logic on the net
work device 218-1, e.g., logic associated with an ASIC of a
network chip 240-1, is able to apply to received packets. The
network chip 240-1 logic, e.g., first logical entity, is able to
determine whether the received packet matches the number of
pre-conditions while processing packet header information,
Such as layer 2 to layer 4. As described in more detail next in
connection with FIG. 3, computer executable instructions
stored in memory are executed by a processor, e.g., on a
network device such as network management station 112 in
FIG. 1, to provide the pre-conditions to the switch 218-1.
0042 FIG. 3 illustrates one embodiment implementing a
distribution algorithm 370 and a collaboration algorithm 371
in association with a first logical entity 318, e.g., switch 218-1
in FIG. 2, and a second logical entity 350, e.g., a checking
functionality 250-1,250-2,241,270,260,265, etc. in FIG. 2.
As shown in FIG. 3, the Switch 318 includes a number of
network chips 340-1, 340-2. . . . , 340-N (e.g., switch line
cards with ASICs) which include ports to receive network
packet traffic. The Switch also includes crossbar Switching
fabric 339 as the same has been noted in FIG. 2 to apply
packet forwarding logic. As shown in FIG.3, other glue logic
330, as the same will be appreciated by one of ordinary skill
in the art, can connect packets with a checking functionality
350. For reasons described in the background, the switch 318
is referred to herein as a fast processing logic plane do to the
speed with which the ASIC hardware can process packet
traffic. In contrast, the checking functionality 350 with its
higher order packet analysis functionality, e.g., pattern
matching capabilities, is referred to herein as a slow process
ing logic plane than the ASICs.
0043. As shown in the example embodiment of FIG. 3, a
checking functionality rule set, e.g., IPS signatures, can be
provided as an input to the distribution algorithm 370, e.g., on
system boot, etc. As the reader will appreciate, the checking
functionality rule set includes rules that match against spe
cific packet and/or data parameters. For example, the rules
can establish a number of pre-conditions which must be met
before processing packets at higher orders of analysis, such as
data content matching, will be invoked. The number of pre
conditions can include a number of criteria, such as an IP flow

US 2008/0298392 A1

of packets. As the reader will appreciate an IP flow is identi
fied by a source IP address and a destination IP address, e.g.
a pair of IP addresses. In some embodiments the number of
checking functionality rules (pre-conditions) provided as an
input to the distribution algorithm include information speci
fying a physical source port, a source media access controller
(MAC SA) address, a destination media access controller
(MAC DA) address, a source IP address (IPSA), a destina
tion IP address (IPDA), a protocol (“traffic') type, a TCP/
UDP source port number, a TCP/UDP destination port num
ber, an IP flow; a source VLAN, a port being connected to a
wireless network, etc.
0044) The distribution algorithm 370 shown in FIG.3 may
be executed on a network management station, e.g., 112 in
FIG.1. However, embodiments are not so limited. Nominally,
Switch ASICs can process packet traffic faster than a checking
functionality such as an IPS. However, the switch ASICs may
be less flexible with respect to packet traffic processing than
an IPS. Hence, according to embodiments, instructions asso
ciated with the distribution algorithm execute to parse the
checking functionality rule set and generate two new instruc
tion sets, e.g., one set of configuration instructions for the
switch 318 and another set of configuration instructions for
the checking functionality 350 such that each set of configu
ration instructions leverages the capabilities and resources of
the Switch and checking functionality, respectively.
0045 FIG. 4 is a flow diagram illustrating the operation
for one embodiment of the distribution algorithm. As shown
in the example embodiment of FIG.4, an original rule file 401
can be provided as an input to the distribution algorithm 470.
Instructions associated with the distribution algorithm are
executed to provide first logic plane configuration instruc
tions 473 to the Switch, e.g., “fast logic plane configuration
instructions, for use by the switch ASIC. Distribution algo
rithm 470 also executes instructions to provide second logic
plane configuration instructions 474 to the checking function
ality, e.g., "slower logic plane configuration instructions, for
use in checking functionality operations, e.g., pattern search
ing, packet content matching, sampling, behavioral analysis,
etc.

