
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2005/0204179 A1

Watts, JR. et al. (43) Pub. Date:

US 20050204179A1

Sep. 15, 2005

(54)

(76)

(21)

(22)

(63)

20

METHOD FOR CONTROLLING POWER
CONSUMPTIONASSOCATED WITH A
PROCESSOR

Inventors: LaVauchn F. Watts JR., Temple, TX
(US); Steven J. Wallace, Temple, TX
(US)

Correspondence Address:
TEXAS INSTRUMENTS INCORPORATED
PO BOX 655474, M/S 3999
DALLAS, TX 75265

Appl. No.: 11/123,464

Filed: May 6, 2005

Related U.S. Application Data

Continuation of application No. 10/837,172, filed on
Apr. 30, 2004, which is a continuation of application
No. 10/375,982, filed on Feb. 28, 2003, now Pat. No.
6,732,283, which is a continuation of application No.
10/074,739, filed on Feb. 11, 2002, now Pat. No.

DECREASE
T(OFF)

INTERVAL

6,633,988, which is a continuation of application No.
09/756,838, filed on Jan. 9, 2001, now Pat. No.
6,397.340, which is a continuation of application No.
09/392.205, filed on Sep. 8, 1999, now Pat. No.
6,173,409, which is a continuation of application No.
08/023,831, filed on Apr. 12, 1993, now Pat. No.
6,006,336, which is a continuation of application No.
07/429,270, filed on Oct. 30, 1989, now Pat. No.
5,218,704.

Publication Classification

(51) Int. Cl. ... G06F 1/26
(52) U.S. Cl. .. 713/322

(57) ABSTRACT

A method for controlling power consumption associated
with a processor in which, depending on the respective
embodiment, a relative amount of idle time, activity time, or
idle time and activity time associated with the processor are
measured or detected, results of the measuring being used by
the processor for controlling a clock Speed.

10

DETERMINE
ACTIVITY LEVEL

ACTIVITY
NCREASED

p

INCREASE
T(OFF)

INTERVAL

30

Patent Application Publication Sep. 15, 2005 Sheet 1 of 6 US 2005/02041 79 A1

10

DETERMINE
ACTIVITY LEVEL

INCREASE
T(OFF)

INTERVAL

DECREASE
T(OFF)

INTERVAL

ACTIVITY
NCREASED

p

20 50

FIC. 1

540 510 550
SLEEP CLOCK

OSCILLATOR CPU
CLOCK

INTERRUPT

+W

SLEEP FIC. 3

- - - - HIGH SPEED

CLOCK

550/OSCILLATOR
+5W

CLK
PENRFs.

sp N/C c - RSDRY
4D2
4D2

3C5, 13B4

N/C : N/C
REFRESH n FIG. 5

Patent Application Publication Sep.15, 2005 Sheet 2 of 6

ACTIVE POWER 40
MONITOR

US 2005/0204179 A1

60 POWERLEVEL 70

DEFAULT_LEVEL
100 >MAXIMUM

KO LEVEL

POWERLEVEL
USER LEVEL

SET
DLETICK=0 120

ACTIVITY TICK=0

ARM
INTERRUPT I/O

FIG. 2 OL

80

Patent Application Publication Sep. 15, 2005 Sheet 3 of 6 US 2005/02041 79 A1

60

=BUSYFLAG

=BUSY FLAG

#BUSY FLAG

BUSY

BUSY FLAG
180

190

ZIDLE
MAXTICKS

FIC. 2 b 220

=NOT
AVAILABLE INTERRUPT

MASK?

2 =AVAILABLE 40

SAVE POWER
250

210

160

Patent Applicati Plication Puhlia: ublication Sep. 15, 2005 Sheet 4 of 6 US 2005/02041 79 A1

SAVE POWER 250

DETERMINE 260
CURRENTCLOCKRATE

SAVE CLOCKRATE 270
CURRENT CLOCKRATE

SLEEP CLOCK 280

YES

RETURN C RETURN 340

FIC. 2C

SYSTEM/
APPLICATION
INTERRUPT

- - - INTERRUPT
500 ROUTINE

ARM INTERRUPT
310 I/O

290

Patent Application Publication Sep. 15, 2005 Sheets of 6

70 ACTIVY

350

#BUSYFLAG
BUSY A

BUS FLAG
380 =BUSY FLAG

POWER
LEVEL

p

DLETECK

START TICKS
(CURRENT_CLOCKRATE)

3) I/O =CRITICAL I/O

CLEAR BUSYA

RETURN
160

US 2005/02041 79 A1

Activity Tick 430
ACTIVITY TECK+1

440 ACTIVITY
MAXCKS

sACTIVITY
MAXTCKS

ACTIVITY TICK

LEVE MAXCKS
(POWER LEVEL)

seNO
AVAILABLE NERRUPT

MASK?

=AVAILABLE SLOW - .
I/O INTERRUPT

470 =SLOW I/O
INTERRUPT

scCOMPLETE

COMPLETE

SAVE POWER

FIC. 2Cl

US 2005/02041 79 A1

METHOD FOR CONTROLLING POWER
CONSUMPTIONASSOCATED WITH A

PROCESSOR

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 This invention relates to real-time computer power
conservation, and more particularly to an apparatus and
method for reduction of central processing unit (CPU) clock
time based on the real-time activity level within the CPU of
a portable computer.

