-

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6

GO6F 11/14 Al

(11) International Publication Number:

(43) International Publication Date:

WO 95/13580

18 May 1995 (18.05.95)

(21) International Application Number: PCT/US94/12915

(22) International Filing Date: 9 November 1994 (09.11.94)

(30) Priority Data:

150,488 9 November 1993 (09.11.93) US

(71) Applicant: ARCADA SOFTWARE [US/US]; Suite 1101, 37
Skyline Drive, Lake Mary, FL 32746 (US).

(72) Inventors: FLETCHER, Douglas, J.; 340 Wekiva Trail West,
Longwood, FL 32779 (US). DEVOS, Steven, Robert; 1529
3rd Street, Kirkland, WA 98033 (US).

(74) Agent: FLIESLER, Martin, C.; Fliesler, Dubb, Meyer and
Lovejoy, Suite 400, Four Embarcadero Center, San Fran-
cisco, CA 94111-4156 (US).

(81) Designated States: CA, CN, JP, European patent (AT, BE, CH,
DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: DATA BACKUP AND RESTORE SYSTEM FOR A COMPUTER NETWORK

TO\FSy [FSDD WS\ sM WSy oM WS;q /M 72wy Ji
[] | [] | [—
[DRIVERTAS] oS DOS 05/2. MAC
GRFS AGENT GRFS AGENT GRFS AGENT GRFS AGENT
[DEVICE SP.| e '
DEVICE NRL NRL NRL NRL
NRLJ SPX SPX TCP -
sPx[Ter| — -
/ dl (os) | | |os) | T | [os/2)] L (acC.)
GRFS FILE x| L“wpD x| ‘Hob >| “-HDD THOD
SYSTEM 5 Vg 8 3 ! N
] 5
“ / [

(57) Abstract

10

]

NRL
TCP

(UNIX) L——j,/— HOD4

A computer network having a number of workstations running disparate operating systems and a file server having a tape driver for
backup and restore of data on the network. The filter server runs a generic remote file system (GRFS) and workstations run GRFS agent
programs which allow the GRFS file system to access data within a workstation having a given GRFS agent program. The GRFS file
system interfaces with each GRFS agent program via a command/response paradigm, with the messages being structured to support the
disparate operating systems for backup and restore, to allow data to be interchanged between the disparate operating systems, and to allow
independent multiple users of the network to request simultaneously backup or restore.

applications under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

..

WO 95/13580 PCT/US94/12915

10

15

20

25

30

35

DATA BACKUP AND RESTORE SYSTEM FOR
A COMPUTER NETWORK

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to a system for
protecting data through backup and restore operations,
and more particularly to backup and restore software for

protecting data which is processed on a computer network

Description of the Related Art

In order to ensure that original data stored on a
medium such as a disk is not lost or damaged, a copy of
that data is stored on another medium. Should the
original data be lost or damaged, then the copy may be
accessed to reproduce the original data. This process of
copying and reproducing is generally known as backup and
restore. Typically, original data are stored on a hard
or floppy disk of a computer disk drive and are backed up
to and restored from tape media of a tape drive.

Backup and restore of the data are simple in a
system that has a single standalone computer, having a
given operating system and one or more disk drives, that
interfaces with a tape drive system. A relatively simple
backup and restore program can be used that interfaces
with the computer operating system to backup data
including files and directories stored on a hard disk to
the tape drive and to restore such data from the tape
drive onto the hard disk.

Computer networks have evolved and this has placed
greater demands on backup and restore systems. A
computer network may include a number of computers each
with its own hard and/or floppy disk drive, all of which
are networked together on a common bus. For example, the
computers on the network may include one or more

WO 95/13580 PCT/US94/12915

10

15

20

25

30

35

workstations and one or more file servers, each with its
own hard disk drive. The file server may also have a
tape drive upon which to backup and restore its own data
as well as data stored on the disk drives of the
workstations on the network. Backup and restore
operations are still relatively simple for a computer
network in which each workstation is running the same
operating system or environment, such as that known as
DOS. However, computer networks exist in which
workstations and file servers on the network may be
running disparate operating systems. For example, a
computer network may have, or may be expanded to have,
workstations running different operating systems
including those known as DOS, Windows, 0S/2, Macintosh,
and UNIX. The computer network also may have, or may be
expanded to have, file servers rﬁnning networking
operating systems software, including those known as
NetWare, Lotus Notes, and LAN Manager.

In one particular example, a computer network having
workstations and a file server running disparate
operating systems may be supported by NetWare, which is
an operating system made and sold by Novell, Inc. of
Provo, Utah. NetWare is designed to manage the programs
and data among several computers on a network, unlike,
for example, DOS, which is an operating system for
standalone personal computers. Novell also provides, for
example, SBACKUP software, which is a NetWare Loadable
Module (NLM) that can be loaded onto a NetWare file
server to backup data to and restore data from a tape
storage device attached to the NetWare server. SBACKUP
has limited capabilities; for example, it is designed to
backup and restore only NetWare server data and
workstations running DOS, 0S/2, and Windows.

The difficulty in providing backup and restore
operations to protect data on a computer network

WO 95/13580 PCT/US94/12915

10

15

20

25

30

35

obviously increases as more and more disparate operating
systems are added to the network via the computers on
which they run.

In general, prior backup and restore systems for
computer networks are limited to the number of different
types of operating systems that can be supported. This
places expansion limitations on the network in terms of
adding computers running additional types of operating
systems. Also, these backup and restore systems do not
have the capability of interchanging data between
different operating systems. Furthermore, bottlenecks
occur and productivity is limited with prior backup and
restore operations since multiple users cannot
simultaneously request these operations.

SUMMARY OF THE INVENTION

The present invention provides a backup and restore
system for use on a computer network having computers
running disparate operating systems. Backup and restore
software has modules including a backup engine
containing, among other components, a generic remote file
system (GRFS file system) and GRFS agents, being loadable
on a computer network having a plurality of computers
including, for example, at least one file server and at
least one workstation. The GRFS file system may run on
one computer, e.g., the file server of the network, and
each GRFS agent may run on another computer, e.g., a
workstation, on the network. The GRFS file system
running on the one computer, i.e., the file server in
this example, is allowed to access a file system of the
other computer via the GRFS agent on that other computer
to backup and restore data on that computer.

The GRFS file system and each GRFS agent interface
with one another over the computer network by a set of

defined messages. This messaging system is based on a

WO 95/13580 PCT/US94/12915

10

15

20

25

30

command/response paradigm, such that the GRFS file system
will send a given GRFS command message to a given GRFS
agent and wait for a GRFS response message from the GRFS
agent in order to backup or restore data. These messages
are defined structurally in a manner that enables (1)
backup and restore of data for a wide variety of
disparate operating systems, (2) data to be interchanged
between the different operating systems, and (3)
simultaneous request for backup or restore by independent
multiple users of the computer network.

Consequently, with the present invention, a computer
network can be expanded to support computers running the
major operating systems including DOS, Windows, 0S/2,
UNIX, and Macintosh. Also, data can be backed up from
one computer, e.g., a Macintosh workstation, and restored
to another, e.g., a DOS workstation, and multiple users
working on the wvarious computers in the network can

simultaneously request backup and restore operations.

BRTEF DESCRIPTION OF THE FIGURES

Fig. 1 is a block diagram of a prior art computer
network.

Fig. 2 illustrates backup and restore software of
the present invention.

Fig. 3 is a block diagram of the computer network of
Fig. 1, but having installed the backup and restore
software of the present invention.

Fig. 4 1is a simplified message command/response
sequence diagram used to explain the backup of a given
amount of data.

Fig. 5 1is a simplified message command/response
sequence diagram used to explain the restoration of
backed up data.

WO 95/13580 PCT/US94/12915

10

15

20

25

30

35

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Fig. 1 illustrates one example of a computer network
10 which stores, manipulates, and otherwise processes
data. The network 10 has a number of computers 12 which
can communicate with one another over a network bus 14.
In the example of Fig. 1, the computers 12 include a file
server FS and a plurality of workstations WS,, WS,, ng,
WS,, ...WS,. Each of the workstations WS;-WS, has a display
monitor M and the workstations WS,;-WS, include hard disk
drives HDD,-HDD,. The file server FS has its own large
file server disk drive FSDD and a tape drive TD upon
which to backup to and restore from data on the network
10.

Every workstation WS;-WS, may be rﬁnning the same
operating system 0S, or each workstation WS; through WS,
may be running a disparate operating system, or there
may be disparate groups of workstations with each group
running the same operating system. For example,
workstation WS; and workstation WS, may both be running
the operating system known as DOS, workstation WS; may be
running the operating system known as 0S/2, workstation
WS, may be running the operating system known as UNIX,
workstation WS, may be running the operating system known
as Macintosh, and other workstations, not shown, or which
may be added to the network 10, may run the operating
system known as Windows. Furthermore, the computers 12
in the network 10 may be utilizing user interfaces such
as those known as the DOS user interface, Windows
graphical user interface, and a server-based NLM (NetWare
Loadable Module) interface.

The computer network 10 may be, for example, running
the operating system software known as NetWare 3.X or 4.X
which is produced by Novell, Inc., of Provo, Utah.
NetWare is designed to manage programs and data among the
several computers 12 of the network 10. Fig. 1 also

WO 95/13580 PCT/US94/12915

10

15

20

25

30

35

illustrates a portion of the NetWare software including
individual network protocols SPX, TCP, and ADSP. As
shown, these three protocols are associated with the file
server FS, while the respective protocols are associated
with each respective type of workstation. For example,
NetWare supports the protocol SPX for DOS, Windows, and
0S/2 workstations, and the protocol TCP for UNIX
workstations. Also shown is a network resource layer
(NRL) which is an interface module which provides for
accessing network messages and advertising resources
available on the network 10.

The general operation of a computer network 10
including one that is running NetWare is well-known. As
one brief example of the operation, a user who is using
a workstation WS,-WS, may want to access data that is
currently stored on the disk drive of the file server FS.
Upon request by the user of, for example, DOS workstation
WS;, the file server FS will set up a connection and
protocol via its network resource layer NRL, its network
protocol SPX, and the network protocol SPX and network
resource layer NRL of the workstation WS;. Via this
connection and protocol, data can then be transferred
over the network 14 between the file server disk drive
FSDD and the workstation WS; disk drive HDD;, for
processing by that user.

Fig. 2 illustrates a software package 16 of the
present invention. In the specific embodiment, the
package 16 is a NetWare Loadable Module (NLM), which,
therefore, can be loaded onto NetWare. The package 16
includes multiple user interfaces 18, including a Windows
graphical user interface, a DOS interface, and a server-
based NLM interface. The package 16 also include GRFS
agents 20 including, respectively, DOS, 0S/2, TUNIX,
Macintosh, and Windows agents. Each agent 20 is a

respective program designed to run on a computer 12

WO 95/13580 PCT/US94/12915

10

15

20

25

30

35

having the corresponding operating system in order to
access the file system of that given computer. Thus, for
example, the DOS GRFS agent 20 will run on a DOS
workstation WS;, the 0S/2 GRFS agent will run on the 0S/2
workstation WS,, etc. The package 16 also has a backup
engine 22 running on the file server FS and includes a
tape controller device driver and tape positioner to
control the mechanical operation of the tape drive TD, a
common file system, and at least one device specific file
system. The latter 1is a GRFS file system which
interfaces with GRFS agents 20 via messages described in
more detail below.

Fig. 3 illustrates the network 10, but modified to
include the software 16. As shown, the backup engine 22
is installed at the file server FS, while the DOS, 0S/2,
UNIX, and Macintosh GRFS agents are installed on the
respective workstations WS,-WS,, WS;, WS,, and WS,. In this
example, the computer network 10 does not have a computer
12 running a Windows operating system. Should the
network 10 be expanded to include a Windows workstation,
then the Windows GRFS agent of the software 16 would be
installed at that workstation. While not specifically
illustrated, a workstation user also can opt to have
installed one of the user interfaces 18 for tape backup
and restore purposes, that is the same as that already on
a workstation for other purposes.