0046. The following description provides one example
embodiment describing the distribution algorithm's applica
tion to two checking functionality rules and the output
instructions that can be expected for both the switch ASIC and
the checking functionality, e.g., configuration instructions
provided to the first logic plane and second logic plane. In this
example, the checking functionality provides the rule sets
which determine when and what patterns to look for depend
ing on packet header information processing, Such as layer 2
to layer 4 (L2-L4), by the switch ASIC and a state of a given
session. This is the point the distribution algorithm comes
into play, namely to tease apart the packet header work from
the pattern recognition work. By way of example and not by
way of limitation, the checking functionality rule (RULE)
SetS are:

0047 1.sdrop tcp 15.255.16.0/24 10101-> 15.255.20.0/24
and (msg:"SCAN myscan’; flow:stateless; ack:0; flags:S; ttl:
>220; reference:arachnids, 439; class type: attempted-recon;
sid:613; rev:6:)
0048 2. alert tep 15.255.16.0/24 any->15.255.20.0/24
113 (msg: "SCAN ident version request'; flow: to server,
established; content: “VERSION IOAI'; depth:16: reference:
arachnids, 303; class type: attempted-recon; sid: 616; rev:4:)

Dec. 4, 2008

0049. As the reader will appreciate, the above rule
examples are examples of IPS rules associated with the open
source intrusion prevention system (IPS) SnortR). Snort(R) is a
popular open-source IPS that consists of a collection of pro
tocol engines that look for attacks defined by their “signa
ture'. The signatures are configuration rules and the syntax
used is one of the more well-known of IPS syntaxes for its
straightforward structure. The Snort(R) IPS rules above are
used as a basis for describing the operation of embodiments of
the distribution and collaboration algorithms. However,
embodiments are not limited to these example IPS rules.
0050. In the above example, Rule #1 is a reconnaissance
scan using MYSCAN approach. In its first pass, the distribu
tion algorithm executes instructions to create the fast and slow
logic plane configuration instructions for the Switch ASIC
473 and the checking functionality 474, respectively. The
distribution algorithm takes into account the capabilities of
the given switch ASIC. For this rule, the result of the distri
bution algorithm is that the switch ASIC is capable of servic
ing all fields used to match for this attack. Since the checking
functionality no longer has to process this rule, the method
ology has effectively offloaded this work and thereby has
lessened the checking functionality's workload which can
thus improve its overall performance. It is noted that the
collaboration algorithm described further below is not neces
sary whatsoever for this rule.
0051. In its second pass, the distribution algorithm
executes instructions to pass through the Switch instruction
set, e.g., data plane/control plane distribution 475, and create
yet another set of instructions, namely ASIC primitives 476
and switch CPU management instructions 477.
0052 For this first rule, e.g., RULE #1, the ASIC primi
tives may consist of (in pseudo code):
0053 For each incoming packet:
0054 IF (source ip=15.255.16.x && dest ip=15.
255.20.x && ip title>220 &&. ip proto=6 && Src
port=10101 &&. tcp ack val=0 &&. tcp
flag—SYN)

0.055 THEN drop packet
0056. There are no switch CPU management instructions,
since this rule specifies a silent drop (sdrop) for which no alert
need be generated.
0057 Rule #2 is a reconnaissance scan looking for ident
servers. In contrast to Rule #1, this rule contains elements that
the Switch ASIC cannot natively Support, namely data pattern
match within the stream payload. For this rule the distribution
algorithm will create two set of instructions, one of for the
switch ASIC and one for the checking functionality.
0058. The switch ASIC instructions will encode the por
tion of the rule that the switch ASIC can natively support.
Here, the ASIC primitives may consist of (in pseudo code):
0059 For each incoming packet:
0060 IF (source ip=15.255.16.x && destjip=15.
255.20.x &&. ip proto=6&& dst port=113 &&. tcp
est=true)