0003 2. Description of the Related Art
0004. During the development stages of personal com
puters, the transportable or portable computer has become
very popular. Such portable computer uses a large power
Supply and really represents a Small desktop personal com
puter. Portable computers are Smaller and lighter than a
desktop personal computer and allow an user to employ the
Same Software that can be used on a desktop computer.
0005 The first generation “portable” computers only
operated from an A/C wall power. AS personal computer
development continued, battery-powered computers were
designed. furthermore, real portability became possible with
the development of new display technology, better disk
Storage, and lighter components.

0006. However, the software developed was desiged to
run on a desktop personal computers, with all the features
of a computer, without regard to battery-powered portable
computers that only had limited amounts of power available
for Short periods of time. No special considerations were
made by the software, operating system (MS-DOS), Basic
Input/Output System (BIOS), or the third party application
Software to conserve power usage for these portable com
puters.

0007 As more and more highly functional software pack
ages were developed, desktop computer users experienced
increased performance from the introductions of higher
computational CPUs, increased memory, and faster high
performance disk drives.
0008 Unfortunately, portable computers continued to run
only on A/C power or with large and heavy batteries. In
trying to keep up with the performance requirements of the
desktop computers, and the new Software, expensive com
ponents were used to cut the power requirements. Even So,
the heavy batteries still did not run very long. This meant
users of portable computers had to Settle for A/C operation
or very short battery operation to have the performance that
was expected from the third party Software.
0009 Portable computer designers stepped the perfor
mance down to 8088- and 8086-type processors to reduce
the power consumption. The Supporting circuits and CPU
took less power to run and therefore, lighter batteries could
be used. Unfortunately, the new software requiring 80286
type instructions that did not exist in the older slower
8088/8086 CPUs, did not run.
0010. In an attempt to design a portable computer that
could conserve power, thereby yielding longer battery
operation, Smaller units, and leSS weight Some possible
computer designers proceeded to reduce power consumption

Sep. 15, 2005

of a portable computer while an user is not using the
computer. For example, designers obtain a reduction in
power usage by Slowing or Stopping the disk drive after
Some predetermined period of inactivity; if the disk drive is
not being used, the disk drive is turned off, or simply placed
into a standby mode. When the user is ready to use the disk,
the operator must wait until the disk drive is Spinned up and
the computer System is ready again for full performance
before the operator may proceed with the operation.
0011. Other portable computer designers conserve power
by turning the computer display off when the keyboard is not
being used. However, in normal operation the computer is
using full power. In other words, power conservation by this
method is practical only when the user is not using the
components of the System. It is very likely, however, that the
user will turn the computer off when not in use.
0012 Nevertheless, substantial power conservation while
the operator is using the computer for meaningful work is
needed. When the operator uses the computer, full operation
of all components is required. During the intervals while the
operator is not using the computer, however, the computer
could be turned off or slowed down to conserve power
consumption. It is critical to maintaining performance to
determine when to slow the computer down or turn it off
without disrupting the user's work, upsetting the third party
Software, or confusing the operating System, until operation
is needed.

0013 Furthermore, although an user can wait for the disk
to Spin up as described above, application Software packages
cannot wait for the CPU to “spin up” and get ready. The CPU
must be ready when the application program needs to
compute. Switching to full operation must be completed
quickly and without the application program being affected.
This immediate transition must be transparent to the user as
well as to the application currently active. Delays cause user
operational problems in response time and Software com
patability, as well as general failure by the computer to
accurately execute a required program.
0014. Other attempts at power conservation for portable
computers include providing a “Shut Down” or “Standby
Mode” of operation. The problem, again, is that the com
puter is not usable by the operator during this period. The
operator could just as well turned off the power Switch of the
unit to Save power. This type of power conservation only
allows the portable computed to “shut down” and thereby
Save power if the operator forgets to turn off the power
Switch, or walks away from the computer or the pro
grammed length of time. The advantage of this type of
power conservation over rust turning the power Switch
off/on is a much quicker return to full operation. However,
this method of power conservation is still not real-time,
intelligent power conservation while the computer is on and
processing data which does not disturb the operating System,
BIOS, and any third party application programs currently
running on the computer.

0015. Some attempt to meet this need was made by VLSI
vendors in providing circuits that either turned off the clockS
to the CPU when the user was not typing on the keyboard or
woke up the computer on demand when a keystroke
occurred. Either of these approaches reduce power but the
computer is dead (unusable) during this period. Background
operations Such as updating the System clock, communica

US 2005/02041 79 A1

tions, print Spooling, and other like operations cannot be
performed. Some existing portable computers employ these
circuits. After programmed period of no activity, the com
puter turns itself off. The operator must turn the machine on
again but does not have to reboot the operating System and
application program. The advantage of this circuitry is, like
the existing "shut down operations, a quick return to full
operation without restarting the computer. Nevertheless, this
method only reduces power consumption when the user
walks away from the machine aid does not actually extend
the operational life of the battery charge.

SUMMARY OF THE INVENTION

0016. In view of the above problems associated with the
related art, it is an object of the present invention to provide
an apparatus and method for real-time conservation of
power for computer Systems without any real-time perfor
mance degradation, Such conservation of power remaining
transparent to the user.
0.017. Another object of the present invention is to pro
vide an apparatus and method for predicting the activity
level within a computer System and using the prediction for
automatic power conservation.
0.018 Yet another object of the present invention is to
provide an apparatus and method which allows user modi
fication of automatic activity level predictions and using the
modified predictions for automatic power conservation.
0.019 A further object of the present invention is to
provide an apparatus and method for real-time reduction and
restoration of clock speeds thereby returning the CPU to full
processing rate from a period of inactivity which is trans
parent to Software programs.
0020. These objects are accomplished in a preferred
embodiment of the present invention by an apparatus and
method which determine whether a CPU may rest based
upon the CPU activity level and activates a hardware
selector based upon that determination. If the CPU may rest,
or Sleep, the hardware Selector applies oscillations at a sleep
clock level; if the CPU is to be active, the hardware selector
applies oscillations at a high Speed clock level.
0021. The present invention examines the state of CPU
activity, as well as the activity of both the operator and any
application Software program currently active. This Sam
pling of activity is performed real-time, adjusting the per
formance level of the computer to manage power consecra
tion and computer power. These adjustments are
accomplished within the CPU cycles and do not affect the
user's perception of performance.

