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(57) ABSTRACT 

A method for controlling power consumption associated 
with a processor in which, depending on the respective 
embodiment, a relative amount of idle time, activity time, or 
idle time and activity time associated with the processor are 
measured or detected, results of the measuring being used by 
the processor for controlling a clock Speed. 
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METHOD FOR CONTROLLING POWER 
CONSUMPTIONASSOCATED WITH A 

PROCESSOR 

BACKGROUND OF THE INVENTION 

0001) 1. Field of the Invention 
0002 This invention relates to real-time computer power 
conservation, and more particularly to an apparatus and 
method for reduction of central processing unit (CPU) clock 
time based on the real-time activity level within the CPU of 
a portable computer. 

0003 2. Description of the Related Art 
0004. During the development stages of personal com 
puters, the transportable or portable computer has become 
very popular. Such portable computer uses a large power 
Supply and really represents a Small desktop personal com 
puter. Portable computers are Smaller and lighter than a 
desktop personal computer and allow an user to employ the 
Same Software that can be used on a desktop computer. 
0005 The first generation “portable” computers only 
operated from an A/C wall power. AS personal computer 
development continued, battery-powered computers were 
designed. furthermore, real portability became possible with 
the development of new display technology, better disk 
Storage, and lighter components. 

0006. However, the software developed was desiged to 
run on a desktop personal computers, with all the features 
of a computer, without regard to battery-powered portable 
computers that only had limited amounts of power available 
for Short periods of time. No special considerations were 
made by the software, operating system (MS-DOS), Basic 
Input/Output System (BIOS), or the third party application 
Software to conserve power usage for these portable com 
puters. 

0007 As more and more highly functional software pack 
ages were developed, desktop computer users experienced 
increased performance from the introductions of higher 
computational CPUs, increased memory, and faster high 
performance disk drives. 
0008 Unfortunately, portable computers continued to run 
only on A/C power or with large and heavy batteries. In 
trying to keep up with the performance requirements of the 
desktop computers, and the new Software, expensive com 
ponents were used to cut the power requirements. Even So, 
the heavy batteries still did not run very long. This meant 
users of portable computers had to Settle for A/C operation 
or very short battery operation to have the performance that 
was expected from the third party Software. 
0009 Portable computer designers stepped the perfor 
mance down to 8088- and 8086-type processors to reduce 
the power consumption. The Supporting circuits and CPU 
took less power to run and therefore, lighter batteries could 
be used. Unfortunately, the new software requiring 80286 
type instructions that did not exist in the older slower 
8088/8086 CPUs, did not run. 
0010. In an attempt to design a portable computer that 
could conserve power, thereby yielding longer battery 
operation, Smaller units, and leSS weight Some possible 
computer designers proceeded to reduce power consumption 
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of a portable computer while an user is not using the 
computer. For example, designers obtain a reduction in 
power usage by Slowing or Stopping the disk drive after 
Some predetermined period of inactivity; if the disk drive is 
not being used, the disk drive is turned off, or simply placed 
into a standby mode. When the user is ready to use the disk, 
the operator must wait until the disk drive is Spinned up and 
the computer System is ready again for full performance 
before the operator may proceed with the operation. 
0011. Other portable computer designers conserve power 
by turning the computer display off when the keyboard is not 
being used. However, in normal operation the computer is 
using full power. In other words, power conservation by this 
method is practical only when the user is not using the 
components of the System. It is very likely, however, that the 
user will turn the computer off when not in use. 
0012 Nevertheless, substantial power conservation while 
the operator is using the computer for meaningful work is 
needed. When the operator uses the computer, full operation 
of all components is required. During the intervals while the 
operator is not using the computer, however, the computer 
could be turned off or slowed down to conserve power 
consumption. It is critical to maintaining performance to 
determine when to slow the computer down or turn it off 
without disrupting the user's work, upsetting the third party 
Software, or confusing the operating System, until operation 
is needed. 

0013 Furthermore, although an user can wait for the disk 
to Spin up as described above, application Software packages 
cannot wait for the CPU to “spin up” and get ready. The CPU 
must be ready when the application program needs to 
compute. Switching to full operation must be completed 
quickly and without the application program being affected. 
This immediate transition must be transparent to the user as 
well as to the application currently active. Delays cause user 
operational problems in response time and Software com 
patability, as well as general failure by the computer to 
accurately execute a required program. 
0014. Other attempts at power conservation for portable 
computers include providing a “Shut Down” or “Standby 
Mode” of operation. The problem, again, is that the com 
puter is not usable by the operator during this period. The 
operator could just as well turned off the power Switch of the 
unit to Save power. This type of power conservation only 
allows the portable computed to “shut down” and thereby 
Save power if the operator forgets to turn off the power 
Switch, or walks away from the computer or the pro 
grammed length of time. The advantage of this type of 
power conservation over rust turning the power Switch 
off/on is a much quicker return to full operation. However, 
this method of power conservation is still not real-time, 
intelligent power conservation while the computer is on and 
processing data which does not disturb the operating System, 
BIOS, and any third party application programs currently 
running on the computer. 