As indicated above, a GRFS agent is a program which
runs on a network computer such as the given workstation
WS, and which allows the GRFS file system running on
another computer, such as the file server FS, to access
the file system within the given GRFS agent’s computer.
This access 1is accomplished by use of an interface
between the GRFS file system and the given GRFS agent
over the network bus 14. Specifically, the interface is
defined by a set of GRFS messages which are documented in

WO 95/13580 PCT/US94/12915

10

15

20

25

30

35

detail as described more fully below. The GRFS messages
include GRFS command messages that are produced by the
GRFS file system and GRFS response messages produced by
the given GRFS agent.

The GRFS messages are based upon a simple
command/response paradigm. For backup or restore, the
GRFS file system of the file server FS sends a command
message over bus 14 to a given GRFS agent of the
workstation WS and then waits for that agent to respond
over bus 14 with a GRFS response message. A GRFS agent
does not send a GRFS response message without first
receiving the corresponding GRFS command message from the
GRFS file system.

There are several characteristics of the GRFS
messages that allow independent multiple users on the
network 10 to simultaneously request backup and restore
of data, allow for backup and restore of almost all types
of disparate workstation and file server operating
systems, and allow data to be backed up from a GRFS agent
running on one operating system and be restored to a GRFS
agent running on a different operating system. However,
before these message characteristics are further
described, an overview of the message structures will
first be given. Reference should be made below under the
heading "Specific Description of Command/Response
Messages" for a detailed description of the message
structures.

All GRFS messages (command and response) are
structured to begin with the same four fields. These
four fields of the common structure are as follows:

msg_type: This UINT8 field contains the command or
status id number.

reserved: This UINT8 field is not currently used.

WO 95/13580 PCT/US94/12915

10

15

20

25

30

35

retcode: This UINT16 field is used by GRFS status
messages to hold the return code of the
GRFS command.

request_id: This UINT32 field contains a value which
is generated by the GRFS file system for
GRFS command messages and must be returned
unchanged in the corresponding GRFS
response message.

In the detailed description of the specific GRFS
messages below under the heading "Specific Description of
Command/Response Messages", the number of parameters
associated with a given GRFS agent is assumed not to
include the above GRFS common message header. The
messages use two major structures to define GRFS objects.
These two major GRFS object types are a drive list
element (DLE) objects, which are logical devices, and
file system objects, which are files and directories.
The GRFS messages use DLE structures to reference drive
list element objects and DBLK (descriptor block)
structures to reference file system objects.

A DLE is a structure that contains information about
individual data storage devices which can be accessed for
backup and restore. The DLE structure contains the
following types of information: logical device name,
access password, file system delimiter, etc.

A DLE structure also supports a hierarchical
structure. A DLE can be a "parent" DLE and can have
"children" DLEs associated with it. For example, this is
the case for a Novell server file system. For a Novell
server, a DLE structure is created which is associated
with the server and then DLEs for each volume on the
server are created. The same situation can occur with a
GRFS agent should that agent advertise or publish on the
network 10 the workstation name as a DLE and then use
children DLEs to advertise individual areas which can be

accessed as logical units.

WO 95/13580 PCT/US94/12915

10

15

20

25

30

35

Security considerations such as passwords and user
names may be enforced at each DLE level within a
hierarchical structure. This means that a single GRFS
agent can advertise on the network 10 a workstation name
with multiple children DLEs and each child DLE would have
a unique password.

While DLEs contain information about individual
storage devices, a DBLK structure contains information
about specific file system objects, which are the things
in the file systems that are actually backed up and
restored. As already mentioned, these objects include
files and directories. The contents of a DBLK structure
include items such as: the object’s type, the object’s
name, and the object’s attributes. A DBLK structure can
also contain operating software specific information.

There are several other aspects of a DLE structure
and a DBLK structure to discuss. A DLE does not have
both children DLEs and file system objects associated
with it. In other words, if a GRFS agent advertised
itself over the network 10 as a "workstation", as will be
described further below, and had a child DLE for each
disk drive at the workstation, then the workstation DLE
will have no file system objects associated with it.
This is because the backup application descends to the
bottom of DLE trees before attempting to £ind any
objects. Most GRFS agents will support multiple levels
of DLEs, but if the file system of the agent platform is
very flat, i.e., there are no sub-devices and all objects
can be enumerated with a single handle, then a single
level DLE structure will suffice.

A DBLK structure has a common structure area
followed immediately by the variable length DBLK data
area. The DBLKs are limited to a maximum of 1,024 bytes
in the specific embodiment, which means that the sum of
the space required for the DBLK common structure and the

WO 95/13580 PCT/US94/12915

10

15

20

25

30

35

data area is at most 1,024 bytes. Furthermore, there are
several fields within the DBLK structure, which are
actually pointers to information within the DBLK data
area. These pointers are generated as offsets from the
beginning of the DBLK structure. For example, if the
DBLK common area is 80 bytes long and the first item
within the data area is the object’s name, then the
object name field would be set to 80 in order to point to
the first byte following the DBLK common structure. The
individual fields within the common DBLK structure that
are manipulated by the GRFS agent'programs are described
in detail below under the heading "DBLK Fields".

In order to implement a backup and restore function
for a given computer 12, that computer 12 should
advertise its capability for this purpose. Not every
computer 12 in the network 10 is necéssarily running a
GRFS agent program so as to be able to have its data
backed up. Consequently, the GRFS agent programs will
"advertise" their capability as a GRFS agent over the
network 10. This may be accomplished using the NRL
resource advertisement function. The GRFS agent resource
advertisement publishes the 1logical name of the
particular agent’s root DLE, as well as various flags
which are used by the GRFS file system to control access
to the GRFS agent. The format of the GRFS agent
advertisement structure is as follows:

struct grfs_ws_adver_struct

CHAR major_ver;
CHAR minor_ver;
CHAR agent_type;

CHAR flags;
CHAR name [MAX_WORKSTATION_NAME_LEN] ;

}
GRFS agents use character representations of the
values in the version and flags fields. For example, the
major.minor version of a particular GRFS agent might be

WO 95/13580 PCT/US94/12915

10

15

20

25

30

35

40

1.3, so that agent would advertise the version numbers as
"1" and "3", respectively.

The GRFS major version number is used to control
which GRFS agents can be accessed by the GRFS file
system. The GRFS major version number of the GRFS file
system and the GRFS agent must match exactly or no
information of the existence of that GRFS agent will be
given. The GRFS minor version number may be used for
informational purposes only.

The agent_type field is used to define the type of

GRFS agent. For example, the following values may be
defined for this field:

DOS 1

0s2 2

MACINTOSH 3

UNIX 4

The GRFS flags field is a bit-mapped value with the
following flags currently defined:

GRFS_WS_PASSWORD_REQ 0x01

GR¥FS_WS_USER_REQ 0x02

Combining all the GRFS resource advertisement fields
leads to the following examples of GRFS agent
advertisements:

NRI, Resource Decoded As

"1211RATBOY_ 486" major version = 1
minor version = 2
DOS agent

no user name required
password required
DLE name = "RATBOY_486"

"1020SLEDGEHAMMER" major version = 1
minor version = 0
0S/2 agent

no user name required
no password required
DLE name = "SLEDGEHAMMER"

WO 95/13580° PCT/US94/12915

10

15

20

25

30

35

"00430NE_WOLF" major version
minor version
Unix agent
user name required
password required
DLE name = "ONE_WOLF"

o

0
0

Fig. 4 illustrates a sequence of GRFS command and
response messages in simplified form to backup data on
the tape drive TD of the file server FS. This Fig. 4
gives the example of backing up a 5000 byte file named
COMMAND.COM which is stored on a "DRIVEC" of a given
workstation named "DougCompaqg". It is assumed that the
given workstation WS has advertised over the network 10
sufficient information so that the GRFS file system can
create the first command message shown in Fig. 4 as
ATTACH_DLE(.

To begin the 5000 byte backup, the workstation user

will, via a given user interface 18, cause a display on

a monitor M of devices and subdevices. The user will
then select a given subdevice (e.g., DRIVEC in the
example of Fig. K 4), resulting in the user interface

displaying on monitor M names of various files and
directories. The user will then select the file name to
be backed up (COMMAND.COM in the example) resulting in
the submission of a tape backup job for the file server
FS in the network 10.

Next, the sequence of GRFS file system command
messages and GRFS agent response messages will occur as
shown in order in the simplified Fig. 4. The sequence,
as illustrated, commences with the GRFS command message
ATTACH_DLE (naming "DougCompaqg" (dle.id=01) and completes
with the final GRFS agent response message
DETACH_DLE_STAT() by which DougCompaqg (dle.id=01) is
detached. Thus, the file COMMAND.COM will be read from
DRIVEC and written onto the tape drive TD of the file
server FS for network 10.

WO 95/13580 PCT/US94/12915

10

15

20

25

30

35

Fig. 5 shows a sequence of GRFS command/response
messages to restore information backed up on the file
server FS of the network 10. In this example, it is
assumed that a 5000 byte file named CONFIG.SYS has been
backed up from a given workstation and is to be restored
to DRIVEC of the workstation DougCompagq. After the
workstation user has selected the file CONFIG.SYS using
the user interface to select the file CONFIG.SYS for
restore, the sequence of GRFS command/response messages
will proceed as shown in Fig. 5. The sequence begins
with the GRFS command message ATTACH DLE(and completes
with the GRFS response message DETACH_DLE_STAT(). The
file CONFIG.SYS will be read from the tape drive TD and
restored onto DRIVEC. '

As mentioned previously, the command/response
messages are structured such that objects such as files
and directories may be backed up from a GRFS agent
running one operating system, e.g., 0S/2, and restored to
a GRFS agent running another operating system, e.g., DOS.
This is accomplished by the messages containing a
structure GRFS_STREAM_INFO. This structure has the
following definition:

struct GRFS_STREAM_INFO {

UNET32 id;

UNET16 fs_attrib;
UNET16 tf_attrib;
UNET64 size;

}

When the backup application is reading an object,
the GRFS_READ_OBJ_STAT response message contains a
GRFS_STREAM_INFO structure. The GRFS agent program must
set the id field of the first GRFS_READ_OBJ_STAT response
message of each individual data stream to the appropriate
value for the agent’s particular operating system.
Succeeding GRFS_READ_OBJ_STAT messages for the stream
must have the stream header id field set to 0
(STREAM_INVALID). The data in the stream info structure

WO 95/13580

10

15

20

25

30

35

40

PCT/US94/12915

is used by the backup application’s tape format module
and is written to the backup media of tape device TD. A
well-known 1.0
Specification describes stream header structures and also
contains a list of pre-defined stream header id values.
The size field must be set to the number of bytes
contained in the succeeding data stream and should dnly

Microsoft

Tape Format Version

be set in the first stream header structure for a

particular data stream,

i.e., if the stream header id

value is 0, then the size field does not need to be set.
An example is presented below of what a Macintosh
GRFS the GRFS_READ_OBJ_STAT

messages when a file with a 2000 byte resource fork and

agent would return in

a 4000 byte data fork is being backed up.
also assumes that a GRFS data buffer limit is 1000 bytes.

This example

strm header.id=STRM_MAC_RESOURCE (returns 1st 1000
bytes of resource
fork)

strm_header.size=2000

strm_header.id=STREAM_ INVALID (returns 1last 1000
bytes of resource
fork) '

strm_header.size=0

strm_header.id=STRM_NORMAI_DATA (returns 1st 1000
bytes of data fork)

strm_header.size=2000

strm_header.id=STREAM INVALID (returns next 1000
bytes of data fork)

strm_header.size=0

strm_header.id=STREAM_ INVALID (returns next - 1000

‘ bytes of data fork)
strm_header.size=0

strm_header.id=STREAM INVALID (returns last 1000
bytes of data fork)

strm_header.

size=0

WO 95/13580 PCT/US94/12915

10

15

20

25

30

35

When the backup application is restoring an object,
the GRFS commands (GRFS_WRITE_OBJ, GRFS_VERIFY OBJ) will
also contain a GRFS_STREAM INFO structure. The GRFS
agent must examine the stream header id wvalue to
determine whether the data stream type is supported on
the agent’s operating system platform. If the data
stream type is not supported the GRFS agent should set
the response message retcode to FS_DONT_WANT STREAM.
This will cause the backup application to skip to the
next data stream or the next object if at the last data
stream for a particular object. For instance, if an
object was backed up from an 0S/2 agent which supports a
normal data stream, an extended attribute (EA) data
stream, and an access control list (ACL) data stream,
then if the object is restored to a DOS agent, the DOS
agent will return FS_DONT_WANT_STREAM when it receives
GRFS_WRITE_OBJ commands with stream header id values that
indicate either EA or ACL data streams are being restored
since this data is not supported by DOS. The DOS agent
will accept the normal data stream which it does support.
Thus, this functionality allows objects to be backed up
from an agent running on one operating system and
restored to an agent running on another operating system.

