(19) AUSTRALIAN PATENT OFFICE

(11) Application No. Al 2004201343 B2

(54) Title

A rendering independent persistence of information
(51)2 International Patent Classification(s)

GO6F 12,00 (2006.01) 15-00

GO6F 1500 (2006.01) 20060101ALT2006010

GO6F 17,30 (2006.01) 1BMER GO6F

GO6F 12-00 17730

20060101AFI 2005122 20060101ALT2005100

0BMJP GO6F 8BMEP
(21) Application No: 2004201343 (22) Application Date: 2004 03 30
(30) Priority Data
(31 Number (32) Date (33) Country

10-/404746 2003 .03 .31 us
(43) Publication Date : 2004 10 14
(43) Publication Journal Date : 5904 10 14
(71) Applicant(s)

Microsoft Corporation
(72) Inventor(s)

Bergstrom, Yee Man, Wang, Fang. Carlson, Jason
(74) Agent/Attorney

Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000
(56) Related Art

us 2002-0143824

us 2002-0143521

EP 1122652

us 7053958

———

ABSTRACT OF THE DISCLOSURE
A system and methods providing a rendering independent persistence of information is
provided. In an illustrative implementation, data is provided having some predefined structure.
In operation, the data is processed such that the data and it’s associated structure are represented
in a data format that is persistent. In operation, the data is parsed according to one or more

constraints and translated into the persistent data format.

1/10

0

| Monitor 181
(RAM) 132 1 Processing Output
A : Unit Video inheral | Print
Operating . Interface Periphera rinter g6
System 134 120 190 Interface ;55
Application < ﬁm<m_m3 Bus 121 ﬁ ﬁ * Speakers ;o7

|
i

!

i

1

|

|

l

“ Programs 4 5
l

|

|

l

1

l

|

|

1

|

1

l Lo

Non-Removable Removable
Other Program Non-Volatile Non-Volatile User Input Network Local Area
Modules 136 Memory Memory Interface Interface Network
Interface 140 Interface 180 170
Pragram 1
Data 137 171

_ Wide Area Network

y ._qwi\ P
. (i aaaaTasaa] 72
OPERATING | APPLICATION v%%MMMZ_ PROGRAM OMM“WHME
SYSTEM PROGRAMS DATA Mouse Keyboard 162
144 145 MODS 146 147 161 180
REMOTE
APPLICATION
PROGRAMS 185 [o] fococo] Joo]

Figure 1

AUSTRALIA
PATENTS ACT 1990
COMPLETE SPECIFICATION

NAME OF APPLICANT(S)::

Microsoft Corporation

ADDRESS FOR SERVICE:

DAVIES COLLISON CAVE
Patent Attorneys
1 Nicholson Street, Melbourne, 3000, Australia

INVENTION TITLE:

A rendering independent persistence of information

The following statement is a full description of this invention, including the best method of performing it
known to me/us:-

5102

27 Aug 2009

2004201343

20

25

2431470 (SPA Julby 7

-1A -

TECHNICAL FIELD

Embodiments relate generally to the field of data rendering, and, more particularly,
to novel expression of a data in a rendering independent persistent data format that is more
easily usable by a variety of cooperating computing applications and computing

environments.

BACKGROUND

Data storage and format is ubiquitous with data management and data processing.
In the context of computing applications, data is the lifeline. From simple content based
data to complex embedded instruction sets, data acts as the input to most computing
applications and is the resultant output of these computing applications. Not surprisingly,
computing application designers and developers have developed staggering amounts of
computing applications to create, manage, store, and process data that touches each of us in
almost cvery aspect of our lives. From simple word processing applications to
complicated encryption techniques for use in communicating sensitive data, data
processing computing applications have become integrated within daily routines and
practices. The development of the myriad of data operative computing applications has
rendered an expected byproduct - simply a number of varying and disparate data formats
and types.

With disparate data formats, it becomes increasingly difficult to share data between
cooperating computing applications and computing environments that have their own
native data formais and definitions. Addressing these concerns, computing application
developers have developed and implemented various data filters and translators that allow
them to accept non-native data formats. However, the integration and implementation of
such data conversion mechanisms comes at an expense, namely, increased processing
requirements and the loss of data integrity. Moreover, data conversion may not be
available to each and every computing application secking to process non-native data. As
such, sharing desired data among cooperating computing applications is rendered difficult

at best.