0022. Thus, when the operator for the third party soft
ware of the operating System/BIOS is not using the com
puter, the present invention will effect a quick turn off or
slow down of the CPU until needed, thereby reducing the
power consumption, and wall promptly restore full CPU
operation when needed without affecting perceived perfor
mance. This Switching back into full operation from the
“slow down” mode occurs without the user having to request
it and without any delay in the operation of the computer
while waiting for the computer to return to a “ready State.
0023 These and other features and advantages of the
invention will be apparent a those skilled in the art from the

Sep. 15, 2005

following detailed description of a preferred embodiment,
taken together with the accompanying drawings, in which:

DESCRIPTION OF THE DRAWINGS

0024 FIG. 1 is a flowchart depicting the self-tuning
aspect of a preferred embodiment of the present invention;
0025 FIGS. 2a-2d are flowcharts depicting the active
power conservation monitor employed by the present inven
tion;
0026 FIG. 3 is a simplified schematic diagram repre
Senting the active power conservation associated hardware
employed by the present invention;
0027 FIG. 4 is a schematic of the sleep hardware for one
embodiment of the present invention; and
0028 FIG. 5 is a schematic of the sleep hardware for
another embodiment of the present invention.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

0029. If the period of computer activity in any given
System is examined, the CPU and associated components
have a utilization percentage. If the user is inputing data
from the keyboard, the time between keystrokes is very long
in terms of CPU cycles. Many things can be accomplished
by the computer during this time, Such as printing a report.
Even during the printing of a report, time is still available for
additional operations Such as background updating of a
clock/calendar display. Even So, there is almost always Spare
time when the CPU is not being used. If the computer is
turned off or slowed down during this spare time, then power
consumption is obtained real-time. Such real-time power
conservation extends battery operation life.
0030. According to the preferred embodiment of the
present invention, to conserve power under MS-DOS, as
well as other operating systems such as OS/2, XENIX, and
those for Apple computers, requires a combination of hard
ware and Software. It should be noted that because the
present invention well work in any System, while the imple
mentation may vary slightly on a System-by-System basis,
the Scope of the present invention should therefore no be
limited to computer systems operating under MS/DOS.
0031 Slowing down or stopping the computer system
components according to the preferred embodiment of the
present invention, reduces power consumption, although the
amount of power Saved may vary. Therefore, according to
the present invention, stopping the clock (where possible as
some CPUs cannot have their clocks stopped) reduces the
power consumption more than just slowing the clock.
0032. In general, the number of operations (or instruc
tions) per second may be considered to be roughly propor
tional to the processor clock:

instructions/second=instructions/cycle cycles/second

0033 Assuming for simplicity that the same instruction
is repeatedly executed So that instructions/second is con
Stant, the relationship can be expressed as follows:

Fq=K*CIk

0034 where Fo is instructions/second, K is constant
equal to the instructions/cycle, and Clk equals cycles/Sec

US 2005/02041 79 A1

ond. Thus, roughly Speaking, the rate of execution increases
with the frequency of the CPU clock.
0035. The amount of mower being used at any given
moment is also related to the frequency of the CPU clock
and therefore to the rate of execution. In general this
relationship can be expressed as follows:

0.036 where P is power in watts, K is a constant in watts,
K is a constant and expresses the number of watt-Seconds/
cycle, and Clk equals the cycles/second of the CPU clock.
Thus it can also be said at the amount of power being
consumed at any given time increaseS as the CPU clock
frequency increases.
0037 Assume that a given time period T is divided into
Nintervals such that the power P was constant during each
interval. Then the amount of energy extended during T
would be given by:

E=P(1)deltaT+P(2)deltaT, ...+P(N)deltaTN

0038. Further assume that the CPU clock “Clk” has only
two states, either “ON” or “OFF". For the purposes of this
discussion, the “ON” state represents the CPU clock at its
maximum frequency, while the “OFF' state represents the
minimum clock rate at which the CPU can operate (this may
be zero for CPUs that can have their clocks stopped). For the
condition in which the CPU clock is always “ON”, each P(i)
in the previous equation is equal and the total energy is:

E(max) = P(on): (delta T + delta T ... + delta Tw)

0.039 This represents the maximum power consumption
of the computer in which no power conservation measures
are being used. If the CPU clock is “off” during a portion of
the intervals, then there are two power levels possible for
each interval. The P(on) represents the power being con
sumed when the clock in in its “ON” state, while P(off)
represents the power being used when the clock is "OFF".
If all of the time intervals in which the clock is “ON” is
Summed into the quantity “T(on)" and the "OFF" intervals
are summed into “T(off)”, then it follows:

0040. Now the energy being used during period T can be
written:

0041 Under these conditions, the total energy consumed
may be reduced by increasing the time intervals T(off).
Thus, by controlling the periods of time the clock is in its
“OFF' state, the amount of energy being used may be
reduced. If the T(off) period is divided into a large number
of intervals during the period T, then as the width of each
interval goes to Zero, energy consumption is at a maximum.
Conversely, as the width of the T(off) intervals increase, the
energy consumed decreases.
0042. If the “OFF' intervals are arranged to coincide with
periods during which the CPU is normally inactive, then the
user cannot perceive any reduction in performance and
overall energy consumption is reduced from the E(max)

