(19) AUSTRALIAN PATENT OFFICE

(11) Application No. Al 2003294327 B2

(54) Title

Visible surface determination system and methodology

analysis

(51)¢ International Patent Classification(s)
GO6T 15-00 (2006.01) 4BMEP
GO6T 15-50 (2006.01) 1550

G06T 15-00 20060101ALT 2008053
20060101AFI2007022 1BMEP
PCT US2003-036836

Application No: 20p3294327

WIPO No: wopa 046881

Priority Data

Number
60,426,763

Date
2002 .11 .15

(32)

Publication Date : 2004 06 15

Publication Journal Date : 5gg4 g7 15

Applicant(s)

Sunfish Studio, LLC

Inventor(s)

Hayes, Nathan T.

Agent/Attorney
PIZZEYS,

Related Art

Us 5,600,763
Us 6,707,452
Us 5,596,685

Level 14,

GOsT

(33)

ANZ Centre 324 Queen Street,

in computer graphics using interval

(22) Application Date: 2003 11 17

Country
us

Brisbane, QLD, 4000

WO 2004/046881 A3 [IINTIWHNNEINNHN NN

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATE

(19) World Intellcetual Property
Organization
International Burcau

(43) International Publication Date

T COOPERATION TREATY (PCT)

g |

(10) International Publication Number

3 June 2004 (03.06.2004) PCT WO 2004/046881 A3
(51) International Patent Classification’: GO6T 15/00 T. [US/US]; 5364 Shoreview Avenue, Minneapolis, MN
‘ 55417 (US). SCHMIDT, David, R. [US/US]; 9329 Oliver
(21) International Application Number: Avenue North, Brooklyn Park, MN 554444 (US).
PCT/US2003/036836
(74) Agent: STEMPKOVSKI, JR., Richard, C.; Nawrocki,

(22) International Filing Date:
17 November 2003 (17.11.2003)

(25) Filing Language: English

(26) Publication Lunguage: English
(30) Priority Data:

60/426,763 15 November 2002 (15.11.2002) US

(71) Applicant (for ali designated States except US): SUN-
FISH STUDIO, INC. [US/US]; 5364 Shoreview Avenue,
Minneapolis, MN 35417 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): HAYKES, Nathan,

(81)

(84)

Rooney & Sivertson, P.A., Suite 401, Broadway Place llast,
3433 Broadway Street Northeast, Minneapolis, MN 55413
(11S).

Designated States (nutionul): AE, AG, AL, AM, AT, AU,
AZ.BA, BB. BG. BR, BW, BY, BZ. CA, CH, CN, CO, CR.
CU, CZ. DE, DK, DM, DZ, EC, EE, EG, ES, FL, GB. GD,
GE.GH, GM, HR, HU, ID, IL. IN, IS, JP, KE, KG, KP, KR,
KZ.LC.LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN,
MW. MX, MZ, NI, NO, NZ, OM, PG, PH, L, PT, RO, RU,
SC, 8D, 8K, 8G, SK. SL, SY, 1J,TM,'IN. TR, 'L, TZ, UA,
UG, US,UZ, VC, VN, YU, ZA, ZM, ZW.

Designated States (regional): ARTPO patent (BW, GH,
GM, KL, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, 11, TM),

[Continued on next page]

(54) Title: VISIBLE SURTACT DETERMINATION SYSTEM & METHODOLOGY IN COMPUTTER GRAPHICS USING TN-

TERVAL ANALYSIS

(57) Abstract: A system (40) is

Modsler oy Animator
1] Y, L]
Cromt T

provided for visible surface determi-
nation in furtherance of photorealistic
rendering in a computer graphics
environment. The system includes a
scene database (42) and a processor,
visual characteristics of objecls of an
image frame (44) of a scenc of the
scene database (42) are delimited as
geomelric primitive. The processor,
for excenting an interval analysis, to a
user degree of certainty, accurately and
deterministically ascertains a visible
solution sct of an arca not exceeding a
pixel dimension for a pixel of an array
ol pixels (50) that form said image
frame (44).

40

WO 2004/046881 A3

O 00RO

Ruropean patent (AT, BE, BG, CIT, CY, C7, DE, DK, FFE,
LS, FL IR, GB, GR, UL TE TT, LU, MC, NL, PT, RO, S
SI, SK, TR), OAPI patent (BI4 BJ, CI4, CG, Cl, CM, GA,
GN, GQ. GW, M1, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

us lo dpplicant’s entitlement to apply for und be granted
a patent {Rule 4.17(i)) Jor the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
EG, ES. Fi, GB, CD, GE, GH, CM, HR. HU, ID, IL, IN,
I8, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM,
PG, PH, PL, P1, RO, RU, SC, D, SE, 5G, SK. SL, SY. TJ,
IM, IN, TR, TT, 1Z, UA, UG, UZ, VC, VN, YU, ZA, ZM,
ZW, ARIPO paternt (BW, GH, GM, KE, LS, MW, MZ, SD,
SL, SZ, 1Z, UG, ZM, ZW), Eurasian patent (AM, AZ, BY,
KG, KX, MD, RU, 14, TM), European paten! (AL, BE, BG,
Cll, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, LU, IE, 1,
LU, MC, NL, P1, RO, Sk, 81, SK, TR), OAPI patent (BE, BJ,
CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
1G)

us 1o the applicant’s entitlement to claim the priotity of the
earlier application (Rule 4.17(iii)) for the following des-
ignations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BW, BY, BZ, CA, CH, CN, CO, CR, CU, (7, DE, DK, DM,

D7, EC, FF, EG, FS, FI, GB, GD, GF, GH, GM, HR, HI),
ID, 1L, IN 1S, D KE, KG, KP. KR, K7, I.C, LK, LR, 15,
LT LU, LV, MA, MD, MG, MK, MN, MW, MX, M7, NI, NO,
N7, OM, PG, PH, PI, PT. RO, RI!, SC, SD, SE, 8G, 3K, SI,
SYTLTM, TN, TR, TT, T7, UA, UG, UZ, VC, VN, YU, 74,
7M. ZW, ARIPO patent (BW, GIi, GM, KE, 1S, MW, M7,
SD, 81, 87, T7, UGG, 7M, 7ZW), Furasian patent (AM, A7,
BY, KG, K7, MD, RU, TI, TM), European patent (AT, BE,
BG, Cll, CY, CZ, DE, DK, EE. ES, FI, FR, GB, GR, 11U,
TE T, LU MC, NI, PT, RO, SF, 81, SK, TR), OAPI patent
(BE, BJ, CF, CG, CL, CM, GA, GN, GQ, GW, ML, MR, NE,
SN, TD, TG)

Published:

— with international search report

— before the expiration of the time limit for amending the
claims and o be republished in the event of receipt of
amendments

(88

Date of publication of the international search report:
12 August 2004

For two-letter codes and other abbreviations, refer 1o the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of euch regular issue of the PCT Guzelte.

12 Sep 2007

2003294327

SYSTEM AND METHOD OF VISIBLE SURFACE DETERMINATION INCOMPUTER

GRAPHICS USING INTERVAL ANALYSIS

This 1is a regular applicaticn filed under 35 u.s.c.
§111(a) claiming priority under 35 U.S.C. §119Cc) (1), of
provisional application Serial No. 60/426,763, having a filing
date of November 15, 2002.

TECHNICAL FIELD

The present invention generally relates to computer
imaging or graphics, more particularly, to the field of
photorealistic image synthesis utilizing interval-based
techniques for integrating digital scene information in
furtherance of constructing and/or reconstructing an image of
the digital scene, and/or the construction of an image based

solely on mathematical formulae.

