A method of transmitting setting data from a terminal device to a plurality of target devices is provided. The method includes the steps of preparing new setting data to be set to the plurality of target devices, obtaining current setting data currently set to the plurality of target devices, respectively, storing the current setting data obtained from the plurality of target device in a memory device as backup data, and transmitting the new setting data to the plurality of target devices after the storing of the current setting data is finished.
FIG. 1
FIG. 4
FIG. 6

Configure NODE0023

- **Node Name**: NODE0023
- **Printer Type**:
- **Node S/N**: not applicable
- **Mac Address**: xx:xx:xx:xx:xx:xx
- **Firmware ID**: Firmware Ver.1.
- **Boot Revision**: not applicable
- **Location**: Location 1
- **Contact**: asa@bbb.cc.d

Send to Multiple Printer

Recover Setting

OK, Cancel, Help
FIG. 7

START

SEND SETTINGS TO PRINTER(S) DIALOG PROCESS S101

OK BUTTON? NO S103

YES

TRANSMISSION CONFIRMATION DIALOG PROCESS S105

NO S107

SEND BUTTON?

YES S109

SETTING DATA PACKAGE TRANSMISSION PROCESS

END
FIG. 11
START

S401

MULTIPLE PRINTERS ARE SELECTED?

NO

S417

DELETE DEVICE LIST

YES

S403

DEVICE LIST HAS BEEN CREATED?

NO

SEARCH FOR DEVICE AND CREATE DEVICE LIST

S405

YES

S407

SEND ALL CURRENT VALUES?

NO

S409

SEND CURRENT AND UPDATE VALUES?

NO

UPDATE SETTING NOT APPLIED EXISTS?

YES

S411

ENABLE ENTRY OF REPRESENTATIVE DEVICE IN DEVICE LIST

END

S413

DISABLE ENTRY OF REPRESENTATIVE DEVICE IN DEVICE LIST

END

FIG.12
START

INITIALIZE VARIABLE INDICATING CURRENTLY TARGETED DEVICE

ALL OF THE DEVICES HAVE BEEN PROCESSED?

YES

END

NO

OBTAIN SETTING DATA FROM TARGETED DEVICE

SETTING DATA ARE SUCCESSFULLY OBTAINED?

YES

REGISTER OBTAINED SETTING DATA IN DEVICE LIST.

WRITE ERROR INFORMATION IN DEVICE LIST

NO

UPDATE VARIABLE INDICATING CURRENTLY TARGETED DEVICE

FIG. 15
FIG. 16
START

DISPLAY ADVANCED SETTING CHANGE WINDOW (S701)

ACCEPT MOUSE/KEY INPUT (S703)

DEVICE IS DOUBLE CLICKED? (S705)
- YES (S707): SETTING CHANGE PROCESS
- NO: END COMMAND? (S713)
 - YES (S715): WIPE OUT THE ADVANCED SETTING CHANGE WINDOW
 - NO: SETTING VALUE HAS BEEN CHANGED? (S709)
 - NO: END
 - YES: APPLY CHANGED SETTING VALUE TO THE ADVANCED SETTING CHANGE WINDOW

FIG. 17
<table>
<thead>
<tr>
<th>Item</th>
<th>Current Value</th>
<th>Update Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulation</td>
<td>AUTO</td>
<td></td>
</tr>
<tr>
<td>Feeder</td>
<td>Auto</td>
<td></td>
</tr>
<tr>
<td>Media Type</td>
<td>Plain paper</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Page Protection</td>
<td>Auto</td>
<td></td>
</tr>
<tr>
<td>Copy</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Continue</td>
<td>Manual</td>
<td>Auto</td>
</tr>
<tr>
<td>Toner Save</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>Power Save</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Destination</td>
<td>Standard Output Tray</td>
<td></td>
</tr>
<tr>
<td>Toner Low</td>
<td>Continue</td>
<td></td>
</tr>
<tr>
<td>Reprint</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>Lower LCD</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Auto Online</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>Button Repeat</td>
<td>0.1 sec</td>
<td></td>
</tr>
<tr>
<td>Message Scroll</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Error Buzzer</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>Orientation</td>
<td>Portrait</td>
<td>Letter 8 1/2 x 11 in</td>
</tr>
<tr>
<td>Paper Size</td>
<td>A4 210 x 297 mm</td>
<td>8.5 x 11 in</td>
</tr>
<tr>
<td>Left Margin</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>Right Margin</td>
<td>78</td>
<td>80</td>
</tr>
<tr>
<td>Top Margin</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Bottom Margin</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Lines/Page</td>
<td>64</td>
<td>60</td>
</tr>
</tbody>
</table>

FIG. 18
<table>
<thead>
<tr>
<th>Item</th>
<th>Current Value</th>
<th>Update Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP/IP</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>DLC</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>NetBIOS/IP</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>POP3/SMTP</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>IPP</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>FTP</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>SSDP</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>mDNS</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>Network Mode</td>
<td>Automatic</td>
<td>5 minutes</td>
</tr>
<tr>
<td>TCP/IP Timeout</td>
<td>60 minutes</td>
<td></td>
</tr>
<tr>
<td>Boot Tries</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DNS Server Method</td>
<td>Static</td>
<td></td>
</tr>
<tr>
<td>DNS Server Address1</td>
<td>10.134.12.34</td>
<td></td>
</tr>
<tr>
<td>DNS Server Address2</td>
<td>10.134.12.35</td>
<td></td>
</tr>
<tr>
<td>Timeout of Gateway</td>
<td>5 seconds</td>
<td></td>
</tr>
<tr>
<td>SMTP Server Address</td>
<td>"smtp.example.com"</td>
<td>"smtp2.example.com"</td>
</tr>
<tr>
<td>POP3 Server Address</td>
<td>"pop.example.com."</td>
<td></td>
</tr>
<tr>
<td>POP3 Polling Frequency</td>
<td>300 seconds</td>
<td></td>
</tr>
<tr>
<td>POP3 Timeout</td>
<td>120 minutes</td>
<td></td>
</tr>
<tr>
<td>NetBIOS Domain Name</td>
<td>"WORKGROUP"</td>
<td></td>
</tr>
<tr>
<td>WINS Server Address1</td>
<td>10.134.12.35</td>
<td></td>
</tr>
<tr>
<td>WINS Server Address2</td>
<td>10.134.12.37</td>
<td></td>
</tr>
<tr>
<td>WINS Server Config</td>
<td>Static</td>
<td></td>
</tr>
<tr>
<td>Notification Admin 1</td>
<td>Unconfigured</td>
<td></td>
</tr>
<tr>
<td>Resolution Message 1</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>Cover Open 1</td>
<td>Never</td>
<td></td>
</tr>
</tbody>
</table>

FIG.19
FIG. 20

1. START
2. DISPLAY SETTING CHANGE DIALOG BOX
3. ACCEPT MOUSE/KEY INPUT
4. USER OPERATION FOR CHANGING SETTING VALUE?
 - YES
5. APPLY CHANGED SETTING VALUE TO THE SETTING CHANGE DIALOG BOX
 - NO
6. OK BUTTON?
 - YES
7. APPLY CHANGED SETTING TO ENTRY OF TARGET DEVICE IN DEVICE LIST
 - NO
8. CANCEL BUTTON?
 - YES
9. WIPE OUT THE SETTING CHANGE DIALOG BOX
10. END

FIG. 21

Modify Settings

Paper Size

- Letter 8 1/2 x 11 in
- Legal 8 1/2 x 14 in
- A4 210 x 297 mm
- Executive 7 1/2 x 10 in
- Com-10 4 1/8 x 9 1/2 in
- Monarch 3 7/8 x 7 1/2 in

OK
Cancel
START

DISPLAY NIC SETTING DIALOG BOX S1001

ACCEPT MOUSE/KEY INPUT S1003

OK BUTTON? S1005

YES

UNAPPLIED SETTING VALUES EXIST? S1015

NO

TRANSMIT UNAPPLIED SETTING VALUES TO REPRESENTATIVE DEVICE S1017

CANCEL BUTTON? S1007

NO

WIPE OUT THE NIC SETTING DIALOG BOX S1019

YES

SEND BUTTON? S1009

NO

PROCESS FOR ANOTHER BUTTON OR CHANGE OF SETTING VALUE S1013

YES

SECOND DATA SETTING TRANSMISSION PROCESS

FIG.25
START

READ CURRENT SETTING DATA S1101

OPEN SETTING HISTORY FILE CREATION / OVERWRITING MODE S1103

STORE CURRENT SETTING DATA TO SETTING HISTORY FILE S1105

TRANSMIT NEW SETTING DATA S1107

END

FIG. 26
START

SEARCH FOR SETTING HISTORY FILE OF Target Device S1201

READ FILE S1203

TRANSMIT DATA READ FROM FILE TO TARGET DEVICE S1205

DELETE USED SETTING HISTORY FILE S1207

END

FIG.28
START

READ CURRENT SETTING DATA S1301

SEARCH FOR SETTING HISTORY FILE OF TARGET DEVICE S1303

SETTING HISTORY FILE EXISTS? S1305

TRUE

RENAME / DELETE FILE S1307

CREATE SETTING HISTORY FILE S1309

STORE CURRENT SETTING DATA TO SETTING HISTORY FILE S1311

TRANSMIT NEW SETTING DATA S1313

END

FIG. 29
START

SEARCH FOR SETTING HISTORY FILE OF TARGET DEVICE

READ FILE

TRANSMIT DATA READ FROM FILE TO TARGET DEVICE

DELETE USED SETTING HISTORY FILE

RENAME OTHER SETTING HISTORY FILE

END

FIG. 30
START

SEARCH FOR SETTING HISTORY FILE OF TARGET DEVICE

READ FILE

DISPLAY SETTING ITEMS AND VALUES TO BE RECOVERED

RECOVER?

TRUE

TRANSMIT DATA TO TARGET DEVICE

DELETE USED SETTING HISTORY FILE

RENAME OTHER SETTING HISTORY FILE

FALSE

END

FIG. 31
FIG. 32
START

SEARCH FOR SETTING HISTORY FILE OF TARGET DEVICE

READ FILE

DISPLAY SETTING ITEMS AND VALUES TO BE RECOVERED

SELECT ITEMS TO BE RECOVERED

RECOVER?

FALSE

TRUE

TRANSMIT DATA TO TARGET DEVICE

DELETE USED SETTING HISTORY FILE

RENAME OTHER SETTING HISTORY FILE

END

FIG. 33
FIG. 34

Recover Setting

<table>
<thead>
<tr>
<th>Item</th>
<th>Current Value</th>
<th>Recover Value</th>
<th>Recover?</th>
<th>Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continue</td>
<td>Manual</td>
<td>Auto</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Toner Save</td>
<td>OFF</td>
<td>ON</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>Paper Size</td>
<td>A4 210x297mm</td>
<td>Letter 8 1/2 x 11</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Right Margin</td>
<td>78</td>
<td>80</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Lines/Page</td>
<td>64</td>
<td>60</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Send Cancel
START

READ CURRENT SETTING DATA S1701

COMPARE NEW SETTING DATA WITH CURRENT SETTING DATA S1703

SEARCH FOR SETTING HISTORY FILE OF TARGET DEVICE S1705

SETTING HISTORY FILE EXISTS? S1707

FALSE

RENAME / DELETE FILE S1709

CREATE SETTING HISTORY FILE S1711

STORE SETTING VALUES TO BE CHANGED TO SETTING HISTORY FILE S1713

TRANSMIT NEW SETTING DATA S1715

END

FIG.35
FIG. 37
START

S601

INITIALIZE VARIABLE INDICATING CURRENTLY TARGETED DEVICE

S603

ALL OF THE DEVICES HAVE BEEN PROCESSED?

YES

END

NO

S604

REPRESENTATIVE DEVICE?

YES

S615

DISABLE ENTRY OF CURRENTLY TARGETED DEVICE

NO

S605

OBTAIN SETTING DATA FROM TARGETED DEVICE

S607

SETTING DATA IS SUCCESSFULLY OBTAINED?

YES

S609

REGISTER OBTAINED SETTING DATA IN DEVICE LIST

NO

S611

WRITE ERROR INFORMATION IN DEVICE LIST

S613

UPDATE VARIABLE INDICATING CURRENTLY TARGETED DEVICE

FIG. 42
START

DISPLAY TRANSMISSION PROGRESS DIALOG BOX

INITIALIZE VARIABLE INDICATING CURRENTLY TARGETED DEVICE

ALL OF THE DEVICES HAVE BEEN PROCESSED?

NO

ENTRY IS INVALID?

NO

ADVANCED SETTING HAS BEEN CONDUCTED?

NO

UPDATE SETTING VALUES SET IN THE ADVANCED SETTING ARE TRANSMITTED TO TARGET DEVICE

CANCEL BUTTON?

NO

TRANSMISSION IS SUCCESSFULLY FINISHED?