20

30

- e

Data may be characterized by a rendering extension which is representative of the
underlying format and/or layout. The rendering extension prompts cooperating applications of
the data format and/or layout and, if appropriate, will trigger the conversion of data by the
cooperating computing application to a native format native to the requesting cooperating
computing application. The rendering extensions, generally, also provide an indication of which
computing application or computing environment generated a piece or set of data. For example
if a particular word processor computing application generated a data (e.g. a document), the
rendering extension may be of the “.doc” variety. Comparatively, if 2 spreadsheet computing
application generated some data (e.g. a spreadsheet, graph, etc.), then the rendering extension
may be “xls”.

Currently, computing applications generally generate data (e.g. reports) having a single
rendering extension (e.g. .html, .doc, xls, .xml) definition that is usually native to the computing
application that is generating the data. As such, cooperating applications, when processing
reports, first are required to perform a translation of the foreign rendering extension to a native
rendering extension. This translation step, in some instances, can introduce errors, that is, data
layout/formatting error and, more importantly, data error. Moreover, the data, in such form, has
limited utility to cooperating applications as the generated report is not easily queryable. In most
instances, participating users will use the computing applications to generate new data having
new report definitions instead of trying to reuse an already generated report.

Another drawback of existing practices is an inability to perform a time driven analysis of
already generated data. As described, a computing application may operate on one or more
cooperating data stores, These data stores have various tables having various field definitions.
Over time the value of the fields will change to reflect one or more change in the organization
and/or enterprise operating the data store. For example, a car dealership may employ a
computing application cooperating with a data store to record sales. The sales values would
change as more cars are sold. In the same example, the computing application may operate to
generate a report to show the total sales by each of the sales staff of the car dealership. Once
again with increasing sales, the report values change. Current data (e.g. report) generating
computing applications operate such to gather the necessary data according to a definition and

generate a data work product according to the report definition. However, the data work product

Page 2 of 22

27 Aug 2009

2004201343

20

25

30

P 31420 1SPA Jull doc-N1)

-3-

acts a snapshot of the values of the data fields found in the cooperating data store at the
time of the data work product generation.

Moreover, current computing applications would expose the generated data work
product as data construct that is probably not schematized, not stored in a non-persistent
data format, and thus is not easily queryable. As such, these applications would not be
able to support a time-dimensioned query on the historical data work products to provide a
time-driven analysis of one or more of the data values. By storing data in a non-persistent
rendering dependent format, current applications are incapable of performing a time driven
analysis that may be used to determine trends.

Rendering independent persistent data formats have many applications outside of
the report generation and management context. For example, a rendering independent
persistent data format may be incorporated to communicate a variety of data, such as web
content, across disparate computing application having their own native rendering
requirements and standards.

From the foregoing it is desired to address or ameliorate one or more shortcomings
or disadvantages of previous approaches or to provide at least a useful alternative and
preferably a system and method that provides data in a rendering independent persistent

format for use in a variety of processing that is not realized by current practices.

SUMMARY

Some embodiments relate to a method implemented at least in part by a computing
device to provide a rendering independent persistence of information comprising the steps
of:

providing a plurality of data sources, each said data source having a predefined data
structure and associated with a time, each said predefined data structure comprising a
corresponding schema definition;

translating each of the plurality of data sources according to the corresponding
schema definition that yields corresponding rendering independent persisted data in a
rendering independent persisted data format, wherein the translating step comprises the
step of performing a binary translation of said each of the plurality of data sources; and

aggregating the rendering independent persisted data from each of the plurality of

27 Aug 2009

2004201343

20

25

30

PAOPERISSTRM0NI2431 470 1SPA Jultl) doc-KINT1200%

J3A -

data sources according to a time-based parameter to generate a new schematized queryable
data source having the rendering independent persistent data format and the new
schematized queryable data source comprising the aggregated rendering independent
persisted data from each of the plurality of data sources according to the time-based
parameter to allow a time driven query to be performed on the new schematized queryable
data source.

Some embodiments relate to a computer readable storage medium having a tangible
component with computer readable instructions stored thereon to instruct a computer to
perform the following method:

providing a plurality of data sources, each said data source having a predefined data
structure and associated with a time, each said predefined data structure comprising a
corresponding schema definition;

translating each of the plurality of data sources according to the corresponding
schema definition that yields corresponding rendering independent persisted data in a
rendering independent persisted data format, wherein the translating step comprises the
step of performing a binary translation of said each of the plurality of data sources; and

aggregating the rendering independent persisted data from each of the plurality of
data sources according to a time-based parameter to generate a new schematized queryable
data source having the rendering independent persistent data format and the new
schematized queryable data source comprising the aggregated rendering independent
persisted data from each of the plurality of data sources according to the time-based
parameter to allow a time driven query to be performed on the new schematized queryable
data source.