0015. Some attempt to meet this need was made by VLSI 
vendors in providing circuits that either turned off the clockS 
to the CPU when the user was not typing on the keyboard or 
woke up the computer on demand when a keystroke 
occurred. Either of these approaches reduce power but the 
computer is dead (unusable) during this period. Background 
operations Such as updating the System clock, communica 
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tions, print Spooling, and other like operations cannot be 
performed. Some existing portable computers employ these 
circuits. After programmed period of no activity, the com 
puter turns itself off. The operator must turn the machine on 
again but does not have to reboot the operating System and 
application program. The advantage of this circuitry is, like 
the existing "shut down operations, a quick return to full 
operation without restarting the computer. Nevertheless, this 
method only reduces power consumption when the user 
walks away from the machine aid does not actually extend 
the operational life of the battery charge. 

SUMMARY OF THE INVENTION 

0016. In view of the above problems associated with the 
related art, it is an object of the present invention to provide 
an apparatus and method for real-time conservation of 
power for computer Systems without any real-time perfor 
mance degradation, Such conservation of power remaining 
transparent to the user. 
0.017. Another object of the present invention is to pro 
vide an apparatus and method for predicting the activity 
level within a computer System and using the prediction for 
automatic power conservation. 
0.018 Yet another object of the present invention is to 
provide an apparatus and method which allows user modi 
fication of automatic activity level predictions and using the 
modified predictions for automatic power conservation. 
0.019 A further object of the present invention is to 
provide an apparatus and method for real-time reduction and 
restoration of clock speeds thereby returning the CPU to full 
processing rate from a period of inactivity which is trans 
parent to Software programs. 
0020. These objects are accomplished in a preferred 
embodiment of the present invention by an apparatus and 
method which determine whether a CPU may rest based 
upon the CPU activity level and activates a hardware 
selector based upon that determination. If the CPU may rest, 
or Sleep, the hardware Selector applies oscillations at a sleep 
clock level; if the CPU is to be active, the hardware selector 
applies oscillations at a high Speed clock level. 
0021. The present invention examines the state of CPU 
activity, as well as the activity of both the operator and any 
application Software program currently active. This Sam 
pling of activity is performed real-time, adjusting the per 
formance level of the computer to manage power consecra 
tion and computer power. These adjustments are 
accomplished within the CPU cycles and do not affect the 
user's perception of performance. 

0022. Thus, when the operator for the third party soft 
ware of the operating System/BIOS is not using the com 
puter, the present invention will effect a quick turn off or 
slow down of the CPU until needed, thereby reducing the 
power consumption, and wall promptly restore full CPU 
operation when needed without affecting perceived perfor 
mance. This Switching back into full operation from the 
“slow down” mode occurs without the user having to request 
it and without any delay in the operation of the computer 
while waiting for the computer to return to a “ready State. 
0023 These and other features and advantages of the 
invention will be apparent a those skilled in the art from the 
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following detailed description of a preferred embodiment, 
taken together with the accompanying drawings, in which: 

DESCRIPTION OF THE DRAWINGS 

0024 FIG. 1 is a flowchart depicting the self-tuning 
aspect of a preferred embodiment of the present invention; 
0025 FIGS. 2a-2d are flowcharts depicting the active 
power conservation monitor employed by the present inven 
tion; 
0026 FIG. 3 is a simplified schematic diagram repre 
Senting the active power conservation associated hardware 
employed by the present invention; 
0027 FIG. 4 is a schematic of the sleep hardware for one 
embodiment of the present invention; and 
0028 FIG. 5 is a schematic of the sleep hardware for 
another embodiment of the present invention. 

DETAILED DESCRIPTION OF A PREFERRED 
EMBODIMENT 

0029. If the period of computer activity in any given 
System is examined, the CPU and associated components 
have a utilization percentage. If the user is inputing data 
from the keyboard, the time between keystrokes is very long 
in terms of CPU cycles. Many things can be accomplished 
by the computer during this time, Such as printing a report. 
Even during the printing of a report, time is still available for 
additional operations Such as background updating of a 
clock/calendar display. Even So, there is almost always Spare 
time when the CPU is not being used. If the computer is 
turned off or slowed down during this spare time, then power 
consumption is obtained real-time. Such real-time power 
conservation extends battery operation life. 
0030. According to the preferred embodiment of the 
present invention, to conserve power under MS-DOS, as 
well as other operating systems such as OS/2, XENIX, and 
those for Apple computers, requires a combination of hard 
ware and Software. It should be noted that because the 
present invention well work in any System, while the imple 
mentation may vary slightly on a System-by-System basis, 
the Scope of the present invention should therefore no be 
limited to computer systems operating under MS/DOS. 
0031 Slowing down or stopping the computer system 
components according to the preferred embodiment of the 
present invention, reduces power consumption, although the 
amount of power Saved may vary. Therefore, according to 
the present invention, stopping the clock (where possible as 
some CPUs cannot have their clocks stopped) reduces the 
power consumption more than just slowing the clock. 
0032. In general, the number of operations (or instruc 
tions) per second may be considered to be roughly propor 
tional to the processor clock: 

instructions/second=instructions/cycle cycles/second 

0033 Assuming for simplicity that the same instruction 
is repeatedly executed So that instructions/second is con 
Stant, the relationship can be expressed as follows: 