YES

SUCCESS INFORMATION IS WRITTEN IN DEVICE LIST

UPDATE VARIABLE INDICATING CURRENTLY TARGETED DEVICE

UPDATE PROGRESS BAR IN THE TRANSMISSION PROGRESS DIALOG BOX

NO

FAILURE INFORMATION IS WRITTEN IN DEVICE LIST

WIPE OUT TRANSMISSION PROGRESS DIALOG BOX

DISPLAY TRANSMISSION RESULT DIALOG BOX AND WAIT FOR OK BUTTON INPUT

WIPE OUT THE TRANSMISSION PROGRESS DIALOG BOX

END

FIG.43
METHOD OF TRANSMITTING SETTING DATA, DEVICE, SYSTEM AND COMPUTER READABLE MEDIUM EMPLOYING SUCH METHOD

INCORPORATION BY REFERENCE

BACKGROUND

[0002] 1. Technical Field
[0003] The technical field relate to a method, device, system and computer readable medium for transmitting setting data to devices on a network.
[0004] 2. Related Art
[0005] A conventional technique for transmitting setting data is to transmit the setting data from a single device to a plurality of devices at a time via a network. An example of such a device is described in Japanese Patent Provisional Publication No. HEI 9-149076. According to the technique disclosed in HEI 9-149076, setting data for a plurality of facsimile devices is prepared in a server, and the setting data are transmitted from the server to the plurality of facsimile devices at a time.
[0006] According to the technique described above, it is unnecessary to conduct an individual setting operation for each of the plurality of facsimile devices. Therefore, setting for the plurality of facsimile devices is effectively easy.
[0007] However, the conventional technique described above has a drawback that it is impossible to restore settings of a device to a previous state after the transmission of setting data from a server to the device is executed. That is, if an error due to new setting data newly set to a device by the transmission of setting data occurs in the device, settings of the device cannot be restored to a previous state.

SUMMARY

[0008] Aspects are advantageous in that they provide a method, device, system and computer readable medium which are configured to transmit setting data to a plurality of devices at a time and to restore settings of a device to a previous state.
[0009] A method of transmitting setting data from a terminal device to a plurality of target devices is provided. The method includes the steps of preparing new setting data to be set to the plurality of target devices, obtaining current setting data currently set to the plurality of target devices, respectively, storing the current setting data obtained from the plurality of target devices in a memory device, and transmitting the new setting data to the plurality of target devices after the storing of the current setting data is finished.

BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS

[0010] FIG. 1 is a general configuration of a network system in which a setting data transmission system is implemented.

[0011] FIG. 2 illustrates a device setting management tool initial screen.
[0012] FIG. 3 is an explanatory diagram for explaining a user operation conducted on the device setting management tool initial screen.
[0013] FIG. 4 illustrates a printer setting function initial screen.
[0014] FIG. 5 is an explanatory diagram for explaining a user operation conducted on the printer setting function initial screen.
[0015] FIG. 6 illustrates a NIC setting dialog box.
[0016] FIG. 7 is a general flowchart applied to both of first and second data setting transmission process.
[0017] FIG. 8 is a flowchart of a “Send Settings to Printer(s)” dialog process.
[0018] FIG. 9 illustrates a “Send Settings to Printer(s)” dialog box.
[0019] FIG. 10 illustrates a situation where grayed out representation in the “Send Settings to Printer(s)” dialog box is released.
[0020] FIG. 11 is a flowchart illustrating a process for adding a designated device in a device list.
[0021] FIG. 12 is a flowchart illustrating a process for searching for devices and for updating the device list.
[0022] FIG. 13 is flowchart illustrating a transmission confirmation dialog process.
[0023] FIG. 14 illustrates a transmission confirmation dialog box.
[0024] FIG. 15 is a flowchart illustrating a device setting acquisition process.
[0025] FIG. 16 illustrates a situation where grayed out representation of the transmission confirmation dialog box is released.
[0026] FIG. 17 is a flowchart illustrating an advanced setting change window process.
[0027] FIG. 18 illustrates an advanced setting change window of the first data setting transmission process.
[0028] FIG. 19 illustrates an advanced setting change window of the second data setting transmission process.
[0029] FIG. 20 is a flowchart illustrating a setting change process.
[0030] FIG. 21 illustrates a setting change dialog box.
[0031] FIG. 22 is a flowchart illustrating a setting data package transmission process.
[0032] FIGS. 23A and 23B illustrate a transmission progress dialog box.
[0033] FIG. 24 illustrates a transmission result dialog box.
[0034] FIG. 25 is a flowchart illustrating a NIC setting dialog displaying process.
[0035] FIG. 26 is a flowchart illustrating a data updating process according to a first example.
FIG. 27 illustrates a menu box for starting a recovering process displayed over a device setting management tool initial screen.

FIG. 28 is a general flow of the recovering process according to the first example.

FIG. 29 is a flowchart illustrating a data updating process according to a second example.

FIG. 30 is a flowchart illustrating a recovering process according to the second example.

FIG. 31 is a flowchart illustrating a recovering process according to a third example.

FIG. 32 illustrates a “Recover Setting” dialog box displayed on a screen in the recovering process according to the third example.

FIG. 33 is a flowchart illustrating a recovering process according to a fourth example.

FIG. 34 illustrates a “Recover Setting” dialog box displayed on the screen in the recovering process according to the fourth example.

FIG. 35 is a flowchart illustrating a data updating process according to a fifth example.

FIG. 36 is a flowchart illustrating a recovering process according to a sixth example.

FIG. 37 illustrates an “Other Devices . . .” dialog box in which information regarding setting history files stored in a history file list is displayed.

FIG. 38 is a flowchart illustrating a recovering process according to a seventh example.

FIG. 39 illustrates a “Search Setting History” dialog box displayed on the screen to accept the input of a target time period.

FIG. 40 illustrates a “Search Result” dialog box in which a list of setting history files included in the history file list is represented.

FIG. 41 is a flowchart illustrating a recovering process according to an eighth example.

FIG. 42 is a variation of the device setting acquisition process shown in FIG. 15.

FIG. 43 is a variation of the setting data package transmission process of FIG. 22.

DETAILED DESCRIPTION OF THE EMBODIMENTS

It is noted that various connections are set forth between elements in the following description. It is noted that these connections in general and, unless specified otherwise, may be direct or indirect and that this specification is not intended to be limiting in this respect.

General Overview

According to an aspect of the invention, a method of transmitting setting data from a terminal device to a plurality of target devices is provided. The method includes the steps of preparing new setting data to be set for the plurality of target devices, obtaining current setting data currently set to the plurality of target devices, respectively, storing the current setting data obtained from the plurality of target device in a memory device as backup data, and transmitting the new setting data to the plurality of target devices after the storing of the current setting data is finished.

With this configuration, it may be possible to transmit new setting data to be applied to a plurality of target devices to the plurality of target devices at a time. In addition, in cases where a trouble arises in a device after the data transmission is executed, a user can restore settings of the device to a previous state by using the stored current setting data of the device.

Optionally, the method may include the step of allowing a user to start restoring settings of a recovery target device of the plurality of target devices to a previous state by transmitting the backup data.

Still optionally, the step of the storing the current setting data may store a plurality of pieces of backup data respectively corresponding to the step of obtaining the current setting data.

Still optionally, the method may include the step of restoring settings of a recovery target device of the plurality of target devices to a previous state by transmitting one of the plurality of pieces of backup data selected by a user to the recovery target device.

Still optionally, the method may include the step of allowing a user to start restoring settings of a recovery target device of the plurality of target devices to a previous state by transmitting a latest one of the plurality of pieces of backup data for the recovery target device to the recovery target device.

Still optionally, the method may include the step of displaying the current setting data of the recovery target device before the step of allowing the user to start restoring settings of the recovery target device is executed.

Still optionally, each of a plurality of pieces of current setting data includes setting values of a plurality of setting items. In this case, the method may include the step of allowing the user to select at least one item from among the plurality of setting items to be targeted for the restoring settings of the recovery target device. The step of the restoring settings of the recovery target device may be executed with regard to the at least one item selected by the user.

Still optionally, each of a plurality of pieces of current setting data includes setting values of a plurality of setting items. In this case, the method may include the steps of comparing the new setting data with each of the plurality of pieces of current setting data before the step of the storing the plurality of pieces of current setting data is executed so as to detect a setting item of the new setting data to be updated with respect to each of the plurality of pieces of current setting data. The step of the storing the current setting data may be storing the updated setting item in a memory device as backup data.

Still optionally, the method may include the steps of specifying a point of time, specifying a point of time, identifying backup data stored at the specified point of time, and restoring settings of a recovery target device using the identified backup data.
In a first example, in the specifying step the point of time may be specified based on user designation.

In a second example, in the specifying step the point of time may be specified within a range of time designated by a user.

In a third example, in the specifying step the point of time may be specified as a time when backup data designated by a user is created.

Optionally, the method may include the steps of allowing the user to designate at least one setting item, selecting at least one backup data containing at least one setting item designated by the user from among the plurality of pieces of backup data, displaying the plurality of pieces of backup data, allowing the user to select at least one backup data; and restoring settings of at least one device corresponding to the selected backup data.

Still optionally, the method may include the steps of displaying the plurality of pieces of backup data, allowing the user to select at least one backup data, and restoring settings of at least one device corresponding to the selected backup data.

Still optionally, the step of the preparing the new setting data comprises the steps of allowing the user to select a representative device from among a plurality of devices connected to the network, and obtaining representative setting data currently set to the representative device through the network. One of the representative setting data and modified setting data made by modifying the representative setting data may be used as the new setting data.

According to another aspect of the invention, there is provided a method of transmitting setting data from a terminal device to a plurality of target devices. The method includes preparing a plurality of pieces of new setting data to be set to the plurality of target devices, respectively, obtaining a plurality of pieces of current setting data currently set to the plurality of target devices, respectively, storing the plurality of pieces of current setting data obtained from the plurality of target devices in a memory device, and transmitting the plurality of pieces of new setting data to the plurality of target devices, respectively, after the storing of the current setting data is finished.

With this configuration, it becomes possible to transmit new setting data to be applied to a plurality of target devices to the plurality of target devices at a time. In addition, in cases where a trouble arises in a device after the data transmission is executed, a user can restore settings of the device to a previous state by using the stored current setting data of the device.

Optionally, the terminal device may include a restoring system that restores one or more settings of a recovery target device of the plurality of target devices to a previous state by transmitting one current setting data of the plurality of pieces of current setting data stored by the step of the storing to the recovery target device, wherein the one current setting data is data obtained from the recovery target device in the obtaining step.

According to another aspect of the invention, there is provided a method of transmitting setting data to a plurality of target devices. The method includes preparing setting data to be set to the plurality of target devices, respectively, obtaining data currently set to the plurality of target devices, respectively, storing the plurality of pieces of current setting data obtained from the plurality of target devices in a memory device, and transmitting the plurality of pieces of new setting data to the plurality of target devices, respectively, after the storing of the current setting data is finished.

According to another aspect of the invention, a terminal device for transmitting setting data to a plurality of target devices may be provided. The terminal device may include a preparing system used to prepare new setting data to be set to the plurality of target devices, respectively, an obtaining system that obtains a plurality of pieces of current setting data currently set to the plurality of target devices, respectively, a storing system that stores the plurality of pieces of current setting data obtained from the plurality of target devices in a memory device, and a transmitting system that transmits the new setting data to the plurality of target devices after the storing of the current setting data is finished.

With this configuration, it becomes possible to transmit new setting data to be applied to a plurality of target devices to the plurality of target devices at a time. In addition, in cases where a trouble arises in a device after the data transmission is executed, a user can restore settings of the device to a previous state by using the stored current setting data of the device.

Optionally, the terminal device may include a restoring system that restores one or more settings of a recovery target device of the plurality of target devices to a previous state by transmitting one or more current setting data of the plurality of pieces of current setting data stored by the step of the storing to the recovery target device, wherein the one or more current setting data is data obtained from the recovery target device in the obtaining step.

The device and method according to the present invention can be realized when appropriate programs are provided and executed by a computer. Such programs may be stored in recording medium such as a flexible disk, CD-ROM, memory cards and the like and distributed. Alternatively or optionally, such programs can be distributed through networks such as the Internet.

Embodiments

Hereafter, embodiments according to the invention will be described with reference to the accompanying drawings.

FIG. 1 is a general configuration of a network system in which a setting data transmission system according to the embodiment of the invention is implemented. The network system shown in **FIG. 1** includes a plurality of PCs (personal computers) 1A, 1B and 1C, a router 2, a plurality of printers 3, 4 and 5, and a LAN (local area network) 7 for connecting these nodes.
Since the PCs 1A, 1B and 1C have the same configuration, in FIG. 1 a block diagram of the PC 1A is illustrated as an example. As shown in FIG. 1A, the PC1A includes a CPU (central processing unit) 101, a ROM (read only memory) 102, a RAM (random access memory) 103, an input device 105 such as a keyboard and a pointing device, a display unit 106, a storage device 107 such as a hard disc drive, and a network I/F (interface) 108 for connecting the PC 1A to the LAN 7. A multi-task operating system such as Windows®, Linux® or MacOS® may be installed in the PCs 1A, 1B and 1C. The CPU 101 of the PC 1A executes tasks of a plurality of programs in parallel on a time-division basis in accordance with a multi-task function of the OS. It is appreciated that any operating system may be used with aspects of the present invention. A setting data transmission process (which is explained in detail later) according to the embodiment is executed one of such parallel tasks. Since the PCs 1B and 1C have the same configuration as that of the PC 1A, the explanations thereof will not be repeated.