As also mentioned above, the message structure is
defined as well, such that backup and restore can be
supported with respect to most operating systems,
including the current major operating systems which are
DOS, 0S/2, Macintosh, Windows, and UNIX. Each operating
system will have its own data structures aligned
differently from one another. For example, one operating
system may have a 1l-byte alignment where a data byte may
be placed anywhere, whereas another operating system may
have a 2-byte alignment where a data byte may be placed
in either an even or odd byte location. Other operating
systems, for example, may have what is known as a 4-byte

WO 95/13580 _ PCT/US94/12915

10

15

20

25

30

35

alignment. The GRFS messages are defined with a "least
common denominator" alignment that would apply to the
above-noted major operating systems. Thus, for example,
a given network 10 which may include workstations running
only DOS, 0S/2, and Macintosh, may be expanded to include
a workstations running UNIX and/or Windows. In other
words, the present invention supports a scalable network
for backup and restore purposes from a small or
departmental local area network (LAN) to a large or
enterprise wide area network (WAN).

Furthermore, the message structure enables multiple
users working at multiple computers 12 on the network 10

to request simultaneously backup and restore of objects.

This structure enables the GRFS file system to create a
unique request 1id for every GRFS command message.
Consequently, the GRFS file system can communicate
simultaneously with multiple GRFS agents and, therefore,
multiple users of the network 10 who at the same time
want to have backup and/or restore operations performed.
The present invention will manage these requests such
that they are placed in a job queue in the file server
FS, thereby allowing each user to operate independently

from any other user on the network 10 and without waiting

‘access to the backup and restore system.

While each user can independently manage his/her own
data on a given.workstation, backup and restore of data
on the entire network 10 can be centrally managed at a
single location by, for example, a network administrator,
from a given workstation or £file server, or a system
console.

The remaining portion of this specification
describes in much more detail the structure of the
command/response messages, followed by a detailed
déscription of the individual fields of the GRFS common

WO 95/13580 PCT/US94/12915

DBLK structure which may be manipulated by GRFS agent
programs.

WO 95/13580

PCT/US94/12915

SPECIFIC DESCRIPTION OF COMMAND/RESPONSE MESSAGES

3.0

Using GRFS Command and Response Messages

This following sections provide the information necessary to
implement each of the GRFS command and response messages.

3.1

GRFS_ATTACH_DLE_, GRFS_ATTACH DLE_STAT

After establishing an NRL session with the GRFS agent, the first
GRFS command the backup application will send to the GRFS agent is
the GRFS_ATTACH_DLE command. The GRFS_ATTACH DLE command message
contains the following parameters:

dle_name:

bec_flags:

This field contains the name of the DLE that the
backup application desires to attach to. The dle_name
field is encrypted in conjunction with the encryption
done on the password field. The encryption/decryption
method used by GRFS is described in the GRFS
encryption section of this document.

This field contains a bit-mapped value which defines
the configuration options chosen by the backup
application program. The values defined for use in
this field are as follows:

BEC_BACKUP_FILES_INUSE 0x01

If this flag is set, then the GRFS agent should
attempt to open files even if they are already
in use by another process.

BEC_EXTENDED_DATE_SUPPORT 0x02

If this flag is set, then the backup application
knows how to handle the ACCESS DATE and ARCHIVE
DATE fields in the GRFS DBLK, so if the agent’s
0S platform supports these time-stamps, they
should be provided in DBLKs.

BEC_SET_ARCHIVE_FLAG 0x04

If this flag is set and the agent’s OS platform
supports an object "ARCHIVED" flag, then the
GRFS agent should set an object’s ARCHIVED flag
after the object is closed during the backup
operation.

BEC_RESTORE_SECURITY 0x08

If this flag is set and the agent’s 0S platform
has support for security specific data forks (ie
ACL support for LANMAN 0S/2), then security
information should be restored during the
restore operation.

BEC_GET_HIDDEN_FILES 0x10
This flag controls whether "hidden" objects
should be returned while processing

GRFS_FIND_FIRST OBJ and GRFS_FIND_NEXT_OBJ
commands .

- 19 -

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

PCT/US94/12915

BEC_GET_SYSTEM FILES 0x20

This flag controls whether "system" objects
should be returned while processing

GRFS_FIND_FIRST OBJ and GRFS_FIND_NEXT_ OBJ
commands .

BEC_PROC_EMPTY_DIRS 0x40

This flag controls whether directories which are
empty s8hould be returned while processing
GRFS_FIND_FIRST OBJ and GRFS_FIND_NEXT_OBJ
commands .

- 19/1-

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

. special_word:

max_obj_bsize:

dle_parent:

cmpr_type:

user_name:

password:

PCT/US94/12915

This field is not used.

Thig field contains the size of the buffer that
the GRFS file system would like to use when
transferring object data to/from the GRFS agent.
This buffer size is the size of the object data
buffer, not the size of the GRFS message buffer.
GRFS message buffers are larger than the object
data buffer size because the GRFS message buffer
must include the 8-byte common header as well as
the miscellaneous parameters (obj_id,
stream_info, etc) used by the GRFS_WRITE_OBJ,
GRFS_VERIFY_OBJ, and = GRFS_READ_OBJ_STAT
messages.

The GRFS object buffer size is a negotiated
size, 8o if the value contained in the
max_obj_bsize is larger than the agent would
like, the agent can return a smaller value in
the GRFS_ATTACH_DLE_STAT max_obj_bsize field.
The GRFS file system will use the value returned
by the GRFS agent if it is smaller than the
default file system object data buffer size.

This field contains the DLE handle for the
parent of the DLE being attached to if a parent
DLE exists. If a parent DLE does not exist,
then this field is set to 0.

This field is not currently supported.

This field contains the user name supplied by
the backup application. This field will be
filled only if the DLE is defined as requiring
a user name.

This field contains the password supplied by
backup application if the DLE is defined as
requiring a password. Even if the DLE requires
no password, this field will appear to have a
value until it is decrypted. Please see the
section on DLE name/Password decryption for more
information.

The proper response message for a GRFS_ATTACH DLE is the
GRFS_ATTACH_DLE_STAT message. The parameters associated with the
GRFS_DLE_ATTACH_STAT message are described below.

dle_id:

max_connects:

This field must be set to the DLE id which the
GRFS agent wishes to use to identify the DLE.
The DLE id is a 32-bit value which the backup
application will use in future GRFS commands to
identify the DLE to be operated upon.
Typically, the GRFS agent will create DLE ids as
a pointer to a structure of an index into an
array. The DLE id can be any value except 0.

This field should be set to the maximum number

of concurrent GRFS sessions which the agent is
capable of.

- 20 -

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

PCT/US94/12915

max_opens_per_connect: This field should be set to the maximum

process-ddbs:

max_obj_bsize:

number of objects which can be opened
simultaneously per GRFS session.

This field is not currently supported.
This field should be set to the maximum object

data buffer size the agent wishes to use. The
maximum GRFS message size is greater than the

" maximum object data buffer size because of the

cmpr_type:

supports_children:

path_len:

current_path:

additional parameters in the GRFS messages which
convey object data.

This field is not currently supported.

This field is a BOOLEAN flag which should
be set to 0 if the DLE does not support
children. A non-zero value declares the
DLE as supporting children DLEs. A DLE
declared as supporting children DLEs
CANNOT support file system objects as
well. Either a DLE supports children
DLEs or file system objects. Never both.

This field should be set to the length of the
string (including the ’/0’ terminator) returned
in the current_path field. Current GRFS agent
implementations will always start in the logical
root directory of DLEs when they are attached,
so0 the current_path field should always be set
to ** and the path_len field set to 1.

This field should be set to the current path of
the DLE being attached to. As described above,
at DLE attachment time, the current path will be
the logical root of the DLE, so the current path
is empty (**).

- 20/1-

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

3.2
GRFS_FIND_FIRST DLE, GRFS_FIND_NEXT DLE, GRFS_FIND DLE_STAT

The GRFS_FIND_FIRST DLE and GRFS_FIND_ NEXT DLE commands are used
by the backup application program to enumerate children DLEs for
DLEs which are declared as supporting children DLEs. The sole
parameter associated with these two commands is the dle_id
parameter. The backup application will supply the dle_id value
which was previously returned by a GRFS _ATTACH_DLE__ STAT | response
message. The GRFS agent should respond with a GRFS FIND DLE_STAT
message to both the GRFS_FIND_FIRST DLE and GRFS FIND NEXT DLE
command.

It is the responsibility of the GRFS agent to determine the
sequence and keep track of the children DLEs as they are being
enumerated. The parameter in the GRFS_FIND DLE_STAT response
message are described below.

dle_name: This field should contain the name of DLE which is
being enumerated. The value must be a null-terminated
string.

path_delim: This field should contain the ASCII code of the
character used by the agent’s file system.

passwd_req: This field is a boolean flag and should be set to 0 if
no password is required to attach to the DLE. A non-
zero value in this field indicates that a password is
required.

user_req: This field is a boolean flag and should be set to 0 if
no user name is required to attach to the DLE. A non-
zero value in this field indicates that a user name is
required in order to attach to the DLE.

dle_writable:
This field is a boolean flag used to indicate whether
restore operations are permitted on the DLE. Setting
this value to 0 will prevent the backup application
from attempting restore operations.

last_access_supported:
This field is a boolean flag used to indicate whether
the DLE’s file system supports the last access date
information. This field is used by the Backup
application to determine whether file-grooming is
supported for this device.

os_id:

os_ver:

fs_type:

cryp_type: This field is not currently used.

cmpr_type: This field is not currently used.

more_flag: This field is a boolean flag and should be used by
GRFS agents to indicate that the DLE being returned is

the last child DLE available. If the GRFS agent is
incapable of knowing ahead of time whether this is the

- 21 -

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

PCT/US94/12915

last DLE, then this field can always be set to a non-
zero value (TRUE). This will force the backup
application to sent GRFS_FIND_ NEXT DLE commands until
the GRFS agent responds with a FS_NO_MORE return code.

- 21/1-

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12913

3.3 GRFS_DETACH_DLE, GRFS_DETACH_DLE_STAT

The GRFS_DETACH_DLE command is used by the backup application when
it no longer needs to access a DLE. The message has only one
command specific parameter, the dle_id of the DLE which the backup
application wishes to detach from. DLEs will always be detached
in the reverse order to which they were attached. In other words
the last DLE which was attached to will be the first to be
detached from. When a DLE is detached, the GRFS agent can free
any resources associated with the attached DLE. The
GRFS_DETACH DLE_STAT message is the response type for the
GRFS_DETACH_DLE command.