BACKGROUND OF THE INVENTION

Photorealism for computer-generated scenes, that is to
say, the production of a computer—generated scene that is
indistinguishable from a photograph of the actual scene, as
for instance, the elimination of aliasing, remains the “holy
grail” for computer graphic artisans. So much so that Jim
Blinn has proclaimed: “Nobody will ever scolve the antialiasing

problem,” emphasis original, Jim Blinn, Jim Blinn’s Corner

Notation, Notation, Notation, 2003, p. 1l66. In furtherance of

a general appreciation and understanding of the single most
important obstacle to photorealism, i.e., the antialiasing

problem, an overview of heretofore known image synthesizing

WO 2004/046881 PCT/US2003/036836

processing, beginning with the notion of rendering, must be
had.

Rendering is the process of reconstructing a three-
dimensional visual scene as a two-dimensional digital image,
with the fundamental components thereof being geometry and
color. A camera that takes a photograph is one example of how
a two-dimensionzl image of the natural three-dimensional world
can be rendered. The well-known grid technique for drawing
real world images is another example of how to translate real
world images into two-dimensional drawings. A stick is used as
the reference point for the artist's viewing position, and the
artist looks through a rectangular grid of twine into a scene
behind the grid. The paper the artist draws on is also divided
into rectangular cells. The artiét carefully‘éobies only what
is seen in a given cell in the grid of twine onto the
corresponding cell on the paper.

The process of rendering a digital scene inside a
computer is very similar. Where the artist cieates a péper
drawing, the computer creates a digital image. The artist's
paper is divided into rectangdlar cellé, and a digital image
is divided into small iectangles called pixels. Unlike the
rectangular cells on.the artist's paper, a pixel may only be
shaded with a single color. A typical computer generated image
used by the modern motion picture indﬁstry is formed of a

' rectangular array of pixels 1,920 wide and 1,080 high. Because
each pixel can only be shaded a single color, the realism of

a digital image is completely determined by the total number

WO 2004/046881 PCT/US2003/036836

of pixels in the image and by how accurately the computer
computes the color of each pixel.

To cdetermine the color of a pixel, a computer must “look”
through the rectangular area of the pixel, much like the
artist looks through a rectangular cell in the grid of twine.
While the artist looks through the grid into the natural
world, the computer has access to a digital scene stored in
memory. The computer must determine which parts of the digital
scene, if any, are present in the rectangular area of a pixel.
As in the natural world, objects in the foreground of the
digital scene occlude objects in the background. All non-
occluded parts of the digital scene that zre present in the
rectangular area of a pixel belong to the visible solution set
of the pixel. The method of finding the visible sclution set
of a pixel is called visible surface determination; voﬁce
visible surface determination 1is complete, the visible
solution set can be integrated to yield a single.color value
that the pixel may be assigned.

Many modern rendering p£o§réms sample the‘rectangular
area (i.e., two dimensional boundary) of a pixel with points.
This method, known as point sampiing, is used to comﬁute an
approximete visible sclution set for a pixel. A point-sample
is a ray that starts at the viewing position. and shoots
through a location within the pixel into the séene. The color
of each point sample‘is coﬁputed by intersecting objects in
the scene with the ray, and determining the color of the
object at the point of intersection. If several points of

intersection exist between the ray and the objects of, or in

3

WO 2004/046881 PCT/US2003/036836

the scene, the visible intersection point is the intersection
closest to the origin of the ray. The final color of the pixel
is then determined by filtering a neighborhood of point
samples.

A wide variety of point-sampling techniques are known and
are pervasive in modern computer graphics. A broad class of
algorithms, collectively called global illumination, simulates
the path of all light in a scene arriving at a pixel via the
visible points of intersection. For example, additional rays
can be shot from each visible point of intersection into the
scene, this type of global illumination algorithm is often
called ray tracing (i.e., an image synthesizing technigue
using geometrical optics And rays to evaluate recursive
shading and visibility). The intersection points of these
additional rays are integrated into a single colof value,
which is then assigned to the visible point sample. Another
class of algorithms that compute tHe color of a sample without
the use of additional rays is called local illumination.
Popular examples of local illumination are Simple‘ray—casting
algorithms, scan-line algorithms, and the ubiquitous z-buffer
algorithm. It is commdn to find local illumination algorithmé
implemented in hardware because the results require less
computational effort. Lbcal iliumination, howéver, typically
does not provide the level of quality and realism found in the
global illumination algorithms.

RenderMan® is the name of a software program created and
owned by Pixar that allows computers to render pseudo life-

like digital images. RenderMan, a point-sampling global

-4

12 Sep 2007

2003294327

illumination rendering system and subject of U.S. Pat. No.
5,239,624, 1s the only software package to ever receive an
Oscar® award from the Academy of Motion Picture Arts and
Sciences. RenderMan clearly represents the current state of
the art in pseudo-realistic point sampling software. On the
other end at the spectrum, game consoles such as Sony
PlayStation® or Microsoft X—Box® clearly do not exhibit the
guality of realism found 1in RenderMan, but these hardware—
based local illumination gaming appliances have a tremendous
advantage over RenderMan in terms of speed. The realistic
frames of animation produced by RenderMan take hours, even
days, to compute, whereas the arcade—style graphics at gaming
appliances are rendered at a rate of several frames per

second.

This disparity or tradeoff between speed and realism 1is
typical of the current state of computer graphics. The nature
of this disparity is due to the point—sampling techniques used
in modern rendering implementations. Because each pixel can
only be assigned by a single color, the “realism” of a digital
image is completely determined by the total number of pixels,
and by how accurately a computer chooses the color of each
pixel. With a point—sampling algorithm, the most common method
at increasing the accuracy of the computation is to increase
the number of point samples. RenderMan and ray tracing
programs, for example, use lots of point samples for each
pixel, and so the image appears more realistic. Hardware

implementations like X—-Rox, on the other hand, often use only

WO 2004/046881 PCT/US2003/036836

a single point sample per pixel in order to be able to render
the images more quickly. .

Although point sampling is used almost exclusively to
render digital images, a fundamental problem of point sampling
theory is the problem of aliasing, caused by using an
inadequate number of point samples (i.e., an undersampled
signal) to reconstruct the image. When a signal is
undersampled, high-frequency components of the original signal
can appear as lower frequency components in the sampled
version. These high freguencies assume the alias (i.e., false
identity) of the low frequencies, because after sampling these
different phenomena cannot be distinguished, with visual
artifacts not specified in the scene appearing in the
reconstruction of the image. Such artifacts appear when the
rendering method does not compute aﬁ accurate approximaﬁion to
the visible solution set of a pixel. ‘

Aliasing is commonly categorized as ‘“spatial” or
“temporal.” Common spatial alias artifacté include' jagged
lines/chunky edges (i.e., “jaggies,”}, Or.missing‘objects. In
spatial aiiasing the artifacts are borne of the uniform nature
of the pixel grid, and are independent of resolution. A “use
more pixels” strategy is not curative: no m&tﬁer how clésély
the point samples are packed, they will, in the case of
jaggies, only make them smaller, and in the case of‘missing
objects, they will always/inevitably miss a small obﬁect or a
large object far enough away. Temporal aliasing is typically
manifest as jerky motion (e.g., “motion blur,” namely, the

blurry path left on a time-averaged image by a fast moving

-6

WO 2004/046881 PCT/US2003/036836

object: things happen too fast for accurate recordation), or
as a popping (i.e., blinking) object: as a very small object
moves across the screen, it will infreguently be hit by a
point sample, only appearing in the synthesized image when
hit. The essential aliasing problem is the representation of
continuous phenomena with discrete samples (i.e., point
sampling, for example, ray tracing).