In this embodiment, the setting data transmission process is executed such that a plurality of pieces of setting data are transmitted to device at a time.

The router 2 has the function of relaying data from one network to another network. Since the printers 3, 4 and 5 have the same configuration, in FIG. 1 a block diagram of the printer 3 is illustrated as an example. As shown in FIG. 1, the printer 3 includes a CPU (central processing unit) 301, a ROM (read only memory) 302, a RAM (random access memory) 303, a NVRAM (non volatile RAM) 304, a display unit 306 on which various types of messages are displayed, a printing unit 307 having the function of printing images on a recording medium, and a network I/F (interface) 308 for connecting the printer 3 to the LAN 7. As described in detail later, in the setting data transmission process, the PC 1A (1B or 1C) operates, for example, to obtain setting data from one of the printers 3, 4 and 5 and to transmit setting data to the printers 3, 4 and 5 at a time.

In this embodiment, data transmission between the PCs and the printers is performed based on a simple network management protocol (SNMP). Each of the printers 3 to 5 is configured to store a management information base (for example, a MIB 311 stored in the NVRAM 304 of the printer 3). For obtaining setting data from one of the printers 3 to 5, the PC 1A sends a data acquisition request based on SNMP to a target printer (one of the printers 3 to 5). Then, the target printer provides setting data in an MIB (e.g. the MIB 311 of the printer 3), which is managed by and stored in the target printer, for the PC 1A as a response to the data acquisition request.

For making the setting to a target printer (one of the printers 3 to 5), the PC 1A sends a data setting request based on SNMP containing setting data to the target printer. Then, the target printer stores the received setting data in its own MIB (e.g. the MIB 311 of the printer 3) as a response to the data setting request sent by the PC 1A.

Hereafter, the setting data transmission process performed between the PCs and the printers will be explained. The setting data transmission process includes two types of transmission processes: a first type process is a process for setting a principal function of a printing device (e.g. a printer, a multi-function product having a printing function); and a second type process is a process for setting a network function of a NIC (a network interface card, for example, the network I/F 308 of the printer 3) provided in the printing device. Hereafter, the first type process is referred to as a first data setting transmission process, and the second type process is referred to as a second data setting transmission process.

Since general flows of the first and second data setting transmission processes are substantially equal to each other, the explanation of the data setting transmission process is made without making a distinction between the first and the second data setting transmission processes. Therefore, in the following, differences between the first and second data setting transmission processes will be explained, only if the necessity arises.

First, user interfaces (UI) of the first and second data setting transmission processes are explained. To start the first data setting transmission process, a user operates the PC 1A to initiate a device setting management tool. If the device setting management tool is initiated, a device setting management tool initial screen 11 is displayed, for example, as a window, on the display unit 106 of the PC 1A as shown in FIG. 2. In the initial screen 11 of FIG. 2, a list of printing devices (e.g. printers or multi-function products) detected on the network is displayed. If a user selects one of the printing devices listed in the device setting management tool initial screen 11 as a representative device, clicks a “Control” menu (i.e. pointing the “Control” menu first by using a pointing device and then pushing a button on the pointing device) on a menu bar on the device setting management tool initial screen 11, and then clicks a “Configure printer” menu in a pull-down menu displayed under the “Control” menu (see FIG. 3), a printer setting function initial screen 13 is displayed as shown in FIG. 4.

The printer setting function initial screen 13 is used to perform the configuration of printing devices (e.g. printers or multi function products). As shown in FIG. 4, in the printer setting function initial screen 13, various types of current settings of the printing device selected in the device setting management tool initial screen 11 (i.e. the representative device) are displayed. By clicking a “Config” menu in a menu bar on the printer setting function initial screen 13, and then clicking a “Send Settings to Printer(s)” menu in a pull-down menu displayed under the “Config” menu (see FIG. 5), the PC 1A initiates the first data setting transmission process.

For initiating the second data setting transmission process, a user double clicks one of printing devices listed in the device setting management tool initial screen 11 after opening the device setting management tool initial screen 11, or a user clicks a “Control” menu in the menu bar on the device setting management tool initial screen 11 and then clicks “Configure Print Server” in the pull-down menu. Then, a NIC setting dialog box 15 shown in FIG. 6 is displayed. By clicking a “Send to Multiple Printer” button 17 in a “General” tab on the NIC setting dialog box 15, the PC 1A initiates the second data setting transmission process.

FIG. 7 is a general flowchart applied to both of the first and second data setting transmission processes executed under control of the CPU 101 of the PC 1A (1B or 1C). After
the initiation of the first or second data setting transmission process, a “Send Settings to Printer(s)” dialog process (step S101) is executed.

[0093] FIG. 8 is a flowchart of the “Send Settings to Printer(s)” dialog process. After the “Send Settings to Printer(s)” dialog process is initiated, the PC 1A displays a “Send Settings to Printer(s)” dialog box 21 on the display unit 106 as shown in FIG. 9 (step S201). As shown in FIG. 9, the “Send Settings to Printer(s)” dialog box 21 includes a transmission target selection radio button 23, a transmission type changing instruction field 25, a device list indication field 27, a “Search” button 29, a “Remove” button 31, an addition device input text box 33, an “Add” button 35, an “OK” button 37, and a “Cancel” button 39.

[0094] At an initial condition of the “Send Settings to Printer(s)” dialog box 21, the transmission target selection radio button 23 is set to “Current Printer”, and the transmission type changing instruction field 25, the device list indication field 27, the “Search” button 29, the “Remove” button 31, the addition device input text box 33, and the “Add” button 35 are grayed out (a grayed out item represents that the item cannot accept operation).

[0095] If the user sets the transmission target selection radio button 23 to “Multiple Printer”, the grayed out representation of the transmission type changing instruction field 25, the device list indication field 27, the “Search” button 29, the addition device input text box 33, and the “Add” button 35 is released. If the grayed out representation is released, a selection among instructions of “1: Send All Current Values”, “2: Send all Update Values” and “3: Send Current and Update Values” is enabled in the transmission type changing instruction field 25. The grayed out representation of the “Remove” button 31 is also released if one or more devices are displayed in the device list indication field 27.

[0096] After the “Send Settings to Printer(s)” dialog box 21 described above is displayed, the PC 1A displays a device list (i.e. contents to be displayed in the device list indication field 27) of the “Send Settings to Printer(s)” in step S203. As described above, the device list indication field 27 is grayed out and no item is displayed in the device list indication field 27 in the initial condition (see FIG. 9). If the user sets the transmission target selection radio button 23 to the “Multiple Printers” in a later stage, the grayed out representation is released and a search for detecting devices on the network is initiated automatically. Devices detected by the search are registered in the device list and are displayed on the device list indication field 27 as shown in FIG. 10.

[0097] After the step S203 is finished, the PC 1A accepts inputs of buttons and keys on the “Send Settings to Printer(s)” dialog box 21 (step S205). In step S205, the user can conduct the switching operation of the transmission target selection radio button 23, an address inputting operation in the addition device input text box 33, and a pressing operation of the “Search” button 29, the “Remove” button 31, the “Add” button 35, the “OK” button 37, or the “Cancel” button 39.

[0098] If an address is inputted in the addition device input text box 33 (S207:NO), control proceeds to step S209 where it is judged whether the “Add” button is pressed. If the “Add” button is pressed (S211:YES), a process for adding a device designated in the addition device input text box 33 to the device list is executed (S213). FIG. 11 is a flowchart illustrating the process executed in step S213.

[0099] If an address is not inputted in the addition device input text box 33 (S207:NO), control proceeds to step S211 where it is judged whether the “Add” button is pressed. If the “Add” button is pressed (S211:YES), a process for adding a device designated in the addition device input text box 33 to the device list is executed (S213). FIG. 11 is a flowchart illustrating the process executed in step S213.

[0100] As shown in FIG. 11, the PC 1A operates to obtain information including a node name and a location from a device having the address designated in the addition device input text box 33 (step S301). If the acquisition of the device information is successfully completed (S303:YES), the device is added to the device list (step S305). As a result, information regarding the device having the address designated in the addition device input text box 33 is additionally displayed on the device list indication field 27.

[0101] If the acquisition of the device information is not successfully completed (S303:NO), the PC 1A displays a message box of a communication error and waits for an input of a “Retry/Cancel” button (S307). If the user presses one of the “Retry/Cancel” buttons, control proceeds from step S307 to step S309. If the button pressed by the user is “Retry” button (S309:Retry), control returns to S301. If the button pressed by the user is “Cancel” button (S309:Cancel) or the step S305 is finished, the process of FIG. 11 terminates. The completion of the process shown in FIG. 11 corresponds to completion of step S213 of FIG. 8.

[0102] Returning now to FIG. 8, after step S213 is finished, control returns to step S203. If the “Add” button is not pressed (S211:NO), control proceeds to step S215 where it is judged whether the “Remove” button 31 is pressed. If the “Remove” button 31 is pressed (S215:YES), a designated device is removed from the device list (S217). Then, control returns to step S203. To designate a device to be removed from the device list, a user selects a device to be removed from devices listed in the device list indication field 27 and then presses the “Remove” button 31.

[0103] If the “Remove” button 31 is not pressed (S215:NO), control proceeds to step S219 where it is judged whether the “Search” button 29 is pressed. If the “Search” button 29 is pressed (S219:YES), the PC 1A operates to search for devices on the network to update the device list (step S221). More specifically, in step S221, the PC 1A broadcasts a packet requesting responses from devices on the network according to SNMP, and waits for responses in a few seconds. If a device capable of responding to the packet exists on the network, the device sends a response back to the PC 1A. A device incapable of responding to the packet discards the received packet. The PC 1A recognizes devices which send responses back to the PC 1A as devices to be targeted for the data setting transmission process, updates the device list with regard to the responded devices, and then adds the responded devices to the device list indication field 27. After the process of step S221 is finished, control returns to step S203.

[0104] If undesired devices which are not to be targeted for the data setting transmission process responded to the packet, the user may delete such undesirable devices using “Remove” button 31.

[0105] If the “Search” button 29 is not pressed (S219:NO), control proceeds to step S223 where it is judged whether an
operation for changing the instruction of transmission type by using the transmission target selection radio button 23 and the transmission type changing instruction field 25 is conducted. If a user operation for changing the instruction of transmission type is conducted (S223: YES), representation of the transmission type changing instruction field 25 is changed in accordance with the changed transmission type, and then the “Send Settings to Printer(s)” dialog box 21 is refreshed (S225).

[0106] Then, a process of step S227, which is illustrated in detail in FIG. 12, is executed. In step S227, an operation for searching for devices and an operation for updating the device list are executed on an as needed basis.

[0107] As shown in FIG. 12, firstly, the PC 1A judges whether “Multiple Printer” is selected in the transmission target selection radio button 23 (S401). If the “Multiple Printer” is selected (S401: YES), control proceeds to step S403. In step S403, it is judged whether the device list has been created or not. If the device list has not been created (S403: NO), the device list is created in step S405 and control proceeds to step S407. If the device list has been created (S403: YES), control proceeds to step 407.

[0108] In step S407, it is judged whether “Send all Current Value” is designated in the transmission type changing instruction field 25. In step S409, it is judged whether “Send Current and Update Values” is selected in the transmission type changing instruction field 25. If the “Send all Current Value” is not designated (S407: NO) and “Send Current and Update Values” is not designated (S409: NO), the instruction designated in the transmission type changing instruction field 25 is “Send all Update Values”. In this case, in step S411, the device list is modified such that an entry of the representative device, which is selected as the representative device on the UI (i.e., the device setting management tool initial screen 11) displayed before the initiation of the data setting transmission process, is set as valid data.

[0109] If the “Send all Current Value” is not designated (S407: NO) and “Send Current and Update Values” is designated (S409: YES), control proceeds to step S413. In step S413, it is checked whether update settings not applied to the representative device exist. If the update settings not applied to the representative device exist (S413: YES), the device list is modified such that the entry of the representative device is set as valid data (S411). If the update settings have been applied to the representative device (S413: NO), control proceeds to step S415 where the entry of the representative device in the device list is designated as invalid data.

[0110] If the “Send all Current Value” is designated in the transmission type changing instruction field 25 (S407: YES), control proceeds to step S415 where the entry of the representative device in the device list is designated as invalid data.

[0111] If it is judged in step S401 that the “Multiple Printers” is not selected on the transmission target selection radio button 23 (S401: YES), the selection result on the transmission target selection radio button 23 is “Current Printer”. In this case, the device list is deleted (S417). After completion of step S411, S415, or S417, the process of FIG. 12 terminates. The termination of the process of FIG. 12 corresponds to the termination of step S227 of FIG. 8.

[0112] Referring now to FIG. 8, after completion of step S227, control returns to S203. If the user operation for changing the instruction of transmission type is not conducted (S223: NO), control proceeds to step S229. In step S229, it is judged whether the “OK” button 37 is pressed. In step S231, it is judged whether the “Cancel” button 39 is pressed. If the “OK” button 37 or the “Cancel” button is pressed (S229: YES or S231: YES), control proceeds to step S233. In step S233, the “Send Settings to Printer(s)” dialog box 21 is wiped out. The “Cancel” button 39 is used to instruct the PC 1A to stop a current process, and the “OK” button 37 is used to instruct the PC 1A to continue a current process. The selection result between the “OK” button 37 and the “Cancel” button 39 is used in step SI03 of FIG. 7.