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

3.4
GRFS_FIND_FIRST OBJ, GRFS_FIND NEXT OBJ, and GRFS_FIND_OBJ_STAT

The backup application uses the GRFS_FIND_FIRST OBJ command to
begin scanning for file system objects. GRFS agents must take
into account the GRFS find object mask flags which were supplied
in the GRFS_ATTACH_DLE command. These flags specify whether
HIDDEN and SYSTEM objects should be returned for
GRFS_FIND_FIRST OBJ and GRFS_FIND NEXT OBJ commands. The
parameters associated with find first command are explained below.

dle_id: This field contains the id of the DLE that the backup
application wishes to scan.

find type: This field contains one of these values:

0x00 -return all object types found
0x01 -return only directory objects found

sname: This field contains the search string qualifier.
Normally this field will contain the string"*.*". The
string "*.*" means that all objects that meet the
find type criteria should be returned.
3.4.1 GRFS Agent Path Generation
When a GRFS agent is creating the path string used for its file
system’s "FindFirst" system call, the following components must be
included to create the correct path string. The path string must
begin with the base directory of the DLE. The DLEs current path
is then appended to the path string. Finally the sname parameter
is appended to the path string. The GRFS agent must also supply
path delimeters wherever required. BAn example of a "FindFirst"
path string created by the 0S/2 GRFS agent is presented below:
DLE base path: "C:\DOCS"
DLE current path: "GRFS\DESIGN'
sname : M et
The GRFS agent creates the path string: "C:\DOCS\GRFS\DESIGN*.*"
Agents are responsible for keeping track of when path delimeters
must be inserted. For example when OS/2 GRFS agent publishes the
root directory of a disk drive, the path string is created as
follows:
DLE base path: nCa\"
DLE current path: "DOCS\GRFS\DESIGN"
sname: Mok e
GRFS agent creates the path string: "C:\DOCS\GRFS\DESIGN*, *"

The GRFS agent does not insert a path delimeter after the DLE base
path because the DLE base path already ends with a path delimeter.

3.4.2 GRFS Find Info Area

One of the most important fields in the GRFS DBLK data area is the

- 23 -

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

Find Info area. Operating systems usually require some data which
was returned from a FindFirst operation in order to perform
subsequent FindNext operations. GRFS is designed so that the Find
Info will reside in the GRFS DBLK, and the Find Info will be
available to the GRFS agent whenever the GRFS_FIND_NEXT_ OBJ
command is issued. This is accomplished by passing the DBLK
containing the Find Info back and forth between the backup
application and the GRFS agent.

- 23/1-

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

PCT/US94/12915

The backup application will never modify the Find Info data area.

The GRFS_FIND_ NEXT OBJ message has only two parameters:

dle_id:

dblk:

This field contains the id of the DLE that the backup
application wishes to continue scanning.

This field is a DBLK which contains the Find Info data
required for the agent to perform a FindNext
operation.

The GRFS agent must respond with a GRFS_FIND_OBJ_STAT response
message to both the GRFS_FIND_FIRST OBJ and the GRFS_FIND_ NEXT OBJ

commands .

The parameters within this response message are

described below:

more_flag:

dblk:

This field contains a boolean value that can be used
by the GRFS agent to indicate to the GRFS file system
whether there are any more objects available after the
object currently being returned. If the more_flag is
set to 0 (FALSE), then the next time the backup
application makes a FindNextObject function call, the
GRFS file system will immediately return FS_NO_MORE
and will not a transmit GRFS_FIND_NEXT OBJ command to
the GRFS agent. If the agent is unable to know in
advance if the object being returned is the last
object available, then the agent can always set this
field to a non-zero (TRUE) value. This will force the
GRFS file system to send a GRFS_FIND_NEXT OBJ command
and the GRFS agent to respond with a FS_NO_MORE return
value.

This field must be a complete GRFS DBLK. If a
directory object is being returned, then the directory
name should be a full path relative to the DLEs base
path. For example, if the current path of a DLE is
"0S2/SYSTEM", and the agent is returning the directory
"TRACE", then the path returned in the DBLK data area
would be "OS2\SYSTEM\TRACE". The path must be null-
terminated, and the null-terminator character must be
included in the path length field in the DBLK common
structure. Root directory cobjects are returned with
the path name ‘\0’ and the path-leng field set to 1.

File object names are also returned as null-terminated
strings, but only the actual file name is returned.

SUBSTITUTE SHEET (RULE 2b)

WO 95/13580 PCT/US94/12915

3.5 GRFS_FIND_CLOSE and GRFS_FIND_CLOSE_STAT

The GRFS_FIND CLOSE command is used by the backup application when
it is done scanning a particular directory. When a GRFS agent
receives a GRFS_FIND_CLOSE message, the agent is allowed to
release any resources associated with the
FindFirst/FindNextfunctions. The are two parameters in the
GRFS_FIND_CLOSE message and they are described below:

dle_id:
dblk:
The proper response message type for the GRFS_FIND_ CLOSE command

is the GRFS_FIND_CLOSE_STAT message. There are no parameters
associated with the GRFS_FIND_CLOSE message.

- 25 -

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

3.6 GRFS_GET_OBJ_INFO, GRFS_GET OBJ_INFO_STAT

The GRFS_GET_OBJ_INFO command is used by the backup application to
retrieve a completed DBLK when the backup application has only a
partially complete DBLK. The only DBLK fields which are required
to contain valid data when the DBLK is passed to the GRFS agent
are the blk_type (DIR or FILE) and the object name in the DBLK
data area. The proper response message type is
GRFS_GET_OBJ_INFO_STAT. The only parameter in the response
message is the fully completed DBLK.

There is one slight difference between how a DBLK is created for
the GRFS_GET_OBJ_INFO command. All other GRFS commands which
create DBLKs return a fully specified path as the object name for
directory objects. The GRFS_GET OBJ_INFO_STAT DBLK returns ONLY
the directory name as the path data in the DBLK data area. This
ig a "truth".

**** Tf the DBLK sent to the agent contains a Find Info area,

then the agent MUST preserve this data within the DBLK which
is returned to the backup application.

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

3.7 GRFS_GET_CURRENT _DDB, GRFS_GET_CURRENT DDB_STAT
The GRFS_GET_CURRENT DDB command is used by the backup application
to retrieve a DBLK corresponding to the DLEs current directory
path. The proper response message type is GRFS_GET_OBJ_INFO_STAT.
The directory path string returned in the DBLK must be a fully
specified relative to the DLE’s base path. An example is
presented below:

DLE’s base path: "C:\0s2"

DLE's current path: "WINOS2\SYSTEM"
The path string returned in the DBLK data area would be
"WINOS2\SYSTEM". An example of the DLE’s current path being the
logical root directory is presented below:

DLE’s base path: "C:\0s2n

DLE’s current path: *k

The path string data returned in the DBLK data area would be a
’\0’ and the b.d.os_path_leng field would be set to 1.

*%*x* Yhenever a GRFS agent returns a logical root directory
object DBLK, the DBLK data area path string should be set to
‘\0’ and the b.d.os_path_leng field should be 1.

- 27 -

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

3.8 GRFS_CREATE_OBJ, GRFS_CREATE_OBJ_STAT

The GRFS_CREATE _OBJ command is used by the backup application
during restore operations in orxrder to create a file system object.
The parameters associated with this command are the following:

dle_id: This parameter contains the DLE handle of the DLE
where the object should be created.

dblk: This parameter is a complete DBLK and contains the
type and the name of the object to be created.

Directory object DBLKs will contain fully specified paths, so the
DLE’s current path is NOT included when creating the full path of
the object to be created, GRFS Agents must be capable of creating
all levels of a fully specified directory path from a single
GRFS_CREATE_OBJ command. For example, the backup application may
send the command to create the directory "WIN31\WORD\DOCS\ISPECS".
If the any of the directories "DOCS", "WORD", or "WIN31" do not
already exist, then the agent must first create the preceding
directories within the fully specified path.

File objects are always created in the DLE’s current path
directory.

The proper response message type is GRFS_CREATE_OBJ_STAT. There
are no parameters associated with this response message.

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

3.9 GRFS_OPEN_OBJ, GRFS_OPEN_OBJ_STAT

The backup application must "open" a file system object before any
read, write or verify operations can be performed on the object.
The three parameters associated with the GRFS_OPEN_OBJ command are
described below:

dle_id: This field contains the DLE handle of the DLE where
the object to be opened resides.

mode : This field contains a flag value which is GRFS agent
must use to determine the mode which should be used to
open the object. This value will be one of the
following:

0 READ mode (backup operation)
1 WRITE mode (restore operation)
2 VERIFY mode (compare operation)

dblk: This parameter is a complete DBLK and contains the
type and the name of the object to be opened.

When a backup application is backing up a GRFS agent, the backup
application may desire to backup files which are already in use on
the GRFS agent’s machine. The BEC_BACKUP_FILES_INUSE flag in the
bec_flags field of the GRFS_ATTACH DLE command determines whether
the GRFS agent should attempt to open objects which have already
been opened by a different process. If the DLE is configured to
backup files in use and the agent is able to open the object, then
the GRFS response message return code should be set to
FS_OPENED_INUSE.

When an object is opened successfully, two parameters are returned
in the GRFS_OPEN_OBJ_STAT response message. The first parameter
is the obj_id. This parameter is a 32-bit value generated by the
GRFS agent as an object handle. All succeeding GRFS commands
which access the object will reference the obj_id. As with DLE
handle ids, GRFS agents can use whatever method desired to
generate the object handle ids.

A completed DBLK is also returned to the backup application in the
response message. I1f the GRFS agent’s operating system platform
has any OS specific object attributes which are accessible only
after the object has been successfully opened, they can be saved
in the OS specific area within the DBLK’s data area. One example
of this is 0S/2 "longnames" are accessible only after the object
is opened.

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

3.10

PCT/US94/12915

GRFS_READ_OBJ, GRFS_READ_OBJ_STAT

The backup application uses the GRFS_READ OBJ command to read data
from previously opened file system objects. - The parameters
associated with this command are described below:

obj_id:

size:

offset:

This field contains the object handle id which was
returned by the agent in the GRFS_OPEN_OBJ_STAT
response message. o

This field contains the size (in§pl230Xbytes) buffer
which is available to receive data. The GRFS agent
should endeavor to return as much data as possible for
each GRFS_READ OBJ command.

This field contains the number of bytes offset into
the object the agent should begin returning data from.

The proper response message type is GRFS_READ OBJ_STAT. The
response message has four fields which are described below:

size:

blk_size:

strm_info:

data:

This field should contain the actual number of bytes
of data being returned in the response message.

This field should usually be set to 1. This field is
used by GRFS agents to request a specific number of
bytes to be read by the next GRFS_READ OBJ command.
This functionality can be used if certain data areas
must be read as "atomic" objects.

As an example, suppose the backup application requests
to read 20 bytes. The GRFS agent has 14 bytes
available, and then the next 12 bytes must be read a
unit. The GRFS would return the 14 bytes, set the
size field to 14, and set the blk_size field to 12.
This will force the backup application to request 12
bytes in the next GRFS_READ OBJ command.

The GRFS agent must never set the blk_size field
larger than the negotiated GRFS maximum object buffer
size.

This field is a STREAM INFO structure and is discussed
in section 1.3 of this document.

This field is the buffer which contains the actual
data. The size of this buffer is limited to the

maximum object buffer size as negotiated during the
DLE attach operation.

- 30 -

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

3.11 GRFS_WRITE_OBJ, GRFS_WRITE_OBJ_STAT

The backup application uses the GRFS_WRITE_OBJ command to restore
data to a GRFS agent. The parameters associated with this command
are described below:

obj_id: This field contains the object handle id which was
returned by the agent in the GRFS_OPEN_OBJ_STAT
response message.

size: This field contains the size (in bytes) of the data
buffer which is to be written.

offset: This field contains the offset in bytes, from the
beginning of the object, that the GRFS agent should
begin writing the data buffer.

strm_info: This field contains a STREARM INFO structure. As
described for the GRFS_READ_OBJ response message, the
first block of each data stream will have the
strm_info.id field set to the stream data type. All
succeeding blocks of that data stream type will have
the strm_info.id field set to STRM_INVALID. The first
block of a particular stream data type will have the
strm_info.size field set to the total size (in bytes)
of the stream.

GRFS agents should ignore a data block for a stream
type that they do not recognize, and their response
message should indicate that the entire block was
successfully written.

data: This field is the buffer which contains the data block
that is to be written.

The proper response message type is GRFS_WRITE_OBJ_STAT. This
response message has the following parameters associated with it:

gize: This field should be set to the number of bytes
successfully written.

blk_size: This field should normally be set to 1. This field is
used to indicate that the GRFS agent requires a
specific number of bytes to be written in the next
GRFS_WRITE_OBJ command. Any value other than 1 will
force the backup application to attempt to write the
requested number of Dbytes during the next
GRFS_WRITE_OBJ operation. The agent should NEVER set
this field to greater than the negotiated maximum
object buffer size.