Some embodiments relate to a system providing a rendering independent
persistence of information comprising:

at least one computing processor;

memory communicatively coupled with said at least one computing process, said
memory comprising instructions cxccutable by said at least one computing processor, said
instructions comprising:

instructions for providing a plurality of data sources, each said data source having

data, wherein the data has an associated data structure and is associated with a time, each

27 Aug 2009

2004201343

20

25

30

PO 211570 ISPA Jult)

.3B-

said data structure comprising a schema definition;

instructions for providing a processing module, the processing module operating on
cach of the plurality of the data sources to generate corresponding rendering persisted data
in a rendering independent persisted data format, wherein the rendering independent
persisted data format operates in various rendering specific environments, wherein the
processing module executes according to the corresponding schema definition a binary
translation of the data into the rendering independent persisted data format; and

instructions for aggregating the rendering independent persistence of information
from each of the plurality of data sources according to a time-based parameter (o generate
a new schematized queryable data source having the rendering independent persistent data
format and the new schematized queryable data source comprising the aggregated
rendering independent persisted data from each of the plurality of data sources according
to the time-based parameter to allow a time driven query to be performed on the new
schematized queryable data source,

Some embodiments relate to, in a computing environment, a method providing a
rendering independent persisted data format comprising:

receiving a plurality of data sources, each said data source associated with a time
and comprising a schema definition;

parsing each of the data sources according o at least one predefined parsing rule;

translating the parsed data according to the schema definition into rendering
independent persisted data having a rendering independent persisted data format, wherein
the translating step comprises binary translating the parsed data; and

aggregating the rendering independent persisted data from each of the plurality of
data sources according to a time-based parameter to generate a new schematized queryable
data source having the rendering independent persistent data format and the new
schematized queryable data source comprising the aggregated rendering independent
persisted data from each of the plurality of data sources according to the time-based
parameter to allow a time driven query to be performed on the new schematized queryable
data source,

Some embodiments relate to a method comprising:

receiving a plurality of data sources, each said data source associated with a time

and comprising a schema definition;

27 Aug 2009

2004201343

20

PAGPER\SSEZU0NI 2111170 1SPA Ll doc 12009

_3C-

parsing each of the data sources according to at least one predefined parsing rule;

translating the parsed data according to the schema definition into rendering
independent persisted data having a rendering independent persisted data format, wherein
the translating step comprises binary translating the parsed data to an extension specific
format of the requesting environment; and

aggregating the rendering independent persisted data from each of the plurality of
data sources according to a time-based parameter to generate a new schematized queryable
data source having the rendering independent persistent data format and the queryable
schematized data source comprising the aggregated rendering independent persisted data
from each of the plurality of data sources according to the time-based parameter to allow a
time driven query to be performed on the new schematized queryable data source.

Embodiments relate to systems and methods to represent data as a rendering
independent persistence of information. In an illustrative implementation, data having a
predefined structure is provided. The data is processed such that a representation of the
data is created wherein the representation includes information about the data and the
data's structure. In operation, the data is parsed and converted to a predefined format that
is persistent.

In a contemplated implementation, a generated data set is provided by the
computing application in a rendering independent persistent data format. The rendering
independent persistent data format, inter alia, allows for the application to perform time
lapsed and time driven queries on the report exposed as schematized queryable data
source, and more importantly, allows the report to be perceived as any other data source by

other cooperating computing applications.

-10-

10

20

25

Other features and aspects of the herein described systems and methods are described in

more detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1 and 2 are schematic illustrations of exemplary computing environments
suitable for the present invention, with Figure 2 depicting an exemplary networked computing
environment;

Figure 3 is a block diagram of showing an exemplary implementation of a report as a data
source in accordance with the herein described system and methods;

Figure 4 is a block diagram depicting the flow of report processing in accordance with
the herein described systems and methods;

Figure 5 is a block diagram depicting the flow of report utilization in accordance with the
herein described system and methods;

Figure 6 is a detailed block diagram of exemplary components to process schematized
data constructs in accordance with the herein described systems and metheds;

Figure 7 is flow diagram of the processing performed to expose a report as a schematized
queryable data source in accordance with the herein described systems and methods;

Figure 8A is a flow diagram of the processing performed to expose the data source as a
rendering independent persistence of information;

Figure 8B is a flow diagram of the processing performed when translating the rendering
independent persistence of information as a report exposed as a schematized queryable data
source; and

Figure 9 is a flow diagram of the processing performed when processing data exposed as

a schematized queryable data source to generate a desired snapshot.