[0113] If it is judged in step S231 that the “Cancel” button 39 is not pressed (S231: NO), control returns to step S205 since no effective operation is conducted.

[0114] After completion of step S233, the process for “Send Settings to Printer(s)” terminates and also the step S101 of FIG. 7 terminates.

[0115] Referring now to FIG. 7, after completion of step S101, the PC 1A judges whether the button pressed in step S205 is the “OK” button 37 (S103). If the “OK” button 37 is not pressed (S103: NO), the data setting transmission process terminates since in this case the pressed button is the “Cancel” button 39.

[0116] If the “OK” button 37 is pressed (S103: YES), a transmission confirmation dialog process is executed in step S105. FIG. 13 is flowchart illustrating the transmission confirmation dialog process. Firstly, in step S501 the PC 1A displays a transmission confirmation dialog box 41 on the display unit 106 as shown in FIG. 14. In the transmission confirmation dialog box 41, information on whether setting data are to be changed or not, and information on whether devices are in an operable state are displayed for each of the devices. As shown in FIG. 14, the transmission confirmation dialog box 41 includes a device list display field 43, a “Search” button 45, a “Refresh” button 47, a “Remove” button 49, a “Cancel” button 51, and a “Send” button 53. As described in detail later, information regarding the device list is displayed on the device list display field 43 in step S505.

[0117] After the transmission confirmation dialog box 41 is displayed in step S501, the PC 1A executes a device setting acquisition process in step S503. FIG. 15 is a flowchart illustrating the device setting acquisition process.

[0118] As shown in FIG. 15, firstly, the PC 1A initializes a variable i (the number) indicating a device currently targeted for acquisition of device setting (S601). The variable i is used to process devices one by one from the top of the device list. It is noted that a device list used in the device setting acquisition process is created in the “Send Settings to Printer(s)” dialog process, and the device list may be modified in the device setting acquisition process.

[0119] To point at a device listed at the top of the device list, the variable i is assigned 1 (i.e., i=1) in step S601. Next, the PC 1A judges whether all of the devices in the device list have been processed or not (S603). Specifically, in step S603 the PC 1A judges whether a condition i (where n represents the total number of devices in the device list) holds or not. If all of the devices in the device list have not been processed (S603: NO), control proceeds to step S605. In step
More specifically, the acquisition of setting data from the current device is executed as follows. The PC IA sends a data acquisition request to the current device based on SNMP. Then, the current device (which has been received the data acquisition request) sends setting data stored in the MIB (e.g., the MIB 311 of the printer 3) managed by the current device to the PC IA as a response to the data acquisition request. Setting items to be obtained from the current device vary depending on the transmission type designated in the transmission type changing instruction field 25 of the “Send Settings to Printer(s)” dialog box 21. That is, if the transmission type is “Send all Current Values” or “Send Current and Update Values”, setting data of all of the setting items is obtained from the current device. If the transmission type is “Send all Update Values”, only setting data of setting items to be updated is obtained from the current device. In this embodiment, the term “setting items” means items which are predetermined, for each of device models, as target items to be processed in the data setting transmission process and do not cover all of setting items supported by a current device.

Next, in step S607, the PC IA judges whether the setting data are successfully obtained from the current device. If the setting data are successfully obtained (S607:YES), the obtained setting data are registered in the device list (in a corresponding entry of the device list) (S609). Status information “Identical” is also registered in the corresponding entry of the device list if all of the obtained setting data are identical to setting data to be sent to the current device. Status information “Change” is registered in the corresponding entry of the device list if all of the obtained setting data are not identical to setting data to be sent to the current device.

If the setting data are not successfully obtained (S607:NO), control proceeds to step S611. In step S611, error information is registered in the corresponding entry of the device list. Specifically, in this case, status information “Connection error” may be registered in the corresponding entry of the device list. If the process in step S609 or S611 is finished, the variable i indicating the current device is updated (S613). Then, control returns to step S603. For example, the variable i may be incremented by one in step S613.

By repeating a sequence of steps S603 to S613, entries in the device list are processed one by one until all of the devices in the device list are completely processed. If all of the devices in the device list are processed (S603:YES), the device setting acquisition process of FIG. 15 terminates. Although, in the process shown in FIG. 15, the variable i is used to indicate a device currently targeted for acquisition of setting data, another scheme (for example, a scheme in which a pointer indicating an address of an entry of a device currently targeted for acquisition of setting data are used) may be used to process devices in the device list sequentially.

As shown in FIG. 13, after the process of step S503 is finished, the PC IA displays contents of the device list on transmission confirmation dialog box 41. By execution of step S503, information of each device is displayed on the device list display field 43, and one of statuses (“Identical”, “Change”, “Connection error”) is also displayed on the device list display field 43 for each device.

Next, the PC IA accepts inputs from buttons on the transmission confirmation dialog box 41 (S507). In this stage, the PC IA allows the user to operate one of the “Search” button 45, “Refresh” button 47, “Remove” button 49, “Cancel” button 51, and “Send” button 53.

If the “Remove” button 49 is pressed (S509:YES), a designated device is removed from the device list (S511). The designation of a device to be removed from the device list is performed by selecting a device on the device list display field 43 and then pressing the “Remove” button 49. The “Remove” button 49 is grayed out in an initial condition as shown in FIG. 14, and the grayed out representation of the “Remove” button 49 is released when one of the devices is designated in the device list display field 43 (see FIG. 16).

If the “Remove” button 49 is not pressed (S509:NO), control proceeds to step S513 where it is judged whether the “Refresh” button 47 is pressed. If the “Refresh” button 47 is pressed (S515:YES), control returns to step S503 to execute again the device setting acquisition process. Consequently, the information in the device list display field 43 is updated.

Next, in step S515, the PC IA judges whether the “Search” button 45 is pressed or not. If the “Search” button 45 is pressed (S515:YES), control proceeds to step S517. In step S517, the PC IA searches for devices on the network to update the device list. More specifically, in step S517, the PC IA broadcasts a packet requesting responses from devices on the network according to SNMP, and waits for responses in a few seconds. If a device capable of responding to the packet exists on the network, the device sends a response back to the PC IA. A device incapable of responding to the packet discards the received packet. The PC IA recognizes devices which send responses back to the PC IA as devices to be targeted for the data setting transmission process, updates the device list with regard to responded devices, and then refreshes information in the device list display field 43. After the process of step S517 is finished, control returns to step S503.

If undesired devices which are not to be targeted for the data setting transmission process according to the embodiment responded to the packet, the user may delete such undesirable devices using “Remove” button 49.

If the “Search” button 45 is not pressed (S515:NO), control proceeds to step S519 where it is judged whether the “Send” button 53 is pressed. If the “Send” button 53 is pressed (S519:YES), contents of the device list containing the statuses (“Identical”, “Change”, “Connection error”) are recorded in a log file (S521), and the transmission confirmation dialog box 41 is wiped out (S523). Then, the transmission confirmation dialog process terminates.

If it is judged in step S519 that the “Send” button 53 is not pressed (S519:NO), control proceeds to step S527 where the PC IA judges whether the “Cancel” button 51 is pressed. If the “Cancel” button 51 is pressed (S527:YES), the transmission confirmation dialog box 41 is wiped out (S523). Then, the transmission confirmation dialog process terminates.

As described above, the step S523 is executed in both of the cases where the “Send” button 53 is pressed and
where the “Cancel” button 51 is pressed, but the step S521 is executed only in the case where the “Send” button 53 is pressed. Pressing the “Send” button 53 instructs the PC 1A to continue the transmission confirmation dialog process, and pressing the “Cancel” button 51 instructs the PC 1A to stop the transmission confirmation dialog process. Information on whether the “Send” button 53 is pressed or the “Cancel” button 51 is pressed is used in step S107 of FIG. 7 as described later.

[0133] If it is judged in step S527 that the “Cancel” button 51 is not pressed (S527:NO), control proceeds to step S529. If it is judged in step S529 that no device in the device list display field 43 is double clicked (S529:NO), control returns to step S507 since no effective operation is made by the user. If a device in the device list display field 43 is double clicked (S529:YES), the PC 1A executes an advanced setting change window process.

[0134] The advanced setting change window process is a process for making settings for each device on an individual basis. To a device which is not subjected to the advanced setting change window process, setting data identical to the representative device or setting data which is modified in the above mentioned process is transmitted. On the other hand, to a device which is subjected to the advanced setting change window process, setting data set in the advanced setting change window process is transmitted. FIG. 17 is a flow-chart illustrating the advanced setting change window process.

[0135] Firstly, the PC 1A displays an advanced setting change window (S701). The setting items are different between the first data setting transmission process for setting the principal function of a target device and the second data setting transmission process for setting NIC (network interface card) of the target device. Specifically, an advanced setting change window 55 as shown in FIG. 18 is displayed in the case of the first data setting transmission process, and an advanced setting change window 57 as shown in FIG. 19 is displayed in the case of the second data setting transmission process.

[0136] In each of the advanced setting change windows 55 and 57, various items of which setting values are to be transmitted to a device targeted for the advanced setting (a target device) are displayed in an “item” box, setting values (current setting values) obtained from the target device are displayed in a “Current Value” box, and setting values to be updated are displayed in an “Update value” box. An item whose setting value in the “Update value” box is a blank represents that an “Update value” and a “Current value” of such an item are identical to each other. If a device represented as a “Connection Error” in the device list display field 43 has been selected for the advanced setting change window process, all of fields in the “Current value” box and “Update value” box are represented as blanks. Although setting items are different between the advanced setting change window 55 and the advanced setting change window 57, these windows 55 and 57 are functionally equal to each other.

[0137] In step S703, the PC 1A accepts the input from the input device 105 (e.g., a mouse and keys). If one of items in the advanced setting change window 55 or the advanced setting change window 57 has been double clicked in step S703, the PC 1A judges that a setting value is changed (S705:YES). Then, the PC 1A executes a setting change process.

[0138] FIG. 20 is a flowchart illustrating the setting change process. Firstly, the PC 1A displays a setting change dialog box. Contents to be displayed in the setting change dialog box changes depending on the type of an item double clicked in the advanced setting change window 55 or the advanced setting change window 57. FIG. 21 shows a setting change dialog box 61 which is displayed if the item “PaperSize” in the advanced setting change window 55 is double clicked.

[0139] As shown in FIG. 21, the setting change dialog box 61 includes a setting value selection box 63, an “OK” button 65 and a “Cancel” button 67. The setting value selection box 63, the “OK” button 65 and the “Cancel” button 67 are included in the setting change dialog box for all of the items in the advanced setting change windows 55 and 57.

[0140] After the setting change dialog box is displayed (S801), the PC 1A accepts the input from the input device 105 (e.g., a mouse and keys) in step S803. If one of setting values in the setting value selection box 63 is clicked, the PC 1A judges that a user operation for changing the setting value has been conducted (S805:YES). Then, the PC 1A applies the change of the setting value to the representation in the setting value selection box 63 (S807). Next, control returns to step S803.

[0141] If the user operation for changing the setting value has not been conducted (S805:NO), control proceeds to step S809. In step S809, it is judged whether the “OK” button 65 is pressed. If the “OK” button 65 is pressed (S809:YES), the changed setting value is applied to a corresponding entry (i.e., an entry corresponding to the device targeted for the advanced setting) in the device list (S811). Thus, the setting data designated in the setting change process is registered in the corresponding entry in the device list.

[0142] Since the setting data set by the advanced setting is unique to the device targeted for the advanced setting, the setting data set by the advanced setting is stored separately from changed setting data common to the other devices. After the step S811 is finished, the setting change dialog box 61 is wiped out (S813). Then, the setting change process terminates.

[0143] If it is judged in step S809 that the “OK” button 65 is not pressed (S809:NO), control proceeds to step S815. In step S815, it is judged whether the “Cancel” button 67 is pressed. If the “Cancel” button 67 is pressed (S815:YES), step S813 is processed and then the setting change process terminates. If the “Cancel” button 67 is not pressed (S815:NO), control returns to step S803 since no effective operation is conducted.

[0144] Referring now to FIG. 17, after the setting change process shown in FIG. 20 (i.e., step S707) is finished, control proceeds to step S709. In step S709, it is judged whether setting values have been changed or not. Specifically, in step S709, the PC 1A judges whether the “OK” button 65 has been pressed or the “Cancel” button 67 has been pressed. If the setting values have been changed (S709:YES), changed setting values are applied to the advanced setting change windows 55 and 57 (S711). Then, control returns to step S703.
[0145] If the setting values have not been changed (S709:NO), control returns to step S703 without executing step S711.

[0146] If no device is double clicked in the advanced setting change windows 55 and 57 (i.e. setting values have not been changed) (S705:NO), control proceeds to step S713. In step S713, it is judged whether an end command (e.g. clicking a "X" button at the upper right position of a window, or pressing of "AIt"+"F4" keys) is inputted. If the end command is not inputted (S713:NO), control returns to step S703 since no effective operation is conducted. If the end command is inputted (S713:YES), the advanced setting change window 55 or 57 is wiped out (S715), and then the advanced setting change window process terminates.

[0147] As shown in FIG. 13, after the advanced setting change window process shown in FIG. 17 (i.e. step S531) is finished, control returns to step S507.