Despite the fact that rigorous mathematical models for
the cause of aliasing in point-sampling algorithms have been
well established and understood for years, local and global
illumination algorithms based on point sampling continue to
suffer from visual artifacts due to the aliasing probleﬁ. A
tremendous amount of prior art in the field of computer
graphics deals explicitly with the problém,of aliasiﬁé.

Increasing the ndﬁber of point samples to improve reéiism
and avoid aliasing is not a viable solution because it simply
causes the aliasing to occur at higher frequencies in the
image. In fact, the current literature available oﬁ computer
graphics seems to indicate that point sampling techniques have
reached their practical limits in terms of spéed and realism.
Increasingly elaboré£e énd sophisticated probabilistic and
statistical point sampling techniques are being.inveétigated
to gain marginal improvements in the realism of global
illumination. Advances in point-sampling hardware are being
used to improve the speed of local illumination technigues;
but even with unlimited hardware speed, the best that can be
hoped for is that hardware systems‘will some day be abie to

generate images of the same quélity as existing globél

i

-10-

WO 2004/046881 PCT/US2003/036836

illumination algorithms which still suffer from aliasing
problems caused by point sampling. While tremendous advances
have been made in the realism and speed by which two-
dimensional images of digital scenes are rendered, there is a
continuing need to further improve the speed and realism of
rendering of digital image reconstruction in furtherance of

photorealistic image synthesis.

SUMMARY OF THE INVENTION

The present invention provides a system and attendant
methodology for digital image reconstruction using interval
analysis. This image reconstruction system, rather than
refining the work of others, abandons that work. That is to
say, heretofore known point sampling techniques and point
arithmetic are discarded in lieu of the subject approach to
reconstructing two-dimensional digital images of a three
dimensional representation of a visual scene or an actual,
tangible three dimensional object. Integral to the subject
invention is the use of an area analysis framework instead of
conventicnal point sampling to compute accurately and
deterministically, the visible solution set of a pixel énd to
integrate its color.

Preferred embodiménts of the subjedt in&ention, more
particularly the system, provide several advantages over
conventional rendering techniques. Most modern ray tracing
algorithms only support geometric primitives of a low degree
such as planes, triangles, spheres, and guadrics because the

methods commonly wused to find the visible point of

-8

11-

12 Sep 2007

2003294327

intersection between a point-sampling ray and the primitive
are numerically unstable for higher degree functions.
Moreover, because it has been heretofore impossible to compute
in an accurate and deterministic manner the visible solution
set of a pixel wusing traditional point—-sampling techniques,
undesirable aliasing must appear on reconstructed images using
conventional point-sampling. Prior strategy has been the

reduction of aliasing, not the elimination of aliasing.

In the context of the subject invention, the visible
solution set of a pixel 1is determined through interval
analysis, since traditional point-based numerical analysis
cannot “solve” such computational problems to a degree of
imperceptible aliasing. Unlike point sampling techniques,
interval analysis guarantees accuracy to a user—specified
level of detail when computing the color of a pixel. In fact,
it is possible to eliminate aliasing to the extent of hardware
precision or to any user-defined precision above that
threshold. Taken together, these benefits facilitate a new
framework of scalable rendering, where speed and realism are
no longer competing forces in the rendering process, and users
can easily adjust the parameters of the rendering algorithm to
define a ratio of speed and realism that suits their specific

needs.

Given the above advantages, preferred embodiments of the
system may be used with any general form of projection. For
example, by representing RGB (red-green-blue) coloration as
three intervals rather than three points, a process for

automatic adaptive resolution is possible, i.e., the dimension

-12-

12 Sep 2007

2003294327

of a more and more refired rendering interval can be compared
to the fidelity of the rendering machine to adaptively stop
rendering smaller intervals once an optimum presentation has
been obtained, The system is a massively parallel and scalable
rendering engine, and therefore useful for distributing across
servers in a network grid to optimally create more realistic
‘mages from a scene database, or for implementing in a
graphics accelerator for improved performance. Moreover, still
images or video images may be more efficiently broadcast to
remote clients as the interval analysis methods operate
directly on the mathematical functions that describe a scene
as cpposed to a plecewise geometric or tesselated model of the
scene, thus providing efficient data compaction for

transmission over limited bandwidth connections.

With preferred embodiments of the system, an entire scene
can be loaded on each computer connected to an output device
and synchronously display an 1image either by seguentially
displaying data from each computer, displaying disjoint pieces
from each computer, or a combination of both. The system can
casually seek edges of objects or transitional areas, i.e.,
areas with increased levels of information to concentrate the
rendering effort. Convergence to the proper visible solution
set of a pixel 1is a deterministic operation which exhibits
guadratic convergence (i.e., O (xz)). This is in contrast to
point-sampling methods which are probabilistic and exhibit

square-root convergence (i.e., 0 (xlm)).

As suggested, interval analysis methods are wused to

compute tight bounds on digital scene information across one

-13-

12 Sep 2007

2003294327

or more functions or dimensions. For example, the digital
scene information will typically contain dimensions of space,
time, color, and opacity. In addition, other dimensions, such
as temperature, mass or acceleration may also exist. According
tc one aspect of the present invention, interval consistency
methods are used to compute tight bounds on the visible
solution set of a pixel for each dimension that is specified,
and according to further aspect of the present invention,
interval consistency methods are used to compute tight bounds
on the visible solution set of a hemisphere subtending a
surface element in the digital scene. Integrating the visible
solution set over the hemisphere for each dimension that is
specified yields a solution to the irradiance function, which
can be used to compute global illumination effects, such as

soft shadows and blurry reflections.

Additional items, advantages and features of the various
aspects at the oresent invention will become apparent from the
description of its preferred embodiments, which description

should be taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF EH~ DRAWINGS

FIG. 1 1is an illustratiorn of the well-known grid
technique by which an artist makes a perspective drawing of a
scene;

FIG. 2 is a block diagram of a typical computer graphic
process of rendering a digital image;

FIG. 3 1s a schematic diagram of the operation of
computer graphic process using an existing point—sampling

process;

-14-

12 Sep 2007

2003294327

FIG. 4 represents a variety of spatial notions
fundamental to image synthesis;

FIG. 5 is a representation of hemispherical coordinates,
integral to global illumination assessment;

FIGS. 6(a)—6(f) are pictorial representations of the
results of using the point-sampling approach of FIG. 3;

FIGS. 7(a)—{(c) illustrate filtering technigques for point
sampling methods;

FIGS. 8(a)-8(f) are pictorial representations of the
results of using a modified stochastic point-sampling method
in the process of FIG. 3;

FIG. 9 is a depiction showing the tradeoff between speed
of rendering and realism of an image;

FIG. 10 is a schematic representation of the
photorealistic image synthesis method of the subject
invention;

FIG. 11 1is a representation as FIG. 10, wherein an
exemplary system, i.e., geometric function, and corresponding
display are shown;

FIG. 12 is a static unified model language representation
of the content of FIG. 10;

FIG. 13 is a temporal unified model language
representation of the solvers of ETC. 12;

FIGS. 14-18 are schematic depiction of the work flow of
the solvers of FIG. 13, namely, SCREEN, PIXEL, COVERAGE,
DEPTH, and IMPORTANCE;

FIGS. 19(a)—19(f) are pictorial representations of the
operation of an interval set inversion technique for rendering

in

-15-

12 Sep 2007

2003294327

accordance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention abandons existing point sampling
technigques, and 1instead provides a system and attendant
methodelogy for reconstructing two-dimensional digital images
of a three dimensional digital representation of a wvisual
scene, a process referred to as rendering, so as to
photorealistically synthesize images. In furtherance of
detailed 1invention development, a rendering framework is

preliminarily outlined.