0061 THEN steal packet to IPS.
0062. The checking functionality instructions will encode
the portion of the rule that the switch ASIC cannot natively
encode, e.g., the data pattern match within the stream pay
load. Using pseudo code, the instructions could be:
0063 For each packet from the switch ASIC:

0064 <perform any necessary data pre-processing
(e.g., TCP reassembly)>

US 2008/0298392 A1

0065. Inspect data payload for up to 16 bytes looking
for data pattern “VERSION IOAI

0066 IF (pattern found)
0067 THEN generate alert and log packet.

0068 FIG. 5 is a flow diagram illustrating the operation
for one embodiment of the collaboration algorithm. The col
laboration algorithm provides processing coordination
between the different processing entities, e.g., switch ASIC
and checking functionality. The collaboration algorithm
employs a protocol that facilitates the processing of packet
traffic given the distributed set of instructions (i.e., the fast
and slow logic plane instructions) created by the distribution
algorithm.
0069. The nominal inputs in the coordination engine areas
follows:

0070 The slow and fast logic plane instructions gener
ated by the distribution algorithm

(0071 N-tuple flow information.
0072 The general execution flow of the collaboration
algorithm is depicted in FIG. 5. The operation of one embodi
ment of the collaboration algorithm is described in the fol
lowing text by referencing the numbered stages in FIG. 5.
0073. In stage #1 packet traffic arrives at the first (e.g.,
“fast') logic plane in aggregated and undifferentiated form
and the first step taken is to split the incoming traffic into
n-tuple flows 500. N-tuple flows is merely a collection of
packets that share a common set (n-tuple) characteristics. In
one example embodiment, the n-tuple is implanted as a
5-tuple (ip source, ip destination, layer 4 type, layer 4 Src,
layer 4 destination). Once traffic has been splayed into their
respective flow, each one 504 enters the collaboration algo
rithm processing between the first logic plane 501 and the
second (e.g., “slow) logic plane 502. The first check per
formed on the packet, shown at stage #2, is whether this
packet is part of a flow that the checking functionality told the
switch already to do something with 506. For example, the
checking functionality may have identified the flow as mali
cious, meaning that all packets associated with that flow
should be blocked, logged, etc., but in no case forwarded. If
the incoming packet is part of a flow that the checking func
tionality has already passed judgment on, then the Switch can
perform the action directed by the checking functionality 508.
If the packet is not part of a suspect flow, it goes on to stage #3.
0074 Stage #3 uses the switch ASIC instructions created
by the distribution algorithm to see whether this packet is of
interest or not 510. If not of interest, perhaps because no
match was made, the ASIC forwards on the traffic as normal
512. If a match is made, then the packet goes on to stage #4,
where a decision is made whether to send the packet on to the
checking functionality 514.
0075 Stage #4 uses the switch ASIC instructions as they
will have directed whether a matched packet needed to be sent
to the checking functionality or not. As seen with the first
sample rule, e.g., RULE #1 (described in connection with the
distribution algorithm) there may be rules for which the ASIC
can perform all processing required of the rule 516. If the
ASIC instructions require the packet to be sent to the check
ing functionality, the packet is sent on to stage #5.
0076 Stage #5 consists of appending an ASIC context
518, e.g., SID, unique ID, flow ID, etc., to the packet to be able
to tell the checking functionality why the ASIC is sending the
packet to it. The ASIC context may contain information such
as the flow identifier, reason codes, signature ID (SID), etc. In
Some embodiments, the context has the minimum amount of