Sep. 15, 2005

state. In order to align the T(off) intervals with periods of
CPU inactivity, the CPU activity level is used to determine
the width of the T(off) intervals in a closed loop. FIG. 1
depicts such a closed loop. The activity level of the CPU is
determined at Step 10. If this level is an increase over an
immediately previous determination, the present invention
decreases the T(off) interval (Step 20) and returns to deter
mine the activity level of the CPU again. If, on the other
hand, this activity level is a decrease over an immediately
previous determination, the present invention increases the
T(off) interval (Step 30) and proceeds to again determine the
activity level of the CPU. Thus the T(off) intervals are
constantly being adjusted to match the System activity level.
0043. In any operating System, two key logic points exist:
an IDLE, or “do nothing, loop within the operating System
and an operating System request channel, usually available
for Services needed by the application Software. By placing
logic inline with these logic points, the type of activity
request made by an application Software can be evaluated,
power conservation can be activated and Slice periods deter
mined. A slice period is the number of T(on) vs. T(off)
intervals over time, computed by the activity level. An
assumption may be made to determine CPU activity level:
Software programs that need Service usually need additional
Services and the period of time between Service requests can
be used to determine the activity level of any application
Software running on the computer and to provide Slice
counts for power conservation according to the present
invention.

0044. Once the CPU is interrupted during a power con
servation slice (T(off)), the CPU will save the interrupted
routine's State prior to vectoring to the interrupt Software. Of
course, Since the power conservation Software was operating
during this Slice, control will be returned to the active power
conservation loop (monitor 40) which simply monitors the
CPU's clock to determine an exit condition for the power
conservation mode, thereby exiting from T(off) to T(on)
State. The interval of the next power conservation State is
adjusted by the activity level monitored, as discussed above
in connection with FIG. 1. Some implementations can
create an automatic exit from T(off) by the hardware logic,
thereby forcing the power conservation loop to be exited
automatically and executing an interval T(on).
0045 More specifically, looking now at FIGS. 2a-2d,
which depict the active power conservation monitor 40 of
the present invention. The CPU installs monitor 40 either via
a program stored in the CPU ROM or loads it from an
external device storing the program in RAM. Once the CPU
has loaded monitor 40, it continues to INIT 50 for system
interrupt initialization, user configurational Setup, and Sys
tem/application specific initialization. IDLE branch 60
(more specifically set out in FIG. 2b) is executed by a
hardware or software interrupt for an IDLE or “do nothing”
function. This type of interrupt is caused by the CPU
entering either an IDLE or a "do nothing loop (i.e., planned
inactivity). The ACTIVITY branch 70 of the flowchart, more
fully described below in relation to FIG. 2d, is executed by
a Software or hardware interrupt due to an operating System
or I/O Service request, by an application program or internal
operating System function. An I/O Service request made by
a program may, for example, be a disk I/O, read, print, load,
etc. Regardless of the branch Selected, control is eventually
returned to the CPU operating system at RETURN 80. The

US 2005/02041 79 A1

INIT branch 50 of this flowchart, shown in FIG. 2a, is
executed only once if it is loaded via program into ROM or
is executed every time during power up if it is loaded from
an external device and stored in the RAM. Once this branch
of active power monitor 40 has been fully executed, when
ever control is yielded from the operating System to the
power conservation mode, either IDLE 60 or ACTIVITY 70
branches are selected depending on the type of CPU activity:
IDLE branch 60 for power conservation during planned
inactivity and ACTIVITY branch 70 for power conservation
during CPU activity.
0046 Looking more closely at INIT branch 50, after all
System interrupt and variables are initialized, the routine
continues at Step 90 to set the Power level equal to
DEFAULT LEVEL. In operating systems where the user
has input control for the Power level, the program at Step
100 checks to see if a User level has been selected. If the
User level is less than Zero or greater than the MAXIMUM
LEVEL, the system uses the DEFAULT LEVEL. Other

wise, it continues onto Step 110 where it modifies the
Power level to equal the User level.
0047 According to the preferred embodiment of the
present invention, the system at Step 120 sets the variable
Idle tick to Zero and the variable Activity tick to Zero.
Under an MS/DOS implementation, Idle tick refers to the
number of interrupts found in a “do nothing” loop. Activi
ty tick refers to the number of interrupts caused by an
activity interrupt which in turn determines the CPU activity
level. Tick count represents a delta time for the next inter
rupt. Idle tick is a constant delta time from one tick to
another (interrupt) unless overwritten by a Software inter
rupt. A Software interrupt may reprogram delta time between
interrupts.

0.048. After setting the variables to Zero, the routine
continues on to Setup 130 at which time any application
Specific configuration fine-tuning is handled in terms of
System-Specific details and the System is initialized. Next the
routine arms the interrupt I/O (Step 140) with instructions to
the hardware indicating the hardware can take control at the
next interrupt. INIT branch 50 then exits to the operating
System, or whatever called the active power monitor origi
nally, at RETURN 80.
0049 Consider now IDLE branch 60 of active power
monitor 40, more fully described at FIG. 2b. In response to
a planned inactivity of the CPU, monitor 40 (not specifically
shown in this Figure) checks to see if entry into IDLE branch
60 is permitted by first determining whether the activity
interrupt is currently busy. If Busy A equals BUSY FLAG
(Step 150), which is a reentry flag, the CPU is busy and
cannot now be put to sleep. Therefore, monitor 40 imme
diately proceeds to RETURN I 160 and exits the routine.
RETURN I 160 is an indirect vector to the previous oper
ating System IDLE Vector interrupt for normal processing
Stored before entering monitor 40. (I.e., this causes an
interrupt return to the last chained vector.)
0050. If the Busy A interrupt flag is not busy, then
monitor 40 checks to see if the Busy Idle interrupt flag,
Busy I, equals BUSY FLAG (Step 170). If so, this indi
cates the system is already in IDLE branch 60 of monitor 40
and therefore the system should not interrupt itself. If
Busy I=BUSY FLAG, the system exits the routine at
RETURN I indirect vector 160.

