(54) Title: D-PROPRANOLOL AS A SELECTIVE ADENOSINE ANTAGONIST

(57) Abstract

Chemicals are disclosed which are useful for inhibiting the actions of adenosine in mammals, comprising: L-propranolol, or D-propranolol, or alprenolol and derivatives thereof for parenteral or topical administration are disclosed for purposes of achieving desired circulating concentrations in the range of 10 nanograms to 10 milligrams per kilogram. D-Propranolol is of special interest because it is relatively inactive as a β-adrenergic blocking agent. Specific uses of D-propranolol include the treatment of asthma, chronic obstructive pulmonary disease, A-V node conduction disturbances; apnea of preterm infants, pulmonary hypertension, headaches, migraine, and in attention-deficit disorder. D-Propranolol might also be used as a substitute for xanthines in beverages to produce a feeling of well being, awakeness, awareness and increased performance.
DESIGNATIONS OF “DE”

Until further notice, any designation of “DE” in any international application whose international filing date is prior to October 3, 1990, shall have effect in the territory of the Federal Republic of Germany with the exception of the territory of the former German Democratic Republic.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FI	Finland
BB	Barbados	FR	France
BE	Belgium	GA	Gabon
BF	Burkina Faso	GB	United Kingdom
BG	Bulgaria	GR	Greece
BJ	Benin	HU	Hungary
BR	Brazil	IT	Italy
CA	Canada	JP	Japan
CF	Central African Republic	KP	Democratic People’s Republic of Korea
CG	Congo	KR	Republic of Korea
CH	Switzerland	LI	Liechtenstein
CM	Cameroon	LK	Sri Lanka
DE	Germany, Federal Republic of	LU	Luxembourg
DK	Denmark	MC	Monaco
		MG	Madagascar
		ML	Mali
		MR	Mauritania
		MW	Malawi
		NL	Netherlands
		NO	Norway
		RO	Romania
		SD	Sudan
		SE	Sweden
		SN	Senegal
		SU	Soviet Union
		TO	Chad
		TG	Togo
		US	United States of America
D-PROPRANOLOL AS A SELECTIVE ADENOSINE ANTAGONIST

This invention provides a means of obtaining selective adenosine antagonist activity for use in treatment of illness.

BACKGROUND OF THE INVENTION

This invention relates to antagonists of adenosine (Figure 1; review: Daly J, Bruns F, Snyder SH (1982) Life Sci 28 2083-2097), which is a naturally occurring compound in life forms. Adenosine has been thought to regulate a broad range of biological processes as an extracellular regulating compound, functioning as a neurotransmitter or hormone (Bern RM, Rall TW, Rubio R(eds) (1983) Regulatory function of adenosine. Martinus Nijhoff, Boston, this a book available in the National Library of Medicine). For example, adenosine has been implicated in cardiovascular, fat cell metabolism and mental function. Adenosine is currently thought to act through interaction with the A2 adenosine receptor subtype, which mediates stimulation of cyclic AMP production by adenylyl cyclase, and/or through interaction with the A1 adenosine receptor subtype, which mediates inhibition of this enzyme (Londos C, Cooper DMF, Wolff J(1980) P.N.A.S. USA 27 2551-2554). The relative abundance of these receptors in any one tissue determines the effects of adenosine in that specific tissue.

Many of the currently available adenosine antagonists have been xanthises, including caffeine, 8-β-(sulfo-phenyl)theophylline and xanthine amine congener. These compounds have been recognized as being not as potent and as highly selective for either A1 or A2 receptors as would be needed for targeted activity. As a result, the effects of these compounds can reflect inhibition of both A1 and A2 effects. It is clearly preferred to have therapeutics which are able to selectively block either one or the other receptor. Very highly selective antagonists or agonists of A1 or A2 receptors have not been established.

Another limitation with some of these compounds is that they are not sufficiently potent. For example, at
required concentrations they can act as inhibitors of phosphodiesterase.

SUMMARY OF THE INVENTION

The present invention identifies as adenosine antagonists both the D- and L-forms of propranolol which may be prepared by known methods (see Belg. Patent 640,312 corresponding to Crowther, Smith, U.S. Patent 3,337,628 (1964, 1967 both to I.C.I.) and alprenolol (Neth. Patent Application 6,605,692, 1966 to Aktiebolag Hassle; C.A. 66, 46214p, 1967; Neth. Patent Application 6,612,958, 1967 to ICI, C.A. 67, 99851w, 1967. Alprenolol and L-propranolol have been known as beta blockers and are used to treat a broad range of diseases. These compounds share the same isopropylamino-2-propanolol side chain; propranolol has a naphthyl-ring structure and alprenolol has a phenyl-ring structure.

These compounds have been thought to act primarily by antagonizing receptor-mediated actions of catecholamines including norepinephrine and epinephrine. The mechanism of action has been thought to involve competition for sites on those membrane receptor molecules which mediate effects of these catecholamines. It is thought that occupancy of such sites by the compounds blocks the effects of catecholamines.