Dec. 4, 2008

information for the checking functionality to understand why
it received the packet and how to distinguish it from other
packets/flows. Stage #6 consists of passing the packet and
associated context from the ASIC to the checking function
ality 520, e.g., sending a packet to an IPS.
(0077. As shown in the example embodiment of FIG. 5, for
each packet received in flow in received from the ASIC 522,
in stage #7 the checking functionality executes instructions to
parse the ASIC context, e.g., extract, ASIC context and asso
ciate with local context. This allows the checking functional
ity to identify and associate the incoming packet with a con
text local to the checking functionality, e.g., selecting patterns
provided to the checking functionality for pattern searching.
With the local context retrieved, e.g., patterns selected, the
checking functionality can evaluate the packet in stage #8
against the checking functionality instructions created by the
distribution algorithm 526, e.g., perform a pattern matching
analysis based on slow logic plane instructions provided by
the distribution algorithm.
0078. In the case of no matches, execution goes to stage #9
where the checking functionality makes a determination
whether there is any possibility that additional packet traffic
could result in a positive match 528, e.g., determine where
there are still matches that could conceivably hit with addi
tional traffic. For example, if all of the checking functionality
rules are looking for attacks in the first 2K bytes of flow
traffic, then inspecting traffic after the first 2K if for naught
and there is zero probability of match detection. In this case,
instructions will execute to tell switch flow n no longer needs
to be sent to the checking functionality 530. As the reader will
appreciate, depending on the content of the original checking
functionality rules, the distribution algorithm may be able to
establish a general flow byte count limit, after which addi
tional match inspection is unnecessary. In the above example
embodiment, consisting of two rules, the byte count is at 16
bytes of the TCP data payload due to the second rule (first rule
has a Smaller byte limit). Inspecting beyond 16 bytes is use
less in this example, since the appearance of the “VERSION
IOAI after the first 16 bytes is not of concern.
0079 If in stage #9 the checking functionality makes a
determination that there is a possibility that additional packet
traffic could result in a positive match 528 then, according to
embodiments, the collaboration algorithm will provide
instructions to the switch to forward packets nominally 532.
Alternatively, if the checking functionality establishes that no
additional traffic is necessary for this flow the switch will no
longer send traffic to the checking functionality as shown in
stage #10, e.g., instructions execute at 530 to tell the switch
flow n no longer needs to be sent to the checking function
ality. If additional traffic is necessary then in stage #11 the
Switch may be instructed to forward packets nominally at
532. If no additional traffic is necessary, the switch may be
instructed to forward packets according to normal forwarding
logic protocol logic in stage #11 instead.
0080. In some embodiments, if a match was make in stage
#8, execution can proceed directly to stage #12, where the
checking functionality takes the action directed by the slow
logic plane configuration instructions provided by the distri
bution algorithm 534 (e.g., alert, log packet, block packet,
etc.). As shown in the example embodiment of FIG. 5, execu
tion continues with stage #13 where the checking function
ality decides whether it is necessary to instruct the switch
ASIC to blockalladditional packet traffic 536 associated with
this flow. As shown in stage #14, in most instances, once a