Sep. 15, 2005

0051) If, however, neither the Busy Areentry flag or the
Busy I reentry flag have been Set, the routine sets the
Busy I flag at Step 180 for reentry protection (Busy I=
BUSY FLAG). At Step 190 Idle tick is incremented by
one. Idle tick is the number of T(on) before a T(off) interval
and is determined from IDLE interrupts, Setup interrupts and
from CPU activity level. Idle tick increments by one to
allow for smoothing of events, hereby letting a critical I/O
activity control Smoothing.
0.052 At Step 200 monitor 40 checks to see if Idle tick
equals IDLE MAXTICKS. IDLE MAXTICKS is one of
the constants initialized in Setup 130 of INIT branch 50,
remains constant for a System, and is responsible for Self
tuning of the activity level. If Idle tick does not equal
IDLE MAXTICKS, the Busy I flag is cleared at Step 210
and exits the loop proceeding to the RETURN I indirect
vector 160. If, however, Idle tick equals IDLE MAX
TCKS, Idle tick is set equal to IDLE START TICKS (Step
220). IDLE START TICKS is a constant which may or
may not be zero (depending on whether the particular CPU
can have its clock stopped). This step determines the Self
tuning of how often the rest of the sleep functions may be
performed. By setting IDLE START TICKS equal to
IDLE MAXTICKS minus one, a continuous T(off) interval
is achieved. At Step 230, the Power level is checked. If it is
equal to Zero, the monitor clears the Busy I flag (Step 210),
exits the routine at RETURNI 160, and returns control to the
operating System So it may continue what it was originally
doing before it entered active power monitor 40.
0053) If, however, the Power level does not equal zero at
Step 240, the routine determines whether an interrupt mask
is in place. An interrupt mask is Set by the System/applica
tion Software, and determines whether interrupts are avail
able to monitor 40. If interrupts are NOT AVAILABLE, the
Busy I reentry flag is cleared and control is returned to the
operating System to continue what it was doing before it
entered monitor 40. Operating Systems, as well as applica
tion Software, can Set T(on) interval to yield a continuous
T(on) state by Setting the interrupt mask equal to
NOT AVAILABLE.
0054 Assuming an interrupt is AVAILABLE, monitor 40
proceeds to the SAVE POWER subroutine 250 which is
fully executed during one T(off) period established by the
hardware state. (For example, in the preferred embodiment
of the present invention, the longest possible interval could
be 18 ms, which is the longest time between two ticks or
interrupts from the real-time clock.) During the SAVE
POWER subroutine 250, the CPU clock is stepped down to
a sleep clock level.
0.055 Once a critical I/O operation forces the T(on)
intervals, the IDLE branch 60 interrupt tends to remain
ready for additional critical I/O requests. As the CPU
becomes busy with critical I/O, less T(off) intervals are
available. Conversely, as critical I/O requests decrease, and
the time intervals between them increase, more T(off) inter
vals are available. IDLE branch 60 is a self-tuning system
based on feedback from activity interrupts and tends to
provide more T(off) intervals as the activity level slows. As
Soon as monitor 40 has completed SAVE POWER subrou
tine 250, shown in FIG.2c and more fully described below,
the Busy I reentry flag is cleared, (Step 210) and control is
returned at RETURNSI 160 to whatever operating system
originally requested monitor 40.

US 2005/02041 79 A1

0056 Consider now FIG.2c, which is a flowchart depict
ing the SAVE POWER subroutine 250. Monitor 40 deter
mines what the I/O hardware high speed clock is at Step 260.
It sets the CURRNT CLOCK RATE equal to the relevant
high speed clock and saves this value to be used for CPUs
with multiple level high Speed clockS. Thus, if a particular
CPU has 12 MHZ and 6 MHz high speed clocks, monitor 40
must determine which high speed clock the CPU is at before
monitor 40 reduces power so it may reestablish the CPU at
the proper high speed clock when the CPU awakens. At Step
270, the Save clock rate is set equal to the CURRENT
CLOCK RATE determined. Save clock rate 270 is not