Fq=K*CIk 

0034 where Fo is instructions/second, K is constant 
equal to the instructions/cycle, and Clk equals cycles/Sec 
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ond. Thus, roughly Speaking, the rate of execution increases 
with the frequency of the CPU clock. 
0035. The amount of mower being used at any given 
moment is also related to the frequency of the CPU clock 
and therefore to the rate of execution. In general this 
relationship can be expressed as follows: 

0.036 where P is power in watts, K is a constant in watts, 
K is a constant and expresses the number of watt-Seconds/ 
cycle, and Clk equals the cycles/second of the CPU clock. 
Thus it can also be said at the amount of power being 
consumed at any given time increaseS as the CPU clock 
frequency increases. 
0037 Assume that a given time period T is divided into 
Nintervals such that the power P was constant during each 
interval. Then the amount of energy extended during T 
would be given by: 

E=P(1)deltaT+P(2)deltaT, ...+P(N)deltaTN 

0038. Further assume that the CPU clock “Clk” has only 
two states, either “ON” or “OFF". For the purposes of this 
discussion, the “ON” state represents the CPU clock at its 
maximum frequency, while the “OFF' state represents the 
minimum clock rate at which the CPU can operate (this may 
be zero for CPUs that can have their clocks stopped). For the 
condition in which the CPU clock is always “ON”, each P(i) 
in the previous equation is equal and the total energy is: 

E(max) = P(on): (delta T + delta T ... + delta Tw) 

0.039 This represents the maximum power consumption 
of the computer in which no power conservation measures 
are being used. If the CPU clock is “off” during a portion of 
the intervals, then there are two power levels possible for 
each interval. The P(on) represents the power being con 
sumed when the clock in in its “ON” state, while P(off) 
represents the power being used when the clock is "OFF". 
If all of the time intervals in which the clock is “ON” is 
Summed into the quantity “T(on)" and the "OFF" intervals 
are summed into “T(off)”, then it follows: 

0040. Now the energy being used during period T can be 
written: 

0041 Under these conditions, the total energy consumed 
may be reduced by increasing the time intervals T(off). 
Thus, by controlling the periods of time the clock is in its 
“OFF' state, the amount of energy being used may be 
reduced. If the T(off) period is divided into a large number 
of intervals during the period T, then as the width of each 
interval goes to Zero, energy consumption is at a maximum. 
Conversely, as the width of the T(off) intervals increase, the 
energy consumed decreases. 
0042. If the “OFF' intervals are arranged to coincide with 
periods during which the CPU is normally inactive, then the 
user cannot perceive any reduction in performance and 
overall energy consumption is reduced from the E(max) 
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state. In order to align the T(off) intervals with periods of 
CPU inactivity, the CPU activity level is used to determine 
the width of the T(off) intervals in a closed loop. FIG. 1 
depicts such a closed loop. The activity level of the CPU is 
determined at Step 10. If this level is an increase over an 
immediately previous determination, the present invention 
decreases the T(off) interval (Step 20) and returns to deter 
mine the activity level of the CPU again. If, on the other 
hand, this activity level is a decrease over an immediately 
previous determination, the present invention increases the 
T(off) interval (Step 30) and proceeds to again determine the 
activity level of the CPU. Thus the T(off) intervals are 
constantly being adjusted to match the System activity level. 
0043. In any operating System, two key logic points exist: 
an IDLE, or “do nothing, loop within the operating System 
and an operating System request channel, usually available 
for Services needed by the application Software. By placing 
logic inline with these logic points, the type of activity 
request made by an application Software can be evaluated, 
power conservation can be activated and Slice periods deter 
mined. A slice period is the number of T(on) vs. T(off) 
intervals over time, computed by the activity level. An 
assumption may be made to determine CPU activity level: 
Software programs that need Service usually need additional 
Services and the period of time between Service requests can 
be used to determine the activity level of any application 
Software running on the computer and to provide Slice 
counts for power conservation according to the present 
invention. 