Page 4 of 22

11-

27 Aug 2009

2004201343

20

25

30

PAOPERISSBA200912431470 ISPA Jul09.dus - 87209

DETAILED DESCRIPTION

Overview

The persistence of data is tantamount to effective data warehousing and data
processing. Currently, computing applications and computing environments operate on
data to generate one or more data work products that can be described by one or more
rendering extensions. The rendering extension, generally, may be used to characterize the
format and definition of the data found in data work products. Typically, a computing
application will operate on a set of data in a data processing mode to generate data work
products having a particular rendering extension. For example, a word processing
computing application may operate on text type data to generate formatted documents.
Such formatted documents may then be stored as data having the “.doc” rendering type.

A problem arises however when cooperating computing applications and
computing environments vie for data that has a non-native data format or definition (i.e.
stored and exposed having different and varying rendering extensions). Typically, the
computing applications, if equipped, will call upon one or more data conversion operations
to translate the desired data work product into a native rendering extension. However,
such conversion can be processing intensive and can introduce significant error into the
final data work product.

Described embodiments aim to ameliorate the shortcomings of existing practices
by providing a system and methods that expose data having a rendering independent
persistent data format. Specifically, an exemplary computing application is provided that
operates on data according to a predetermined definition. The data definition contains,
inter alia, information relevant to the desired data to be provided, data layout information,
and data formatting information. The exemplary computing application retrieves the
desired data and data definition from the cooperating data store. Once gathered, the
exemplary computing application defines a schema for the data and stores the data in an
intermediate data format. The intermediate data format is a rendering independent
persistent data format. As such, the retrieved data having an associated schema is exposed
as a data source with all of the benefits a data source provides to cooperating applications.
Moreover, being stored as a rendering independent persistent data format, current
reusability (i.e. usability between disparate computing applications and computing

environments having varying data rendering extension requirements) issues are resolved,

-12-

27 Aug 2009

2004201343

20

25

30

PAOPERISSBAZ009\ 12431470 ISPA Jul09 doc - B/7/09

_6-

as well as, with the present system and methods, time driven queries are more easily
executable against a set of generated reports.

It is appreciated that although the herein described systems and methods are
described in the context of the generation of one or more data work products, that the
rendering independent persistence of information may be utilized in various ways that go

beyond the scope of the provided examples.

A. Exemplary Computing Environment

Figure 1 illustrates an example of a suitable computing system environment 100 in
which embodiments may be implemented. The computing system environment 100 is only
one example of a suitable computing environment and is not intended to suggest any
limitation as to the scope of use or functionality of the invention. Neither should the
computing environment 100 be interpreted as having any dependency or requirement
relating to any one or combination of components illustrated in the exemplary operating
environment 100,

Embodiments are operational with numerous other general purpose or special
purpose computing system environments or configurations. Examples of well known
computing systems, environments, and/or configurations that may be suitable for use with
the invention include, but are not limited to, personal computers, server computers, hand-
held or laptop devices, multiprocessor systems, microprocessor-based systems, set top
boxes, programmable consumer electronics, network PCs, minicomputers, mainframe
computers, distributed computing environments that include any of the above systems or
devices, and the like.

Embodiments may be described in the general context of computer-executable
instructions, such as program modules, being executed by a computer. Generally, program
modules include routines, programs, objects, components, data structures, etc. that perform
particular tasks or implement particular abstract data types. Embodiments may also be
practiced in distributed computing environments where tasks are performed by remote
processing devices that are linked through a communications network or other data
transmission medium. In a distributed computing environment, program modules and
other data may be located in both local and remote computer storage media including
memory storage deviccs.

With reference to Figure 1, an exemplary system for implementing embodiments

13-

27 Aug 2009

2004201343

20

25

30

PAOPER\SSBI2009\12431470 1SPA Jul09 doc - 8/7/09

includes a general purpose computing device in the form of a computer 110. Components
of computer 110 may include, but are not limited to, a processing unit 120, a system
memory 130, and a system bus 121 that couples various system components including the
system memory to the processing unit 120. The system bus 121 may be any of several
types of bus structures including a memory bus or memory controller, a peripheral bus, and
a local bus using any of a variety of bus architectures. By way of example, and not
limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro
Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Vidco Electronics Standards
Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus (also
known as Mezzanine bus).

Computer 110 typically includes a variety of computer readable media. Computer
readable media can be any available media that can be accessed by computer 110 and
includes both volatile and non-volatile media, removable and non-removable media. By
way of example, and not limitation, computer readable media may comprise computer
storage media and communication media. Computer storage media includes both volatile
and non-volatile, removable and non-removable media implemented in any method or
technology for storage of information such as computer readable instructions, data
structures, program modules or other data. Computer storage media includes, but is not
limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM,
digital versatile disks (DVD) or other optical disk storage, magnetic casseltes, magnetic
tape, magnetic disk storage or other magnetic storage devices, or any other medium which
can be used to store the desired information and which can be accessed by computer 110
Communication media typically embodies computer readable instructions, data structures,
program modules or other data in a modulated data signal such as a carrier wave or other
transport mechanism and includes any information delivery media. The term “modulated
data signal” means a signal that has one or more of its characteristics set or changed in
such a manner as to encode information in the signal. By way of example, and not
limitation, communication media includes wired media such as a wired network or direct-
wired connection, and wireless media such as acoustic, RF, infrared and other wireless
media. Combinations of any of the above should also be included within the scope of

computer readable media.