FIG. 1 shows a classic example of how a renaissance
artist uses the well—-known grid technique to translate real
world images into two—dimensional drawings. An artist 20 uses
a stick 22 as the reference point for the artist’s viewdng
position. The artist 20 looks through the cells 24 created by
a rectangular grid of twine 26 into a scene 28 behind the
grid. A drawing paper 30 on which the artist 20 will render a
two—dimensional representation of the scene 28 is divided into
the same number of rectangular cells 32 as there are cells 24.
The artist carefully copies only what is seen in a given cell
24 in the grid of twine 26 onto the corresponding cell 32 on

the paper 30.
This grid technique is the real world analogy to the

computer graphic process that forms the basis of modern day

digital graphics. FIG. 2 shows the overall process of how a

-16-

12 Sep 2007

2003294327

computer graphics system 40 turns a three dimensional digital
representation of a scene 42 into multiple two-dimensional
digital images 44. Just as the artist uses the cells 24 and 32
(FIG. 1) to divide the representation of an entire scene into
several smaller and more manageable components, the digital
graphics system 40 divides an image 44 to be displayed into
thousands of pixels in order to digitally display two-
dimensional representations of three dimensional scenes. A
typical computer generated image used by the modern motion
picture industry, for example, 1s formed of a rectangular
array of pixels 1,920 wide and 1,080 high. In a conventional
digital animation process, for example, a modeler defines
geometric models for each of a series of objects in a scene. A
graphic artist adds 1light, color and texture features to
geometric models of each object and an animator then defines a
set of motions and dynamics defining how the objects will
interact with each other and with light sources in the scene.
ARll of this information is then collected and related in the
scene database 42. A network comprised of multiple servers
then utilizes the scene database 42 to perform the
calculations necessary to color in each of the pixels in each
frame 44 that are sequenced together 51 to create the illusion
of motion and action of the scene. Unlike the rectangular
cells on the artist’s paper, a pixel may only be assigned a

single color.
With reference to FIG. 3, like the artist via the viewing

position 22, the system 40 of FIG. 2 simulates the process of

looking through a rectangular array of pixels into the scene

17-

WO 2004/046881 PCT/US2003/036836

from the artists viewpoint. Current methodology uses a ray 62
that starts at the viewing position 60 and shoots through a
location within pixel 50. The interssction of the ray with the
pixel is called a point sample. The color of each point sample
of pixel 50 is computed by intersecting this ray 62 with
objects 64 in the scene. If several points of intersection
exist between a ray 62 and objects in the scene, the visible
intersection point 66 is the intersection closest to the
origin of the viewing position 60 of the ray 62. The color
computed at the visible point of intersection 66 is assigned
to the point sample. If a ray does not hit any‘objects in the
scene, the point sample is simply aSsigned a default
"background" color. The final color of the pixel is then
determined by filtering a neighborhood of poinﬁ samples.
Prior to any further development or discussion of
traditional point-sampling methods, ~ some fundamental
understanding of a scene object, more particularly; its
quality or character, will facilitate an appréciation of tﬁe
problem at hand. The curves and/or surfaces that are used in
computer graphics are all derived from various types of
mathematical equations. Plug values in the variables of the
equations, and they identify which points are on the object,
and all the rest are not. For the most part, primitives, that
is to say simple solid shapes, have a position andvorientation
initially set within the primitives local coordinate system
(i.e., model space), as appreciated by reference to FIG. 4
wherein there is depicted the primary notions of space, i.e.,

model space 66, world space 68 and camera space 70. In some

=15~

18-

WO 2004/046881 PCT/US2003/036836

modeling systems, an initial untransformed primitive is
presented having urit dimensions, and is most conveniently
positioned and aligned in its own local coordinate/model
system. For example, a primitive sphere would have a radius of
one with its center at the origin of its local/model
coordinate system; the modeler would then specify a new center
and radius to create the desired specific instance of a sphere
in the world coordinate system (i.e., space) or the scene
(i.e., camera space).

As to the surfaces of scene objects, there are three
types of equations which provide the basis for computer
graphlcs geometric primitives: explicit, implicit, and
parametric. An explicit equation is one that evaluates one
coordinate of the position of the object from the values of
the other coordinates (e.g., z = 2x + y is the eépiicit
equation for a plane). Characteristic of the explicit eguation
is that it only has one result value for each set of input
coordinates.

An implicit equation is one in which certain values of
input coordinates satisfy an equation: surface(x, y, z) = 0.
Points that satisfy the equation are “on” the primitive, while
others that do not are “not on” the primitive. The points
that are generated by complex implicit equations are not
always connected, they can be isolated points or small
isolated regions that satisfy the equation.

A parametric surface is a surface generated by a system
of equations with two or more variables: p = surface(u, v).

For example, a sphere may be generated by the following

-16-

-19-

WO 2004/046881 PCT/US2003/036836

parametric equations:

X
Y

I

cos (8) cos (p)

sin(8)cos (¢)

u

7 sin(eg)

For the most part, the value of a parametric system is
believed to be two-fold. First, because parametric equations
can be evaluated directly, any point on the “object” may be
computed by plugging in values for the parameters. It is easy
to generate a few points that are on the surface and then, as
heretofore done, approximate the rest of the surface by linear
approximation or some other iterative process. (i.e.,
tesselation). Second, because the system effectively converts
a two-dimensional pair of parametric coordinates into three-
dimensions, the surfazce has a natural two~dimensional
coordinate system, thereby making it easy to map other two-
dimensional data onto the surface, the most obvious exaﬁple
being texture maps.

Returning again now to the notion of ray tracing, in
traditional point-sampling methods, a ray 4is defined
parametrically as:

r(t)= at + b,
wherein a and b are vectors and t is scalar, r(t) thereby
being a vector. Points on the ray are defined for t = [0, +
«], where b is the origin of the ray and a is its direction.
In the general case, surfaces in the scene are represented as
the zero set of a vector-valued implicit function:
G(x)= 0
Determining the visible point of intersection between the ray

and the implicit function reduces to finding the smallest

~17-

-20-

WO 2004/046881) PCT/US2003/036836

positive root of the univariate equation:
G(r(t))=0

The roots of this equation can be computed algebraically for
linear, quadratic and cubic functions, and this is the reason
for the ubiquitous use of planes, triangles, spheres and
quadrics as the geometric primitives of choice in modern ray
tracing algorithms. Numerical analysis, including bisection
methods or Newton's method, must be used to find the roots of
functions of higher degree. Such methods are numerically
unstable for functions of high degree, and there are no point
analysis methods that can guarantee a solution by finding all
the roots, or even the proper roots, of such functions. This
is why most modern ray tracing algorithms only support
geometric primitives of low degree and more complex objects
are tesselated into simpler geometric primitives.

In photorealistic rendering, it is desirable to work with
functions defined over a hemisphere 72 centered around an
oriented surface point 74 (FIG. 5). A hemisphere consists of
all directions in which a viewer can look when positioned at
the oriented surface point: a viewer can look from the horizon
all the way up to the zenith, and all around in 1800. The
parameterization of a hemisphere is therefore a two-
dimensional space, in which each point on the hemisphere
defines a direction.