used when there is only one high speed clock for the CPU.
Monitor 40 now continues to SLEEPCLOCK 280, where a
pulse is sent to the hardware selector (shown in FIG. 3) to
put the CPU clock to sleep (i.e., lower or stop its clock
frequency). The I/O port hardware sleep clock is at much
lower oscillations than the CPU clock normally employed.
0057. At this point either of two events can happen. A
System/application interrupt may occur or a real-time clock
interrupt may occur. If a System/application interrupt 290
occurs, monitor 40 proceeds to interrupt routine 300, pro
cessing the interrupt as Soon as possible, arming interrupt
I/O at Step 310, and returning to determine whether there
has seen an interrupt (Step 320). Since in this case there has
been an interrupt, the Save clock rate is used (Step 330) to
determine which high speed clock to return the CPU to and
SAVE POWER subroutine 250 is exited at RETURN 340. If,
however, a system/application interrupt is not received, the
SAVE POWER Subroutine 250 will continue to wait until a
real-time clock interrupt has occurred (Step 320). Once such
an interrupt has occurred, SAVE POWER subroutine 250
establishes the CPU at the stored Save-clock-rate. If the
Sleep clock rate was not stopped, in other words, the Sleep
clock rate was not Zero, control is passed at a slow clock and
SAVE POWER subroutine 250 will execute interrupt loop
320 several times. If however, control is passed when the
Sleep clock rate was Zero, in other words, there was no clock,
the SAVE POWER subroutine 250 will execute interrupt
loop 320 once before returning the CPU clock to the
Save clock rate 330 and exiting (Step (340).
0.058 Consider now FIG. 2d which is a flowchart show
ing ACTIVITY branch 70 triggered by an application/
System activity request via an operating System Service
request interrupt. ACTIVITY branch 70 begins with reentry
protection. Monitor 40 determines at Step 350 whether
Busy I has been set to BUSY FLAG. If it has, this means
the system is already in IDLE branch 60 and cannot be
interrupted. If Busy I=BUSY FLAG, monitor 40 exits to
RETURNI 160, which is an indirect vector to an old activity
vector interrupt for normal processing, via an interrupt
vector after the operating System performs the requested
Service.

0059) If however, the Busy I flag does not equal BUSY
FLAG, which means IDLE branch 60 is not being

accessed, monitor 40 determines at Step 360 if the BUSY A
flag has been set equal to BUSY FLAG. If so, control will
be retuned to the system at this point because ACTIVITY
branch 70 is already being used and cannot be interrupted.
If the Busy. A flag has not been set, in other words, Busy A
does not equal BUSY FLAG, monitor 40 sets Busy Aequal
to BUSY FLAG at Step 370 so as not to be interrupted
during execution of ACTIVITY branch 70. At Step 380 the

Sep. 15, 2005

Power level is determined. If Power level equals zero,
monitor 40 exits ACTIVITY branch 70 after clearing the
Busy Areentry flag (Step 390). If however, the Power level
does not equal zero, the CURRENT CLOCK RATE of the
I/O hardware is next determined. As was true with Step 270
of FIG. 2C, Step 400 of FIG. 2d uses the CURRENT
CLOCK RATE if there are multiple level high speed

clocks for a given CPU. Otherwise, CURRENT_CLOCK
RATE always equals the CPU high speed clock. After the
CURRENT CLOCK RATE is determined (Step 400), at
Step 410 Idle tick is set equal to the constant START
TICKS established for the previously determined CUR
RENT CLOCK RATE. T(off) intervals are established
based on the current high Speed clock that is active.

0060 Monitor 40 next determines that a request has been
made. A request is an input by the application Software
running on the computer, for a particular type of Service
needed. At Step 420, monitor 40 determines whether the
request is a CRITICAL I/O. If the request is a CRITICAL
I/O, it will continuously force T(on) to lengthen until the
T(on) is greater than the T(off), and monitor 40 will exit
ACTIVITY branch 70 after clearing the Busy Areentry flag
(Step 390). If, on the other hand, the request is not a
CRITICALI/O, then the Activity tick is incremented by one
at Step 430. It is then determined at Step 440 whether the
Activity tick now equals ACTIVITY MAXTICKS. Step
440 allows a smoothing from a CRITICAL I/O, and makes
the system ready from another CRITICAL I/O during
Activity tick T(on) intervals. ASSuming Activity tick does
not equal ACTIVITY MAXTICKS, ACTIVITY branch 70
is exited after clearing the Busy. A reentry flag (Step 390).
If, on the other hand, the Activity tick equals constant
ACTIVITY MAXTICKS, at Step 450 Activity tick is set to
the constant LEVEL MAXTICKS established for the
articular Power level determined at Step 380.
0061 Now monitor 40 determines whether an interrupt
mask exists (Step 460). An interrupt mask is set by system/
application software. Setting it to NOT AVAILABLE cre
ates a continuous T(on) state. If the interrupt mask equals
NOT AVAILABLE, there are no interrupts available at this
time and monitor 40 exits ACTIVITY branch 70 after
clearing the Busy Areentry flag (Step 390). If, however, an
interrupt is AVAILABLE, monitor 40 determines at Step 470
whether the request identified at Step 420 was for a SLOW
I/O INTERRUPT. SLOW I/O requests may have a delay
until the I/O device becomes “ready'. During the “make
ready' operation, a continuous T(off) interval may be set up
and executed to conserve power. Thus, if the request is not
a SLOW I/O INTERRUPT, ACTIVITY branch 70 is exited
after clearing the Busy. A reentry flag (Step 390). If, how
ever, the request is a SLOW I/O INTERRUPT, and time yet
exists before the I/O device becomes “ready”, monitor 40
then determines at Step 480 whether the I/O request is
COMPLETE (i.e., is I/O device ready?). If the I/O device is
not ready, monitor 40 forces T(off) to lengthen, thereby
forcing he CPU to wait, or sleep, until the SLOW I/O device
is ready. At this point it has time to Save power and
ACTIVITY branch 70 enterS SAVE POWER Subroutine 250
previously described in connection with to FIG. 2C. If,
however, the I/O request is COMPLETE, control is returned
to the operating System Subsequently to monitor 40 exiting
ACTIVITY branch 70 after clearing Busy. A reentry flag
(Step 390).