US 2008/0298392 A1

flow has been identified as being malicious, the checking
functionality will drop or block packets associated with this
flow 538, e.g., tell switch flow n is to be blocked. According
to embodiments, rather than have the checking functionality,
e.g., slower logic plane, block the malicious flow, the check
ing functionality can instruct the Switch, e.g., faster logic
plane, to block the flow natively. Hence, if the determination
is made at stage #13 that the flow should be blocked, then the
checking functionality instructs the Switch and the Switch can
react to Such instructions in stage #2. That is, the collabora
tion algorithm communicates a status from the second logical
entity to the first logical entity which can instruct the first
logical entity to enforce traffic flow decisions. For example,
the first logical entity can operate on network packets to
performan action selected from the group of dropping pack
ets, permitting packets, rate limiting packets, etc., based on
the status information communicated from the second logical
entity. In some embodiments, the collaboration algorithm
instructs the first logical entity to change the number of pre
conditions configured on the first logical entity based on the
status communicated from the second logical entity. For
example, the instructions can execute to change an access
control list (ACL) policy applied to packets received from a
particular port and/or client.
0081. In some embodiments the computer executable
instructions associated with the collaboration algorithm uti
lize the bi-direction communication path between the first
logical entity and the second logical entity to forward network
packets that match the number of pre-conditions to the second
logical entity along with the satisfied pre-conditions and the
set of pattern indices. For example, according to some
embodiments, logic on the network chip 240-1 can mirror
steal a packet which has satisfied the number of pre-condi
tions to the checking functionality (CF) 250-1, 250-2, 241,
270, 260, etc.
0082 In some embodiments the logic will tunnel encap
Sulate selected, “mirror-stolen, data packets and can forward
those packets to the network appliance 250-1 through a secure
tunnel, e.g., 290 in FIG. 2. As used herein the term “mirror
stealing means the packet is denied access to requested ports
and a copy of the packet is forwarded to the CF. One example
of the manner in which a “mirror-stolen” packet can be for
warded to a network appliance is provided in a co-pending,
commonly assigned U.S. patent application Ser. No. 1 1/712,
706, entitled, “Packet Tunneling', by inventors Bruce LaV
igne, et. al., filed Mar. 1, 2007, which is incorporated in full
herein. The same is not described more fully herein so as not
to obscure embodiments of the present invention.
0083. In some embodiments, the CF may chose to drop a
Suspicious packet received from the mirror-stealing opera
tion. However, if a packet passes the checking functionality
applied by the network appliance, e.g., is “cleared, the logic
of a network device associated with the network appliance
will securely tunnel encapsulate the packet and can forward
the packet to the originating Switch, e.g., Switch 218-1. One
example of the manner in which the logic of the network
device associated with the appliance can securely tunnel
encapsulate the packet and forward the packet to the originat
ing Switch is provided in a co-pending, commonly assigned
U.S. patent application Ser. No. entitled, “Marked
Packet Forwarding', by inventors Bruce LaVigne, et. al., filed
Apr. 19, 2007, which is incorporated in full herein. The same
is not described more fully herein so as not to obscure
embodiments of the present invention.

Dec. 4, 2008

I0084. Upon arrival at the originating switch, this switch
may allow the packet to be forwarded based upon application
of regular forwarding logic. One example of the manner in
which an originating Switch, e.g., 218-1, may forward a
returned “mirror-stolen’ packet to be sent out ports is pro
vided in a co-pending, commonly assigned U.S. patent appli
cation Ser. No. 1 1/784,664, entitled, “Locating Original Port
Information', by inventors Bruce LaVigne, et. al., filed Apr. 9.
2007, which is incorporated in full herein. The same is not
described more fully herein so as not to obscure embodiments
of the present invention.
I0085. According to various embodiments, the instructions
communicated back to the first logical entity, e.g., Switch 318
in FIG.3, can include an instruction to allow network packets
to be forwarded using regular forwarding logic, an instruction
to deny network packets based on the evaluation, an instruc
tion to rate limit packets based on the evaluation, etc. An
example of rate limiting packets in association with an evalu
ation of particular packet behavior is provided in copending,
commonly assigned U.S. patent application Ser. No. 1 1/710,
804, entitled “Network Traffic Monitoring, by Shaun Wack
erly, filed on Feb. 26, 2007, the same of which is incorporated
herein by reference. As the reader will appreciate, computer
executable instructions stored on memory and executable by
a processor on a Switch, e.g., 318 can execute to implement
any number of variations on the above describe actions.
0086. In certain embodiments, the instruction communi
cated back to the first logical entity from the second logical
entity can include instructions to dynamically adjust the pre
conditions provided to the network device, e.g., 318. For
example, the network device may have been provided with an
initial set of pre-conditions to be applied to packets received
from a particular network port on the network device in asso
ciation with a known network user, e.g., a particular network
client such as 214-1 in FIG. 2. These pre-conditions may be
applied as part of an access control list (ACL) policy applied
to packets received from the particular port. According to
some embodiments, the instruction received from the check
ing functionality can operate to change the ACL policy
applied to packets received from this particular port in
response to a change in the behavior of the network user or in
relation to a new user joining the network. Hence, in some
embodiments the logic and software described herein are
operable to apply packet traffic policies on per user basis and
adjust as new users come on to the network.
0087. That is, as instructions are communicated back to
the network device from the checking functionality, using the
bi-directional communication path, e.g., via the communica
tion algorithm, the computer executable instructions on the
network device can execute to update, e.g., change, the set of
checking functionality pre-conditions used by the hardware,
e.g., ASICs, on the network device. In this manner, computer
executable instructions operable in connection with the dis
tribution algorithm and the communication algorithm can
adjust to packet traffic as new network clients are added to the
network, and as the behavior of existing network clients
change.
I0088 According to certain embodiments, providing the
bi-directional communication between the first logical entity
and the second logical entity includes communicating a sta
tus, e.g., instruction, associated with forwarded network
packets back to the first logical entity. The first logical entity