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

3.12

PCT/US94/12915

GRFS_VERIFY_OBJ, GRFS_VERIFY OBJ_STAT

The backup application uses the GRFS_VERIFY OBJ command to verify
that data contained on the backup media matches the data residing
on the GRFS agent. The parameters associated with this command
are described below:

obj_id:

offset:

strm_info:

data:

This field contains the object handle id which was
returned by the agent in the GRFS_OPEN_OBJ_STAT
response message.

This field contains the size (ih bytes) of the data
buffer which is to be compared.

This field contains the offset in bytes, from the
beginning of the object, that the GRFS agent should
begin comparing the data buffer.

This field contains a STREAM INFO structure and is
described in section 1.3 of this document.

This field is the buffer which contains the data block
that is to be verified.

The proper response message type is GRFS_VERIFY OBJ_STAT. This
response message has the following parameters associated with it:

size:

blk_size:

This field should be set to the number of bytes
successfully verified.

This field should normally be set to 1. This field is
used to indicate that the GRFS agent requires a
specific number of bytes to be verified in the next
GRFS_VERIFY_OBJ command. Any value other than 1 will
force the backup application to attempt to verify the
requested number of bytes during the next GRFS_VERIFY-
OBJ operation. The agent should NEVER set this field
to greater than the negotiated maximum object buffer
size.

- 32 -

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

3.13 GRFS_SEEK_OBJ, GRFS_SEEK_OBJ_STAT

The backup application uses the GRFS_SEEK_OBJ command to force the
GRFS agent to move the previously opened object’s file location
pointer to a specific offset within the object. This command is
typically used by the backup application to seek past sectors
which are unreadable in hopes that some of the data may be
readable (HaHa). The parameters associated with this command are
described below:

obj_id: This field contains the object handle id.which was
returned by the agent in the GRFS_OPEN_OBJ_STAT
response megsage.

offset: This field contains the offset in bytes, from the
beginning of the object, that the GRFS agent should
move the file pointer to.

The proper response message type is GRFS_SEEK_OBJ_STAT. This
response message contains only one parameter associated with it.
The parameter, seek_obj_offset specifies the offset within the
object that the agent was able to seek to.

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

3.14 GRFS_CLOSE_OBJ, GRFS_CLOSE_OBJ_STAT

The backup application uses the GRFS_CLOSE_OBJ command to force
the GRFS agent to close a previously opened file system object.
When an object is closed, the agent is allowed to free any
resources associated with the open object. The only parameter in
this command message is the obj_id field. This field contains the
ocbject handle id which was returned by this agent in the
GRFS_OPEN_OBJ_STAT response message.

The proper response message type is GRFS_CLOSE_OBJ_STAT. There
are no parameters with this response message.

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

3.15 GRFS_DELETE_OBJ, GRFS_DELETE_OBJ_STAT

The GRFS_DELETE_OBJ command is used by the backup application
during transfer operations in order to remove a file system

object. The parameters associated with this command are the
following:
dle_id: This parameter contains the DLE handlie of the DLE

where the object should be removed.

dblk: This parameter is a complete DBLK, and contains the
type and the name of the object to be deleted.

*p905Xfully Directory object DBLKs will contain specified paths,
so the DLE’s current path is NOT included when
creating the full path of the object to be deleted.
The backup application will first remove file objects
from a directory object before removing the directory
object.

File objects are always deleted from the DLE’s current
path directory.

The proper response message type is

GRFS_DELETE_OBJ_STAT. There are no parameters
associated with this response message.

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

3.16 GRFS_CHANGE_DIR, GRFS_CHANGE_DIR_STAT

The GRFS_CHANGE_DIR command is used by the backup application to
force a GRFS agent to change the "current directory" of a specific
DLE. The new path supplied in the message is always a fully
specified path relative to the DLE’s base path. The GRFS agent
MUST verify that the new path is a valid path. This can usually
be accomplished by performing a "FindFirst" operation on the new
path. As an added bonus, the backup application may send a "null-
impreguated" string in the path field. This means that the GRFS
agent must replace the internal ’‘\0’ path delimeters with the
agent’'s OS specific path delimeter -character. No applause
necessary.

The proper response message type is GRFS_CHANGE_DIR_STAT. There
are no parameters associated with this response message.

- 36 -

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

3.18 GRFS_SET_OBJ_INFO, GRFS_SET_OBJ_INFO_STAT

The GRFS_SET_OBJ_INFO command is used by the backup application to
set the file system attributes of a file system object. The
parameters associated with this command are described below:

dle_id: This parameter contains the DLE handle id of the DLE
where the object resides.

dblk: This parameter is complete DBLK and contains the
object type, the object name, and the object attribute
data which are to be set.

The GRFS agent must s8et the following file system object

attributes:
ctime (CREATION TIME)
atime (ACCESS TIME) (if possible)
time (MODIFIED TIME)
size (object data size)
gen_attr (file system attribute flags)

The proper response message type is GRFS_SET_OBJ_INFO_STAT. There
are no parameters associated with this response message.

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

3.19 GRFS_VERIFY_OBJ_INFO, GRFS_VERIFY OBJ_INFO_STAT

The GRFS_VERIFY_ OBJ_INFO command is used by the backup application
to verify that file system object attributes on the GRFS agent
match the object attributes contained on the backup media. The
parameters associated with this command are described below:

dle_id: This parameter contains the DLE handle of the DLE
where the object resides.

dblk: This parameter is a complete DBLK and contains the
object type, the object name, and the object attribute
data which are to be compared.

The GRFS agent must verify that the following input parameter DBLK
fields match the actual attributes of the file system object:

cdate (CREATION DATE)

mdate (MODIFIED DATE)

size (object data size)

gen_attr (file system attribute flags)

The proper response message type is GRFS_VERIFY_OBJ_INFO_STAT.
There are no parameters associated with this response message.

- 38 -

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

3.20 GRFS_PREPARE DBLK, GRFS_PREPARE_DBLK_STAT

The GRFS_PREPARE DBLK command is used so that during restore
operations the GRFS Agent is able to mod:.fy (*image") path and
directory names into a form which is usable by the target
(restore) agent’s file systems. For instance, if a backup set is
created by a MacIntosh agent, then the file and directory names
must be modified in order to restore the backup set onto a DOS
agent’s FAT file system 8.3 format.

dle_id: This parameter contains the DLE handle of the DLE
where the object resides.

dblk: This parameter is a complete DBLK and contains the
object type, the object name.

The agent should append the modified name at the end of the DBLK
and alter the "os_" name pointers to point to the new name. The
agent must also modify the dblk.dblk_actual_size to account for
the increased DBLK size. If the input name does not require
modification, then the DBLK can be returned unmodified.

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

Appendix A - GRFS Technical Reference

This section of the GRFS Technical Reference appendix shows
the actual definitions of the structures which have been
described in this document. All of the structures can be
found the GRFS.H include file.

typedef union

INT8 val [4];
INT32 num;
} INET32;

typedef union

UINTS8 val (4] ;
UINT32 num;
} UNET32;

typedef union

INTS vall2];
INT16 num;
} INET16;

typedef union

UINTS vall[2];
UINT16 num;
} UNET16;

typedef struct

UNET32 lsw;
UNET32 msw;
} UNETé64;

typedef UNET 32 DLE_HANDLE;
typedef UNET32 OBJ_HANDLE;
typedef UNET32 REQ HANDLE;
GENERIC DBLK NETWORK STRUCTURE

struct grfs_gen_dblk str

UINTS blk_type;
UINTS resl;
UINTS fg_com_reserve [38] ;

struct STD_OBJ_INFO

- 40 -

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

{
UINTS os_id;
UINTS os_ver;
UINTS . res2([2];
DATE_TIME ctime;
DATE_TIME atime;
DATE_TIME btime;
DATE_TIME time;
UNET64 size;
UNET32 gen_attr;
} std_info;
BOOLEAN os_info_complete;
UNET16 min_ddb_info;
UNET16 min_ddb_size;
UNET16 os_spec_info;
UNET16 os_spec_size;
UNET16 dblk_actual_size;
UNET16 tape_attribs;
UNET16 name_complete;
UNET16 find_info;
UNET16 find_info_size;
BOOLEAN translate_flag;
BOOLEAN special_flag;
UINTS obj_type;
union

struct OS_DDB_INFO

{
UNET16
UNET16
UNET16
UNET16
} d;

os_path;
os_path_leng;
path_leng;
path;

struct OSLFDB_INFO

BOOLEAN
UNET16
UNET16
} £
} b;
}:

typedef struct
*GRFS_GEN_DBLK_PTR;

struct grfs_message

inuse_attrib;
os_name;
name ;

grfs_gen_dblk_str

UINTS msg_type;
UINTS reserved;
UINT16 retcode;

PCT/0S94/12915

GRFS_GEN_DBLK,

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

UNET32

request_id

union {
/** GRFS command parameter structures wok

DLE_HANDLE
OBJ_HANDLE

GRFS ATTACH_DLE_PARMS
GRFS FIND_ FIRST OBJ PARMS

GRFS OBJECT PARMS

GRFS_(OPEN OBJ PARMS
GRFS_| —READ OBJ "~ PARMS
GRFS WRITE OBJ PARMS
GRFS_ VERIFY OBJ PARMS
GRFS SEEK_ OBJ PARMS
GRFS_| CHANGE DIR PARMS
GRFS EN'UM SPEC DARMS

dle_id;

obj_id;
attach_parms;
£f_obj_parms;
obj_parms;
open_obj_parms;
read_obj_parms;
write_obj_parms;
verify obj_parms;
seek_obj_parms;
change_dir_parms;
enum_spec_parms;

/** GRFS response parameter structures **/

UNET32
GRFS_GEN_DBLK

GRFS_| A'I'I'ACH DLE_STAT_ PARMS

GRFS FIND_. DLE STAT PARMS
GRFS__ FIND OBJ STAT PARMS
GRFS_ _OPEN_¢ OBJ STAT PARMS
GRFS_. READ OBJ STAT PARMS
GRFS_ WRITE OBJ S’I‘A’I‘ PARMS

GRFS_VERIFY_OBJ_STAT PARMS

GRFS_ENUM_SPEC_STAT PARMS

} msg_parms;

42

seek_obj_offset;
dblk;
attach_stat;
find dle_stat;
find obj_stat;
open_obj_stat;
read obj_stat;
write_obj_stat:
verify_obj_stat;

PCT/US94/12915

enum_special_stat;

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

PCT/US94/12915

This section shows the GRFS command message types and their

corresponding GRFS response message

types.

The parameters

associated with each message are also provided.