US 2005/02041 79 A1

0.062 Self-tuning is inherent within the control system of
continuous feedback loops. The Software of the present
invention can detect when CPU activity is low and therefore
when the power conservation aspect of the present invention
may be activated. Once the power conservation monitor is
activated, a prompt return to full Speed CPU clock operation
within the interval is achieved So as to not degrade the
performance of the computer. To achieve this prompt return
to full speed CPU clock operation, the preferred embodi
ment of the present invention employs Some associated
hardware.

0.063 Looking now at FIG. 3 which shows a simplified
Schematic diagram representing the associated hardware
employed by the present invention or active power conser
vation. When monitor 40 (not shown) determines the CPU
is ready to sleep, it writes an I/O port (not shown) which
causes a pulse on the SLEEP line. The rising edge of this
pulse on the SLEEP line causes flip flop 500 to clock a high
to Q and a low to Q-. This causes the AND/OR logic (AND
gates 510, 520; OR gate 530) to select the pulses travelling
the SLEEP CLOCK line from SLEEP CLOCK OScillator
540 to be sent to and used by the CPU CLOCK. SLEEP
CLOCK Oscillator 540 is a slower clock than the CPU clock
used during normal CPU activity. The high coming from the
Q of flip flop 500 ANDed (510) with the pulses coming from
SLEEP CLOCKoscillator 540 is ORed (530) with the result
of the low an the Q- of flip flop 500 ANDed (520) with the
pulse generated along the HIGH SPEED CLOCK line by the
HIGH SPEED CLOCK oscillator 550 to yield the CPU
CLOCK. When the I/O port designates SLEEP CLOCK, the
CPU CLOCK is then equal to the SLEEP CLOCKoscillator
540 value. If, on the other hand, an interrupt occurs, an
interrupt-value clears flip flop 500, thereby forcing the
AND/OR selector (comprising 510,520 and 530) to choose
the HIGH SPEED CLOCK value, and returns the CPU
CLOCK value to the value coming from HIGH SPEED
CLOCK oscillator 550. Therefore, during any power con
servation operation on the CPU, the detection of any inter
rupt within the system will restore the CPU operation at full
clock rate prior to vectoring and processing the interrupt.

0064. It should be noted that the associated hardware
needed, external to each of the CPUs for any given System,
may be different based on the operating System used,
whether the CPU can be stomped, etc. Nevertheless, the
scope of the present invention should not be limited by
possible System Specific modifications needed to permit the
present invention to actively conserve power in the numer
ous available portable computer Systems. For example two
actual implementations are shown in FIGS. 4 and 5, dis
cussed below.

0065. Many VSLI designs today allow for clock Switch
ing of the CPU speed. The logic to Switch from a null clock
or slow clock to a fast clock logic is the same as that which
allows the user to change Speeds by a keyboard command.
The added logic of monitor 40 working with Such Switching
logic, causes an immediate return to a fast clock upon
detection of any interrupt. This simple logic is the key to the
necessary hardware Support to interrupt the CPU and
thereby allow the processing of the interrupt at full Speed.

0.066 The method to reduce power consumption under
MS-DOS employs the MS-DOS IDLE loop trap to gain
access to the “do nothing” loop. The IDLE loop provides

Sep. 15, 2005

Special access to application Software and operating System
operations that are in a state of IDLE or low activity. Careful
examination is required to determine the activity level at any
given point within the System. Feedback loons are used from
the interrupt 21H service request to determine the activity
level. The prediction of activity level is determined by
interrupt 21H requests, from which the present invention
thereby sets the slice periods for “sleeping” (slowing down
or stopping) the CPU. An additional feature allows the user
to modify the Slice depending on the activity level of
interrupt 21H.
0067 Looking now at FIG. 4, which depicts a schematic
of an actual Sleep hardware implementation for a System
such as the Intel 80386 (CPU cannot have its clock stopped).
Address enable bus 600 and address bus 610 provide CPU
input to demultiplexer 620. The output of demultiplexer 620
is sent along SLEEPCS- and provided as input to OR gates
630,640. The other inputs to OR gates 630,640 are the I/O
write control line and the I/O read control line, respectively.
The outputs of these gates, in addition to NOR gate 650, are
applied to D flip flop 660 to decode the port. “INTR” is the
interrupt input from the I/O port (peripherals) into NOR gate
650, which causes the logic hardware to Switch back to the
high speed clock. The output of flip flop 660 is then fed,
along with the output from OR gate 630, to tristate buffer
670 to enable it to read back what is on the port. All of the
above-identified hardware is used by the read/write I/O port
(peripherals) to select the power saving “Sleep' operation.
The output "SLOW-” is equivalent to “SLEEP” in FIG. 2,
and is inputted to flip flop 680, discussed later.
0068. The output of SLEEP CLOCK oscillator 690 is
divided into two slower clocks by D flip flops 700,710. In
the particular implementation shown in FIG. 4, 16 MHz
sleep clock oscillator 690 is divided into 4 MHZ and 8 MHz
clocks. Jumper J1 selects which clock is to be the “SLEEP
CLOCK.

