发明人：时君友 王 茜 王 晖 涂怀刚

发明名称：水性高分子－异氰酸酯粘合人造板及其制备方法

摘要

水性高分子－异氰酸酯粘合人造板及其制备方法，以水稻、小麦或玉米等农作物秸秆、水性高分子－异氰酸酯胶和粘合界面性能改性剂为原料，将粘合剂及切段、揉搓、改性处理和施胶后热压制成，粘合板为水性高分子－异氰酸酯粘合和粘合界面性能改性剂的重量配比为：100：10－16：0.05－0.15。本发明的粘合板，以水性高分子－异氰酸酯胶替代纯异氰酸酯胶，根本改善了存在有毒性、有害挥发物、预压性差和粘板等问题，成本显著降低，真正实现绿色化生产；原料经揉搓及改性处理，预压成型性好，一次性合格率高。具有构思独特，活性期长，耐老化、耐水、耐热性能优异，操作简便，设备易得，无环境污染，容易实施等特点，推广后将产生巨大生态环境和社会经济效益。
1、一种水性高分子-异氰酸酯粘杆人造板，以粘杆为原料，其特征在于还包括水性高分子-异氰酸酯胶和粘杆界面性能改性剂，将粘杆经切段、揉搓、改性处理和施胶后热压制成，绝干粘杆、水性高分子-异氰酸酯胶和粘杆界面性能改性剂的重量配比为：100：10—16：0.05—0.15。

2、根据权利要求1所述的水性高分子-异氰酸酯粘杆人造板，其特征在于粘杆原料是含水率6—10 %的水稻、小麦或玉米的粘杆。

3、根据权利要求1所述的水性高分子-异氰酸酯粘杆人造板，其特征在于水性高分子-异氰酸酯胶，是由下述重量份的原料制成的主剂和固化剂组成，

主剂：浓度35 %的水性高分子复合乳液40—65份、二元酸酯化剂0.4—1.0份、聚乙烯醇10—15份、防腐剂0.2—0.6份；

固化剂：聚合异氰酸酯；

主剂和固化剂的重量配比为：100：10—30。

4、根据权利要求1或3所述的水性高分子-异氰酸酯粘杆人造板，其特征在于主剂中浓度35 %的水性高分子复合乳液，由下述重量份的原料制成：玉米淀粉15—25份、浓度为0.3—0.5 mol/L的无机酸45—55份、过氧化物引发剂0.1—0.3份、共混合成乳液20—30份、防腐剂0.5—0.6份。

5、根据权利要求4所述的水性高分子-异氰酸酯粘杆人造板，其特征在于无机酸是盐酸、硫酸或磷酸；过氧化物引发剂是过硫酸铵、过硫酸钾或过硫酸钠；共混合成乳液是丁苯胶乳、乙烯-乙酸乙酯乳液或苯丙乳液；防腐剂是食用苯甲酸钠。

6、根据权利要求1或3所述的水性高分子-异氰酸酯粘杆人造板，其特征在于主剂中的二元酸酯化剂，是浓度30 %的乙二酸、顺丁烯二酸或乙二胺基丁二酸；聚乙烯醇，是聚乙烯醇溶解为浓度8 %的水溶液，再加入绝干聚乙烯醇量0.1 %的十二烷基磺酸钠后的溶液；防腐剂，是食用苯甲酸钠。

7、根据权利要求1或3所述的水性高分子-异氰酸酯粘杆人造板，其特征在于固化剂聚合异氰酸酯，是未经封闭处理的98 %聚合异氰酸酯。
8. 根据权利要求1所述的水性高分子-异氰酸酯粘杆人造板，其特征在于
粘杆界面性能改性剂，是二甲基硅油、乙醇或硅烷偶联剂。

9. 一种权利要求1的水性高分子-异氰酸酯粘杆人造板的制备方法，其特
征在于包括下述步骤：

（1）水性高分子复合乳液的制备：

将所述重量份的玉米淀粉与无机酸溶液，配制成浓度为15—35%的玉米淀
粉乳，加热升温至55—65℃后保温，在玉米淀粉乳中加入所述重量份的过氧化
物引发剂，搅拌均匀，在55—65℃温度下酸解氧化、预引发反应30—50分钟
后，调pH值至6.8—7.2，得初级酸解氧化玉米淀粉乳液，将初级酸解氧化玉米
淀粉乳液稳定10—15分钟后，在30—40分钟内缓慢加入所述重量份的共混合
成乳液，调pH值至4.5—5.5，在55—65℃温度下保温反应1.5小时后，调pH
值至6.8—7.2，加入防腐剂，得水性高分子复合乳液；