GRFS COMMAND MESSAGES GRFS RESPONSE MESSAGES

GRFS_ATTACH DLE(dle_name[], GRFS_ATTACH_DLE_STAT(dle_id,

bee flags,
special_word,
max_obj_bsize,
dle_parent,
cmpr_type,
user_name (],
password[])

max_connects,
max_opens_per_connect,
process_ddbs,
max_obj_bsize,
cmpr_type,
supports_children
path_len,
current_path{])

GRFS_FIND_FIRST DLE(dle_id) GRFS_FIND_DLE_STAT(dle namel(],

path_delim,
passwd_req,

user_req,
dle_writeable,
supports_last_access,
os_id,

os_ver,
{s_type,
crypt_type,
cmpr_type,
more_flag)
GRFS_FIND_NEXT DLE(dle_id) GRFS_FIND_DLE_STAT (dle_name],
path_delim,
passwd_req,
user_req,
dle_writeable,
os_id,
os_ver,
fs_type,
crypt_type,
cmpr_type,
more_flag)
GRFS_DETACH DLE(dle_id) GRFS_DETACH DLE_STAT(---)
GRFS_FIND FIRST OBJ(dle_id, GRFS_FIND_OBJ_STAT(more_flag,
f£ind_type, dblk)
sname [])
GRFS_FIND NEXT OBJ(dle,id, GRFS_FIND_OBJ_STAT (more_£flag,
dblk) dblk)
GRFS_FIND_CLOSE(dle_id, GRFS_FIND_CLOSE_STAT(---)
dblk)
GRFS_CREATE_OBJ(dle_id, GRFS_CREATE_OBJ_STAT(---)
dblk)
GRFS_OPEN_OBJ (dle_id, GRFS_OPEN_OBJ_STAT (obj_id,
mode, dblk)
- 43

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

GRFS_READ_OBJ (

GRFS_WRITE_OBJ (

GRFS_SEEK_OBJ (

GRFS_VERIFY_OBJ (

GRFS_CLOSE_OBJ (

GRFS_DELETE_OBJ (

dblk)

obj_id,
size,
offset)

obj_id,
size,
offset,
strm_info,
buffer(])

obj_id,
offset)

obj_id,
size,
offset,
strm_info,
buffer(])

obj_id)

dle_id,
dblk)

GRFS_GET_OBJ_INFO (dle_id,

dblk)

GRFS_VERIFY_OBJ_INFO(dle_id,

GRFS_CHANGE_DIR (

dblk)

dle_id,
net_pathi],
size)

GRFS_GET_CUR_DDB(dle_id)

GRFS_SET_OBJ_INFO(dle_id,

dblk)

GRFS_ENUM_SPECIAL_FIRST

(dle_idq,
enum_type)

GRFS_ENUM_SPECIAL NEXT

(dle_id,
enum_type)

GRFS_SPECIAL_EXCLUDE

(path_len,
fname_len,
datall)

GRFS_PREPARE_DBLK

(dle_id,
dblk)

GRFS_READ_OBJ_STAT (

GRFS_WRITE_OBJ_STAT (

PCT/US94/12915

size,
blk_size,
strm_info,
bufferl(])

size,
blk_size)

GRFS_SEEK_OBJ_STAT (seek_obj_offset)

GRFS_VERIFY_OBJ_STAT(size,
blk_size)

GRFS_CLOSE_OBJ_STAT (---)
GRFS_DELETE_OBJ_STAT(---)
GRFS_GET_OBJ_INFO_STAT(dblk)
GRFS_VERIFY_OBJ_INFO_STAT(---)
GRFS_CHANGE_DIR_STAT(---)
GRFS_GET_CUR_DDB_STAT(dblk)
GRFS_SET_OBJ_INFO_STAT(---)
GRFS_ENUM SPECIAL_STAT(name(],

GRFS_ENUM_SPECIAL_STAT (

more_flag)

name [],
more_£lag)

GRFS_SPECIAL_EXCLUDE_STAT (---)

GRFS_PREPARE_DBLK_STAT (

SUBSTITUTE SHEET (RULE 26)

dblk)

WO 95/13580 PCT/US94/12915

COMMON GRFS MESSAGE PROCESSING

All GRFS messages generated by the backup application include the
following common fields: msg_type, retcode, and request_id. The
msg_type field must contain a valid GRFS command value. The
backup application will set the regquest_id field to a value which
the backup application will use to correlate outgoing GRFS command
messages to the corresponding incoming GRFS response messages.
The GRFS agent must set the request_id value of the GRFS response
message to the request_id value received in the corresponding GRFS
command message. The GRFS response message to the request_id
value received in the corresponding GRFS command message. The
ret_code field is not used for GRFS command messages; it is
meaningful only for GRFS response messages.

Several of the message parameter structures contain large fields
(DBLKs, full-path names) which are defined statically but contain
variable length data, and these data fields will typically fill
only a small portion of the allotted space. These large fields
are always declared as the last member in the parameter structure.
Only the portion of the message parameter field which is actually
used must be transmitted across the network. This will allow the
GRFS to be more efficient because most non object-data GRFS
messages can be transmitted as a single NRL transport packet.

CRITICAL ERROR HANDLING

GRFS agent programs must handle critical error situations without
hanging the agent’s system. When a GRFS agent detects a critical
error while performing an GRFS command, the agent program should
"fail"® the operation and set the retcode field appropriately
(FS_DEVICE_ERROR, etc). The agent can also retry the failed
operation before returning a GRFS status message to the backup
application. When a fatal FS error code is returned to the backup
application, the application user will be given the opportunity to
decide whether to retry the failed operation.

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

GRFS Messages Type Values

GRFS COMMANDS

PCT/US94/12915

GRFS_ATTACH_DLE 0x01
GRFS_FIND_FIRST_DLE 0x02
GRFS_FIND_NEXT_ DLE 0x03
GRFS_DETACH_DLE 0x04
GRFS_FIND_FIRST OBJ 0x05
GRFS_FIND_ NEXT OBJ 0x06
GRFS_FIND_CLOSE 0x07
GRFS_CREATE_OBJ 0x08
GRFS_OPEN_OBJ 0x09
GRFS_READ_OBJ 0x0A
GRFS_WRITE_OBJ 0x0B
GRFS_SEEK_OBJ 0x0C
GRFS_VERIFY_OBJ 0x0D
GRFS_CLOSE_OBJ 0XOE
GRFS_DELETE_OBJ 0XOF
GRFS_GET_OBJ_INFO 0x10
GRFS_VERIFY_OBJ_INFO 0x11
GRFS_CHANGE_DIR 0x12
GRFS_GET_CUR_DDB 0x13
GRFS_SET_OBJ_INFO 0x14
GRFS_ENUM_SPECIAL_ FIRST 0x15
GRFS_ENUM_SPECIAL_NEXT 0x16
GRFS_SPECIAL_EXCLUDE 0x17
GRFS_PREPARE_DBLK 0x18
GRFS RESPONSES
GRFS_ATTACH_DLE_STAT 0x41
GRFS_FIND_DLE_STAT 0x42
GRFS_DETACH_DLE_STAT 0x44
GRFS_FIND_OBJ_STAT 0x45
GRFS_FIND_CLOSE_STAT 0x47
GRFS_CREATE_OBJ_STAT 0x48
GRFS_OPEN_OBJ_STAT 0x49
GRFS_READ_OBJ_STAT 0x4A
GRFS_WRITE_OBJ_STAT 0x4B
GRFS_SEEK_OBJ_STAT 0x4C
GRFS_VERIFY_OBJ_STAT 0x4D
GRFS_CLOSE_OBJ_STAT 0X4E
GRFS_DELETE_OBJ_STAT 0x4F
GRFS_GET_OBJ_INFO_STAT 0x50
GRFS_VERIFY_OBJ_INFO_STAT 0x51
GRFS_CHANGE_DIR_STAT 0x52
GRFS_GET_CUR_DDB_STAT 0x53
GRFS_SET_OBJ_INFO_STAT 0x54
GRFS_ENUM_SPECIAL_STAT 0x55
GRFS_SPECIAL_EXCLUDE_STAT 0x57
GRFS_PREPARE_DBLK_STAT 0x58

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

GRFS COMMAND MESSAGES

GRFS_ATTACH_DLE

GRFS_FIND_FIRST DLE
GRFS_FIND_NEXT DLE
GRFS_DETACH_DLE

GRFS_FIND_FIRST OBJ

GRFS_FIND_NEXT OBJ
GRFS_FIND_CLOSE
GRFS_CREATE_OBJ
GRFS_DELETE_OBJ
GRFS_GET_OBJ_INFO
GRFS_VERIFY_OBJ_INFO
GRFS_SET_OBJ_INFO

GRFS_OPEN_OBJ

GRFS_READ_OBJ

GRFS_WRITE_OBJ

PCT/US94/12915

MESSAGE PARAMETER STRUCTURE

struct GRFS_ATTACH DLE_PARMS

CHAR dle_name [GRFS_MAX DLE_NAME_LEN] ;

INET16é bec_flags
INET16 special_word;
UNET16 max_obj_bsize;
DLE_HANDLE dle_parent;
UINTES cmpr_type;
CHAR user_name [48] ;

CHAR password [MAX PASSOWRD_LEN] ;

1

DLE_HAND dle_id;
DLE_HAND dle_id;
DLE_HAND dle_id;

struct GRFS_FIND_FIRST_ OBJ_PARMS

DLE_HAND dle.id;
UNET16 find_type;
CHAR sname [GRFS_MAX_SNAME] ;

’

struct GRFS_OBJECT_PARMS
DLE_HAND dle_id;
GRFS_GEN_DBLK dblk;

I

struct GRFS_OPEN_OBJ_PARMS

{

DLE_HAND dle_id;
INET16) mode;
UNITS reserved[2] ;

GRFS_GEN_DBLK dblk;

’

struct GRFS_READ_OBJ_PARMS

{
OBJ_HAND obj_id;
UNET16 gize;

UNET32 offset;

’

struct GRFS_WRITE_OBJ_PARMS

- 47 -

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

PCT/US94/12915
OBJ_HAND obj_id;
UNET32 offset;
STRERM_INFO strm_info;
UNET16 size;

UINT8 buffer [GRFS_MIN_OBJ_SIZE];

’

GRFS_SEEK_OBJ struct GRFS_SEEK_OBJ_PARMS
OBJ_HAND obj_id;
UNET32 offset
}i

GRFS_VERIFY_OBJ struct{GRFS_VERIFY_OBJ_PARMS
OBJ_HAND obj_id;
UNET32 offset;
STREAM INFO strm_info;
UNET16 size;

UINT8 buffer [GRFS_MIN_OBJ_SIZE];

GRFS_CLOSE_OBJ OBJ_HAND obj_id
GRFS_CHANGE_DIR struct GRFS_CHANGE_DIR_PARMS

{
DLE_HAND dle_id;
INET16 size;
CHAR net_path{GRFS_MAX_ PATH_LEN] ;

4

GRFS_ENUM_SPECIAL_FIRST struct GRFS_ENUM SPEC_PARMS

GRFS_ENUM_SPECIAL NEXT
DLE_HAND dle_id;
UNET16 enum_type;
}i

GRFS_SPECIAL_ EXCLUDE struct GRFS_SPEC_EXCLUDE_PARMS
INET16 path_len;
INET16 fname_len;

UINTS buffer [GRFS_MIN_OBJ_SIZE] ;

- 48 -

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

PCT/US94/12915
GRFS RESPONSE MESSAGES MESSAGE PARAMETER STRUCTURE
GRFS_ATTACH_DLE_STAT struct GRFS_ATTACH DLE_STAT_ PARMS
DLE_HAND dle_id;
INET16 max_connects;
INET16 max_opens_per_connect;
UNET16 process_ddbs;
INET16 max_obj_bsize;
BOOLEAN supports_children;
UNET16 path_len
UINTS cmpr_type;

CHAR current Tpat:h [GRFS_MAX PATH LEN] ;

’

GRFS_FIND DLE_STAT struct GRFS_FIND DLE_STAT PARMS
CHAR dle_name [GRFS_MAX_DLE_NAME_LEN] ;
CHAR path_delim;
UINTS8 resl;
BOOLEAN passwd_req;
BOOLEAN user_req;
BOOLEAN dle_writeable;
BOOLEAN last_access_supported;
INTS os_id;
INTS os_ver;
INET16 fs_type;
UINTS8 crypt_type;
UINTS8 cmpr_type;
BOOLEAN more_flag
}i
GRFS_DETACH_DLE_STAT none
GRFS_FIND OBJ_STAT struct GRFS_FIND_OBJ_STAT_ PARMS
BOOLEAN more_flag;
UINTS reserved[2] ;
GRFS_GEN_DBLK dblk;
GRFS_FIND_CLOSE_STAT none
GRFS_CREATE_OBJ_STAT none
GRFS_OPEN_OBJ_STAT struct GRFS_OPEN_OBJ_STAT_ PARMS
OBJ HAND obj.id;
GRFS_GEN_DBLK dblk;
i
GRFS_READ_ OBJ_STAT - struct GRFS_READ OBJ_STAT PARMS
- 49 -