An important characteristic of the interaction of β-adrenergic antagonists and β-adrenergic receptors is that the interaction is specific for the L-form of the antagonist. Hence D-propranolol has been believed to be without effect at concentrations at which L-propranolol has therapeutic value; and further, in a wide variety of tests of adrenergic function and of characterization of beta-adrenergic receptors D-propranolol has been found to be 1/100 as potent as the L-form within the dynamic range of concentrations of the latter. A feature of the invention is that D-propranolol can be used to block effects of adenosine at concentrations which do not inhibit adrenergic systems. This provides the opportunity of using the
D-form therapeutically to block effects of adenosine without blocking the effects of epinephrine or norepinephrine.

FIGURES

Figure 1 shows the adenosine-cyclic AMP dose response curves in presence and absence of L-propranolol (L-PROP, 1 µM). Example 1. All drugs and chemicals were from commercial sources and were of the purest grade available. Pinealocytes were prepared from rat (Sprague-Dawley, 200 gm female) pineal glands by enzymatic and physical dispersion. Cells were maintained in Dulbecco's modified Eagle's Medium containing 10% fetal calf serum under an atmosphere of 95% oxygen and 5% CO$_2$ at 37°C for 24 hours. Cells were then transferred to individual tubes (105 cells/0.5 ml) and treated with drugs of interest for 15 min. At the end of the treatment period, cells were collected by centrifugation (1000 x g, 2 min) and placed on solid CO$_2$. Cyclic nucleotides were measured by radioimmunoassay in cell pellets (6,10). Protein in cell pellets was measured using a dye binding method with bovine serum albumin as a standard (11). Data are presented as the average of the means of duplicate determinations of cyclic AMP in each of three samples; mean values were within 20% of average.

Figure 2 shows the effects of alprenolol on adenosine (ADO, 1µM) stimulation of cyclic AMP. For details see Figure 1.

Figure 3 shows the effects of D-propranolol, L-propranolol, xanthine amine congener(XAC) and p-(sulfophenyl)theophylline, 8-PST) on adenosine (ADO, 10 nM) stimulation of cyclic AMP accumulation in pinealocytes. For details see Figure 1.

DESCRIPTION OF THE INVENTION

As indicated herein, the potency of alprenolol, D-propranolol and L-propranolol as adenosine antagonists is high in comparison to other available adenosine antagonists. These chemicals act to inhibit effects of adeno-
sine at low concentrations; and, can produce more complete inhibition of adenosine stimulation of cyclic AMP accumulation than can established adenosine antagonists.

This invention is of further special value because it identifies two compounds (propranolol and alprenolol) which do not belong to existing chemical families of adenosine antagonists. This invention thereby provides a chemical foundation for the development of a new family of adenosine antagonists containing the isopropylamino-2-propanol functional side chain, which is common to propranolol and alprenolol, and two subfamilies one of which derives from propranolol and the other from alprenolol. These new families may have therapeutic effects not provided by previously known antagonists.

The use of D-propranolol to inhibit the effects of adenosine without blocking of β-adrenergic receptors is of special importance, since the use of D-propranolol without blocking the effects of epinephrine or norepinephrine can provide an especially useful modality for treatment when the inhibition of adenosine-dependent processes is desirable and it is necessary to avoid effects associated with β-adrenergic blocking agents. One such side effect in certain individuals is drowsiness.

Specific uses of D-propranolol include the treatment of asthma, chronic obstructive pulmonary disease, A-V node conduction disturbances; apnea of preterm infants, pulmonary hypertension, headaches, migraine, and in attention-deficit disorder. D-Propranolol might also be used as a substitute for xanthines to produce a feeling of well being, awakeness, awareness and increased performance in beverages to substitute for coffee, tea, colas and other drinks with xanthines.

Compositions of D-propranolol may be administered orally by usual means such as tablet, capsules, or solutions such as elixirs. Parenteral administration by usual means such as intravenous, intramuscular, or intradermal injection are also appropriate. Administration for
absorption through local mucosa such as bucoal, intranasal, or rectal administration are also appropriate and may be used to particular advantage to obtain rapid response in cases of apnea or asthmatic attack. Dosage range of 10 nanogram to 1 milligram per kilogram of weight is appropriate and will depend on the condition and age of the patient.

Compositions for selective adenosine antagonist activity should contain the propranolol wherein at least 85% is the D-propranolol isomer.

The parent propranolol molecule may be substituted for use in accord with the methods taught herein so long as the D isomer of the compound is used. Compounds of the class are those of the structure:

\[
\begin{align*}
\text{OR1} & \\
\text{OCH2CHCH2NCH(CH3)2} & \\
\text{R2} & \\
\text{R2} &
\end{align*}
\]

(Formula 1)

Wherein \(R_1 \) is COH or COA, wherein A is alkyl or benzyl which may be substituted with halo, or hydroxy and wherein \(R_2 \) is alkyl, hydroxy, halo, or hydrogen atom, wherein at least 85% of the compound is the D optical isomer or salts thereof in a pharmaceutical carrier.