Spherical coordinates are a useful way of parameterizing
the hemisphere 72. In the spherical coordinate system, each
direction is characterized by two angles ¢ and 6. The first

angle, ¢, represents the azimuth, and is measured with regard

-18-

21-

WO 2004/046881 PCT/US2003/036836

to an arbitrary axis located in the tangent plane at x; the
second angle, 8, gives the elevation, measured from the normal
vector N, at surface point x. A direction @ can be expressed
as the pair (¢, ©). The values of the angles ¢ and © belong
to the intervals g = [0, 2n], and 6 = [0, m/27. At this
juncture, directions or points on the hemisphere have been
defined. Should it be desirable to specify every three-
dimensional point in space (i.s., not only points on the
surface of the hemisphere), a distance r along the direction
@ is added. Any three-dimensional point is then defined by
three coordinates (¢, 0, r).

The most commonly used unit when modeling the physics of
light is radiance (L), which is defined as the radiant flux
per unit solid angle per unit projected area. Flux measures
the rate of flow through a surface. In the particular case of
computer graphics, radiance measures the amount of
electromagnetic energy passing through a region on the surface
of a sphere and arriving at a point in space located at the
center of the sphere. The region on the surface of the sphere
is called the solid angle.

From a point-sampling perspective, calculating radiance
is exactly equivalent to computing the entire set of visible
intersection poihts for all'rays originating at the origin of
the sphere and passing through the solid angle. Since there
are an infinite number of rays that subtend any given solid
angle, it is clearly impossible to compute an exact value of
radiance by using traditional point-sampling techniques, as it

would require an infinite amcunt of samples. Instead,

1
s
o)

1

22-

WO 2004/046881 PCT/US2003/036836

practical algorithms use only a finite number of samples to
compute a discreet approximation, and this provides an
opportunity for aliasing in a synthesized or reconstructed
image. It is precisely the fact that point-sampling algorithms
do not compute an infinite amount of samples that is the cause
of aliasing in modern computer graphics.

Returning back again to the notion of point-sampling, and
with reference now to FIGS. 6(a)-(f), FIG. 6(a) represents a
single pixel containing four scene objects, with FIGS. 6(b)-
(f) generally showing a point-sampling algorithm at work in
furtherance of assigning the pixel a single color. As should
be readily apparent, and generally intuitive, the color of the
pixel might be some kind of amalgamation (i.e., integrated
value) of the colors of the scene objecté. In FIG. 6(b), only
a single point sample is used, and it does not intersect with
any of the objects in the scene; so the value of the pixel is
assigned the default background color. In FIG. 6(c), four
point samples are used, but only one object in the scene is
intersected; so the value of the pixel is assigned a color
that is 75% background color and 25% the color of the
intersected scene object. In FIGS. &(d), 6(e) and 6(f),
additional point samples are used to compute better
approximations (i.e., more accurate representations) for the
color of the pixel. Even with the increased number of point
samples in FIG. 6(e), two of the scene objects are not
intersected (i.e., spatial aliasing: missing objects), and
only in FIG. 6(f) does a computed color value of the pixel

actually contain color contributions from all four scene

-20-

-23-

12 Sep 2007

2003294327

objects. In general, point sampling cannot guarantee that all
scene objects contained within a pixel will be intersected,

regardless of how many samples are used.

For example, 1in a super sample” operation (i.e., when
using lots of rays to compute the color of a pixel), each
pixel is point sampled on a regular grid or matrix grid (e.qg.,
(n) (m)). The scene is then rendered nxm times, each time with
a different subpizel offset. After each subpixel rendering is
completed, it is summed and divided by the sum (n) (m). The
subject approach need not be confined to regular (n) (m)
reqular grids. A relaxation technique <can be used to
automatically generate irregular super—sampling patterns for
any sample count. Ultimately, the aforementioned sampling
process will create partial antialiased images that are “box
filtered” (FIG. 7(a)), however, there is not reason to limit
samples to the area of a single pixel. By distributing point
samples in the regions surrounding each pixel center, improved
antialiasing, but nonetheless deficient and thereby
unacceptable, results may be obtained. Geometry can be sampled
using a gaussian, or other sample function, in several
distinct and known ways, for instance to weight the
distribution of point samples, say the (n) (m) box filtered
sample of FIG. 7(a), using a gaussian distribution, and
thereby achieve a weighted filtering of the (n) (m) matrix as
shown in FIG 7(b) , As illustrated in FIG. 7 (c) , when the
uniform (n) (m) matrix is abandoned in favor of a gaussian
spatial distribution, and there is a homogeneity of weight
with regard to the sample points, a so called importance

filtering is

2

-24-

WO 2004/046881 PCT/US2003/036836

achieved.

Improved image synthesis has been obtained in the context
of supersampling by concentrating the rays where they will do
the most good (e.g., to start by using five rays per pixel,
namely, one each at the pixels corners, and one through the
center). However, even with such adaptive supersampling,
aliasing problems nonetheless arise due to the use of regular
grids (i.e., subdivisions), ever though the grid is somewhat
more finely, preferentially subdivided in some places. It has
been found that by introducing randomness into the point-
sampling process (i.e., getting rid of the grid), aliasing
artifacts in a reconstructed image are disguised as “noise”
which the human visual system i1s much less apt fo perceive as
objectionable (i.e., a better or improved perceptual color of
the pixel is obtained with this approach, however, it’s most
often not any more mathematically correct).‘ Two common
algorithms that use a randomness approach are the so-called
“Monte Carlo” and “stochastic point sampling” techniques.
Pixar's RenderMan, for exampie, uses stéchastic point
sampling, which perturbs the position of samples within a
pixel by small amounts of random displacement. Such approach
is illustrated in FIGS. 8(a)-(f), wherein FIG. 8(a) represents
the single pixel of FIG. 6(a), FIG. 9 depicting the trade-off
between the speed of conventional local illumination (i.e.,
“fast,” e.g. FIG. 6(b) or 8(b)) and the realism of global
illumination (i.e., “realistic,” that is to say, less “fast,”
e.g., FIG. 6(f) or 8(f)).

Because aliasing is impossible to completely eliminate

-2

-25-

WO 2004/046881 PCT/US2003/036836

from a point-sampled image, an area analysis framework is
instead used to more accurately represent or define the
problem. The mathematics involved in a global illumination
model have been summarized in a high level continuous equation
known as the rendering equation (i.e., a formal statement of
light balancing in an environment), with most image synthesis
algorithms being viewed as solutions to an equation written as
an approximation of the rendering equation (i.e., a numerical
method solution approach). That is to say, a solution to the
rendering equation in the case of light falling on an image
plane, is a solution of the global iilumination problem.
Consistent with the model, the color of a pixel is determinéd
by actually integrating the visible solution set over the area
of an oriented surface parameterized, such as a pixel or
hemisphere as previously discussed.

Historically, several attempts have been made to find
exact solutions to this equation. For example, the initial
ambition of Turner Whitted, who invented ray tracing in 1980,
was to analytically compute an exact visible éolution set
between the solid angle of a cone through a pixel and the
objects in the scene. He ultimately abandoned this approach
due to the complexity of the intersection calculations, and
this is how he instead arrived at the idea of using point
sampling with rays as an approximation. In 1984, John
Amanatides tried the same method. He successfully created an
algorithm that approximated the visible solution set between
the solid angle of a cone and simple algebrzic scene objects,

such as planes and spheres. Like Whitted, however, Amanatides

-23=

-26-

12 Sep 2007

2003294327

could not solve the problem for arbitrarily complex objects or
scenes. Even to this day, traditional point-based numerical
analysis cannot solve, in general, such surface intersections.
Instead, point sampling has become firmly entrenched as the
preferred and de facto method of approximating the visible
solution set. The problem formulation, and work to date, in
this area, 1is presented by Sung, Pearce & Wang, Spatial—

Temporal Antialiasine, 2002, incorporated herein by reference.