（2）水性高分子-异氰酸酯胶粘剂的制备：

将所述重量份的（1）所得水性高分子复合乳液，搅拌并加热升温至45—55
℃保温，用pH值调节剂调节pH值至8.0—8.5，不停搅拌下，在20—40分钟
内均匀加入所述重量份的聚乙烯醇水溶液；然后在100—120分钟内，每间隔
10—15分钟，交替加入pH值调节剂使pH值上升到9，再加入二元酸化剂使
pH值降到6，如此反复操作，直到所述重量份的二元酸化剂全部用完为止，
最后加入防腐剂，搅拌30—50分钟降至室温，得水性高分子-异氰酸酯胶粘剂，
备用；

（3）水性高分子-异氰酸酯胶固化剂：

选用未经封闭的聚合异氰酸酯，备用；

（4）水性高分子-异氰酸酯粘杆人造板的制备：

①切段：将粘杆除尘后，剪切成15—150mm长的草段；

②揉搓：将草段经揉切加工或冷磨加工，揉搓成长厚比为100/1—100/5的
丝状碎料；
③改性处理：将丝状碎料在温度 50—90 ℃的水中浸泡 10—24 小时，干燥至含水率 3—8 %后，放入浓度 1—3 %的 NaOH 溶液中，在温度 50—90 ℃下浸泡 4—8 小时，再干燥至含水率 6—10 %后，加入绝干秸秆重量 0.05—0.15 %的秸秆界面性能改性剂；

④施胶：将绝干秸秆重量 10—16 %的水性高分子-异氰酸酯胶的主剂和固化剂充分混合后，均匀加入到改性处理的丝状碎料中拌胶，或将绝干秸秆重量 10—16 %的水性高分子-异氰酸酯胶中的主剂加入到改性处理的丝状碎料中拌胶，并同时将固化剂喷散到改性处理后的丝状碎料中；

⑤热压成型：将施胶后的丝状碎料铺装成板坯预压后，在热压参数：温度 130—180 ℃，单位压力 3.5—4.0 Mpa，热压时间 8—30 s/mm 板厚条件下热压成型，经冷却、裁边、板面砂光，即得。

10、根据权利要求 9 所述的水性高分子-异氰酸酯秸秆人造板的制备方法，其特征在于所述②中的揉切加工是将秸秆剪切成草段的同时，沿草段长度方向搓碎，制成长厚比为 100/1—100/5 的丝状碎料；冷磨加工是将秸秆剪切成草段后，经过冷磨机磨制成长厚比为 100/1—100/5 的丝状碎料。
水性高分子-异氰酸酯秸秆人造板及其制备方法

技术领域

本发明涉及秸秆人造板的改进，具体说是一种水性高分子-异氰酸酯秸秆人造板及其制备方法，属林业工程中的木材科学与工程技术领域。

背景技术

现有制备农作物秸秆为原料的秸秆人造板时，由于秸秆表面含有蜡状物质和硅状物质，界面活性很差，用传统的氨基树脂不能实现有效的胶合。必须用异氰酸酯胶粘剂才能将秸秆碎料胶合在一起，异氰酸酯胶粘剂的价格通常是脲醛树脂胶粘剂价格的10—12倍，尽管前者施胶量比后者低得多，但绝对成本还是比后者高，因而导致用异氰酸酯胶粘剂胶合的秸秆人造板的生产成本和销售价格大幅度上升。按现行原料价格计算，1立方米异氰酸酯秸秆人造板所用异氰酸酯胶粘剂的成本在1600元，1立方米产品的销售价在2100—2300元。尽管异氰酸酯胶粘人造板具有不含甲醛的优势，却面临着降低成本、打开销路的重大压力。

目前国内外已建成的以稻秆或麦秆为主要原材料的秸秆人造板厂，几乎都是以聚合异氰酸酯（PMDI）为胶粘剂，除造成生产成本高以外，这种秸秆人造板还存在如下问题：①粘板问题。如直接采用聚合异氰酸酯胶粘剂，会产生严重的粘板现象。②生产过程中的有机挥发物问题，聚合异氰酸酯在施胶过程有挥发物释放，固化后无毒。③板坯预压性强。传输过程中导致散坯和板材塌边等缺陷。