-14-

10

15

20

25

30

- . -

The system memory 130 includes computer storage media in the férm of vol'atile and/or
non-volatile memory such as ROM 131 and RAM 132. A basic input/output system 133 (BIOS),
containing the basic routines that help to transfer information between elements within computer
110, such as during start-up, is typically stored in ROM 131. RAM 132 typically contains data
and/or program modules that are immediately accessible to and/or presently being operated on
by processing unit 120. By way of example, and not limitation, Figure 1 illustrates operating
system 134, application programs 135, other program modules 136, and program data 137.

The computer 110 may also include other removable/non-removable, volatile/non-
volatile computer storage media. By way of example only, Figure 1 illustrates a hard disk drive
140 that reads from or writes to non-removable, non-volatile magnetic media, a magnetic disk
drive 151 that reads from or writes to a removable, non-volatile magnetic disk 152, and an
optical disk drive 155 that reads from or writes to a removable, non-volatile optical disk 156,
such as a CD-ROM or other optical media. Other removable/non-removable, volatile/non-
volatile computer storage media that can be used in the exemplary operating environment
include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile
disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard disk drive 141
is typically connected to the system bus 121 through a non-removable memory interface such as
interface 140, and magnetic disk drive 151 and optical disk drive 155 are typically connected to
the system bus 121 by a removable memory interface, such as interface 150.

The drives and their associated computer storage media, discussed above and illustrated
in Figure 1, provide storage of computer readable instructions, data structures, program modules
and other data for the computer 110. In Figure 1, for example, hard disk drive 141 is illustrated
as storing operating system 144, application programs 145, other program modules 146, and
program data 147. Note that these components can either be the same as or different from
operating systemn 134, application programs 135, other program modules 136, and program data
137. Operating system 144, application programs 145, other program modules 146, and program
data 147 are given different numbers here to illustrate that, at a minimum, they are different
copies. A user may enter commands and information into the computer 110 through input
devices such as a keyboard 162 and point‘ing device 161, commonly referred to as a mouse,

trackball or touch pad. Other input devices (not shown) may include a microphone, joystick,

Page 8 of 22

-15-

10

15

20

25

- e —

game pad, satellite dish, scanner; or the like. These and other input devices are often connected
to the processing unit 120 through a user input interface 160 that is coupled to the system bus,
but may be connected by other interface and bus structures, such as a parallel port, game port or
a universal serial bus (USB). A monitor 191 or other type of display device is also connected to
the system bus 121 via an interface, such as a video interface 190. In addition to the monitor,
computers may also include other peripheral output devices such as speakers 197 and printer
196, which may be connected through an output peripheral interface 190.

The computer 110 may operate in a networked environment using logical connections to
one or more remote computers, such as a remote computer 180. The remote computer 180 may
be a personal computer, a Server, a router, a network PC, a peer device or other common network
node, and typically includes many or all of the elements described above relative to the computer
110, although only a memory storage device 181 has been illustrated in Figure 1. The logical
connections depicted include a local area network (LAN) 171 and a wide area network (WAN)
173, but may also include other networks. Such networking environments are commonplace in
offices, enterprise-wide computer networks, intranets and the Internet.

When used in a LAN networking environment, the computer 110 is connected to the
LAN 171 through a network interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem 172 or other means for establishing
communications over the WAN 173, such as the Internet. The modem 172, which may be
internal or external, may be connected to the system bus 121 via the user input interface 160, or
other appropriate mechanism. In a networked environment, program modules depicted relative to
the computer 110, or portions thereof, may be stored in the remote memory storage device. By
way of example, and not limitation, Figure 1 illustrates remotc application programs 185 as
residing on memory device 181. It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications link between the computers may

be used.