[0148] Referring now to FIG. 7, if the transmission confirmation dialog process of steps S501 to S531 is finished (i.e. step S105 is finished) by the operation of pressing the "Send" button 53 or the "Cancel" button 51, control proceeds to step S107 where the PC 1A judges whether the "Send" button 53 has been pressed. If the "Send" button 53 has not been pressed (S107:NO), control returns to step S101 to start again the data setting transmission process since in this case the "Cancel" button 51 has been pressed.

[0149] If the "Send" button 53 has been pressed (S107:YES), control proceeds to step 109 where a setting data package transmission process is executed. FIG. 22 is a flowchart illustrating the setting data package transmission process. Firstly, the PC 1A displays a transmission progress dialog box 71 which is shown in FIGS. 23A and 23B (S901). As shown in FIGS. 23A and 23B, the transmission progress dialog box 71 includes a progress bar indication field 73 and a "Cancel" button 75. In the transmission progress dialog box 71, the progress of data transmission is represented. In an initial state, no progress bar is displayed in the progress bar indication field 73 (see FIG. 23A).

[0150] After the transmission progress dialog box 71 is displayed, the PC 1A initializes a variable i indicating the number of a target device being subjected to the setting data package transmission process (S903). The variable i is used to processes devices one by one from the top of the device list. To point at a device listed at the top of the device list, the variable i is assigned 1 (i.e. i=1) in step S903.

[0151] Next, the PC 1A judges whether all of the devices have been processed (S905). Specifically, in step S905 the PC 1A judges whether a condition i≤n (where n represents the total number of devices in the device list) holds or not. If all of the devices in the device list have not been processed (S905:NO), control proceeds to step S907. In step S907, the PC 1A judge whether the advanced setting has been conducted.

[0152] If the advanced setting has not been conducted (S907:NO), control proceeds to step S909 where the setting values common to all of the devices in the device list are sent to the target device (the i-th device) by using setting values obtained from the representative device (i.e. the representative device selected on the user interface (UI) displayed before the initiation of the data setting transmission process) (S909). Specifically, in step S909, the data transmission is executed as follows. If the transmission type designated in the transmission type changing instruction field 25 is the "Send all Current Values", setting data identical to that of the representative device is transmitted to the target device. If the transmission type designated in the transmission type changing instruction field 25 is the "Send all Update Values", updated setting data which is updated with respect to current settings of the representative device is transmitted to the target device. If the transmission type designated in the transmission type changing instruction field 25 is the "Send Current and Update Values", both of the setting data identical to that of the representative device and the updated setting data which is updated with respect to current settings of the representative device are transmitted to the target device.

[0153] If the advanced setting has been conducted (S907:YES), update setting values set in the advanced setting change window process are transmitted to the target device (S911). The processes in steps S909 and S911 are executed in accordance with SNMP. That is, the PC 1A sends a data set request to the target device (the i-th device). The target device stores the setting values in the MIB (e.g. the MIB 311 in the case of the printer 3), which is managed by the target device, in accordance with the data set request transmitted from the PC 1A.

[0154] Data updating processes of steps S909 and S911 are substantially equal to each other except for the difference of the type of data to be transmitted. Examples of the data updating process to be applied to both of the steps S909 and S911 are described in detail later.

[0155] Next, the PC 1A judges whether the target device (being subjected to the setting data package transmission process) is the representative device (S913). If the target device is the representative device (S913:YES), changed setting values with regard to items to be applied only to the representative device are transmitted to the target device (S915). The items to be applied only to the representative device are determined in advance. For example, in the case of settings of the NIC (network interface card), the items to be applied only to the representative device are "Node Name" (a node name of the NIC), "Password" (an administrator password), service filter settings, "IP Address" (an IP address of the NIC), "Subnet Mask" (a subnet mask of the NIC), "Gateway" (gateway (router) address settings), "IP Config" (settings of a scheme of IP address acquisition), “Printer E-mail Address” (an E-mail address assigned to a printer/MFP), “POP3 account name” (an account name of a mail box used to access an E-mail sever), “POP3 account Password” (a password for the account of the mail box) because these items have to be set on a network interface card—by—network interface card basis.

[0156] A data updating process of step S915 is substantially the same as that of steps S909 and S911 except for the difference of the type of data to be transmitted. Examples of the data updating process to be applied to the steps S909, S911 and S915 are described in detail later.

[0157] After the process of step S915 is finished or it is judged in step S913 that the target device is not the representative device (S913:NO), control proceeds to step S917. In step S917, it is judged whether the "Cancel" button is pressed. If the "Cancel" button is not pressed (S917:NO), the PC 1A judges whether the setting data transmission is
If the setting data transmission is successfully finished (S919:YES), success information (e.g., letters “OK”) indicating that the setting data transmission is successfully finished for the target device is written in the device list (S921). If the setting data transmission is not successfully finished (S919:NO), failure information (e.g., letters “NG”) indicating that the setting data transmission is not successfully finished for the target device and information about factors that cause transmission errors are written in the device list (S923).

After the success information or the failure information is written in the device list, the variable (the number) indicating the target device is updated in step S925, for example, by incrementing the variable i by one. Then, the progress bar displayed in the progress bar indication field 73 in the transmission progress dialog box 71 is updated (S927). Specifically, the length of the progress bar to be displayed in the progress bar indication field 73 is determined in accordance with the following expression:

\[
\text{length of the progress bar} = \text{maximum length of the progress bar} \times \text{number of processed devices} / \text{total number of devices}
\]

Thus, the progress bar having the length obtained from the above expression is displayed in the progress bar indication field 73 as shown in FIG. 23B. Next, control returns to step S905. By repeating a sequence of steps S905 to S927, all of the devices in the device list are processed. If all of the devices have been processed, the judgment result in step S905 becomes “YES”. Although, in the above mentioned process from S905 to S927, the variable i which is counted up from 1 to n is used to indicate the target device, another scheme (for example, a scheme in which a pointer indicating an address of an entry of the target device is used) may be used to process devices in the device list sequentially.

If all of the devices have been processed (S905:YES), the PC 1A wipes out the transmission progress dialog box 71 (S931). Then, the PC 1A displays a transmission result dialog box 77 (see FIG. 24), and waits for an operation of the “OK” button 81 (S933). As shown in FIG. 24, the transmission result dialog box 77 includes a transmission result indication field 79 and an “OK” button 81. In the transmission result indication field 79, the success information, the failure information and communication error factors are displayed. For example, “Connection Error” representing that the connection to a device ends in failure and the setting of the device has not been completed, or “Password incorrect” representing that the setting of a device is impossible because of an incorrect password is displayed as the communication error factor in the transmission result indication field 79.

Such representation of information (success or error information) in the transmission result indication field 79 allows the user to recognize a condition regarding setting data update and to deal with a problem appropriately.

If the “OK” button 81 is pressed, control proceeds step S935 where the transmission result dialog box 77 is wiped out. Then, the setting data package transmission process shown in FIG. 22 terminates.

Referring now to FIG. 7, after the process of step S109 (i.e., the setting data package transmission process shown in FIG. 22) is finished, the data setting transmission process shown in FIG. 7 terminates.

If it is judged in step S917 of FIG. 22 that the “Cancel” button is pressed (S917:YES), the PC 1A wipes out the transmission result dialog box 77 (S935). Then, the setting data package transmission process terminates. Therefore, in the case where the judgment result of step S917 is “YES”, the process of step S109 of FIG. 17 also terminates.

As described above, if the “Send” button 17 (i.e., “Send Multiple Printer” button 17) in the “General” tab of the NIC setting dialog box 15 is clicked, the PC 1A operates to execute the second data setting transmission process so transmit the setting data. Meanwhile, as shown in FIG. 6, inputting fields for various types of items are provided in the NIC setting dialog box 15 so as to accept user operations for inputting setting data. If the user operation is conducted on the NIC setting dialog box 15, there is a possibility that setting values different from the setting values transmitted by the second data setting transmission process are inputted to the NIC setting dialog box 15.

For this reason, an NIC setting dialog displaying process is executed as follows. FIG. 25 is a flowchart illustrating the NIC setting dialog displaying process. Firstly, the PC 1A displays the NIC setting dialog box (S1001). Then, in step S1003, the PC 1A accepts the inputs from the input device (e.g., a mouse and keys). Next, the PC 1A judges whether the “OK” button is pressed in step S1005, judges whether the “Cancel” button is pressed in step S1007, and judges whether the “Send” button is pressed in step S1009.

If it is judged in step S1009 that the “Send” button is pressed (S1005:NO,S1007:NO,S1009:YES), the second data setting transmission process described above is executed (S1011). Then, control returns to step S1003.

If it is judged in step S1009 that the “Send” button is not pressed (S1005:NO,S1007:NO,S1009:NO), another process for treating user operations for changing settings is executed (S1013). Then, control returns to step S1003.

Since the NIC setting dialog displaying process includes the step S1013, there is a possibility that a user has inputted setting values on the NIC setting dialog box when its is judged in step S1005 that the “OK” button is pressed. If the user has inputted setting values on the NIC setting dialog box, it is necessary to transmit the setting values inputted by the user on the NIC setting dialog box to the representative device independently of the process of step S1011.

For this reason, if it is judged in step S1005 that the “OK” button is pressed (S1005:YES), the PC 1A judges whether unapplied setting values exist in the inputting fields of the NIC setting dialog box (S1015). If the unapplied setting values exist (S1015:YES), the PC 1A transmits the unapplied setting values to the representative device (S1017). Next, the PC 1A wipes out the NIC setting dialog box 15 (S1019). Then, the NIC setting dialog displaying process terminates.

If it is judged in step S1007 that the “Cancel” button is pressed (S1007:YES), the PC 1A wipes out the NIC setting dialog box 15 (S1019). Then, the NIC setting dialog displaying process terminates.
A data updating process of step S1017 is substantially the same as that of steps S909, S911 and S915 except for the difference of the type of data to be transmitted.

Hereafter, eight examples of the data updating process executed in each of S909, S911, S915, and S1017 and a recovering process for the recovering of settings will be explained.

1.3.6.1.2.1.43.7.1.1.1 1
1.3.6.1.2.1.43.7.1.2.1 2

As described above, the type of setting data to be transmitted to the target device varies among the steps S909, S911, S915, and S1017. More specifically, in the case of the step S909, setting data to be transmitted is data to be updated with regard to all of the devices in the device list. In the case of the step S911, the setting data to be transmitted is update setting values prepared in the advanced setting. In the case of the step S915, setting data to be transmitted is the changed setting values with regard to setting items to be applied only to the representative device. In the case of the step S1017, the setting data to be transmitted to the target device is unapplied setting values modified on the NIC setting dialog box 15.

The process of step S1017 is executed in accordance with SNMP. Specifically, the PC 1A sends a data set request to the target device in accordance with SNMP. Then, the target device sends current setting data stored in the MIB (e.g. the MIB 311 of the printer 3), which is managed by the target device, back to the PC 1A as a response to the data acquisition request. The PC 1A receives the current setting data from the target device. If there are a plurality of setting items to be processed in step S1101, such data acquisition of step S1101 is executed for each of the plurality of setting items.

Next, the PC 1A opens a setting history file in a creation mode or an overwriting mode (S1103). In step S1103, the setting history file may be created in the storage device 107 provided in the PC 1A. A file name unique to the target device is assigned to the setting history file. For example, a node name, an IP address, or a MAC address of the target device may be used as a part of or all the file name of the setting history file. If a file having a file name newly prepared in step S1103 does not exist in the PC 1A, a setting history file having the newly prepared file name is created in the PC 1A. If the file having the newly prepared file name already exists in the PC 1A, the existing setting history file is opened in the overwriting mode in step S1103.

Meanwhile, there may be a case where some of steps S909, S911, S915, and S1017 are executed sequentially in the process of FIG. 22 or FIG. 25. However, in such a case, a setting history file created in a previous step is not overwritten in a next step.

It is understood that since step S909 or S911 is executed a plurality of times, and the number of times step S909 or S911 is executed is equal to the total number of devices registered in the device list. Therefore, the number of setting history files created in one data setting transmission process becomes equal to the number of devices targeted for the data setting transmission process.

Next, the PC 1A stores the obtained current setting data into the setting history file (S1105). If there are a plurality of setting items to be processed in step S1105, the storing of setting data (S1105) is executed for all of the plurality of setting items. The stored setting data will be used as recovering data in a recovering process which is described in detail later.

Next, in step S1107, the new setting data to be applied to the target device is transmitted to the target device. Then, the data updating process terminates.

If n items are updated in one update of settings (i.e. in one data setting transmission process), n groups of data are stored in the setting history file. As shown in Table 1, the Oid, the type of value and setting value are stored for each of the n groups of data. In Table 1, “Oid” represents an identifier unique to each information item in the MIB. By specifying “Oid” in the communication by SNMP between the PC 1A and a device, information of a desired item is stored in or read from the MIB. The “TYPE OF VALUE” represents information as to whether a setting value is integers or letters. In this embodiment, a primitive type value based on the MIB is used (i.e. “2:Integer”, “4:Double”, “5:Opaque”, “6:OTlob”, “8:ObjectIdentifier”, “9:Null”, “10:Boolean”, “11:SequenceOf”, “12:Counter64”, “13:TimeTicks”, “14:Gauge32”, “15:Unsigned32”, “16:Unsigned64”, “17:Counter32”, “18:Counter64”, “19:OctetString”). The “Setting Value” represents a previous setting value which is set to the target device before the update of settings is performed.