发明内容

本发明的目的是针对上述不足，提供一种以秸秆为主要原料，以水性高分子-异氰酸酯为胶粘剂的水性高分子-异氰酸酯秸秆人造板。

实现本发明目的的技术方案是：

这种水性高分子-异氰酸酯秸秆人造板，以秸秆为原料，其特点是还包括水性高分子-异氰酸酯胶和秸秆界面性能改性剂，将秸秆经切段、揉搓、改性处理施胶后热压制成，秸秆、水性高分子-异氰酸酯胶和秸秆界面性能改性剂的重量配比为：100：10—16：0.05—0.15。

所述胶粘原料，可以是含水率6—10%的水稻、小麦或玉米等农作物的秸秆。

所述的水性高分子-异氰酸酯胶，是由下述重量份的原料制成的主剂和固化剂组成，

主剂：浓度35%的水性高分子复合乳液40—65份、二元酸酯化剂0.4—1.0份、聚乙烯醇10—15份、防腐剂0.2—0.6份；

固化剂：聚合异氰酸酯；

主剂和固化剂的重量配比为：100：10—30。
所述的主剂中的浓度 35% 的水性高分子复合乳液，由下述重量份的原料制成：玉米淀粉 15—25 份、浓度为 0.3—0.5 mol/L 的无机酸 45—55 份、过氧化物引发剂 0.1—0.3 份、共混溶成乳液 20—40 份、防腐剂 0.5—0.6 份。无机酸可以是盐酸、硫酸或磷酸；过氧化物引发剂可以是过硫酸铵、过硫酸钾或过硫酸钠；共混溶成乳液可以是丁苯胶乳、乙烯-乙酸乙酯乳液或苯丙乳液；防腐剂是食用苯甲酸钠。制备过程中使用的 pH 调节剂是 10% 的氢氧化钠或 5% 的盐酸。

所述的主剂中的二元酸酯化剂，可以是浓度 30% 的乙二酸、顺丁烯二酸或二亚甲基丁二酸。

所述的主剂中的聚乙烯醇，是聚乙烯醇溶解为浓度 8% 的水溶液，再加入绝干聚乙烯醇量 0.1% 的十二烷基磺酸钠后的溶液。

所述的主剂中的防腐剂，是食用苯甲酸钠。

制备主剂过程中使用的 pH 调节剂，是 3—5% 的氢氧化钠。

所述的固化剂聚合异氰酸酯，是未经封闭处理的 98% 的聚合异氰酸酯。

所述的粘杆界面性能改性剂，可以是二甲基硅油、乙醇或硅烷偶联剂。

本发明的另一目的，是提供这种水性高分子-异氰酸酯粘杆人造板的制备方法。

将上述各原料制成本发明的水性高分子-异氰酸酯粘杆人造板的制备方法是：

（1）水性高分子复合乳液的制备：

将所述重量份的玉米淀粉与无机酸溶液，配制成浓度为 15—35% 的玉米淀粉乳，加热升温至 55—65 ℃后保温，在玉米淀粉乳中加入所述重量份的过氧化物引发剂，搅拌均匀，在 55—65 ℃温度下酸解氧化，预引发反应 30—50 分钟后，调 pH 值至 6.8—7.2，得初级酸解氧化玉米淀粉乳液，将初级酸解氧化玉米淀粉乳液稳定 10—15 分钟后，在 30—40 分钟内缓慢加入所述重量份的共混溶合乳液，调 pH 值至 4.5—5.5，在 55—65 ℃温度下保温反应 1.5 小时后，调 pH 值至 6.8—7.2，加入防腐剂，得水性高分子复合乳液。

（2）水性高分子-异氰酸酯胶主剂的制备：

将所述重量份的（1）所述水性高分子复合乳液，搅拌并加热升温至 45—55 ℃保温，用 pH 值调节剂调节 pH 值至 8.0—8.5，不停搅拌下，在 20—40 分钟内均匀加入所述重量份的聚乙烯醇水溶液；然后在 100—120 分钟内，每间隔 10—15 分钟，交替加入 pH 值调节剂使 pH 值上升到 9，再加入二元酸酯化剂使 pH 值降到 6，如此反复操作，直到所述重量份的二元酸酯化剂全部用完为止，最后加入防腐剂，搅拌 30—50 分钟降至室温，得水性高分子-异氰酸酯胶主剂，备用。