US 2008/0298392 A1

can then proceed to enforce traffic flow decisions on network
packets based on the status communicated from the second
logical entity.
0089. Some embodiments of the present invention use the
a combination of the distribution algorithm and the collabo
ration algorithm such that the second logical entity operates
to select patterns, indexed by a received set of pattern indices,
to perform a pattern search on network packets and commu
nicate a status back to the first logical entity without process
ing the same information on the second logical entity as was
already performed in the first logical entity. According to
embodiments, the checking functionality only performs pat
tern searches on packets when the number of pre-conditions
has been satisfied.
0090 FIG. 6 illustrates a method for packet processing
according to an embodiment of the present invention. As
shown in the embodiment of FIG. 6 at block 610, the method
includes receiving a checking functionality rule set as an
input to a distribution algorithm. At block 620, the method
bifurcating and providing configuration instructions, as an
output from the distribution algorithm, to a first logic plane
associated with a first logical entity and a second logic plane
associated with a second logical entity. The method further
includes using a collaboration algorithm to provide process
ing coordination between the first logical entity and the sec
ond logical entity, as shown at block 630. Software and/or
logic, which is operable to perform the method described in
connection with FIG. 6 can be present in whole or in part in
embodiments of other figures. Embodiments, however, are
not limited to the example given herein.
I0091. It is to be understood that the above description has
been made in an illustrative fashion, and not a restrictive one.
Although particular embodiments have been illustrated and
described herein, those of ordinary skill in the art will appre
ciate that other component arrangements and device logic can
be substituted for the particular embodiments shown. This
claims are intended to cover such adaptations or variations of
some embodiments of the disclosure, except to the extent
limited by the prior art.
0092. In the foregoing Detailed Description, some fea
tures are grouped together in a single embodiment for the
purpose of streamlining the disclosure. This method of dis
closure is not to be interpreted as reflecting an intention that
any claim requires more features than are expressly recited in
the claim. Rather, as the following claims reflect, inventive
Subject matterlies in less than all features of a single disclosed
embodiment. Thus, the following claims are hereby incorpo
rated into the Detailed Description, with each claim standing
on its own as a separate embodiment of the invention.

What is claimed is:
1. A method for processing packets, comprising:
receiving a checking functionality rule set as an input to a

distribution algorithm:
bifurcating and providing configuration instructions, as an

output from the distribution algorithm, to a first logic
plane associated with a first logical entity and a second
logic plane associated with a second logical entity; and

using a collaboration algorithm to provide processing
coordination between the first logical entity and the sec
ond logical entity.

2. The method of claim 1, wherein the method includes
using the configuration instructions provided to the first logic
plane to enforce a packet traffic policy.

Dec. 4, 2008

3. The method of claim 1, wherein the first logical entity is
a network Switch and the second logical entity is a checking
functionality, and wherein the method includes appending an
ASIC context to a matched packet and forwarding the
matched packet to the checking functionality.