0044. Once the CPU is interrupted during a power con 
servation slice (T(off)), the CPU will save the interrupted 
routine's State prior to vectoring to the interrupt Software. Of 
course, Since the power conservation Software was operating 
during this Slice, control will be returned to the active power 
conservation loop (monitor 40) which simply monitors the 
CPU's clock to determine an exit condition for the power 
conservation mode, thereby exiting from T(off) to T(on) 
State. The interval of the next power conservation State is 
adjusted by the activity level monitored, as discussed above 
in connection with FIG. 1. Some implementations can 
create an automatic exit from T(off) by the hardware logic, 
thereby forcing the power conservation loop to be exited 
automatically and executing an interval T(on). 
0045 More specifically, looking now at FIGS. 2a-2d, 
which depict the active power conservation monitor 40 of 
the present invention. The CPU installs monitor 40 either via 
a program stored in the CPU ROM or loads it from an 
external device storing the program in RAM. Once the CPU 
has loaded monitor 40, it continues to INIT 50 for system 
interrupt initialization, user configurational Setup, and Sys 
tem/application specific initialization. IDLE branch 60 
(more specifically set out in FIG. 2b) is executed by a 
hardware or software interrupt for an IDLE or “do nothing” 
function. This type of interrupt is caused by the CPU 
entering either an IDLE or a "do nothing loop (i.e., planned 
inactivity). The ACTIVITY branch 70 of the flowchart, more 
fully described below in relation to FIG. 2d, is executed by 
a Software or hardware interrupt due to an operating System 
or I/O Service request, by an application program or internal 
operating System function. An I/O Service request made by 
a program may, for example, be a disk I/O, read, print, load, 
etc. Regardless of the branch Selected, control is eventually 
returned to the CPU operating system at RETURN 80. The 
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INIT branch 50 of this flowchart, shown in FIG. 2a, is 
executed only once if it is loaded via program into ROM or 
is executed every time during power up if it is loaded from 
an external device and stored in the RAM. Once this branch 
of active power monitor 40 has been fully executed, when 
ever control is yielded from the operating System to the 
power conservation mode, either IDLE 60 or ACTIVITY 70 
branches are selected depending on the type of CPU activity: 
IDLE branch 60 for power conservation during planned 
inactivity and ACTIVITY branch 70 for power conservation 
during CPU activity. 
0046 Looking more closely at INIT branch 50, after all 
System interrupt and variables are initialized, the routine 
continues at Step 90 to set the Power level equal to 
DEFAULT LEVEL. In operating systems where the user 
has input control for the Power level, the program at Step 
100 checks to see if a User level has been selected. If the 
User level is less than Zero or greater than the MAXIMUM 
LEVEL, the system uses the DEFAULT LEVEL. Other 

wise, it continues onto Step 110 where it modifies the 
Power level to equal the User level. 
0047 According to the preferred embodiment of the 
present invention, the system at Step 120 sets the variable 
Idle tick to Zero and the variable Activity tick to Zero. 
Under an MS/DOS implementation, Idle tick refers to the 
number of interrupts found in a “do nothing” loop. Activi 
ty tick refers to the number of interrupts caused by an 
activity interrupt which in turn determines the CPU activity 
level. Tick count represents a delta time for the next inter 
rupt. Idle tick is a constant delta time from one tick to 
another (interrupt) unless overwritten by a Software inter 
rupt. A Software interrupt may reprogram delta time between 
interrupts. 

0.048. After setting the variables to Zero, the routine 
continues on to Setup 130 at which time any application 
Specific configuration fine-tuning is handled in terms of 
System-Specific details and the System is initialized. Next the 
routine arms the interrupt I/O (Step 140) with instructions to 
the hardware indicating the hardware can take control at the 
next interrupt. INIT branch 50 then exits to the operating 
System, or whatever called the active power monitor origi 
nally, at RETURN 80. 
0049 Consider now IDLE branch 60 of active power 
monitor 40, more fully described at FIG. 2b. In response to 
a planned inactivity of the CPU, monitor 40 (not specifically 
shown in this Figure) checks to see if entry into IDLE branch 
60 is permitted by first determining whether the activity 
interrupt is currently busy. If Busy A equals BUSY FLAG 
(Step 150), which is a reentry flag, the CPU is busy and 
cannot now be put to sleep. Therefore, monitor 40 imme 
diately proceeds to RETURN I 160 and exits the routine. 
RETURN I 160 is an indirect vector to the previous oper 
ating System IDLE Vector interrupt for normal processing 
Stored before entering monitor 40. (I.e., this causes an 
interrupt return to the last chained vector.) 
0050. If the Busy A interrupt flag is not busy, then 
monitor 40 checks to see if the Busy Idle interrupt flag, 
Busy I, equals BUSY FLAG (Step 170). If so, this indi 
cates the system is already in IDLE branch 60 of monitor 40 
and therefore the system should not interrupt itself. If 
Busy I=BUSY FLAG, the system exits the routine at 
RETURN I indirect vector 160. 
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0051) If, however, neither the Busy Areentry flag or the 
Busy I reentry flag have been Set, the routine sets the 
Busy I flag at Step 180 for reentry protection (Busy I= 
BUSY FLAG). At Step 190 Idle tick is incremented by 
one. Idle tick is the number of T(on) before a T(off) interval 
and is determined from IDLE interrupts, Setup interrupts and 
from CPU activity level. Idle tick increments by one to 
allow for smoothing of events, hereby letting a critical I/O 
activity control Smoothing. 
0.052 At Step 200 monitor 40 checks to see if Idle tick 
equals IDLE MAXTICKS. IDLE MAXTICKS is one of 
the constants initialized in Setup 130 of INIT branch 50, 
remains constant for a System, and is responsible for Self 
tuning of the activity level. If Idle tick does not equal 
IDLE MAXTICKS, the Busy I flag is cleared at Step 210 
and exits the loop proceeding to the RETURN I indirect 
vector 160. If, however, Idle tick equals IDLE MAX 
TCKS, Idle tick is set equal to IDLE START TICKS (Step 
220). IDLE START TICKS is a constant which may or 
may not be zero (depending on whether the particular CPU 
can have its clock stopped). This step determines the Self 
tuning of how often the rest of the sleep functions may be 
performed. By setting IDLE START TICKS equal to 
IDLE MAXTICKS minus one, a continuous T(off) interval 
is achieved. At Step 230, the Power level is checked. If it is 
equal to Zero, the monitor clears the Busy I flag (Step 210), 
exits the routine at RETURNI 160, and returns control to the 
operating System So it may continue what it was originally 
doing before it entered active power monitor 40. 
0053) If, however, the Power level does not equal zero at 
Step 240, the routine determines whether an interrupt mask 
is in place. An interrupt mask is Set by the System/applica 
tion Software, and determines whether interrupts are avail 
able to monitor 40. If interrupts are NOT AVAILABLE, the 
Busy I reentry flag is cleared and control is returned to the 
operating System to continue what it was doing before it 
entered monitor 40. Operating Systems, as well as applica 
tion Software, can Set T(on) interval to yield a continuous 
T(on) state by Setting the interrupt mask equal to 
NOT AVAILABLE. 
0054 Assuming an interrupt is AVAILABLE, monitor 40 
proceeds to the SAVE POWER subroutine 250 which is 
fully executed during one T(off) period established by the 
hardware state. (For example, in the preferred embodiment 
of the present invention, the longest possible interval could 
be 18 ms, which is the longest time between two ticks or 
interrupts from the real-time clock.) During the SAVE 
POWER subroutine 250, the CPU clock is stepped down to 
a sleep clock level. 
0.055 Once a critical I/O operation forces the T(on) 
intervals, the IDLE branch 60 interrupt tends to remain 
ready for additional critical I/O requests. As the CPU 
becomes busy with critical I/O, less T(off) intervals are 
available. Conversely, as critical I/O requests decrease, and 
the time intervals between them increase, more T(off) inter 
vals are available. IDLE branch 60 is a self-tuning system 
based on feedback from activity interrupts and tends to 
provide more T(off) intervals as the activity level slows. As 
Soon as monitor 40 has completed SAVE POWER subrou 
tine 250, shown in FIG.2c and more fully described below, 
the Busy I reentry flag is cleared, (Step 210) and control is 
returned at RETURNSI 160 to whatever operating system 
originally requested monitor 40. 
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0056 Consider now FIG.2c, which is a flowchart depict 
ing the SAVE POWER subroutine 250. Monitor 40 deter 
mines what the I/O hardware high speed clock is at Step 260. 
It sets the CURRNT CLOCK RATE equal to the relevant 
high speed clock and saves this value to be used for CPUs 
with multiple level high Speed clockS. Thus, if a particular 
CPU has 12 MHZ and 6 MHz high speed clocks, monitor 40 
must determine which high speed clock the CPU is at before 
monitor 40 reduces power so it may reestablish the CPU at 
the proper high speed clock when the CPU awakens. At Step 
270, the Save clock rate is set equal to the CURRENT 
CLOCK RATE determined. Save clock rate 270 is not 