在制备主剂过程中，可补充加入玉米淀粉，以保证主剂不挥发物不低于 30%。

（3）水性高分子-异氰酸酯胶固化剂：

选用未经封闭的聚合异氰酸酯，备用。

6
（4）水性高分子-异氰酸酯粘杆人造板的制备:

①切段：将粘杆除尘后，剪切成15—150 mm长的草段；

②揉搓：将草段经揉切加工或冷磨加工，揉搓成长度比为100/1—100/5的丝状碎料；

③改性处理：将丝状碎料在温度50—90°C的水中浸泡10—24小时，干燥至含水量3—8％后，放入浓度1—3％的NaOH溶液中，在温度50—90°C下浸泡4—8小时，再干燥至含水量6—10％后，加入干粘杆重量0.05—0.15％的粘杆界面性能改性剂；

④施胶：将绝干粘杆重量10—16％的水性高分子-异氰酸酯胶的主剂和固化剂充分混合后，均匀加入到改性处理的丝状碎料中拌胶，或将绝干粘杆重量10—16％的水性高分子-异氰酸酯胶中的主剂加入到改性处理的丝状碎料中拌胶，并同时将固化剂喷撒到改性处理后的丝状碎料中；

⑤热压成型：将施胶后的丝状碎料铺装成板坯预压后，在热压参数：温度130—180°C、单位压力3.5—4.0 Mpa、热压时间8—30 s/mm板厚条件下热压成型，经冷却、裁边、板面砂光，即得。

所述②中的揉切加工是将粘杆剪切成草段的同时，沿草段长度方向搓碎，制成长度为100/1—100/5的丝状碎料；冷磨加工是将粘杆剪切成草段后，经过冷磨机磨制成长度为100/1—100/5的丝状碎料。

本发明的水性高分子-异氰酸酯粘杆人造板，可作为家具，室内装修、包装工业等领域的无毒无污染的材料，应用范围十分广泛。

本发明的突出特点和有益效果在于：

本发明的粘杆人造板，以水性高分子-异氰酸酯胶替代纯异氰酸酯胶压制粘杆人造板，根本改善了原人造板生产过程中存在有毒性的有机挥发物，预压性差和粘杆等工艺性问题，在显著降低成本的同时，真正实现粘杆人造板的绿色化生产。

本发明的另一个突出特点还在于制备方法中：①胶粘剂是将玉米淀粉经酸解氧化、预合成乳液共混改性制成复合乳液，在一定酸碱度条件下，通过二元酸酸化剂，与聚乙烯醇共聚共混制得水性高分子-异氰酸酯胶主剂；采用尚未封闭处理的聚合异氰酸酯直接作为胶粘剂的固化剂，由此制成双组分无毒水性高分子-异氰酸酯胶。②粘杆人造板生产过程中的原料经揉搓处理成一定长度比的丝状碎料，确保粘杆纤维的完整性，提高了粘接的强度；另外，粘杆界面性能改性剂的使用，改善了粘杆表面硅质、蜡质等弱界面层状态，从而进一步提高内结合的强度；在施胶工艺中采用主剂拌胶、固化剂喷胶相结合的工艺，确保施胶的均匀，板坯预压成型性好，显著提高了这种粘杆人造板的一次性合格率。

本发明的水性高分子-异氰酸酯粘杆人造板，与已有的纯异氰酸酯粘杆人造板相比，具有构思独特，制造成本低，活性期长，表现粘度低，预压性好以及老化、耐水、耐热性能优异，工艺规范，操作简便，设备易得，无环境污染，容易实施等特点，推广应用后将产生巨大的生态环境效益和社会经济效益。
具体实施方式