4. The method of claim 3, wherein the method includes
using the configuration instructions provided to the second
logic plane to extract the ASIC context and associate the
ASIC context with a context local to the checking function
ality.

5. The method of claim 4, wherein the method includes
using the configuration instructions provided to the second
logic plane to take action on a forwarded packet.

6. The method of claim 5, wherein the method includes
using the collaboration algorithm to instruct the first logic
plane to enforce a different packet traffic policy based on
analysis of a forwarded packet.

7. The method of claim 1, wherein receiving the checking
functionality rule set as the input to the distribution algorithm
includes receiving intrusion prevention system (IPS) signa
tures.

8. The method of claim 1, wherein the method includes
receiving the fast logic plane configuration instructions and
n-tuple flow information as an input to the collaboration
algorithm.

9. The method of claim 1, wherein the method includes
using the distribution algorithm to create a set of switch ASIC
primitives and switch CPU management instructions for the
first logical entity.

10. The method of claim 9, wherein the method includes
processing layer 2 to layer 4 packet information using the set
of switch ASIC primitives.

11. The method of claim 1, wherein the method includes
using the second logic plane to only process packet informa
tion which could not be handled by the set of ASIC primitives
and switch CPU management instructions.

12. A network system, comprising:
a number of network devices having processor and
memory resources;

a checking functionality associated with at least one net
work device; and

wherein the system includes logic and computer execut
able instructions stored in memory and executable by
processor resources to:
receive a checking functionality rule set as an input to a

distribution algorithm:
provide separate configuration instructions, as an output

from the distribution algorithm, to a first logic plane
associated with the at least one network device and to
a second logic plane associated with the checking
functionality; and

use a collaboration algorithm to provide processing
coordination between the at least one network device
and the checking functionality.

13. The system of claim 12, wherein the checking func
tionality is configured with patterns which can be indexed by
a set of pattern indices associated with packets that have
satisfied a number of pre-conditions in processing on the first
logic plane.

14. The system of claim 13, wherein the checking func
tionality operates to perform a pattern search only when the
number of pre-conditions has been satisfied.

15. The system of claim 14, wherein the distribution algo
rithm executes instructions to:

US 2008/0298392 A1

output separate configuration instructions to the network
device and the checking functionality Such that the
checking functionality does not process packet informa
tion which the number of pre-conditions have already
expressed; and;

wherein first logic plane appends an ASIC context to a
matched packet and forwards the matched packet to the
checking functionality when a number of pre-conditions
have been satisfied according to the configuration
instructions provided to the first logic plane.

16. The system of claim 15, wherein the second logic plane
extracts the ASIC context and associates the ASIC context
with a context local to the checking functionality.

17. The system of claim 16, wherein the checking func
tionality is operable to return status information, relating to
forwarded packets, to the at least one network device using a
bi-directional communication path between the checking
functionality and the network device.

18. The system of claim 17, wherein the first logic plane
dynamically adjusts handling network packets on the net
work device based on the status information.

19. The system of claim 18, wherein based on the status
information the first logical plane can operate on network
packets to perform an action selected from the group of

Dec. 4, 2008

dropping packets;
forwarding packets;
tunneling packets;
traffic shaping packets;
permitting packets; and
rate limiting packets.
20. A computer readable medium having instruction stored

thereon which are executable to cause a device to perform a
method, comprising:

providing intrusion prevention system (IPS) signatures as
an input to a distribution algorithm;

generating different configuration instructions, as an out
put from the distribution algorithm, to provide to a first
logic plane associated with a first logical entity and to a
second logic plane associated with a second logical
entity;

providing the different configuration instructions gener
ated by the distribution algorithm and providing n-tuple
flow information as inputs to a collaboration algorithm;
and

using the collaboration algorithm to provide packet pro
cessing coordination between the first logical entity and
the second logical entity.

c c c c c