B. Exemplary Networked Computing Environment
Computer 20a, described above, can be deployed as part of a computer network. In

general, the above description for computers applies to both server computers and client

Page 9 of 22

-16-

20

25

r—.

computers deployed in a network environment. Figure 1A illustrétes an exémplary network
environment, with a server in communication with client computers via a network, in which the
present invention may be employed. As shown in Figure 1A, a number of servers 10a, 10b, etc.,
are interconnected via a communications network 160 (which may be a LAN, WAN, intranet,
the Internet, or other computer network) with a number of client computers 20a, 20b, 20c¢, or
computing devices, such as, mobile phone 15, land-line telephone 16, and personal digital
assistant 17. In a network environment in which the communications network 160 is the Internet,
for example, the servers 10 can be Web servers with which the clients 20 communicate via any
of a number of known protocols, such as, hypertext transfer protocol (HTTP) or wireless
application protocol (WAP). Each client computer 20 can be equipped with browser 180a to gain
access to the servers 10. Similarly, personal digital assistant 17 can be equipped with browser
180b and mobile phone 15 can be equipped with browser 180c to display and receive various
data.

In operation, a user (not shown) may interact with a computing application running on a
client computing devices to expose a report as a schematized queryable data source. The reports
may be stored on server computers and communicated to cooperating users through client
computing devices over communications network 160. A user may generate, manage, and
interact with such reports by interfacing with computing applications on client computing
devices. These transactions may be communicated by client computing devices to server
computers for processing and storage. Server computers may host computing applications to
expose reports as queryable schematized data sources.

Thus, the present invention can be utilized in a computer network environment having
client computing devices for accessing and interacting with the network and a server computer
for interacting with client computers. However, the systems and methods described herein can be
implemented with a variety of network-based architectures, and thus should not be limited to the
example shown. The herein described systems and methods will now be described in more detail

with reference to a presently illustrative implementation.

Page 10 of 22

17-

10

20

25

30

C. Reports As Data Sources

Figure 3 shows a block diagram of an exemplary illustrative architecture of an exemplary
report generation and managemeni system that exposes a report . A shown, the exemplary
architecture 300 comprises report server 320. Report server 320 further comprises report
processing engine 325, analysis services engine 330, and report intermediate format 335. The
report intermediate format 335 further comprises data 345 and schema 340. Lastly, exemplary
architecture 400 comprises report viewer/browser 305 and OLEDB/ADO 310. In operation,
report server 320 generates schema 340 that operates on report data 345. The report server 320
generates report intermediate format which is a schematized queryable data source having a
rendering independent persisted data format. The intermediate data format can then be used by
report server 320 to display the generated report via 305. In this context, the intermediate format
335 is processed by the report processing engine 325 of the report server 320 to display the
report on report viewer/browser 305. The intermediate format can also be used by report server
320 to communicate the generated report to cooperating environments via analysis services
engine 330 using OLEDB module 310.

By having the report in an intermediate format that is schematized, the report looks like

and acts like a data source to cooperating environments and cooperating computing applications.

D. Exposing Data Work Products as Schematized Data Sources

Figure 4 shows the exemplary data flow between exemplary components of a data work
product (e.g. report) generation and management system that expose reports as schematized
queryable data sources. As shown, report generation and management system 400 comprises
various components for use in exposing reports as schematized queryable data sources.
Specifically, report generation and management system 400 comprises report processing module
420. As is shown, report processing module 420 cooperates with report definition 415 and
accepts data from external data sources 405 and 410 to generate reports that are stored in an
intermediate format 425.

In operation, a generated report may be requested by one or more cooperating

environments. In this context, the report, stored in an intermediate data format, is communicated

Page 11 of 22

-18-

20

25

30

10 an event processing module 430 which coordinates the communication of generated reports, in

whole or in part, to requesting environments. Event processing module 430 determines the
rendering of the requesting environment and provides the report in whole or in part to the
requesting environment in a rendering extension native to the requesting environment. For
example, if htm] rendering is required html rendering extensions 435 are employed.
Comparatively, if XML rendering is required, XML rendering extension 440 is employed. And
so on, such that other rendering types would be represented by other rendering extensions 445.

Figure 5 shows an exemplary high level deployment of an exemplary report generation
and managemem‘ system 500. As shown report generation and management system 500
comprises report processing module 525. Report processing module 525 comprises data
extensions 525 and rendering extensions 530. Furthermore, report processing module cooperates
with report definition 510 and data source 505. In operation, a request for a report is provided to
the report processing module 525. The report processing module 525 obtains the proper report
definition from report definitions filed 510 for application to data found in data source 505, The
data is then processed by report processing module 525 using data extension 535 to identify the
data elements from data source 505. Report processing module 525 then processes the data
according to the appropriate report definition to generate a report that is exposed as a
schematized queryable data source. The report is then stored by the report processing module
525 in an intermediate data format 520 for future use.