下面结合实施例和试验例对本发明作进一步描述，但本发明并不限于实施例，本领域普通技术人员以本发明技术方案作某些修改，仍在本发明保护范围内。

实施例 1—3：本发明的水性高分子-异氰酸酯粘杆人造板用水性高分子-异氰酸酯胶粘剂的制备

各实施例所用原料的重量配比见表 1。

<table>
<thead>
<tr>
<th>实施例</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>主剂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水性高分子复合乳液（35 %）</td>
<td>80.6 kg</td>
<td>100.72 kg</td>
<td>120.9 kg</td>
</tr>
<tr>
<td>玉米淀粉</td>
<td>15 kg</td>
<td>20 kg</td>
<td>25 kg</td>
</tr>
<tr>
<td>无机酸（0.5 mol·L⁻¹）</td>
<td>45 kg 盐酸</td>
<td>50 kg 硫酸</td>
<td>55 kg 磷酸</td>
</tr>
<tr>
<td>过氧化物引发剂</td>
<td>0.1 kg 过硫酸铵</td>
<td>0.2 kg 过硫酸钾</td>
<td>0.3 kg 过硫酸钠</td>
</tr>
<tr>
<td>共混合成乳液</td>
<td>20 kg 聚苯胺</td>
<td>30 kg 乙烯-乙酸乙酯乳液</td>
<td>40kg 聚丙乳液</td>
</tr>
<tr>
<td>防腐剂（食用苯甲酸钠）</td>
<td>0.5 kg</td>
<td>0.52 kg</td>
<td>0.6 kg</td>
</tr>
<tr>
<td>pH 值调节剂</td>
<td>10% 氢氧化钠或5% 盐酸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>二元酸酯化剂（30 %）</td>
<td>1.5 kg 乙二酸</td>
<td>1.0 kg 聚丁烯酸乙醇</td>
<td>0.8kg 二亚甲基丁二酸</td>
</tr>
<tr>
<td>聚乙烯醇（8 %）</td>
<td>30 kg 1799型</td>
<td>25 kg 2099型</td>
<td>20 kg 2299型</td>
</tr>
<tr>
<td>防腐剂（食用苯甲酸钠）</td>
<td>0.5 kg</td>
<td>0.55 kg</td>
<td>0.6 kg</td>
</tr>
<tr>
<td>pH 值调节剂</td>
<td>3% 氢氧化钠</td>
<td></td>
<td></td>
</tr>
<tr>
<td>固化剂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>聚合异氰酸酯（98 %）</td>
<td>11.26 kg</td>
<td>19.09 kg</td>
<td>28.46 kg</td>
</tr>
<tr>
<td>主剂与固化剂的重量配比</td>
<td>100：10</td>
<td>100：15</td>
<td>100：20</td>
</tr>
</tbody>
</table>

其制备方法：（以实施例 1 为例，其它实施例除原料用量不同外，制备方法与实施例 1 基本相同）

（1）将浓度 0.5 mol/L 的 45 kg 盐酸溶液加入具有搅拌器、冷凝器的反应釜中，向盐酸溶液中缓慢加入 15 kg 玉米淀粉，强烈搅拌配制成浓度为 35 % 的玉米淀粉乳，加热升温至 55 ℃后保温，在玉米淀粉乳中加入 0.1 kg 过硫酸铵，搅拌均匀，在 55 ℃温度下酸解氧化，
同时预引发 30 分钟后，用 10% 氢氧化钠调 pH 值至 7，得初级酸解氧化玉米淀粉乳液。将初级酸解氧化玉米淀粉乳液稳定 10 分钟后，在 40 分钟内缓慢加入 20 kg 丁苯胶乳，用 10% 氢氧化钠调调节 pH 值至 5.5，在 55°温度下保温反应 1.5 小时后，测得生成物化性能达到要求后，用 10% 氢氧化钠调 pH 值至 6.8—7.2，加入 0.5 kg 食用苯甲酸钠，得浓度 33—35% 的 80.6 kg 水性高分子复合乳液。在制备过程中，如不挥发物低于 30%，可补充加入玉米淀粉调节。

（2）将（1）所得 80.6 kg 水性高分子复合乳液搅拌并加热升温至 40—45°温度，用 3% 氢氧化钠调节 pH 值至 8.5，不停搅拌下，在 20—40 分钟内均匀加入 8% 的 30 kg 1799 型聚乙烯醇水溶液，然后在 100 分钟内，每间隔 10 分钟，交替加入 3% 氢氧化钠使 pH 值上升到 9，再加入乙二醇使 pH 值降到 6，如此反复操作，直到 1.5 kg 的乙二醇全部用完为止，搅拌 30 分钟后，降至室温加 0.5 kg 食用苯甲酸钠，得 112.6 kg 水性高分子-异氰酸酯共胶剂。