The present invention, in all its embodiments, abandons
point arithmetic and point-sampling techniques altogether, and
instead turns to an interval analysis approach. First invented
and published in 1966 by Ramon Moore, interval arithmetic is a
generalization of the familiar point arithmetic. After a brief
period of enthusiastic response from the technical community,
interval arithmetic and interval analysis (i.e., the
application of interval arithmetic to problem domains) soon
lost its status as a popular computing paradigm because of its
tendency to produce pessimistic results. Modern advances in
interval computing have resolved many of these problems, and
interval researchers are continuing to make advancements, see
for example Eldon Hansen and William Walster, Global
Optimization Using Interval Analysis, Second Edition; L.

Jaulin et al., Applied Interval Analysis and, Miguel Sainz,

Modal Intervals.

In one embodiment of the subject invention, the
electronic computing device consists of one or more processing
units connected by a common bus, a network or both. Each
processing unit has access to local memory on the bus. The

framebuffer, which receives information from the processing

24

27-

WO 2004/046881 PCT/US2003/036836

units, applies the digital image, on a separate bus, to a
standard video output or, by a virtual memory apparatus, to a
digital storage peripheral such as a disk or tape unit.
Examples of suitable electronic computing devices include, but
are not limited to, a general purpose desktop computer with
one or more processors on the bus; a network of such general
purpose computers; a large supercomputer or grid computing
system with multiple processing units and busses; a consumer
game console apparatus; an embedded circuit board with one or
more processing units on one or more busses; or a silicon
microchip that contains one or more sub-processing units.

The framebuffer isva logical mapping into a rectangular
array of pixels which represent the visible solution set of
the digital scene. Each pixel in the image will typically
consist of red, green, blue, coverage and depth components,
but additional components such as geometric gradient, a unigque
geometric primitive identifier, or parametric coordinates, may
also be stored at each pixel. ' The image stored in the
framebuffer is a digital representation of a single frame of
film or video. .

As previously discussed, the digital representation of a
visual scene in memory is comprised of geometric primitives;
geometric primitives reside in the local memory of the
processing units. If there is more than one bus in the system,
the geometric primitives may be distributed evenly across all
banks of loczl memory.

Each geometric primitive is represented in memory as a

system of three linear or nonlinear equations that map an n-

-25-

-28-

WO 2004/046881 PCT/US2003/036836

dimensional parameter domain to the %, y and z domain of the
digital image; alternatively, a geometric primitive may be
represented implicitly by a zero-set function of the x, y and
z domain of the digital image. John Snyder’s book, Generative

Modeling for Computer Graphics and CAD; Symbolic Shape Design

Using Interval Analysis, describes a compact, general-purpose

method for representing geometric primitives of both kinds in
the memory of a computer. Such a method is compatible with the
requirements of the present invention, and it is also the
preferred method.

Because the nature of such a general-purpose method of
representing geometric primitives in memory has so ‘many
possible encodings, only a single representation will be used
for the sake of clarity and simplicity in the remainder of
this description. The example to be used is a system of
nonlinear equations that map a 3-dimensional parameter domain,
specified by the parametric variables t, u, and v, to the X,
y and z domain of the digital image. The resulting manifold is

a parametric surface of the form

X (t, u, v) = x

Y (t, u, v) A%

Z (t, u, v} = z,

wherein said system of equations are interval functions. To
compute pixels in the framebuffer, an interval consistency
method is performed on X, Y, and % over interval values of x,

yr 2z, t, u and v that represent the entire domain of each

—26-

-29-

12 Sep 2007

2003294327

variable. For example, the interval domain of x, y and z will
typically be the width, height, and depth, respectively, of
the image in pixels, and the interval domain of t, u, and v
will depend on the parameterization of the geometric

primitive.

Referring now to FIGS. 10-12, the subject photorealistic
image synthesis process 1s generally shown, with particular
emphasis and general specification of the methodology of the
subject interval consistency approach, in furtherance of
photorealistic image synthesis processing, outlined in FIG.
12, which utilizes Unified Modeling Language (uml). As shown,
central to the process are a plurality of interval consistency
solvers. Operatively and essentially linked to the interval
consistency solvers i1s a system input, exemplified in FIG. 10
by a series of generic parametric equations, each function
having two or more variables, for example the arguments t, u,
and v as shown, and as representatively illustrated in FIG.
11, wherein the “system” 1is & sphere, the x-y--z functions
being parameterized in t, u, v. It is to be understood that
the system need not be limited to parametric expressions,
which have the greatest utility and are most
challenging/problemazic, other geometric primitives, or
alternate system expressions are similarly contemplated ancd
amenable to the subject methodology and process as is to be
gleaned from the discussion to this point. For example, the
system can similarly render strictly mathematical formulae
selectively input by a user, such as those describing

polygons, and bezier surfaces, the _ater being the singular

27

-30-

12 Sep 2007

2003294327

focus of RenderMan.

As shown, the interval consistency solvers are further
reliant upon user—defined shading routines as are well known
to those of skill in the art (FIGS. 10-11) The dependency is
mutual, the interval consistency solvers exporting information
for use or work by the shader, a valuation or assessment by
the user-defined shading routines returned (i.e., imported) to
the 1interval consistency solvers for consideration and/or

management in the framework of the process.

An output of the interval «consistency solvers is
indicated as pixel data (i.e., the task of the interval
consistency solvers 1is to quantitatively assign a quality or
character to a pixel). The pixel data output is ultimately
used in image synthesis or reconstruction, vis—a-vis
forwarding the quantitatively assigned pixel quality or
character to a display in furtherance of defining (i.e.,
forming) a 2-0 array of pixels. For the parameterized system
input of FIG. 11, a 2-D array of pixels, associated with a

defined set of intervals, is illustrated.

With particular reference now to FIG. 12, the
relationship and interrelationships between the SOLVER, INPUT,
CALLBACKS, and OUTPUT 1is defined, and will be generally
outlined, and further, the relationship between and among the
several solvers, e.g., SCREEN, PIXEL, COVERAGE, DEPTH and
IMPORTANCE, are defined in the figures subordinate thereto,

namely FIGS. 13-18, and will be subsequently outlined.

The solver, more particularly the most preferred

components thereof, namely SCREEN, PIXEL, COVERAGE, DEPTH, and

28

-31-

12 Sep 2007

2003294327

IMPORTANCE, are shown in relation to the input (i.e., dim and
system, that is to say, a geometric function), callbacks
(i.e., shader), and output (i.e., pixel data and display). The
interrelationships between the individual most preferred
elements of constituents of the solver, and the general
temporal hierarchy between and among each, as well as their
relationships between the callbacks (i.e., the shader) and the
output (i.e., the display) are schematically shown in FIG. 13.
As will be subseguently discussed in the flow schematics for
each of the solvers, and as is appreciated by a reference to
the subject figure, hierarchical, iterative sieving
progresses, in nested fashion, from the screen solver to the
importance solver, with each solver exporting a constraint for
which the subsequent solver 1is to act 1in consideration
thereof. Values from successively embedded solvers are
returned as shown, the pixel solver ultimately bundling
qualities or character of color, opacity, depth, and coverage,
for instance, and “issues” such bundled information package
(i.e., a pixel reflecting that scene object subtending same)
to the display as shown in furtherance of synthesizing the 2-D

array corresponding to the image plane.