used when there is only one high speed clock for the CPU. 
Monitor 40 now continues to SLEEPCLOCK 280, where a 
pulse is sent to the hardware selector (shown in FIG. 3) to 
put the CPU clock to sleep (i.e., lower or stop its clock 
frequency). The I/O port hardware sleep clock is at much 
lower oscillations than the CPU clock normally employed. 
0057. At this point either of two events can happen. A 
System/application interrupt may occur or a real-time clock 
interrupt may occur. If a System/application interrupt 290 
occurs, monitor 40 proceeds to interrupt routine 300, pro 
cessing the interrupt as Soon as possible, arming interrupt 
I/O at Step 310, and returning to determine whether there 
has seen an interrupt (Step 320). Since in this case there has 
been an interrupt, the Save clock rate is used (Step 330) to 
determine which high speed clock to return the CPU to and 
SAVE POWER subroutine 250 is exited at RETURN 340. If, 
however, a system/application interrupt is not received, the 
SAVE POWER Subroutine 250 will continue to wait until a 
real-time clock interrupt has occurred (Step 320). Once such 
an interrupt has occurred, SAVE POWER subroutine 250 
establishes the CPU at the stored Save-clock-rate. If the 
Sleep clock rate was not stopped, in other words, the Sleep 
clock rate was not Zero, control is passed at a slow clock and 
SAVE POWER subroutine 250 will execute interrupt loop 
320 several times. If however, control is passed when the 
Sleep clock rate was Zero, in other words, there was no clock, 
the SAVE POWER subroutine 250 will execute interrupt 
loop 320 once before returning the CPU clock to the 
Save clock rate 330 and exiting (Step (340). 
0.058 Consider now FIG. 2d which is a flowchart show 
ing ACTIVITY branch 70 triggered by an application/ 
System activity request via an operating System Service 
request interrupt. ACTIVITY branch 70 begins with reentry 
protection. Monitor 40 determines at Step 350 whether 
Busy I has been set to BUSY FLAG. If it has, this means 
the system is already in IDLE branch 60 and cannot be 
interrupted. If Busy I=BUSY FLAG, monitor 40 exits to 
RETURNI 160, which is an indirect vector to an old activity 
vector interrupt for normal processing, via an interrupt 
vector after the operating System performs the requested 
Service. 