In addition to generating reports, report generation and management system 500 is
capable of communicated generated reports to cooperating environments in spite of the rendering
required by the required by the requesting environments. For example, report generation and
management system 500 may be employed to communicate a generated report to a cooperating
environment. In this context, the generated report stored in an intermediate format 520 is
retrieved by report processing module 525 and processed using rendering extensions 530 to
generate a report in a rendering format acceptable by the requesting environment.

Figure 6 shows a more detailed exemplary deployment of an exemplary report generation
and management system capable of exposing a report as a schematized queryable data source
having a rendering independent bersistent data format. As shown report generation and

management system 600 comprises a report server 605. Report server 605 in turn comprises

Page 12 of 22

-19-

20

25

30

mapping module 610, report processing module 615 and query processing

optimization/execution engine 625. Report server 605 cooperates with various cooperating

" components including but not limited to report user interface (UI) 630, report definitions 650, a

second report server 635, Analysis Services (AS) data provider 640, and pivot control
component 645,

When generating a report, report server 605 cooperates with report definitions 650 to
obtain the appropriate report definition for the desired report. The report definition is then
processed by report processing module 615 of report server 605. Report server 605, using the
appropriate report definition gathers the appropriate data and generates a schematized queryable
data source representative of the desired report. The report can then be displayed on the report
UI 630 by report server 605. In this contemplated operation, report processing module 615 of
report server 605 cooperates with mapping module 610 to map the desired report for viewing and
display on report UI 630.

In operation, report generation and management system 600 may support 2 number of
operations and functions. For example a report be run on a set of already generated reports. As
shown in Figure 6 by the arrow a request for a report on a report is provided to a report server
635. The report server 635 processes the report on a report request and cooperates with AS data
provider module to fulfill the request. In turn, AS data provider 640 cooperates with query
processing optimization/execution engine 625. This engine cooperates with report processing
module 615 to obtain/generate the necessary data to satisfy the report on a report request.
Similarly, a request for an OWC on a report may be provided to pivot control module 645 which
in turn cooperates with AS data provider 640 to fulfill the OWC on the report request.

Another use of report generation and management system 600 is to allow participating
users to view reports on report Ul 630 originating from remote cooperating environments. In
this context, the report Ul 630 cooperates with report processing module 615. Report processing
module 615 cooperates with mapping module 610. Mapping module 610 operates to translate
data from one data format to another. As such, it may be used to translate data in a rendering
independent data format to a rendering dependent data format for rendering in requesting
environment. The mapping module 610 then cooperates with the query processing

optimization/execution engine 625 for communication to one or more cooperating modules.

Page 13 of 22

-20-

10

15

20

25

30

It is appreciated that report server 605 in the contemplated imﬁ]ememations can comprise
any of computing hardware, computing software, and the combination of computing hardware
and computing software.

Figure 7 shows a flowchart of exemplary processing performed to expose a report as a
schematized queryable data source and the subsequent processing performed in utilizing such
exposed report. As shown processing begins at block 700 and proceeds to block 705 where the
report definition is obtained. At block 710 a schema is created for the report according the
obtained report definition. The report data is then obtained at block 715 and the created schema,
created at block 710, is applied to the report data at block 720. The schematized report is then
stored in an intermediate format at block 725 (according the 1o processing described in Figures
8A and 8B). From there the processing proceeds to block 730 where a check is performed to
determine if a report has been requested (e.g. requested by the native environment or by a
cooperating environment). In the context of the examples provided, an environment comprises
ay of a computing environment and a partial computing environment. If a report has been
requested, processing proceeds to block 735 where data extensions are applied to the report and
data extensions provided at block 740. In a contemplated illustrative implerﬁemation, the data
extensions are applied to the data of the report to assist to identify the definition of the data
fields. The rendering extensions, as described above, are used to translate the report for use in
the rendering format of the environment using the report. The report is then rendered at block
745 for display in the environment requesting the report. Processing then terminates at block
750. If, however, at block 730 a report is not requested, processing proceeds to block 750 and

terminates.

E. Rendering Independent Persistence of Information

Figure 8A shows a flowchart of exemplary processing performed to provide an exposed
report in a rendering independent persistent data format. As shown, processing begins at block
800 and proceeds to block 8035 where the report schema of the exposed schematized queryable
report is obtained. Processing then proceeds to block 810 where the rendering independent
persistent data format is identified. In an illustrative implementation, the rendering independent

persistent data format comprises a binary data format. In context to block 810, the processing of

Page 14 of 22

21-

10

20

25

30

the herein described methods in accordance with the provided exﬁmp]?&%template the
identification of binary representation of the schema. Further to the provided example,
processing proceeds to block 815 where the identified binary schema is applied to the desired
report to translate the schematized report into a binary data format. Included in the translation
step is the éxecution of a data parsing process that is defined by at least one parsing rule which
acts to separate the report data for processing. Processing then proceeds to block 820 where the
generated binary representation is provided as an intermediate data format in which the exposed
report may exist. Processing then terminates at block 825.