（3）称取未经封闭的 11.26 kg 聚合异氰酸酯，作水性高分子-异氰酸酯共胶的固化剂。

实施例 4—6：本发明的水性高分子-异氰酸酯粘秆人造板的制备

各实施例所用原料的重量配比见表 2，水性高分子-异氰酸酯共胶均选用实施例 1 所得。

表 2

<table>
<thead>
<tr>
<th>实施例</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>粘秆原料</td>
<td>含水率 8% 的水稻秸秆 108.7 kg</td>
<td>含水率 6% 的小麦秸秆 106.4 kg</td>
<td>含水率 10% 的玉米秸秆 111.2 kg</td>
</tr>
<tr>
<td>相当干粘秆</td>
<td>100 kg</td>
<td>100 kg</td>
<td>100 kg</td>
</tr>
<tr>
<td>水性高分子-异氰酸酯胶 主剂</td>
<td>10 kg</td>
<td>12 kg</td>
<td>14.4 kg</td>
</tr>
<tr>
<td>水性高分子-异氰酸酯共胶 固化剂</td>
<td>1.0 kg</td>
<td>1.2 kg</td>
<td>1.44 kg</td>
</tr>
<tr>
<td>施胶方式</td>
<td>主剂粘胶、固化剂粘胶</td>
<td>主剂与固化剂混合后粘胶</td>
<td>主剂粘胶、固化剂粘胶</td>
</tr>
<tr>
<td>NaOH 溶液</td>
<td>1% NaOH 溶液</td>
<td>2% NaOH 溶液</td>
<td>3% NaOH 溶液</td>
</tr>
<tr>
<td>粘秆界面改性剂</td>
<td>0.10 kg 二甲基硅油</td>
<td>0.15 kg 20% 的乙醇溶液</td>
<td>0.05 kg 硅烷偶联剂</td>
</tr>
</tbody>
</table>

其制备方法：（以实施例 4 为例，其它实施例除原料用量不同外，制备方法与实施例 4 基本相同）

（1）切段揉搓：将 108.7 kg 的水稻秸秆原料除尘后，用农用粉碎机剪切成 30 mm 长的
草段。将草段送入热胶粘配制机，沿着草段长度方向粘合，粘合成长短机为100/1—100/5的丝状碎料。

（2）改性处理：将丝状碎料在90℃的水中浸泡24小时，干燥至含水率8%后，放入浓度1%的NaOH溶液中，在90℃温度下浸泡6小时，再干燥至含水率8%后，加入0.1kg的二甲基硅油。

（3）施胶：采用具有聚氨酯和聚硅氧两种功能的施胶设备，在同一台施胶设备中，将10kg水性高分子-异氰酸酯胶料加入到改性处理的丝状碎料中，用10kg水性高分子-异氰酸酯胶料固化剂向改性处理的丝状碎料中喷胶。

（4）热压成型：将经过热压的丝状碎料通过冷压机，铺装到要求规格的板坯。板坯经过预压后，在热压参数：温度130—180℃，单位压力3.5—4.0MPa，热压时间8—30s/mm板厚条件下热压成人造板毛板。再经冷却、裁边、磨光等，制成水性高分子-异氰酸酯粘稠粘料人造板产品。

在制备过程中，均没有有害气体排出，符合绿色生产的工艺要求。

以上各实施例中所用的原料均选用的是工业级产品，质量指标达到下述要求:

玉米淀粉符合GB12309-1990要求；盐酸含量36.5%；硫酸、磷酸含量98%；过硫酸铵、过硫酸钾、过硫酸钠等氧化物引发剂，含量98%以上；丁苯胶乳、乙烯-乙酸乙酯乳液、苯丙乳液等共混合成乳液，含量45%以上；氯化钠含量96%；食用苯甲酸钠含量98%；乙二醇、顺丁烯二酸、二亚甲基丁二酸等二元酸酯化剂，含量96%；聚乙烯醇为1799型、2099型、2299型，纯度99%；聚酯异氰酸酯，纯度98%，NCO含量30.5%以上；粘合剂表面性能改性剂二甲基硅油含量96%以上，乙醇含量95%以上，硅烷偶联剂纯度98%。

<table>
<thead>
<tr>
<th>试验项目</th>
<th>本发明所用胶粘剂</th>
<th>德国BASF公司胶粘剂</th>
</tr>
</thead>
<tbody>
<tr>
<td>主剂与固化剂</td>
<td>6-8 h / 600-1000 mPa.s</td>
<td>1-2 h / 600-1000 mPa.s</td>
</tr>
<tr>
<td>定型期/胶液粘度</td>
<td>可封：利用率为100%</td>
<td>无毒（主要是VOC超标）</td>
</tr>
<tr>
<td>固化剂</td>
<td>无毒</td>
<td>无毒（主要是VOC超标）</td>
</tr>
<tr>
<td>成本</td>
<td>40000-60000元/吨</td>
<td>23000-30000元/吨</td>
</tr>
<tr>
<td>原料</td>
<td>部分可再生资源为原料</td>
<td>不可再生资源石油</td>
</tr>
</tbody>
</table>