0059) If however, the Busy I flag does not equal BUSY 
FLAG, which means IDLE branch 60 is not being 

accessed, monitor 40 determines at Step 360 if the BUSY A 
flag has been set equal to BUSY FLAG. If so, control will 
be retuned to the system at this point because ACTIVITY 
branch 70 is already being used and cannot be interrupted. 
If the Busy. A flag has not been set, in other words, Busy A 
does not equal BUSY FLAG, monitor 40 sets Busy Aequal 
to BUSY FLAG at Step 370 so as not to be interrupted 
during execution of ACTIVITY branch 70. At Step 380 the 
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Power level is determined. If Power level equals zero, 
monitor 40 exits ACTIVITY branch 70 after clearing the 
Busy Areentry flag (Step 390). If however, the Power level 
does not equal zero, the CURRENT CLOCK RATE of the 
I/O hardware is next determined. As was true with Step 270 
of FIG. 2C, Step 400 of FIG. 2d uses the CURRENT 
CLOCK RATE if there are multiple level high speed 

clocks for a given CPU. Otherwise, CURRENT_CLOCK 
RATE always equals the CPU high speed clock. After the 
CURRENT CLOCK RATE is determined (Step 400), at 
Step 410 Idle tick is set equal to the constant START 
TICKS established for the previously determined CUR 
RENT CLOCK RATE. T(off) intervals are established 
based on the current high Speed clock that is active. 

0060 Monitor 40 next determines that a request has been 
made. A request is an input by the application Software 
running on the computer, for a particular type of Service 
needed. At Step 420, monitor 40 determines whether the 
request is a CRITICAL I/O. If the request is a CRITICAL 
I/O, it will continuously force T(on) to lengthen until the 
T(on) is greater than the T(off), and monitor 40 will exit 
ACTIVITY branch 70 after clearing the Busy Areentry flag 
(Step 390). If, on the other hand, the request is not a 
CRITICALI/O, then the Activity tick is incremented by one 
at Step 430. It is then determined at Step 440 whether the 
Activity tick now equals ACTIVITY MAXTICKS. Step 
440 allows a smoothing from a CRITICAL I/O, and makes 
the system ready from another CRITICAL I/O during 
Activity tick T(on) intervals. ASSuming Activity tick does 
not equal ACTIVITY MAXTICKS, ACTIVITY branch 70 
is exited after clearing the Busy. A reentry flag (Step 390). 
If, on the other hand, the Activity tick equals constant 
ACTIVITY MAXTICKS, at Step 450 Activity tick is set to 
the constant LEVEL MAXTICKS established for the 
articular Power level determined at Step 380. 
0061 Now monitor 40 determines whether an interrupt 
mask exists (Step 460). An interrupt mask is set by system/ 
application software. Setting it to NOT AVAILABLE cre 
ates a continuous T(on) state. If the interrupt mask equals 
NOT AVAILABLE, there are no interrupts available at this 
time and monitor 40 exits ACTIVITY branch 70 after 
clearing the Busy Areentry flag (Step 390). If, however, an 
interrupt is AVAILABLE, monitor 40 determines at Step 470 
whether the request identified at Step 420 was for a SLOW 
I/O INTERRUPT. SLOW I/O requests may have a delay 
until the I/O device becomes “ready'. During the “make 
ready' operation, a continuous T(off) interval may be set up 
and executed to conserve power. Thus, if the request is not 
a SLOW I/O INTERRUPT, ACTIVITY branch 70 is exited 
after clearing the Busy. A reentry flag (Step 390). If, how 
ever, the request is a SLOW I/O INTERRUPT, and time yet 
exists before the I/O device becomes “ready”, monitor 40 
then determines at Step 480 whether the I/O request is 
COMPLETE (i.e., is I/O device ready?). If the I/O device is 
not ready, monitor 40 forces T(off) to lengthen, thereby 
forcing he CPU to wait, or sleep, until the SLOW I/O device 
is ready. At this point it has time to Save power and 
ACTIVITY branch 70 enterS SAVE POWER Subroutine 250 
previously described in connection with to FIG. 2C. If, 
however, the I/O request is COMPLETE, control is returned 
to the operating System Subsequently to monitor 40 exiting 
ACTIVITY branch 70 after clearing Busy. A reentry flag 
(Step 390). 
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0.062 Self-tuning is inherent within the control system of 
continuous feedback loops. The Software of the present 
invention can detect when CPU activity is low and therefore 
when the power conservation aspect of the present invention 
may be activated. Once the power conservation monitor is 
activated, a prompt return to full Speed CPU clock operation 
within the interval is achieved So as to not degrade the 
performance of the computer. To achieve this prompt return 
to full speed CPU clock operation, the preferred embodi 
ment of the present invention employs Some associated 
hardware. 