Hereafter, the recovering process is explained. The recovering process is used to restore settings in a device to a previous state after the data setting transmission process is finished. If a trouble arises in a device due to the setting data set by the data setting transmission process, the recovering process is utilized to solve the trouble.
To start the recovering process, a user initiates the device management tool. Then, the device setting management tool initial screen is displayed. If the user designates one of the printing devices on the device setting management tool initial screen and right-clicks on the designated device, a menu box is displayed over the device setting management tool initial screen. By selecting the “Recover Printer Setting” or “Recover Printer Server Setting” of menus in the menu box, the recovering process is started.

If the user selects the “Recover Printer Setting”, the recovering process for recovering setting data regarding the principal function of a printing device is executed. On the other hand, if the user selects the “Recover Printer Server Setting”, the recovering process for recovering setting data regarding the network function of an NIC of a printing device is executed.

Another user interface for starting the recovering process is also prepared as follows. If the user clicks “Config” on the menu bar of the printer setting function initial screen and then clicks the “Recover Printer Setting” of the pull-down menu displayed by the click of the “Config”, the recovering process for recovering setting data regarding the principal function of the printing device is started. If the user clicks a “Recover Setting” button which is displayed when the “General” tab is selected in the NIC setting dialog box (see FIG. 6), the recovering process for recovering setting data regarding the network function of the NIC of the printing device is started.

Although the function and setting items to be processed in the recovering process vary depending on an initiation factor of the recovering process, a general flow can be applied to all of the types of recovering processes initiated by different factors. Therefore, the general flow of the recovering process will be explained hereafter.

FIG. 28 is a general flow of a recovering process according to the first example. As shown in FIG. 28, firstly, the PC 1A searches for a setting history file of a target device which is a device targeted for the recovering process. Since a file name of the setting history file is unique to the target device, the setting history file is securely searched in step S1201 in accordance with the file name.

Next, the PC 1A reads the setting history file searched in the step S1201 (S1203). As a result, data such as setting values shown in Table 1 is stored in the PC 1A.

Next, in step S1205, the PC 1A transmits the setting values read at step S1203 to the target device. Specifically, the PC 1A sends a data set request to the target device in accordance with SNMP. The PC 1A sends a data packet containing an Oid and a corresponding setting value for each of the data groups. The target device which received the data packet stores the setting value into a memory area of the MIB corresponding to the designated Oid contained in the received data packet.

After data transmission in step S1205 is finished, the PC 1A deletes the setting history file used in the recovering process (S1207). Then, the recovering process terminates.

As described above, according to the first example, new setting data to be applied to a plurality of target devices is transmitted to the plurality of target devices at a time in the data setting transmission process. In addition, previous setting data are stored in a setting history file for each of the target devices. In cases where a trouble arises in a device after the update of settings is executed, a user can restore settings of the device to a previous state by executing the recovering process.

SECOND EXAMPLE

Hereafter, a data updating process to be executed in each of S909, S911, S915, and S1017 and a recovering process according to a second example will be explained. Since initiating manners of these processes, and an internal structure of a setting history are substantially the same as those of the first example, explanations thereof will not be repeated.

FIG. 29 is a flowchart illustrating the data updating process according to the second example. As shown in FIG. 29, firstly, the PC 1A obtains current setting data from the target device (S1301). Then, the PC 1A searches for a setting history file of the target device using a file name unique to the target device (S1303).

Next, in step S1305, the PC 1A judges whether the setting history file exists in the PC 1A. If the setting history file exists in the PC 1A (S1305:TRUE), the PC 1A changes the file name of the setting history file searched in step S1303 or deletes the setting history file searched in step S1303 (S1307). Similarly to the first example, a file name unique to a target device is created and is used to search for a setting history file of a desired device. In this example, for each of target devices, three setting history files are created at the maximum. A creation rule for creating setting history files is as follows. Suffixes (“1”, “2”, or “3”) are added to a character string unique to a target device.

Suffixes “1”, “2” and “3” are used to represent the latest file, the second latest file, and the third latest file, respectively. Therefore, if the setting history file having a file name including the suffix “2” already exists in the PC 1A, the setting history file having the file name including the suffix “3” is deleted, and then the PC 1A judges whether a setting history file having a file name including a suffix “2” already exists or not. If the setting history file having the file name including the suffix “2” already exists, the suffix of this file is changed from “2” to “3”. If a setting history file having a file name including a suffix “1” already exists, the suffix of this file is changed from “1” to “2”.

After the step S1307 is finished or if it is judged in step S1305 that the setting history file does not already exist (S1305:FALSE), control proceeds to step S1309. In step S1309, the setting history file having a file name including a suffix “1” is created. That is, the latest setting history file is created in step S1309. As described above, if the setting history file having a file name including a suffix “1” is found in step S1307, the suffix of the file name of such a setting history file is changed from “1” to “2”. Therefore, at a stage of step S1309, a setting history file having a file name including a suffix “1” does not exist. In this regard, the data updating process of the second example is different form the data updating process of the first example in which the setting history file is overwritten.
Similarly to step S1105 of the first example, in step S1311, the PC 1A stores the current setting data obtained in step S1301 into the setting history file created in step S1309. Then, in step S1313, the new setting data to be applied to the target device is transmitted to the target device. Then, the data updating process terminates.

Hereafter, the recovering process according to the second example is explained. FIG. 30 is a flowchart illustrating the recovering process according to the second example. Similarly to steps S1201 to S1207 of the recovering process of the first example, steps S1401 to S1407 are executed, respectively. Firstly, the PC 1A searches for a setting history file of the target device (S1401). Next, the PC 1A reads the setting history file searched in the step S1401 (S1403). In step S1405, the PC 1A transmits setting values read at step S1403 to the target device. After the data transmission in step S1405 is finished, the PC 1A deletes the setting history file used in the recovering process (S1407).

After the step S1407 is finished, control proceeds to step S1409 where file names of the remaining setting history files are renamed. Specifically, in step S1409, if a setting history file having file name including a suffix “2” already exists, the suffix of the file name of such a setting history file is changed from “2” to “1”. Further, in step S1409, if a setting history file having file name including a suffix “3” already exists, the suffix of the file name of such a setting history file is changed from “3” to “2”.

As described above, according to the second example, current setting data are stored in the setting history file when the data setting transmission process (the update of settings) is executed. In cases where a trouble arises in a device after the update of settings is executed, a user can restore settings of the device to a previous state by executing the recovering process.

In addition, according to the second example, the last three setting history files are stored in the PC 1A by using the suffixes “1”, “2”, and “3”. Therefore, the user can go back to the latest setting, the second latest setting or the third latest setting. Since the setting history file older than that used in the first example can be utilized in the recovering process, a possibility that a trouble is solved increases in comparison with the case of the first example.

Although in this example the latest three files are stored and used for the recovering process, more than three setting history files may be created and used for the recovering process. The updating process may be configured such that a user is allowed to designate the number of setting history files created and used for each of the target devices.

Although in the second example current setting data obtained in one data updating process is stored in one setting history file, a plurality of pieces of current setting data obtained by executing the data updating process a plurality of times may be stored in a single setting history file. In this case, a header for identifying each of the plurality of pieces of current setting data uniquely may be added to the single setting history file. By reading out the header, desired current setting data are obtained from the single setting history file.

THIRD EXAMPLE

Hereafter, a recovering process according to a third example is explained. The recovering process according to the third example is a variation of the recovering process according to the second example. The data updating process according to the second example is executed, before executing the recovering process according to the third example.

FIG. 31 is a flowchart illustrating the recovering process according to the third example. As shown in FIG. 31, firstly, the PC 1A searches for a setting history file of the target device using a file name unique to the target device (S1501). Then, the PC 1A reads data from the setting history file searched in step S1501 (S1503).

Next, the PC 1A displays setting items and corresponding setting values on the screen of the PC 1A (S1505). Specifically, the PC 1A displays a “Recover Setting” dialog box 85 on the screen of the display unit 106 as shown in FIG. 32. As shown in FIG. 32, the “Recover Setting” dialog box 85 includes a information display field 86, a “Send” button 87, and a “Cancel” button 88. In the information display field 86, setting items, current setting values, and previous setting values used for the recovering process are displayed in fields of “Item”, “Current Value”, and “Recover Value”, respectively. Such information allows a user to decide whether to execute the recovering of previous settings.

After checking the information display field 86, the user decides whether to execute the recovering of previous settings. If the user decided to execute the recovering of previous settings, the user pushes the “Send” button 87 on the “Recover Setting” dialog box 85. If the user decided not to execute the recovering of previous settings, the user pushes the “Cancel” button 88 on the “Recover Setting” dialog box 85.

The PC 1A judges whether to execute the recovering of previous settings in accordance with instructions inputted by the user using the “Recover Setting” dialog box 85 (S1507). If the recovering of previous settings is not executed (S1507:FALSE), the recovering process terminates. If the recovering of previous settings is executed (S1507:TRUE), setting values read from the setting history file in the step S1503 and are transmitted to the target device (S1509). After the data transmission is finished, the setting history file used in this process is deleted (S1511). Next, similarly to step S1409 of the second example, in the step S1409, file names of the remaining setting history files are renamed.

Similarly to the second example, in cases where a trouble arises in a device after the update of settings is executed, a user can restore settings of the device to a previous state by executing the recovering process.

In addition, according to the third example, both of the setting data currently set to the target device and the previous setting data to be used for the recovering process are displayed on the screen of the PC 1A to allow the user to decide whether to execute the recovering of settings. Therefore, the usability is enhanced.

FOURTH EXAMPLE

Hereafter, a recovering process according to a fourth example is explained. The recovering process of the fourth example is a variation of the recovering process according to the third example. Therefore, the data updating process according to the second example is executed, before
executing the recovering process according to the third example. In the following, to elements, which are substantially the same as those of the first to third examples, the same reference numbers are assigned, and explanations thereof will not be repeated.

[0215] FIG. 33 is a flowchart illustrating the recovering process according to the fourth example. As shown in FIG. 33, firstly, the PC IA searches for a setting history file of the target device using a file name unique to the target device (S1601). Then, the PC IA reads data from the setting history file searched in step S1601 (S1603).

[0216] Next, the PC IA displays setting items and corresponding setting values on the screen of the PC IA (S1605). Specifically, the PC IA displays a “Recover Setting” dialog box 85a on the screen of the display unit 106 as shown in FIG. 34. As shown in FIG. 34, the “Recover Setting” dialog box 85a includes the information display field 86, the “Send” button 87, and the “Cancel” button 88. In addition, a “Recover? Yes/No” button 89 is provided on the “Recover Setting” dialog box 85a.

[0217] In step S1607, by checking setting items (displayed in the field “Item”), current setting values (displayed in the field “Current Value”), and previous setting values used for the recovering process (displayed in the field “Recover Value”) displayed in the information display field 86, the user decides whether to include each setting item in targets of the recovering of previous settings using the “Recover? Yes/No” button 89. That is, in step S1607, the user is allowed to select setting items to be included in the restoring of previous settings.

[0218] Whether the setting item is targeted for the restoring of previous settings is displayed by letters “Yes” or “No” in a “Recover? Yes/No” field. Data in the “Recover? Yes/No” field is switched between “Yes” and “No” each time the “Recover? Yes/No” button 89 is pressed.

[0219] After the user decides whether to include each setting item in targets of the recovering of previous settings for each of the target devices, the user decides whether to execute the restoring of previous settings in step S1607. If the user decides to execute the recovering of previous settings, the user pushes the “Send” button 87 on the “Recover Setting” dialog box 85a. If the user decided not to execute the recovering of previous settings, the user pushes the “Cancel” button 88 on the “Recover Setting” dialog box 85a.

[0220] The PC IA judges whether to execute the recovering of previous settings in accordance with instructions inputted by the user using the “Recover Setting” dialog box 85a (S1607). If the recovering of previous settings is not executed (S1607:FALSE), the recovering process terminates. If the recovering of previous settings is executed (S1607:TRUE), setting values read from the setting history file in the step S1603 are transmitted to the target device (S1611). After the data transmission is finished, the setting history file used in this process is deleted (S1613). Next, similarly to step S1513 of the third example, in the step S1615, file names of the remaining setting history files are renamed.

[0221] Similarly to the first through third example, in cases where a trouble arises in a device after the setting data update is executed, a user can restore settings of the device to a previous state by executing the recovering process.

[0222] In addition, both of the setting values currently set to the target device and the previous setting values to be used for the recovering process are displayed on the screen of the PC IA. Such information allows the user to decide whether to include each setting item in the recovering of previous settings. It is noted that whether to include the setting item in the recovering of previous settings can be determined for each of the setting items.

FIFTH EXAMPLE

[0223] Hereafter, a data updating process according to a fifth example will be explained. The data updating process of the fifth example is a variation of the data updating process according to the second example.

[0224] FIG. 35 is a flowchart illustrating the data updating process according to the fifth example. As shown in FIG. 35, firstly, the PC IA obtains current setting data from the target device (S1701). Then, in step S1703, the PC IA compares new setting data to be transmitted to the target device with the current setting data obtained in step S1701. The result of the comparing of step S1703 is temporarily stored in the RAM 303 and is used in step S1713.