表3
试验例 1：本发明中使用的水性高分子-异氰酸酯胶的性能对比试验

将德国 BASF 公司提供的异氰酸酯树脂胶和本发明中使用的水性高分子-异氰酸酯胶，分别送吉林省产品质量监督检验院，参照日本 JIS K6806-1995 标准，进行理化性能检测。

两种胶粘剂的胶合性能等对比试验结果，见表 3。

试验例 2：本发明的水性高分子-异氰酸酯稻秸秆人造板与纯异氰酸酯胶稻秸秆人造板的性能对比试验

因在农作物的秸秆中，以水稻的秸秆所含灰份（硅质）最高，蜡质含量最高，制造人造板的难度最大，所以本试验例将本发明实施例 4 所得水性高分子-异氰酸酯稻秸秆人造板，与采用德国 BASF 公司生产的异氰酸酯胶制备的纯异氰酸酯胶 6%施胶量的稻秸秆人造板，分别送吉林省产品质量监督检验院，参照 GB/T4897.3-2003 国家标准进行理化性能检测，参照 GB/T17657—1999 国家标准检测甲醛释放量；并依据现行市场化工原料的价格，分别计算各胶粘剂原料在每立方米稻秸秆人造板中的成本。同时，也将实施例 5 和实施 6 所得水性高分子-异氰酸酯麦秸秆人造板和水性高分-异氰酸酯玉米秸秆人造板，作相同检测。

理化性能通过吉林省产品质量监督检验院检测，其性能对比试验结果及成本等，见表 4。

<table>
<thead>
<tr>
<th>理化性能及成本</th>
<th>GB/T4897.3-2003</th>
<th>6 %的 PMDI</th>
<th>实施例 4</th>
<th>实施例 5</th>
<th>实施例 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>静曲强度（Mpa）</td>
<td>≥13</td>
<td>17.6</td>
<td>14.2</td>
<td>15.3</td>
<td>14.8</td>
</tr>
<tr>
<td>内结合强度（Mpa）</td>
<td>≥0.35</td>
<td>0.59</td>
<td>0.39</td>
<td>0.46</td>
<td>0.41</td>
</tr>
<tr>
<td>密度（g/cm³）</td>
<td>0.7-0.75</td>
<td>0.72</td>
<td>0.71</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>吸水厚度膨胀（%）</td>
<td>≤8.0</td>
<td>2.54</td>
<td>7.82</td>
<td>2.4</td>
<td>7.31</td>
</tr>
<tr>
<td>甲醛释放量（mg / 100 g）</td>
<td>0.5</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>生产过程中的有机挥发物释放</td>
<td>——</td>
<td>有</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>胶粘剂原料成本（元/m²）</td>
<td>——</td>
<td>1600</td>
<td>820</td>
<td>950</td>
<td>875</td>
</tr>
<tr>
<td>产品一次合格率（%）</td>
<td>——</td>
<td>78</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
</tbody>
</table>
从表4可见，实施例4—6各项理化性能虽然不如6%施胶量纯PMDI压制的稻秸秆人造板，但也均高于相关国家标准要求。但是，在秸秆人造板中胶粘剂的成本，实施例4—6仅相当于6%施胶量纯PMDI压制的稻秸秆人造板的一半，本发明的胶粘剂预压性的提高，使水稻秸秆人造板的一次性合格率大幅度提高。而且，本发明的产品在生产制造过程中无有机挥发物释放。因此，本发明的秸秆人造板的综合性能接近6%施胶量纯PMDI秸秆人造板。

结论：经上述试验显示，与现有技术相比，本发明的水性高分子-异氰酸酯秸秆人造板，其各项理化性能均达到或超过相关国家标准要求。本发明所用的水性高分子-异氰酸酯胶粘剂，为双组分胶，主剂固含高，初粘度低；固化剂不需封闭，混合后的胶液适用期可达到6—8小时，在提高了固化剂的利用效率的同时，降低了成本。采用天然高分子——玉米淀粉部分替代石化产品——异氰酸酯，实现了胶粘剂的绿色化生产与应用，为人类社会的可持续发展提供了可能，具有突出的生态环境效益与社会经济效益。