Examples

The effect of these compounds is demonstrated in mammalian tissue such as the isolated rat pinealocyte by known methods (Klein DC, Weller J, Sugden AL, Sugden D, Vaneeck J, Chik CL and Ho, AK (1988) in Fundamentals and Clinics in Pineal Research, Trentini, G.P., DeGaetani, C., and Pevet, P. (eds) Raven Press, New York pp 111-119) by treating cells with 10 nM adenosine and measuring the increase in cyclic AMP accumulation. In cells not treated with these new adenosine antagonists the increase in cyclic AMP is more than 50-fold. However, in cells which are treated with L-propranolol, D-propranolol, or
alprenolol at a concentration of 1 µM for 15 minutes prior
to and during adenosine treatment the increase in cyclic
AMP is either not detectable or less than 2-fold (Figures
1-3). The relative effects of D-propranolol, L-proprano-
lol, xanthine amine congener and 8-ρ-(sulfophenyl)theo-
phylline are demonstrated in this system (Figure 3).
WHAT IS CLAIMED IS:

1. A composition of matter containing as an active ingredient a compound of the formula:

 \[
 \begin{align*}
 & \text{GR1} \\
 & \text{OCH2CH2NHCH(CH3)2}
 \end{align*}
 \]

 (Formula 1)

 wherein \(R_1 \) is COH or COA, wherein \(A \) is alkyl or benzyl which may be substituted with halo, or hydroxy and wherein \(R_2 \) is alkyl, hydroxy, halo, or hydrogen atom, wherein at least 85% of the compounds is the D optical isomer or salts thereof in a pharmaceutical carrier.

2. A composition of claim 1 wherein \(R_1 \) and \(R_2 \) are both hydrogen (D-propranolol).

3. A method of inhibiting adenosine-dependent processes by administration of an adenosine-inhibiting effective amount of a composition of claim 1 to a mammal.

4. A method of claim 3, wherein the active ingredient is D-Propranolol.

5. A method of claim 4, wherein the composition is in a form adapted for oral administration.

6. A method of claim 3, wherein the adenosine-dependent process results in an allergic reaction.

7. A method of claim 6, wherein the adenosine-dependent process results in an asthmatic attack.

8. A method of claim 3, wherein the adenosine-dependent process results in abnormal mental function.
cAMP
(nmol/mg protein)

-LOG [M] ADENOSINE

FIG. 1

SUBSTITUTE SHEET
cAMP
(nmol/mg protein)

ADO = 1 µM

- LOG [M] ALPRENOLOL

FIG. 2

SUBSTITUTE SHEET
FIG. 3

cAMP (nmol/mg protein)

ADO = .01 μM
+ 8 PST
+ XAC
+ D-PROP
+ L-PROP

- LOG ANTAGONIST [M]
INTERNATIONAL SEARCH REPORT

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC:
- IPC(5): C07C 69/76; A61K 31/235, 31/24
- U.S. CL.: 514/532, 546; 560/106

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>514/532, 546; 560/106</td>
</tr>
</tbody>
</table>

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US, A, 3,432,545 (HOWE) 11 March 1969, See entire document.</td>
<td>1 and 2</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4,346,106 (SUDILOVSKY) 24 August 1982.</td>
<td>1 to 5</td>
</tr>
<tr>
<td>X</td>
<td>CHASIN ET. AL. J. Biol. Chem., Vol. 246, No. 9, issued 10 May 1971, "- and -Adrenergic Receptors as Mediators of Accumulation of Cyclic Adenosine 3',5'-Monophosphate in Specific Areas of Guinea Pig Brain", pp. 3037-3041.</td>
<td>1 to 5</td>
</tr>
</tbody>
</table>

IV. CERTIFICATION

- Date of the Actual Completion of the International Search: 13 August 1990
- Date of Mailing of this International Search Report: 4 Oct 1990
- International Searching Authority: ISA/US

* Special categories of cited documents: 12
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claims or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 - "A" document member of the same patent family

V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE

This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1. Claim numbers because they relate to subject matter not required to be searched by this authority, namely:

2. Claim numbers because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claim numbers because they are dependent claims not drafted in accordance with the second and third sentences of PCT Rule 8.4(a).

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This international search authority found multiple inventions in this international application as follows:

- **GROUP I**, Claim: 1 to 5, method of antagonizing Adenosine.
- **GROUP II**, Claim: 6, method of treating Allergies.
- **GROUP IV**, Claim: 8, method of treating abnormal metal functions.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.

2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically:

3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers: 1 to 5, method of antagonizing adenosine.

4. As all searchable claims could be searched without effort justifying an additional fee, the international searching authority did not invite payment of any additional fee.

Remark on protest:
- The additional search fees were accompanied by applicant's protest.
- No protest accompanied the payment of additional search fees.