[0225] Next, the PC IA searches for a setting history file of the target device using a file name unique to the target device (S1705).

[0226] Next, in step S1707, the PC IA judges whether the setting history file exists in the PC IA. If the setting history file exists in the PC IA (S1707:TRUE), the PC IA changes the file name of the setting history file searched in step S1705 or deletes the setting history file searched in step S1705 (S1709). Then, the PC IA creates the setting history file (S1711). If the setting history file does not exist in the PC IA (S1707:FALSE), step S1709 is skipped. Detailed operations in steps S1705, S1707, S1709 and S1711 are substantially the same as those of the steps S1303, S1305, S1307, and S1309 of the second example, respectively.

[0227] Next, the PC IA stores only setting values of setting items, which are to be changed by the data updating process, in the setting history file (S1713). That is, in accordance with the comparison result of the step S1703, setting values of setting items, which are not to be updated by the data updating process, are not stored in the setting history file, but only setting values of setting items to be updated by the data updating process are stored in the setting history file.

[0228] Then, in step S1715, the new setting data to be applied to the target device is transmitted to the target device. Then, the data updating process terminates.

[0229] As described above, according to the fifth example, the current setting data are stored in the setting history file. In addition, according to the fifth example, only setting values of setting items to be updated by the data updating process are stored in the setting history file. Therefore, a file size of the setting history file can be reduced in comparison with the case in which all of the setting items are stored in a setting history file.

SIXTH EXAMPLE

[0230] Hereafter, a recovering process according to a sixth example is explained. FIG. 36 is a flowchart illustrating the
recovering process according to the sixth example. Since the initiating manner of the recovering processes, and an internal structure of a setting history file are substantially the same as those of the first example, explanations thereof will not be repeated.

[0231] As shown in FIG. 36, firstly, the PC 1A searches for a setting history file of a target device (a device targeted for the recovering process of FIG. 36) using a file name unique to the target device (S1801). Then, the PC 1A reads target setting date information from the setting history file searched in step S1801 (S1803). The target setting date information is information regarding a date and hour at which the data setting transmission process is executed for the target device.

[0232] Then, the PC 1A repeats a loop process of steps S1807 to S1811 for each of the setting history files stored in the PC 1A (S1805). In the loop process, the PC 1A reads date and hour information (e.g., a time stamp) from a targeted setting history file currently targeted for the loop process (S1807). Then, in step S1809, the date and hour information read at step S1807 is compared with the target setting date information obtained at step S1803.

[0233] If the date and hour (read at step S1807) of the targeted setting history file currently targeted in the loop process is equal to the date and hour obtained from the setting history file at step S1803 (S1803:TRUE), the targeted setting history file is added to a history file list (S1811). If the date and hour (read at step S1807) of the targeted setting history file is not equal to the date and hour obtained from the setting history file at step S1803 (S1803:FALSE), the step S1811 is skipped. It is understood that, by the loop process of steps S1805 to S1811, setting history files created concurrently with the creation of the setting history file of the target device (i.e., a device targeted for the recovering process of FIG. 36) are selected and included in the history file list.

[0234] Although setting history files are not created exactly at the same time in one data setting transmission process, in this example setting history files are regarded as being created at the same date and hour in one data setting transmission process. Various types of ways can be used to represent a date and hour (i.e., a time stamp) at which a setting history file is created. For example, a time stamp typically provided by a file system (or an operating system) to a file may be used to represent the creation date and hour of a setting history file. Data (e.g., letters) corresponding to a time stamp of a file may be used as a part of a file name of a setting history file or may be added to a header provided in a setting history file.

[0235] Next, the PC 1A determines whether the history file list generated in the loop process of steps S1807 to S1811 is empty (S1813). If the history file list is empty (S1813:FALSE), control proceeds to step S1819. If the list is not empty (S1813:TRUE), the PC 1A displays an “Other Devices . . . ” dialog box 91, in which information regarding setting history files stored in the history file list is displayed, as shown in FIG. 37. The “Other Devices . . . ” dialog box 91 includes an information display field 92, a “Remove” button 93, a “Recover” button 94, and a “Cancel” button 95. In the information display field 92, various types of information including a node name, an IP address, a device type, a location are displayed in a “Name” field, an “Address” field, a “Printer Type” field, and a “Location” field, respectively, for each of the setting history files in the history file list.

[0236] The user checks the information displayed on the “Other Devices . . . ” dialog box 91, and selects devices to be targeted for the recovering of previous settings (S1817). Also, the user is allowed to delete a device from targets of the recovering of previous settings by clicking the device on the “Other Devices . . . ” dialog box 91 first and then pressing the “Remove” button 93. To start the recovering of previous settings, the user presses the “Recover” button 93. If the user decides not to start the recovering of previous settings, the user simply presses the “Cancel” button 95.

[0237] Next, the PC 1A repeats a loop process of steps S1821 to S1825 (S1819). In this loop process, data transmission (the recovering of previous settings) is executed for the target device corresponding to the setting history file searched in step S1801 and for the other devices corresponding to setting history files included in the history file list. In this loop process, previous setting values are read from a targeted setting history file currently targeted for the loop process (S1821). Then, the previous setting values are transmitted to the device corresponding to the targeted setting history file (S 1823). After the data transmission is finished, the processed setting history file is deleted (S1825). After the loop process of steps S1821 to S1825 is finished for all of the devices to be targeted for the recovering process, the recovering process terminates.

[0238] Similarly to the first through fifth example, in cases where a trouble arises in a device after the update of settings is executed, a user can restore settings of the device to a previous state by selecting the device and starting the recovering process for the selected device.

[0239] In addition, according to the sixth example, if devices, for which the data setting transmission is executed concurrently with the data setting transmission for a user selected device (i.e., a device targeted for the initiation of the recovering process of FIG. 36), are found, such devices are notified to the user (i.e., displayed on the “Other Devices . . . ” dialog box 91). Therefore, the recovering of previous settings can be executed for such devices as well as the user selected device.

[0240] If inappropriate setting data are transmitted to a plurality of target devices at a time by a data setting transmission process, and a trouble is found in a particular device of the plurality of target devices, such a trouble of the particular device may also be caused in some other devices of the plurality of target devices. However, according to the sixth example, devices having a possibility of causing the same problem as that of the user selected device are notified to the user. Therefore, the user can prevent the problem, which will be caused in devices other than the user selected device, before they happen.

SEVENTH EXAMPLE

[0241] Hereafter, a recovering process according to a seventh example is explained. FIG. 38 is a flowchart illustrating the recovering process according to the seventh example. Since the initiating manner of the recovering process and an internal structure of a setting history file are substantially the same as those of one of the above mentioned examples, explanations thereof will not be repeated.
As shown in FIG. 38, firstly, the PC 1A displays a “Search Setting History” dialog box 201 on the screen of the display unit 106 shown in FIG. 39 to accept the input of a target time period (S1901). As shown in FIG. 39, the “Search Setting History” dialog box 201 includes a time period input field 203, an “OK” button 205, and a “Cancel” button 207. By inputting the start date and end date of the target time period by typing them in month/day/year format and then pressing the “OK” button 205, the user can designate the target time period.

Then, the PC 1A executes a loop process of steps S1905 to S1909 (S1903). In this loop process, the PC 1A reads creation date information (e.g. a time stamp) for all of the setting history files in the PC 1A. Next, the PC 1A judges whether the creation date of a targeted history file (currently targeted for this loop process) is within the target time period designated in step S1901. If the creation date of the targeted history file is within the target time period (S1907:TRUE), the targeted setting history file is added in a history file list (S1909). If the creation date of the target history file is not within the target time period (S1907:FALSE), the step S1909 is skipped. By repeating the loop process of steps S1905 to S1909, all of the setting history files having the creation date within the target time period are added in the history file list.

Next, the PC 1A judges whether the history file list created in the loop process of steps S1905 to S1909 is empty (S1911). If the history file list is empty (S1911:FALSE), the recovering process terminates. If the history file list is not empty (S1911:TRUE), control proceeds to step S1913. In step S1913, the PC 1A displays a “Search Result” dialog box 211, which is shown in FIG. 40, to represent a list of setting history files included in the history file list. As shown in FIG. 40, the “Search Result” dialog box 211 includes an information display field 213, a “Remove” button 215, a “Recover” button 217, and a “Cancel” button 219.

In the information display field 213, various types of information including a date, a node name, an IP address, a device type, a location are displayed in a “Date” field, a “Name” field, an “Address” field, a “Printer Type” field, and a “Location” field, respectively, for each of the setting history files in the history file list. By displaying the “Search Result” dialog box 211, the user is allowed to know, for each of the setting history files in the history file list, information on when the setting history file is created and which device the setting history file corresponds to.

After the user checks the information provided by the “Search Result” dialog box 211, the user decides, for each of devices listed the information display field 213, whether the device should be subjected to the recovering process (S1915). That is, the user selects devices, which need the recovering of settings, from devices displayed in the information display field 213. If the user finds devices not to be subjected to the recovering process, the user is allowed to delete such devices from the targets of the recovering process by clicking such a device first, and then pressing the “Remove” button 215.

To start the recovering process for the device listed in the information display field 213, the user presses the “Recover” button 217. By pressing the “Cancel” button 219, the initiation of the recovering process can be cancelled.

Next, the PC 1A repeats a loop process of steps S1919 to S1923. In this loop process, setting values are read from a targeted setting history file currently targeted for this loop process (S1919), and then the setting values are transmitted to a device corresponding to the targeted setting history file (S1921). After the data transmission is finished, the PC 1A deletes the targeted setting history file (S1923). After the loop process of steps S1919 to S1923 is executed for all of the devices to be targeted for the recovering process, the recovering process terminates.

Similarly to the first through sixth example, in cases where a trouble arises in a device after the updating of settings is executed, a user can restore settings of the device to a previous state by selecting the device and staring the recovering process for the selected device.

In addition, according to the seventh example, devices for which the update of settings is executed within the target time period designated by the user are detected automatically by the PC 1A, and such detected devices are added to the history file list. Therefore, according to the seventh example, devices having a possibility of causing the same problem as that of a user selected device (a device originally targeted for the recovering process) are included in the history file list. Therefore, the user can prevent the problem, which will be caused in devices other than the user selected device, before they happen.

EIGHTH EXAMPLE

Hereafter, a recovering process according to an eighth example is explained. FIG. 41 is a flowchart illustrating the recovering process according to the eighth example. Since the initiating manner of the recovering process and an internal structure of a setting history file are substantially the same as those of one of the above mentioned examples, explanations thereof will not be repeated.

As shown in FIG. 41, firstly, the PC 1A accepts the input of target setting items to be targeted for the recovering process (S2001). In the process of step S2001, the user is allowed to designate the target setting items. Samples of setting items are illustrated in FIGS. 18 and 19.

Next, the PC 1A repeats a loop process of steps S2005 to S2009 for all of setting history files stored in the PC 1A. In this loop process, the PC 1A reads setting items from a targeted setting history file currently targeted for the loop process (S2005). Then, the PC 1A judges whether the setting items of the targeted setting history file include the target setting items designated by the user in step S2001 (S2007). If the setting items of the targeted setting history file include the target setting items (S2007:TRUE), the targeted setting history file is added to a history file list (S2009). If the setting items of the targeted setting history file do not include the target setting items (S2007:FALSE), the step of S2009 is skipped.

By repeating the loop process of steps S2005 to S2009, setting history files, each of which has setting items including the target setting items designated by the user, are listed.

Next, the PC 1A judges whether the history file list created in the loop process of steps S2005 to S2009 is empty (S2011). If the history file list is empty (S2011:FALSE), the recovering process terminates. If the history file list is not empty (S2011:TRUE), control proceeds to step S2013. In step S2013, the PC 1A displays a list of setting history files.
included in the history file list. For example, in step S2013, information may be displayed on a dialog box similar to the “Search Result” dialog box 211.

[0256] Similarly to the step S1915 of the seventh example, after checking the information provided in step S2013, the user decides, for each of the devices listed in the information display field 213, whether the device should be subjected to the recovery process (S2015). That is, the user selects devices, which needs the recovering of settings, from devices displayed on the information display field 213.

[0257] Next, the PC 1A repeats a loop process of steps S2019 to S2023, for each of the devices included in the history file list (S2017). In the loop process, the PC 1A reads setting values of the target setting items from a targeted setting history file currently targeted for the loop process of steps S2019 to S2023 (S2019). Then, the PC 1A transmits the setting values of the target setting items to a device corresponding to the targeted setting history file (S2021). After the data transmission is finished, the PC 1A deletes the targeted setting history file (S2023). After the loop process is executed for all of the setting history files included in the history file list, the recovering process terminates.

[0258] Similarly to the first through seventh example, in cases where a trouble arises in a device after the setting data update is executed, a user can restore settings of the device to a previous state by selecting the device and staring the recovering process for the selected device.

[0259] In addition, according to the eighth example, devices, which have been subjected to the update of settings with regard to target setting items designated by the user, are automatically searched by the PC 1A. Therefore, if there is a possibility that devices which have been subjected to the update of settings with regard to particular setting items cause a problem, such a problem which will be also caused in some devices by the particular setting items can be solved by the recovering process according to the eighth example even if the user can not specify such devices having a possibility of causing a problem.