0069. In this particular implementation, high speed clock
oscillator 720 is a 32 MHz oscillator, although this particular
Speed is not a requirement of the present invention. The 32
MHz oscillator is put in series with a resistor (for the
implementation shown, 33 ohms), which is in series with
two parallel capacitors (10 pF). The result of such oscilla
tions is tied to the clocks of D flip flops 730,740.
0070 D flip flops 680,730,740 are synchronizing flip
flops; 680,730 were not shown in the simplified sleep
hardware of FIG. 2. These flip flops are used to ensure the
clock Switch occurs only on clock edge. AS can be seen in
FIG. 4, as with flip flop 500 of FIG. 2, the output of flip flop
740 either activates OR gate 750 or OR gate 760, depending
upon whether the CPU is to sleep (“FASTEN-”) or awaken
(“SLOWEN-”).
007.1) OR gates 750,760 and AND gate 770 are the
functional equivalents to the AND/OR selector of FIG. 2.
They are responsible for selecting either the “slowclk” (slow
clock, also known as SLEEP CLOCK) or high speed clock
(designated as 32 MHz on the incoming line). In this
implementation, the Slow clock is either 4 MHz or 8 MHz,
depending upon jumper J1, and the high Speed clock is 32
MHz. The output of AND gate 770 (ATUCLK) establishes
the rate of the CPU clock, and is the equivalent of CPU
CLOCK of FG, 2.

0072 Consider now FIG.5, which depicts a schematic of
another actual Sleep hardware implementation for a System

US 2005/02041 79 A1

such as the Intel 80286 (CPU can have its clock stopped).
The Western Digital FE3600 VLSI is used for the speed
Switching with a special external PAL 780 to control the
interrupt gating which wakes up the CPU on any interrupt.
The Software power conservation according to the present
invention monitors the interrupt acceptance, activating the
next P(i)deltaT; interval after the interrupt.
0073) Any interrupt request to the CPU well return the
system to normal operation. An interrupt request (“INTRO”)
to the CPU will cause the PAL to issue a Wake Up signal on
the RESCPU line to the FE3001 (not shown) which in turn
enables the CPU and the DMA clocks to bring the system
back to its normal state. This is the equivalent of the
“INTERRUPT-” of FIG. 2. Interrupt Request is synchro
nized to avoid confusing the State machine So that Interrupt
(INTDET) will only be detected while the cycle is active.
The rising edge of RESCPU will wake up the FE 3001
which in turn releases the whole system from the Sleep
Mode.

0074 Implementation for the 386SX is different only in
the external hardware and Software power conservation
loop. The software loop will set external hardware to Switch
to the high Speed clock on interrupt prior to Vectoring the
interrupt. Once return is made to the power conservation
Software, the high Speed clock cycle will be detected and the
hardware will be reset for full clock operation.
0075 Implementation for OS/2 uses the “do nothing”
loop programmed as a THREAD running in background
operation with low priority. Once the THREAD is activated,
the CPU sleep, or low speed clock, operation will be
activated until an interrupt occurs thereby placing the CPU
back to the original clock rate.
0.076 Although interrupts have been employed to wake
up the CPU in the preferred embodiment of the present
invention, it should be realized that any periodic activity
within the System, or applied to the System, could also be
used for the same function.

0077. While several implementations of the preferred
embodiment of the invention has been shown and described,
various modifications and alternate embodiments will occur
to those skilled in the art. Accordingly, it is intended that the
invention be limited only in terms of the appended claims.

1-21. (canceled)
22. A method, comprising the Steps of:
determining a work load level associated with a proces

Sor, and
using results of Said determining for reducing power

consumption associated with Said processor as Said
work load level decreases.

23. The method of claim 22, wherein an amount of Said
reducing power consumption is proportional to the decrease
of Said work load level.

24. The method of claim 23, wherein said reduction in
power consumption is accomplished in incremental StepS.

25. The method of claim 22, wherein said reduction in
power consumption continues until no decrease in workload
level is detected over a previous determination of work load
level.

Sep. 15, 2005

26. The method of claim 25, wherein said reducing power
consumption continues until one of: a) no decrease in work
load level is detected over a previous determination of work
load level; and b) said processor has reached its minimum
power consumption level.

27. The method of claim 22, wherein said power con
Sumption is accomplished by lowering a clock frequency.

28. The method of claim 27, wherein said clock frequency
is lowered in incremental StepS.

29. The method of claim 22, wherein said power con
Sumption is accomplished by lowering a clock Speed.

30. The method of claim 29, wherein said clock speed is
lowered in incremental Steps.

31. The method of claim 22, wherein said reduction in
power consumption is accomplished while Said processor is
processing data.

32. The method of claim 31, wherein said data is part of
a program being run on Said processor.

33. A method, comprising the Steps of:
determining a work load level associated with a proces

Sor, and
using results of Said determining for increasing power

consumption associated with Said processor as Said
work load level increases.

34. The method of claim 33, wherein an amount of Said
increasing power consumption is proportional to the
increase of Said work load level.

35. The method of claim 34, wherein said power con
Sumption is accomplished in incremental steps.

36. The method of claim 33, wherein said increasing
power consumption continues until no increase in work load
level is detected over a previous determination of work load
level.

37. The method of claim 33, wherein said increasing
power consumption continues until one of: a) no increase in
work load level is detected over a previous determination of
work load level; and b) said processor has reached its
maximum power consumption level.

38. The method of claim 33, wherein said power con
Sumption is accomplished by raising a clock frequency.

39. The method of claim 38, wherein said clock frequency
is raised in incremental Steps.

40. The method of claim 33, wherein said power con
Sumption is accomplished by raising a clock Speed.

41. The method of claim 40, wherein said clock speed is
raised in incremental Steps.

42. The method of claim 33, wherein said power con
Sumption is accomplished while Said processor is processing
data.

43. The method of claim 42, wherein said data is part of
a program being run on Said processor.

44. A method, comprising the Steps of:
determining a work load level associated with a proces

Sor, and
using results of Said determining for reducing power

consumption associated with Said processor as Said
work load level decreases and increasing power con
Sumption associated with Said processor as Said work
load level increases.

k k k k k