The screen solver effectively conducts an analysis of the
screen (e.g., FIG. 3) or “image plane” of the camera space of
FIG. 4, essentially performing a set inversion in x, y. The
objective or job of the screen solver is a preliminary one,
namely, to chop the x-y screen into x—y subunits, effectively
“stopping” upon achieving (i.e., identifying) a unit (i.e.,

area) commensurate or corresponding to a pixel (see e.g.,

-32-

12 Sep 2007

2003294327

FIGS. 19(b)—19(f) wherein the chopping is illustrated here of
a pixel, not the image plane as 1is a preliminary step or
prerequisite to chopping the pixel area). Most preferably,
screen is a point from which parallel processing 1is pursued,
further desirable for such purposes is pixel, as will become

readily apparent as the discussion progresses.

Referring now to FIG 14, chopping of the x-y image plane
begins with an initial step analogous to that illustrated in
FIG. 19(b). The idea 1is to parse the x—y image plane to
dimensional equate to a pixel. As shown, in the event that
initial chopping yields a sub divided x—y area more extensive
than a pixel, more <chopping 1s conducted, namely a
preferential chopping. More particularly, the nature of the x-—
y image plane subunit (i.e., a rectangle) 1is assessed and
characterized as being either ™“landscape” or “portrait”. In
the event the subunit is landscape, the x dimension is further
split: in the event that the subunit is portrait, then the vy
dimension 1is then split. For each iterative step in x or vy
(see FIGS. 19(b) et seq.), the arguments t, u, and v, are
contracted so as to eliminate values thereof outside the
specific or “working” x—y interval (i.e., with each iteration
in x and y, it is advantageous to eliminate the t, u, and v
values that are not contributing, and thereby potentially

contribute to aliasing)

The pixel solver, depicted in FIG. 15, is essentially a
liaison between SCREEN and the other solvers, acting as a
synchronization point and performing a housekeeping function,
Preliminarily, PIXEL seeks an answer to the question, is the

nature of the x—y interval corresponding to a pixel area, and

30

-33-

12 Sep 2007

2003294327

thereby the t, u, v solutions associated therewith, such that
the shader has been invoked (i.e., color and opacity, for
example, has been assigned or designated) . If the shader has
been invoked, by calling upon the coverage solver, no further
parsing of the x—y space (e.qg., FIGS. 19(b)-19(£)) is

required, and the x-y pixel data is sent to the display.

The ccverage solver, as detailed in FIG. 16, essentially
replicates the iterations of SCREEN, based upon a user defined
limit epsilon (eps) . COVERAGE, as the name suggests, seeks to
delimit, via the retention of contributing t, u, v aspects
based upon the user specified chop area “eps,” those portions
(i.e., areas) of the object surface within the pixel subunit
(again, see FIGS. 19(b)-19(f)). Upon ascertaining the wvalues
associated with the x—y space or area, they are added or
compiled to provide or define the total coverage of the object
surface (i.e., a mapping of the entire x-y space). At this
point, analysis, more particularly processing, in x—y space is
complete. The next procedural task is a consideration of depth
(i.e., assessment of Z(t, u, v) of the parametric system with

a fixed or set x and y).

The depth solver, as detailed in FIG. 17, is essentially
doing the job of FIG. 17(a). Mcre particularly, DEPTH
initially ascertains where in the 2z dimension, ultimately from
the image plane (see FIG. 4 camera space), does the object
surface, heretofore defined in %, vy, t, u, v aspects, first
appear or reside (i.e., in which depth cell), and thereafter
step into space, via iterative cells, until the x, y, t, u, v

object

31

-34-

12 Sep 2007

2003294327

surface is no longer present in a cell (i.e., cell X of FIG.
17 (a)). In furtherance thereof, the depth variable, more
accurately, depth function, is initialized for all depth
space, namely set to the infinite interval (z depth, i.e., set
to an interval at an infinite distance from the viewer).
Thereafter, t, u, v, contraction begins in the depth field
(z0). Subsequently, there is a trivial accept/reject query as
to whether there is in fact a depth component of the x-y
parameterization, with searching commencing thereafter (z
search). For each depth cell, the importance solver (i.e., the
t, u, v, chopper wherein a set inversion is executed in t, u,
v so as to contract same) is called upon, and it is necessary
to next assess if the shader was invoked. If the shader is
invoked (i.e., a first visible root is identified), the output
of the shader are accumulated into the importance sums and the
depth parsing continues in furtherance of accounting for all z
components of the x—y object surface, if not, steps, on a cell
by cell basis are “walked off.” Although the parsing or
chopping of z space has been described as a serial or loop
type progression, it is «certainly amenable to recursive

splitting, as the case of the x—y space.

The importance solver, as detailed in FIG. 18, when
called, essentially completes a set inversion in t, u, v, that
is to say, for the smallest x, y, 2z (i.e., each specific z
cell for, or in, which an object surface element x—y resides),
t, u, v are to be narrowed as much or as finely as possible.

The function of the importance sclver is to fit or optimally

32

-35-

16 Mar 2009

2003294327

match the t, u, v with the x, vy, 2z, in a way that 1is
overreaching, not wunderreaching. In furtherance thereof,
importance filtering 1is conducted, the notion previously

discussed with respect to the filtering of FIGS. 7(a)—(c).

It should be noted, and/or again emphasized, that to the
extent that the subject description has only used a 3-
dimensional parameter domain as an example, the method
described herein works for any n—dimensional parameter domain.
For example, additional parameters such as temperature, mass
or pressure can be used to specify the manifold that appears

in the %, y and z domain of the image. This allows more

33

-36-

WO 2004/046881 PCT/US2003/036836

complex and accurate simulations to be represented in the
digital scene and applied to the rendered image.

There are other variations of this invention which will
become obvious to those skilled in the art. It will be
understood that this disclosure, in many respects, is only
illustrative. Although the various aspects of the present
invention have been described with respect to various
preferred embodiments thereof, it will be understood that the
invention is entitled to protection within the full scope of

the appended claims.

_34...

-37-

2003294327 05 Mar 2010

15

20

25

30

THE CLATMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method of photorealistic image synthesis wutilizing
interval-based techniques for integrating digital scene
information comprising the steps of:
a. executing an interval analysis upon input parameters of
an image frame so as to compute a visible solution set of an
area not exceeding a pixel dimension for a pixel of an array
of pixels that form said image frame;
b. computing said visible solution set of the area not
exceeding the pixel dimension for the pixel of the array of
pixels that form said image frame;
c. inputting said wvisible solution set of the area not
exceeding the pixel dimension for the pixel of the array of
pixels that form said image frame to a user defined shading
function in furtherance of quantitatively assigning a
character to the pixel; and
d. synthesizing a photorealistic image comprising said image

frame.

2. The method of claim 1 wherein said array of pixels that form
said image frame is characterized by a screen or pixel coordinate

system.

3. The method of claim 2 wherein said screen or pixel coordinate
system of said image frame is further characterized by at least

one additional dimension.

4. The method of claim 3 wherein said at least one additional
dimension is selected from the group consisting of depth, time,

or aperture.

5. The method of claim 2 wherein an interval bisection of sa:id

screen or pixel coordinate system is executed.

35

-38-

2003294327 05 Mar 2010

10

15

20

25

30

6. The method of claim 2 wherein a preferential interval
subdivision of said screen or pixel coordinate system is

performed.