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

GRFS_WRITE_OBJ_STAT

GRFS_SEEK_OBJ_STAT

GRFS_VERIFY_OBJ_STAT

GRFS_CLOSE_OBJ_STAT
GRFS_DELETE_OBJ_STAT
GRFS_GET_OBJ_INFO_STAT
GRFS_VERIFY_OBJ_INFO_STAT
GRFS_CHANGE_DIR_STAT
GRFS_GET_CUR_DDB_STAT
GRFS_SET_OBJ_INFO_STAT

GRFS_ENUM_SPECIAL_STAT

PCT/US94/12915
UNET16 size;
UNET16 blk_size;
STREAM_INFO strm_info;

UINT8 buffer [GRFS_MIN_OBJ_SIZE] ;

I

struct GRFS_WRITE_OBJ_ STAT PARMS

UNET16 size;
UNET16 blk_size;

}i
UNET32 offset

struct GRFS_VERIFY_OBJ_STAT PARMS

UNET16 size;
UNET16 blk_size;
i
none
none
GRFS_GEN_DBLK dblk;
none
none
GRFS_GEN_DBLK dblk;
none

struct GRFS_ENUM_SPECIAL_STAT_PARMS

{

ROOLEAN more.flag;
INET16 path_len;
INET16 - fname_len;

UINT8 buffer [GRFS_MIN_ OBJ_SIZE] ;

r

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

GRFS RETURN CODES

PCT/US94/12915

The following values have been defined for GRFS agents to use as
return codes in the retcode field of GRFS response messages:

SUCCESS

OUT_OF _MEMORY
FS_NEVER_ATTACHED
FS_BAD_DBLK
FS_DLE_NOT_ATTACHED
FS_STACK_EMPTY
FS_ACCESS_DENIED
FS_OUT_OF_SPACE
FS_NO_MORE

FS_NOT_FOUND
FS_INVALID_DIR
FS_AT_ROOT
FS_OBJECT_NOT_ OPENED
FS_EOF_REACHED
FS_DEVICE_ERROR
FS_GDATA DIFFERENT
FS_SECURITY DIFFERENT
FS_OPENED_INUSE
FS_IN_USE_ERROR
FS_INFO_DIFFERENT
FS_BUFFER_TO_SMALL
FS_DEFAULT SPECIFIED
FS_RESDATA_DIFFERENT
FS_INCOMPATIBLE_OBJECT
FS_NOT_INITIALIZED
FS_UNDEFINED_TYPE
FS_NOT_OPEN
FS_INVALID_DLE
FS_NO_MORE_DLE
FS_BAD_DLE_HAND
FS_DRIVE_LIST ERROR
FS_ATTACH_TO_PARENT
FS_DEVICE_NOT FOUND
FS_BAD_INPUT_DATA
FS_OS_ATTRIB. DIFFER
INVALID_PATH_DESCRIPTOR
INVALID_FILE_DESCRIPTOR
DRIVE_DESCRIPTOR_ERROR
FS_NO_MORE_CONNECTIONS
FS_SERVER_ADDR_NOT FOUND
FS_MAX_SERVER_CONNECTIONS
FS_BAD_ATTACH_TO_SERVER
FS_BAD_SERVER_LOGIN
FS_SERVER_LOGOUT_DENIED
FS_BAD_ATTR_READ
FS_EADATA_DIFFERENT
FS_OBJECT_CORRUPT
FS_ACLDATA_DIFFERENT
FS_CHILDREN NOT_COMPLETE
FS_COMM_FAILURE
FS_NET_DEV_ERROR

FS_DONT_WANT STREAM

- 51

SUBSTITUTE SHEET (RULE 26)

0x0000

OxXFFFF
OxXFEO1
OxFEQ02
OxFEQO3
OxFEO4
OxFEQS
0xFE06
OxXFEOQ7
OxFEQ8
OxXFEO09
OxFEOQOA
O0xFEOB
OxXFEOC
OxFEOD
OXFEOE
OxFEQOF
0xFE10
0xXFE1l1l
OxFE12
OxFE13
0XFE14
0xFE15
0xFE1l6
OxXFE17
0xFE18
0xFE19
OxFE1A
OxXFE1B
0xFE1C
0xFE1D
OxXFE1E
OxFE1F
OxXFE20
OxXFE21
OxXFE22
OxXFE23
O0xFE24
0xFE25
OxXFE26
0xFE27
OxXFE28
O0xFE29
OxXFE2A
0xFE2B
0xFE2C
OxXFE2D
OxFE2E
OxFE2F
OxXFE30
OxFE31

O0xFEB1

WO 95/13580

PCT/US94/12915

The following section provides a list of likely return code values

for each of the GRFS response messages.

GRFS agents should use

the return value listed above which provides the best indication

for the cause of an error.

GRFS_ATTACH_DLE_STAT
FS_ACCESS_DENIED

FS_INVALID_DLE
OUT_OF_MEMORY

GRFS_FIND_DLE_STAT
FS_INVALID_DLE
FS_NO_MORE

GRFS_DETACH_DLE_STAT
FS_INVALID_DLE

GRFS_FIND_OBJ_STAT
FS_INVALID_DLE
FS_NO_MORE

GRFS_FIND_CLOSE_STAT
* FS_INVALID_DLE

GRFS_CREATE_OBJ_STAT
FS_INVALID_DLE
FS_DEVICE_ERROR

FS_ACCESS_DENIED
FS_BAD_DBLK

GRFS_OPEN_OBJ_STAT
FS_OPENED_INUSE

FS_IN_USE_ERROR

FS_INVALID_ DLE
FS_NOT_FOURD
FS_DEVICE_ERROR

FS_BAD_DBLK
FS_ACCESS_DENIED

OUT_OF_MEMORY

GRFS_READ_OBJ_STAT
FS_DEVICE_ERROR
FS_OBJECT_NOT_OPENED
FS_EOF_REACHED
FS_ACCESS_DENIED

GRFS_WRITE_OBJ_STAT
FS_OBJECT_NOT_OPENED
FS_DEVICE_ERROR

The user or password field was not
valid.
The dle_name was invalid

dle_id was invalid
No more DLEs to enumerate

dle_id was invalid

dle_id was invalid
No more file system objects to
enumerate

dle_id was invalid

dle_id was invalid

"hard" device error, unable to
c r e a t e
object

Agent does not have permission to
create object
The DBLK data is invalid

Object already opened by another
process, but not locked, and
BEC_CONFTIG £f1lag
BEC_BACKUP_FILES_IN USE is set
Object already opened by another
process and locked,
BEC_BACKUP_FILES_IN_USE not set
dle_id was invalid

Object not found

"hard" device error, unable to open
object

The DBLK data was invalid

Agent does not have permission to
open object

"hard" device error read

obj_id parameter was invalid

End of File already reached

Agent does not have permission to
read object

obj_id parameter not invalid
"hard" device write error

52 -

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

FS_OBJECT_NOT_OPENED obj_id parameter was invalid

- 52/1.

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

FS_OUT_OF_SPACE
FS_ACCESS_DENIED

FS_DONT_WANT STREAM

GRFS_SEEK_OBJ_STAT
FS_OBJECT_NOT OPENED
FS_EOF_REACHED
FS_DEVICE_ERROR

GRFS_VERIFY_OBJ_STAT
FS_OBJECT_NOT_OPENED
FS_DEVICE_ERROR
FS_EOF_REACHED
FS_GDATA_DIFFERENT

FS_SECURITY_DIFFERENT
FS_EADATA DIFFERENT

FS_DONT_WANT STREAM

GRFS_CLOSE_OBJ_STAT
FS_OBJECT_NOT_OPENED
FS_DEVICE_ERROR

GRFS_DELETE_OBJ_STAT
FS_INVALID DLE
FS_NOT_FOUND
FS_DEVICE_ERROR

FS_BAD_DBLK
FS_ACCESS_DENIED

GRFS_GET_OBJ_INFO_STAT
FS_INVALID_DLE
FS_NO_MORE
FS_DEVICE_ERROR

FS_BAD_DBLK

GRFS_VERIFY_OBJ_INFO_STAT
FS_INVALID_DLE
FS_NOT_FOUND
FS_DEVICE_ERROR

FS_BAD_DBLK
FS_INFO_DIFFERENT

GRFS_CHANGE_DIR_STAT
FS_INVALID_DLE
FS_INVALID_DIR

FS_DEVICE_ERROR

PCT/US94/12915

Device is full

Agent does not have permission to
write object

Agent does not want to restore this
data stream

obj_id parameter was invalid
End of File already reached
"hard" device seek error

obj_id parameter was invalid

"hard" error

End of File already reached
Object’s normal data stream does
not match

Object’s security data stream does
not match

Object’s extended attribute data
stream does not match

Agent does not support this data
stream type

obj_id parameter was invalid
"hard" error

dle_id was invalid

Object not found

"hard" device error, unable to
delete object

The DBLK data was invalid

Agent does not have permission to
delete object

dle_id was invalid

Object not found

"hard" device error, unable to
delete object

The DBLK data was invalid

dle_id was invalid

Object not found

"hard" device error, unable to scan
device

The DBLK data was invalid

The object’s attributes do not
match :

dle_id was invalid

net_path 0 too long, or new path
does not exist

"hard" device error, unable to scan
device

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

GRFS_GET_CUR_DDB_STAT
FS_INVALID_DLE
FS_DEVICE_ERROR

GRFS_SET_OBJ_INFO_STAT
FS_INVALID_DLE

dle_id was invalid
"hard" device error,
device

dle_id was invalid

53/1.

PCT/US94/12913

unable to scan

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

PCT/US94/12915

DBLK Fields

The individual fields within the GRFS common DBLK structure
which must be manipulated by GRFS agent programs are described

below.
blk_type: Defines whether the object is a file or a
directory.
files = 08
directories = 09
os_id;
os_ver;
ctime:
atime:
btime:
time: These four fields are all defined as type DATE_TIME
structures. The DATE_TIME structure has the following
format:
struct DATE_TIME {
UINT16date_valid; /*TRUE or FALSE */
UINTl6year; /*year since 1980 */
UINTlémonth; /* 1 to 12 */
UINT1lé6day; /* 1 to 31 */
UINT1l6hour; /* 0 to 23 */
UINTlé6minute; /* 0 to 59 */
UINT16second; /* 0 to 59 */
UINT16day_of_week; /* 1 to 7 Sun to Sat */
i
ctime = Object CREATION time
atime = Object ACCESSED time
btime = Object ARCHIVED time
time = Object MODIFIED time
If the OS of GRFS Agent being developed does not
support one or more of the specific time stamps,
then those time stamp fields should be reset to
all zeros.
size: The size field contains the size of the normal
data associated with the object. For instance
the 0S/2 Agent does NOT include the size of EAs
and ACLs associated with an object.
gen_attr: This field is a bit-mapped flag which describes

os_info_complete

the file system attributes of the object. The

following flag values can be contained in this
field:

FILE_NORMAL 0x0000
FILE_READONLY 0x0001
FILE_HIDDEN 0x0002
FILE_SYSTEM 0x0004
FILE_DIRECTORY 0x0010
FILE_ARCHIVED 0x0020

This field is a boolean value which must be set
to TRUE when the all the DBLK information for an
object has been filled in.

- 54 -

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

min_ddb_info This field contains a pointer to the information
in the DBLK data area which is required to
perform either a GRFS_GET_OBJ_INFO or
GRFS_FIND NEXT OBJ command. The information
pointed to by this field must be contiguous
within the data area. Typically the DBLK find
information and the object name constitute the
"MIN DDB_INFO". The DBLK find information is
described in the find_info DBLK field.

min_ddb_size This field contains the number of bytes of data
pointed to by the min_ddb_info field.

os_spec_info This field contains a pointer to the DBLK data
area which contains any 0S specific information

- 541.

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

os_spec_size

dblk_actual_size

tape_attribs

find_info

find_info_size

obj_type
translate_flag
special_flag

b.d.os_path

b.d.os_path_leng

b.d.path_leng

PCT/US94/12915

that the GRFS agent would like preserved during
backup and restoration operations. For instance
the 0S/2 agent uses this area to save HPFS "Long
Names" when they are present. As another
example, a Unix GRFS agent could use this field
to save information about special device
placeholder files.

This field contains the number of bytes of data
pointed to by the os_spec_info field.