[0260] Since only setting values of setting items designated by the user at step S2001 are transmitted to a device, the data transmission speed is enhanced in comparison with the case where all of the setting items in a setting history file are transmitted to a device. It is prevented that setting items which do not need to be subjected to the recovering process are restored to a previous state. However, it is also possible to transmit all of the setting items in a setting history file to a device as in the case of the seventh example.

[0261] The recovering process may be configured such that the user can select one of a process in which only setting values of target setting items designated by the user at step S2001 are transmitted to a device, and a process in which all of the setting values of setting items included in a setting history file are transmitted to a device.

[0262] Although the present invention has been described in considerable detail with reference to certain preferred embodiments thereof, other embodiments are possible.

[0263] In the above mentioned embodiment, if it is not necessary to transmit setting values to the representative device, a user is required to use the “Remove” button to remove the representative device from targets for the data setting transmission process because in the above mentioned embodiment the representative device is typically included in the targets for the data setting transmission process.

[0264] However, the data setting transmission process may be configurated such that the representative device is excluded in advance from the targets for the data setting transmission process. Such a configuration for excluding the current device from the targets for the data setting transmission process is attained by a configuration shown in FIGS. 42 and 43. FIG. 42 is a variation of the device setting acquisition process shown in FIG. 15. FIG. 43 is a variation of the setting data package transmission process of FIG. 22. In the variation shown in FIG. 42, steps S604 and S615 are added to the device setting acquisition process of FIG. 15.

[0265] In the process shown in FIG. 42, if it is judged that all of the devices have not been processed (S603:NO), the PC 1A judges whether the target device (the i-th device) is the representative device (S604). If it is judged in step S604 that the target device is the representative device (S604:YES), control proceeds to step S615. In step S615, the PC 1A disables an entry corresponding to the representative device in the device list so that steps S605 to S611 are not executed for the representative device. That is, the entry of the representative device is designated as an invalid entry. After the step S615 is finished, control proceeds to step S613. If it is judged in step S604 that the target device is not the representative device (S604:NO), control proceeds to step S605.

[0266] In the variation shown in FIG. 43, step S906 is added to the process of FIG. 22 and steps S913 and S915 are omitted from the process of FIG. 22. According to the variation shown in FIG. 43, if it is judged in step S905 that all of the devices have not been processed (S905:NO), the PC 1A judges whether a entry corresponding to the target device in the device list is invalid or not. If it is judged in step S906 that the entry is invalid (S906:YES), control proceeds to step S917 without executing the steps 907 to S911.

[0267] Consequently, acquisition of setting data from the target device, transmission of new setting data or setting data set by the advanced setting are skipped for the representative device.

[0268] Although in the above mentioned embodiment the data setting transmission process is targeted for printing devices such as a printer, the embodiment can be also applied to various types of devices, for example, a scanner, an image obtaining device (such as a network camera), an image communication device (such as a facsimile device), a communication routing device (such as a network point), an information sever device (such as a network storage), which are typically used in such a situation that setting values are substantially common to a plurality of devices.

[0269] In the above mentioned embodiment only the PC 1A contributes to the data setting transmission process. That is, only the PC 1A functions as a setting data transmitting device. However, setting data transmission function may be distributed over a plurality of nodes. If such a distributed system is configured such that output data of a functional block implemented in one node is used as input data to be inputted to a functional block implemented in another node, the distributed system is implemented as a network system.
that also functions similarly to the data transmission device. For example, such a distributed system on a network may be implemented by use of a plurality of PCs 1A, 1B and 1C.

[0270] Although in the above mentioned embodiment the setting data to be transmitted to the target devices in the device list are prepared by obtaining the current setting data currently set to the representative device, such setting data to be transmitted to the target devices may be inputted manually by a user. Alternatively or additionally, samples of setting data to be transmitted to the target devices may be prepared in advance in the PC 1A (1B or 1C), and one of the samples may be selected as the setting data to be transmitted to the target devices.

[0271] Alternatively, a management server having the function of obtaining current setting data currently set to the target devices in the device list from the target devices through the network may be connected to the network. In this case, the current setting data of the target devices is obtained from the management server without directly accessing the target devices.

What is claimed is:

1. A method of transmitting setting data from a terminal device to a plurality of target devices, comprising the steps of:
 preparing new setting data to be set for the plurality of target devices;
 obtaining current setting data currently set to the plurality of target devices, respectively;
 storing the current setting data obtained from the plurality of target device in a memory device as backup data; and
 transmitting the new setting data to the plurality of target devices after the storing of the current setting data is finished.

2. The method according to claim 1, further comprising the step of allowing a user to start restoring settings of a recovery target device of the plurality of target devices to a previous state by transmitting the backup data.

3. The method according to claim 1, wherein the step of the storing the current setting data stores a plurality of pieces of backup data respectively corresponding to the step of obtaining the current setting data.

4. The method according to claim 3, further comprising the step of restoring settings of a recovery target device of the plurality of target devices to a previous state by transmitting one of the plurality of pieces of backup data selected by a user to the recovery target device.

5. The method according to claim 3, further comprising the step of allowing a user to start restoring settings of a recovery target device of the plurality of target devices to a previous state by transmitting a latest one of the plurality of pieces of backup data for the recovery target device to the recovery target device.

6. The method according to claim 2, further comprising the step of displaying the current setting data of the recovery target device before the step of the allowing the user to start restoring settings of the recovery target device is executed.

7. The method according to claim 2, wherein:

 each of a plurality of pieces of current setting data includes setting values of a plurality of setting items;

 the method further comprising the step of allowing the user to select at least one item from among the plurality of setting items to be targeted for the restoring settings of the recovery target device; and

 the step of the restoring settings of the recovery target device is executed with regard to the at least one items selected by the user.

8. The method according to claim 1, wherein:

 each of a plurality of pieces of current setting data includes setting values of a plurality of setting items;

 the method further comprising the steps of comparing the new setting data with each of the plurality of pieces of current setting data before the step of the storing the plurality of pieces of current setting data is executed so as to detect a setting item of the new setting data to be updated with respect to each of the plurality of pieces of current setting data; and

 the step of the storing the current setting data is storing the updated setting item in a memory device as backup data.

9. The method according to claim 1, further comprising the steps of:

 specifying a point of time;

 identifying backup data stored at the specified point of time; and

 restoring settings of a recovery target device using the identified backup data.

10. The method according to claim 9, wherein in the specifying step the point of time is specified based on user designation.

11. The method according to claim 9, wherein in the specifying step the point of time is specified within a range of time designated by a user.

12. The method according to claim 9, wherein in the specifying step the point of time is specified as a time when backup data designated by a use is created.

13. The method according to claim 3, further comprising the steps of:

 allowing the user to designate at least one setting item;

 selecting at least one backup data containing the at least one setting item designated by the user from among the plurality of pieces of backup data;

 displaying the plurality of pieces of backup data;

 allowing the user to select at least one backup data; and

 restoring settings of at least one device corresponding to the selected backup data.

14. The method according to claim 1, further comprising the steps of:

 displaying the plurality of pieces of backup data;

 allowing the user to select at least one backup data; and

 restoring settings of at least one device corresponding to the selected backup data.

15. The method according to claim 1, wherein the step of the preparing the new setting data comprises the steps of:

 allowing the user to select a representative device from among a plurality of devices; and
obtaining representative setting data currently set to the representative device,

wherein one of the representative setting data and modified setting data made by modifying the representative setting data is used as the new setting data.

16. A computer program product for use on a computer, the computer program product comprising a computer program executed to achieve a method of transmitting setting data from a terminal device to a plurality of target devices, the program comprising the steps of:

preparing new setting data to be set for the plurality of target devices;

obtaining current setting data currently set to the plurality of target devices, respectively;

storing the current setting data obtained from the plurality of target device in a memory device as backup data; and

transmitting the new setting data to the plurality of target devices after the storing of the current setting data is finished.

17. The computer program product according to claim 16, the program further comprising the step of allowing a user to start restoring settings of a recovery target device of the plurality of target devices to a previous state by transmitting the backup data.

18. The computer program product according to claim 16, wherein the step of the storing the current setting data stores a plurality of pieces of backup data respectively corresponding to the step of obtaining the current setting data.

19. The computer program product according to claim 18, the program further comprising the step of restoring settings of a recovery target device of the plurality of target devices to a previous state by transmitting one of the plurality of pieces of backup data selected by a user to the recovery target device.

20. The computer program product according to claim 18, the program further comprising the step of allowing a user to start restoring settings of a recovery target device of the plurality of target devices to a previous state by transmitting a latest one of the plurality of pieces of backup data for the recovery target device to the recovery target device.

21. The computer program product according to claim 17, the program further comprising the step of displaying the current setting data of the recovery target device before the step of allowing the user to start restoring settings of the recovery target device is executed.

22. The computer program product according to claim 17, wherein:

each of a plurality of pieces of current setting data includes setting values of a plurality of setting items;

the method further comprising the step of allowing the user to select at least one item from among the plurality of setting items to be targeted for the restoring settings of the recovery target device; and

the step of the restoring settings of the recovery target device is executed with regard to the at least one items selected by the user.

23. The computer program product according to claim 16, wherein:

each of a plurality of pieces of current setting data includes setting values of a plurality of setting items;

the method further comprising the steps of comparing the new setting data with each of the plurality of pieces of current setting data before the step of the storing the plurality of pieces of current setting data is executed so as to detect a setting item of the new setting data to be updated with respect to each of the plurality of pieces of current setting data; and

the step of the storing the current setting data is storing the updated setting item in a memory device as backup data.

24. The computer program product according to claim 16, further comprising the steps of:

specifying a point of time;

identifying backup data stored at the specified point of time; and

restoring settings of a recovery target device using the identified backup data.

25. The computer program product according to claim 24, wherein the specifying step the point of time is specified based on user designation.

26. The computer program product according to claim 24, wherein the specifying step the point of time is specified within a range of time designated by a user.

27. The computer program product according to claim 24, wherein in the specifying step the point of time is specified as a time when backup data designated by a user is created.

28. The computer program product according to claim 18, the program further comprising the steps of:

allowing the user to designate at least one setting item;

selecting at least one backup data containing the at least one setting item designated by the user from among the plurality of pieces of backup data;

displaying the plurality of pieces of backup data;

allowing the user to select at least one backup data; and

restoring settings of at least one device corresponding to the selected backup data.

29. The computer program product according to claim 16, further comprising the steps of:

displaying the plurality of pieces of backup data;

allowing the user to select at least one backup data; and

restoring settings of at least one device corresponding to the selected backup data.

30. The computer program product according to claim 16, wherein the step of the preparing the new setting data comprises the steps of:

allowing the user to select a representative device from among a plurality of devices; and

obtaining representative setting data currently set to the representative device,

wherein one of the representative setting data and modified setting data made by modifying the representative setting data is used as the new setting data.

31. A method of transmitting setting data from a terminal device to a plurality of target devices, comprising the steps of:
preparing a plurality of pieces of new setting data to be set to the plurality of target devices, respectively;

obtaining a plurality of pieces of current setting data currently set to the plurality of target devices, respectively;

storing the plurality of pieces of current setting data obtained from the plurality of target device in a memory device; and

transmitting the plurality of pieces of new setting data to the plurality of target devices, respectively, after the storing of the current setting data is finished.

32. A terminal device for transmitting setting data to a plurality of target devices, comprising:

a preparing system used to prepare new setting data to be set to the plurality of target devices;

an obtaining system that obtains a plurality of pieces of current setting data currently set to the plurality of target devices, respectively;

a storing system that stores the plurality of pieces of current setting data obtained from the plurality of target device in a memory device; and

a transmitting system that transmits the new setting data to the plurality of target devices after the storing of the current setting data is finished.

33. The terminal device according to claim 32, further comprising a restoring system that restores settings of a recovery target device of the plurality of target devices to a previous state by transmitting one current setting data of the plurality of pieces of current setting data stored by the step of the storing to the recovery target device, wherein the one current setting data is data obtained from the recovery target device in the step of the obtaining.

34. A system for transmitting setting data to a plurality of target devices, comprising:

a preparing system used to prepare new setting data to be set to the plurality of target devices;

an obtaining system that obtains a plurality of pieces of current setting data currently set to the plurality of target devices, respectively;

a storing system that stores the plurality of pieces of current setting data obtained from the plurality of target device in a memory device; and

a transmitting system that transmits the new setting data to the plurality of target devices after the storing of the current setting data is finished.

35. The system according to claim 33, further comprising a restoring system that restores settings of a recovery target device of the plurality of target devices to a previous state by transmitting one current setting data of the plurality of pieces of current setting data stored by the step of the storing to the recovery target device, wherein the one current setting data is data obtained from the recovery target device in the step of the obtaining.

36. A computer program for use on a computer, the computer program being executed to achieve a method of transmitting setting data from a terminal device to a plurality of target devices, the program comprising the steps of:

preparing new setting data to be set for the plurality of target devices;

obtaining current setting data currently set to the plurality of target devices, respectively;

storing the current setting data obtained from the plurality of target device in a memory device as backup data; and

transmitting the new setting data to the plurality of target devices after the storing of the current setting data is finished.

* * * * *