7. The method of claim 1 wherein said user defined shading

function is nonlinear.

8. The method of claim 1 wherein said user defined shading

function is an interval function.

9. The method of claim 1 wherein said input parameters

comprise an interval function.

10. The method of claim 1 wherein said input parameters

comprise a geometric function.

11. The method of claim 1 wherein said input parameters

comprise a nonlinear geometric function.

12. The method of claim 1 wherein said input parameters
comprise a geometric function comprising a projection of a set
of parametric variables into a screen or pixel coordinate

system of said array of pixels that form said image frame.

13. The method of claim 1 wherein said input parameters
comprise a geometric function comprising a zero-set implicit
function of a screen or pixel coordinate system of said array

of pixels that form said image frame.

14, The method of claim 12 wherein parametric variables of
said set of parametric variables comprise intervals
representing unknown parametric space to be assessed in

36

-39-

2003294327 05 Mar 2010

10

15

20

25

30

furtherance of visible solution set computation.

15. The method of claim 12 wherein an error-bounded projection
of parametric variables of said set of parametric variables of
said geometric function into said screen or pixel coordinate

system is computed.

16. The method of claim 12 wherein parametric wvariables of

said set of parametric variables are selectively contracted.

17. The method of claim 16 wherein said contraction of said
parametric variables comprises a narrowing of interval width

of at least one of said parametric variables.

18. The method of claim 17 wherein said narrowing of interval
width comprises an interval bisection of at least one of said

parametric variables.

19. The method of claim 17 wherein the narrowed interval width
of at least one of said parametric variables is input in
furtherance of computation of a visible solution set of said

screen or pixel coordinate system.

20. A computer readable storage medium storing instructions
that when executed by a computer cause the computer to perform
a method of photorealistic image synthesis utilizing interval-
based techniques for integrating digital scene information
within a computer system, the method comprising: a. executing
an interval analysis upon input parameters of an image frame
so as to compute a visible solution set of an area not
exceeding a pixel dimension for a pixel of an array of pixels
that form said image frame; b. computing said visible solution
set of the area not exceeding the pixel dimension for the

37

-40-

2003294327 05 Mar 2010

pixel of the array of pixels that form said image frame; and,
c. 1inputting said visible solution set of the area not
exceeding the pixel dimension for the pixel of the array of
pixels that form said image frame to a user defined shading
function in furtherance of quantitatively assigning a

character to the pixel.

38

-41-

12 Sep 2007

2003294327

28

1119

26

FIG. 1

22

30

32

-42-

20

2003294327 12 Sep 2007

2119

Wrr‘i‘rrlﬁ‘f /

Goomery

FIG. 2

-43-

3/19

12 Sep 2007

2003294327

FIG. 3

-44-

oL~
AOVdS VHIWYD

= i

i
MeIA

\

\y /
o

LO0T oS TT LTEV6TE00T

4/19

uopewsosuay
Equo

wwd\

FA0VdS aTHOM

U

Z 30VvdS 300N

s

T uonewIOjauz)
1epow

L 2OVdS JmQOE

i :u:u::&w:g‘.\
|epow

FIG. 4

-45-

12 Sep 2007

2003294327

5/19

AZ

direction ©
solid angle dwg

72\

74 X

FIG. 5

-46-

12 Sep 2007

2003294327

6/18

FIG. 6

47-

12 Sep 2007

2003294327

7119

—_
T e . * s ..
. * L I [4
. 3
[o o
et e .
. . . .
. - .
. e oalr L. T
*
n.... o o LA Y.
s ' % o %% 4 u.
a® 2 %leo e * .
. - L
L .
. .
. * . 1" * . .
o'v...".' * s
.
0'..‘ TS .
.0...'-, ‘-.
".0.5..~' o.
v . 4 -
» . »
. 0.' . L4 .
L
. LI ° s " e
c., O.n‘ .

-48-

12 Sep 2007

2003294327

8119

. M \

(e)

FIG. 8

-49-

PN

: 3 : s il
Y 4 \\\\ el oo \}\ \\‘3
ST &&\\\\X&\\Q ‘.,' :.-i §\:\\\\\‘_:

12 Sep 2007

2003294327

Realism

Global lllumination

(ray tracing)

9/19

Real
Life

Local fllumination
(hardware rendering)

Spead

FIG. 9

-50-

12 Sep 2007

2003294327

X(tuv)
Y(tuv)
Z(t uv)

10/19

User-defined
shading routines

il

Interval
consistency solvers

Pixel
data

Display

FIG. 10

-51-

1119

ejep
18x1d

8J8A|0S AOUSISISUOD

11
-52-

FIG.

jeAseU|

b

X

saujynot Bupsys
pauyep-iesf)

L00T dos T1

LTEVY6CE00T

12 Sep 2007

2003294327

12/19

Dim
{oparatorin & tn 4 In v} ; Interval

[sciveiin sy=, lox,nynz,ntinuinv)

System
(X Dt
: Dim
: Dim
input 7
ll Sunfish Studlio, Inc.
Solvar Rendering Kernat:
Statk Structure Diagram

[| ?

1 L
I Screen Pixel l z::se '7 Depth I

Display

draw(in X, in y, I pixeioata)

PXXELDATA
Kepth
{coverage
e

lor

Output Cafbacks

jopacky
lavalfin £, in &, i V)|

FIG. 12

-53-

1319

L00T dos T1

wabgQg eouenbag
Jeusay Bupspuay

*3u| “o|prs ysyuns
1 1 I 1 1 1
! ! _ : ! !
i | “ 1 b i
' H i]] 1]
" “ 1 1]] “
i i i i | I
“ | | | : J
mm -] - mmmmm boemmmn e 4mmmmom - o
“ +] “
_ ‘ ! : ! |
, : u _
_ H i 1
" " T T
T : U wep L J
! [' ' [T~ e6uieAcd
]
t 1 ! [
: m " (1o
1 [} 1
" “ | _ _fosdo _
1 1000
| _ oo _
: 10{02
A
! (L]
1 “ -
H : anjas .
“ m “ D e
) 1 o
" " m “ T o
"] 1 1
1]] 1 1 _.
]]] 1 '
_ " ; : _
" 1 “ w 1

[| [| o]

LTEVY6CE00T

[| []

[]

oA08

=]

FIG. 13

-54-

12 Sep 2007

2003294327

yes

Spitx o

xt and x2

5

yes:

Spit y into
no yi and y2

Contract

tuv

14/19

Phxel
Solver

—(C=)

FIG. 14

-55-

12 Sep 2007

2003294327

15/19

inttializs the
Importance sums

z

Coverage
Solver

yes

¥

Average the
imporiance sums

v

Send (X,Y)
pixel data
to the display

FIG. 15

-56-

12 Sep 2007

2003294327

16/19

Depth
Salver

FIG. 16

-57-

12 Sep 2007

2003294327

17119

FIG. 17 ®

-58-

12 Sep 2007

2003294327

18/19

X1 =X(tu,v)
yi=Y(tuv)
i =Z{LuY)

= D

?g

(1, yi,z1) —_—
acoe| yee
Evahale Add shader
no shader with resudts to the
Luv impoitance swms
3
yes—
no
ol = wid(t)
cuswid(u)
dv=wid(v)
du <=di o dt <= du o Sphtv Inio
dv <= dt dv <= du viand v2
yes yes
Splt t Into Spiit u Into
H and t2 ud andu2

| l

FIG. 18

-59-

12 Sep 2007

2003294327

19/19

{a)

(d)

FIG. 19

-60-

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