0.063 Looking now at FIG. 3 which shows a simplified 
Schematic diagram representing the associated hardware 
employed by the present invention or active power conser 
vation. When monitor 40 (not shown) determines the CPU 
is ready to sleep, it writes an I/O port (not shown) which 
causes a pulse on the SLEEP line. The rising edge of this 
pulse on the SLEEP line causes flip flop 500 to clock a high 
to Q and a low to Q-. This causes the AND/OR logic (AND 
gates 510, 520; OR gate 530) to select the pulses travelling 
the SLEEP CLOCK line from SLEEP CLOCK OScillator 
540 to be sent to and used by the CPU CLOCK. SLEEP 
CLOCK Oscillator 540 is a slower clock than the CPU clock 
used during normal CPU activity. The high coming from the 
Q of flip flop 500 ANDed (510) with the pulses coming from 
SLEEP CLOCKoscillator 540 is ORed (530) with the result 
of the low an the Q- of flip flop 500 ANDed (520) with the 
pulse generated along the HIGH SPEED CLOCK line by the 
HIGH SPEED CLOCK oscillator 550 to yield the CPU 
CLOCK. When the I/O port designates SLEEP CLOCK, the 
CPU CLOCK is then equal to the SLEEP CLOCKoscillator 
540 value. If, on the other hand, an interrupt occurs, an 
interrupt-value clears flip flop 500, thereby forcing the 
AND/OR selector (comprising 510,520 and 530) to choose 
the HIGH SPEED CLOCK value, and returns the CPU 
CLOCK value to the value coming from HIGH SPEED 
CLOCK oscillator 550. Therefore, during any power con 
servation operation on the CPU, the detection of any inter 
rupt within the system will restore the CPU operation at full 
clock rate prior to vectoring and processing the interrupt. 

0064. It should be noted that the associated hardware 
needed, external to each of the CPUs for any given System, 
may be different based on the operating System used, 
whether the CPU can be stomped, etc. Nevertheless, the 
scope of the present invention should not be limited by 
possible System Specific modifications needed to permit the 
present invention to actively conserve power in the numer 
ous available portable computer Systems. For example two 
actual implementations are shown in FIGS. 4 and 5, dis 
cussed below. 

0065. Many VSLI designs today allow for clock Switch 
ing of the CPU speed. The logic to Switch from a null clock 
or slow clock to a fast clock logic is the same as that which 
allows the user to change Speeds by a keyboard command. 
The added logic of monitor 40 working with Such Switching 
logic, causes an immediate return to a fast clock upon 
detection of any interrupt. This simple logic is the key to the 
necessary hardware Support to interrupt the CPU and 
thereby allow the processing of the interrupt at full Speed. 

0.066 The method to reduce power consumption under 
MS-DOS employs the MS-DOS IDLE loop trap to gain 
access to the “do nothing” loop. The IDLE loop provides 
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Special access to application Software and operating System 
operations that are in a state of IDLE or low activity. Careful 
examination is required to determine the activity level at any 
given point within the System. Feedback loons are used from 
the interrupt 21H service request to determine the activity 
level. The prediction of activity level is determined by 
interrupt 21H requests, from which the present invention 
thereby sets the slice periods for “sleeping” (slowing down 
or stopping) the CPU. An additional feature allows the user 
to modify the Slice depending on the activity level of 
interrupt 21H. 
0067 Looking now at FIG. 4, which depicts a schematic 
of an actual Sleep hardware implementation for a System 
such as the Intel 80386 (CPU cannot have its clock stopped). 
Address enable bus 600 and address bus 610 provide CPU 
input to demultiplexer 620. The output of demultiplexer 620 
is sent along SLEEPCS- and provided as input to OR gates 
630,640. The other inputs to OR gates 630,640 are the I/O 
write control line and the I/O read control line, respectively. 
The outputs of these gates, in addition to NOR gate 650, are 
applied to D flip flop 660 to decode the port. “INTR” is the 
interrupt input from the I/O port (peripherals) into NOR gate 
650, which causes the logic hardware to Switch back to the 
high speed clock. The output of flip flop 660 is then fed, 
along with the output from OR gate 630, to tristate buffer 
670 to enable it to read back what is on the port. All of the 
above-identified hardware is used by the read/write I/O port 
(peripherals) to select the power saving “Sleep' operation. 
The output "SLOW-” is equivalent to “SLEEP” in FIG. 2, 
and is inputted to flip flop 680, discussed later. 
0068. The output of SLEEP CLOCK oscillator 690 is 
divided into two slower clocks by D flip flops 700,710. In 
the particular implementation shown in FIG. 4, 16 MHz 
sleep clock oscillator 690 is divided into 4 MHZ and 8 MHz 
clocks. Jumper J1 selects which clock is to be the “SLEEP 
CLOCK. 

0069. In this particular implementation, high speed clock 
oscillator 720 is a 32 MHz oscillator, although this particular 
Speed is not a requirement of the present invention. The 32 
MHz oscillator is put in series with a resistor (for the 
implementation shown, 33 ohms), which is in series with 
two parallel capacitors (10 pF). The result of such oscilla 
tions is tied to the clocks of D flip flops 730,740. 
0070 D flip flops 680,730,740 are synchronizing flip 
flops; 680,730 were not shown in the simplified sleep 
hardware of FIG. 2. These flip flops are used to ensure the 
clock Switch occurs only on clock edge. AS can be seen in 
FIG. 4, as with flip flop 500 of FIG. 2, the output of flip flop 
740 either activates OR gate 750 or OR gate 760, depending 
upon whether the CPU is to sleep (“FASTEN-”) or awaken 
(“SLOWEN-”). 
007.1) OR gates 750,760 and AND gate 770 are the 
functional equivalents to the AND/OR selector of FIG. 2. 
They are responsible for selecting either the “slowclk” (slow 
clock, also known as SLEEP CLOCK) or high speed clock 
(designated as 32 MHz on the incoming line). In this 
implementation, the Slow clock is either 4 MHz or 8 MHz, 
depending upon jumper J1, and the high Speed clock is 32 
MHz. The output of AND gate 770 (ATUCLK) establishes 
the rate of the CPU clock, and is the equivalent of CPU 
CLOCK of FG, 2. 