This field contains the size of the entire DBLK.
This value is the sum of the size of the GRFS
DBLK common structure and the number of bytes of
data within the variable length DBLK data area.
Remember that the total DBLK must at most 1024
bytes long.

not used

This field contains a pointer to the information
in DBLK data area which can be used by the GRFS
agent to perform a GRFS_FIND_ NEXT OBJ command.
Examples of this field are the DOS GRFS agent
passlng a DTA structure and the 0S/2 agent
passing the DosFindFirstOHDIR value.

This field contains the number of bytes of data
pointed to by the find_info field.

not used
not used
not used

This field contains a pointer to the path string
contained within the DBLK data area for a
directory object. The path string should not
begln with a path delimeter character unless it
is the root directory of a DLE. The path string
must be null-terminated. During backup
operations the os_path field and the path field
will be identical. During restore operations,
the os_path field will represent the "source"
path and the path field will represent the
"destination" path.

This field contains the 1length of the path
pointed to by the os_path field. This value
should include the null-termination character.

This field contains the length of the path
pointed to by the path field. This value should
include the null-termination character.

SUBSTITUTE SHEET (RULE 26)

WO 95/13580

PCT/US94/12915

b.d.path This field contains a pointer to the path string

contained within the DBLK data area for a
directory object. The path string should not
begin with a path delimeter character unless it
is the root directory of a DLE. The path string
must be null-terminated. During backup
operations, the path field will be the same as
the os_path field; however during restore
operations the path field may be different than
the os_path field.

b.d.inuse_attrib This field contains a flag which is used to mark

files which have been opened but the file is
currently also opened by another process.

b.f.os_name This field contains a pointer to the file name

string contained within the DBLK data area for
a file object. The path string must be null-
terminated. The os_name field and the name
field will be the same during backup operations.
During restore operations the os_name £field
represents the "source" file name whereas the
name field represents the "destination" file
name.

b.f.name This field contains a pointer to the file name

g & ok ke

string contained within the DBLK data area for
a file object. The path string must be null-
terminated.

Whenever a GRFS agent returns a DLE’s logical root directory
object DBLK, the DBLK data area path string should be set to
'\0’ and the b.d.os_path_leng field should be 1.

- 55/1

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

W © 3 6 U b W N PR

I
o U d W R O

[- S VO R S N

oW NN

CLATIMS
What is claimed is:
1. A computer network, comprising:
a) a plurality of computers running disparate

operating systems, respectively;
b) a storage device for backing up and
restoring data processed on the network; and
c) means for performing backup to and restore
from the storage device, including:
i) a GRFS file system running on one of
the said computers;
ii) a plurality of GRFS agents each
running on a respective one of said computers; and
iii) wherein said GRFS file system and
each of said GRFS agents interface with one another via
command and response messages, respectively, said command
and response messages being structured to support the
disparate operating systems.

2. A computer network, according to claim 1,
wherein said disparate operating systems have different
data structure alignments, and said command and response
messages are structured with a least common denominator

alignment for said disparate operating systems.

3. A computer network, according to claim 1,
wherein said command and response messages are further
structured to interchange data between said disparate
operating systems.

WO 95/13580 PCT/US94/12915

o Ul o W N R R T I S o b W N R G0 U W N R

oW DD R

4. A computer network, according to claim 3,
wherein said interchange structure of said command and
response messages enable data from one of said computers
running one of said operating systems to backed up to
said storage device and said backed up data to be
restored to another of said computers running another of
said disparate operating systems.

5. A computer mnetwork, according to claim 3,
wherein said interchange structure of said messages
includes a streamer header having an identification value
determining whether an associated data stream type is
supported by a given one of said disparate operating
gsystems.

6. A computer network, according to claim 1,
wherein said command and response messages are further
structured to enable independent multiple users of said
plurality of computers to request simultaneously backup
or restore of the data.

7. A computer network, according to claim 6,
wherein said command and response messages are structured
with a request id and wherein said GRFS file system may
create a unique request id for every GRFS command
message, whereby the GRFS file system can communicate
simultaneously with multiple GRFS agents.

8. A computer mnetwork, according to claim 1,
wherein said plurality of computers each has a user
interface to enable a user to select backup or restore of
selected data.

WO 95/13580 PCT/US94/12915

9. A computer mnetwork, according to claim 1,
2 wherein said network may have an additional computer not
3 running a GRFS agent.

PCT/US94/12915

WO 95/13580

raay —1—1 (xINn)
dol
TN (1HV HOIHd)
J 914
\.QN M
o e e
% \ <
~ &
%) wn wn —
NaaH~ g £QaH 1\ & 2QaH 1 < 'QaH 1 2 m
D ("ovh) H (2/s0) _H_ (soa) _Hu (soa) &
~ dol XdS XdS — | doL|xds
TN o TiN TN TUN TN
/ / / / \
N W’/ Vesm w/ \ism aassd \salar

PCT/US94/12915

WO 95/13580

vag 1 (xInn) - "SAS 3114 0I4I03dS IOIAIQ
INIONI dndove "SAS 3114 NOWNOD
Aot u%%wm:%uomoo&ﬂomom AL
J_N_z ¢ 914 INIOV S449 SMOGNIM
02 INIOV S4U9 HSOLNIOVA
SIN3OV S0 INJOV S449 XINN
IN39V S4¥9 2/SO
YSM—" Y IN39V S4¥9 S0d Ngr &
| ¥R
0 gr WIN u
\ 4 SIOVAYIINI ¥3SN S0d =3
E 914 o \ < | SMOGNIM <
0 /.nu\uu
(Q\]
9 %) @ WILSAS m
NaaH~ | faQH~ [X faaHq [R adHy | R T4 S, E
(o a)
1 | Coww 1 |(z/s0) 1 | (soq) 1 | (so0) Z
. — [do1|xds
- dol XdS XdS N
TUN THN TN TaN
SR "4S 30IA30
IN3OY S449 INI9V S449 IN39V S449 IN39V S4¥9 NOWAQY
OVI 2/s0 sod S0Q GV-rIIATEa
/ / / / \
" Uhsm ;- n7 Vesm w7 “zsmo n/ Vtsm oaesad bsita

WO 95/13580

EXAMPLE 1: To backup a single 5000 byte file.

Job Manager Command Messages

ATTACH_DLE(

dle_name = "DougCompag”
dle_parent = NULL
max_obj_bsize = 32768

password = "OpenSesame")

L

FIND_FIRST_DLE(dle_id = 01)

ATTACH_DLE(

dle_name = "DriveC"
dle_parent = 01 -
max_obj_bsize = 32768
password = "WOW!")

FIND_FIRST_0BJ(dle_id = 04

-

PCT/US94/12915

MESSAGE FLOW DIAGRAM FOR BACKUP

GRFS Agent Workstation Response Messages

ATTACH_DLE_STAT(

dle_id = 01
children = TRUE
nax_obj_bsize = 2048)

FIND_FIRST_DLE_STAT(dle_name = "DriveC"

passwd_req = TRUE)

ATTACH_DLE_STAT(

dle_id = 04
children = FALSE
mox_obj_bsize = 2048)

FIND_OBJ_STAT(

more_flag = TRUE
dblk (name=COMMAND.COM))

OPEN_OBJ_STAT(

obj_id = 42
dblk (name=COMMAND .COM))

READ_0BJ_STAT(

size = 2048
strm_header = NORMAL_DATA
buffer[])

READ_0BJ_STAT(

size = 2048
strm_header = INVALID

buffer[])

READ_OBJ_STAT(

size = 904
strm_header = INVALID

buffer{])

CLOSE_OBJ_STAT ()

FIND_CLOSE _STAT()

sname ="# ")

OPEN_OBJ(dle_id = 04

mode = READ_ONLY l

dblk (name=COMMAND.COM))
READ.OBJ(obj_id = 42

size = 2048)
READ_OBJ(obj_id = 42

size = 2048)
READ.OBJ(obj.id = 42

size = 904)
CLOSEOBJ(obj_id = 42)
FIND_CLOSE(dle_id = 04

dblk)]
DETACH_DLE(dle_id = 04) —
DETACHDLE(dle_id =01)

DETACH_DLE_STAT()

—={ DETACH_LE_STAT()

Fi6. 4

3/4

SUBSTITUTE SHEET (RULE 26)

WO 95/13580 PCT/US94/12915

EXAMPLE 2: To restore a single 5000 byte file. MESSAGE FLOW DIAGRAM FOR RESTORE
~ Job Manager Command Messages GRFS Agent Workstation Response Messages
ATTACH_DLE(dle_name = "DougCompaq"
dle_parent = NULL ATTACH_DLE_STAT(dle_id = 01
nox_obj_bsize = 32768 [L children = TRUE
password = "OpenSesane") max_obj_bsize = 2048)

FIND_FIRST_DLE(dle_id = 01)

FIND_FIRST_DLE_STAT(dle_name = "DriveC"

ATTACH_DLE(dle_name = "DriveC" passwd_req = TRUE)

dle_parent = 01
max_obj_bsize = 32768
password = "WOW!")

ATTACHDLE_STAT(dle_id = 04
children = FALSE
max_obj_bsize = 2048)

PREPARE_DBLK(db Ik (name=CONFG.SYS))

T

GET_OBJECT_INFO(db lk(name=CONFIG.SYS

)) L L PREPARE_DBLK_STAT(dblk (name=CONFIG.SYS))

—

CREATE_OBJ(dblk(name=CONFIG SYS))

GET_OBJECT_INFO_STAT(dblk (nane=CONFIG.SYS))

OPEN.OBJ(dle_id = 04
mode = WRITE_ONLY CREATE_OBJ_STAT ()
dblk (nane=CONFIG .SYS))

]

OPEN_OBJ_STAT(obj_id = 42

WRITE_OBJ(obj_id = 42 dblk (name=CONFIG.SYS))
. size = 2048
strn_header = NORMAL _DATA WRITE_OBJ_STAT(size = 2048)
buffer[])
WRITE_OBJ_STAT(size = 2048)
WRITE_OBJ(obj_id = 42
size = 2048 WRITE 0BJ_STAT(size'= 904)
strm_header = INVALID
buffer[]) CLOSE_0BJ_STAT()
WRITE_0BJ(~ obj.id = 42 SET_OBJECT_INFO_STAT()
size = 904
strm_header = INVALID
buffer[]) —1{ DETACH_DLE_STAT()
CLOSE_0BJ(obj.id = 42 —| DETACH_DLE _STAT()

SET_OBJECT_INFO(dblk{nane=CONFIG.SYS))

DETACH_DLE(dle_id = 04

DETACH_DLE(dle_id = 01

4/ 4
SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT Intern 1l Application No

PCT/US 94/12915

A. CLASSIFICATION UBJECT MATTER

OF §
IPC 6 GO6F11/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields scarched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

pages 286 - 289

see the whole document

see abstract

'Centralized and rapid backup/restore for
Work LAN File Services/VM'

X IBM TECHNICAL DISCLOSURE BULLETIN, 1-8
vo1.35, no.3, August 1992, NEW YORK US

A US,A,5 005 122 (GRIFFIN ET AL.) 2 April 1
1991
see abstract

A US,A,5 133 065 (CHEFFETZ ET AL.) 21 July 8
1992

D Further documents are listed in the continuation of box C.

m Patent family members are listed in annex.

° Special categories of cited documents :

“A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier docurnent but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"0" document referring to an oral disclosure, use, exhibition or
other means

“P" document published prior to the international filing date but
{ater than the priority date claimed

"T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
mc&ts, such combination being obvious to a person skilled
in the art,

"&" document member of the same patent family

X

Date of the actual completion of the international search

9 March 1995

Date of mailing of the international search report

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,
Fax (+ 31-70) 340-3016

Authorized officer

Corremans, G

Form PCT/ISA/218 (second sheet) (July 1992)

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Intern: al Application No
[TTH io atent farmul b
ormaton on peient By memer PCT/US 94/12915
Patent document Publication Patent family Publication
cited in search report date member(s) date
US-A-5005122 02-04-91 NONE
US-A-5133065 21-07-92 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