0072 Consider now FIG.5, which depicts a schematic of 
another actual Sleep hardware implementation for a System 
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such as the Intel 80286 (CPU can have its clock stopped). 
The Western Digital FE3600 VLSI is used for the speed 
Switching with a special external PAL 780 to control the 
interrupt gating which wakes up the CPU on any interrupt. 
The Software power conservation according to the present 
invention monitors the interrupt acceptance, activating the 
next P(i)deltaT; interval after the interrupt. 
0073) Any interrupt request to the CPU well return the 
system to normal operation. An interrupt request (“INTRO”) 
to the CPU will cause the PAL to issue a Wake Up signal on 
the RESCPU line to the FE3001 (not shown) which in turn 
enables the CPU and the DMA clocks to bring the system 
back to its normal state. This is the equivalent of the 
“INTERRUPT-” of FIG. 2. Interrupt Request is synchro 
nized to avoid confusing the State machine So that Interrupt 
(INTDET) will only be detected while the cycle is active. 
The rising edge of RESCPU will wake up the FE 3001 
which in turn releases the whole system from the Sleep 
Mode. 

0074 Implementation for the 386SX is different only in 
the external hardware and Software power conservation 
loop. The software loop will set external hardware to Switch 
to the high Speed clock on interrupt prior to Vectoring the 
interrupt. Once return is made to the power conservation 
Software, the high Speed clock cycle will be detected and the 
hardware will be reset for full clock operation. 
0075 Implementation for OS/2 uses the “do nothing” 
loop programmed as a THREAD running in background 
operation with low priority. Once the THREAD is activated, 
the CPU sleep, or low speed clock, operation will be 
activated until an interrupt occurs thereby placing the CPU 
back to the original clock rate. 
0.076 Although interrupts have been employed to wake 
up the CPU in the preferred embodiment of the present 
invention, it should be realized that any periodic activity 
within the System, or applied to the System, could also be 
used for the same function. 

0077. While several implementations of the preferred 
embodiment of the invention has been shown and described, 
various modifications and alternate embodiments will occur 
to those skilled in the art. Accordingly, it is intended that the 
invention be limited only in terms of the appended claims. 

1-21. (canceled) 
22. A method, comprising the Steps of: 
determining a work load level associated with a proces 

Sor, and 
using results of Said determining for reducing power 

consumption associated with Said processor as Said 
work load level decreases. 

23. The method of claim 22, wherein an amount of Said 
reducing power consumption is proportional to the decrease 
of Said work load level. 

24. The method of claim 23, wherein said reduction in 
power consumption is accomplished in incremental StepS. 

25. The method of claim 22, wherein said reduction in 
power consumption continues until no decrease in workload 
level is detected over a previous determination of work load 
level. 
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26. The method of claim 25, wherein said reducing power 
consumption continues until one of: a) no decrease in work 
load level is detected over a previous determination of work 
load level; and b) said processor has reached its minimum 
power consumption level. 

27. The method of claim 22, wherein said power con 
Sumption is accomplished by lowering a clock frequency. 

28. The method of claim 27, wherein said clock frequency 
is lowered in incremental StepS. 

29. The method of claim 22, wherein said power con 
Sumption is accomplished by lowering a clock Speed. 

30. The method of claim 29, wherein said clock speed is 
lowered in incremental Steps. 

31. The method of claim 22, wherein said reduction in 
power consumption is accomplished while Said processor is 
processing data. 

32. The method of claim 31, wherein said data is part of 
a program being run on Said processor. 

33. A method, comprising the Steps of: 
determining a work load level associated with a proces 

Sor, and 
using results of Said determining for increasing power 

consumption associated with Said processor as Said 
work load level increases. 

34. The method of claim 33, wherein an amount of Said 
increasing power consumption is proportional to the 
increase of Said work load level. 

35. The method of claim 34, wherein said power con 
Sumption is accomplished in incremental steps. 

36. The method of claim 33, wherein said increasing 
power consumption continues until no increase in work load 
level is detected over a previous determination of work load 
level. 

37. The method of claim 33, wherein said increasing 
power consumption continues until one of: a) no increase in 
work load level is detected over a previous determination of 
work load level; and b) said processor has reached its 
maximum power consumption level. 

38. The method of claim 33, wherein said power con 
Sumption is accomplished by raising a clock frequency. 

39. The method of claim 38, wherein said clock frequency 
is raised in incremental Steps. 

40. The method of claim 33, wherein said power con 
Sumption is accomplished by raising a clock Speed. 

41. The method of claim 40, wherein said clock speed is 
raised in incremental Steps. 

42. The method of claim 33, wherein said power con 
Sumption is accomplished while Said processor is processing 
data. 

43. The method of claim 42, wherein said data is part of 
a program being run on Said processor. 

44. A method, comprising the Steps of: 
determining a work load level associated with a proces 

Sor, and 
using results of Said determining for reducing power 

consumption associated with Said processor as Said 
work load level decreases and increasing power con 
Sumption associated with Said processor as Said work 
load level increases. 
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