Tt is appreciated that although the exemplary implementation contemplates the use of a
binary representation of the rendering independent persistent data format that the inventive
concepts disclosed herein extend beyond the provided illustrative implementations to include but
not limited to hexadecimal representation, assembly language representations, and high level
programming language representations.

Figure 8B shows a flowchart of the exemplary processing performed when processing
requests by cooperating environments to retrieve an exposed report, in whole or in part. for use
in the requesting environment. As shown, processing begins at block 830 and proceeds to block
835 where the desired report (in whole or in part) is requested and is provided in its intermediate
format (e.g. rendering independent persistent data format). From there, processing proceeds to
block 840 where the intermediate format, a rendering independent format, to a rendering
dependent format, namely, the rendering format of the requesting environment. In an illustrative
implementation, the translation step contemplates the binary transiation of the report schema to
the extension specific format of the requesting environment. At block 845, the schematized
report and accompanying data are extracted for presentation in the rendering extension of the
requesting environment. The final report is then provided at block 850. Processing then
terminates at block 850.

Figure 9 shows a flow chart of exemplary processing performed when performing a time-
based query is performed against a set of generated reports. As shown, processing begins at
block 900 and proceeds to block 905 where the parameters of the desired snapshot view is
provided. From there processing proceeds to block 910 where the schematized queryable reports

are processed as data sources. At block 915, the data is then aggregated from the set of

Page 15 of 22

22-

27 Aug 2009

2004201343

20

25

30

PAOPER\SSBA2009412411470 1SPA Jul09 doc - B/7/09

-16-

generated reports according to the provided parameters (e.g. collect all sales values from
year 1 to year 2 in the Midwest geographic region across all sales reports from year 1 to
year 2). The aggregated data is then collected and processed at block 920 to provide a new
schematized queryable report having the desired snapshot data. Processing the proceeds to
block 925 where it terminates.

The processing described in Figure 9A employs one or more features of the herein
described systems and methods. Specifically, the herein described systems and methods
contemplate a mechanism that exposes a report as a schematized queryable data source
having a rendering independent persistent data format. The reports being schematized,
queryable, and persistent, a time-based query (e.g. trend snapshot) is easily processed on a
set of such reports as data is collected over a time value identified from the report's

schema. The values are reliable as the report is stored in a persistent data format.

F. Conclusion

As mentioned above, while exemplary embodiments of the present invention have
been described in connection with various computing devices and network architectures,
the underlying concepts may be applied to any computing device or system in which it is
desirable to traverse and/or perform other functions in connection with data. Thus, the
processes and systems described above may be applied to a variety of applications and
devices. While exemplary data structures, programming languages, names and examples
are chosen herein as representative of various choices, these are not intended to be
limiting.

The various techniques described herein may be implemented in connection with
hardware or software or, where appropriate, with a combination of both. Thus, the
methods and apparatus of the described embodiments, or certain aspects or portions
thereof, may take the form of program code (i.e., instructions) embodied in tangible media,
such as floppy diskettes, CD-ROMSs, hard drives, or any other machine-readable storage
medium, wherein, when the program code is loaded into and executed by a machine, such
as a computer, the machine becomes an apparatus for practicing the invention. In the case
of program code execution on programmable computers, the computing device will
generally include a processor, a storage medium readable by the processor (including

volatile and non-volatile memory and/or storage clements), at least one input device, and at

-23-

27 Aug 2009

2004201343

20

25

30

PAOPERSSB\200011 2431470 ISPA Jul09.doc - §/7/09

least one output device. One or more programs that may utilize the debugging interface
aspects of the present invention, e.g., through the use of a data processing API or the like,
are preferably implemented in a high level procedural or object-oriented programming
language to communicate with a computer system. However, the program(s) can be
implemented in assembly or machine language, if desired. In any case, the language may
be a compiled or interpreted language, and combined with hardware implementations.

The described methods and apparatus may also be practiced via communications
embodied in the form of program code that is transmitted over some transmission medium,
such as over electrical wiring or cabling, through fiber optics, or via any other form of
transmission, wherein, when the program code is received and loaded into and executed by
a machine, such as an EPROM, a gate array, a programmable logic device (PLD), a client
computer, a video recorder or the like, or a receiving machine having the debugging
capabilities as described in exemplary embodiments above becomes an apparatus for
practicing such embodiments. When implemented on a general-purpose processor, the
program code combines with the processor to provide a unique apparatus that operates to
invoke the functionality of the described embodiments. Additionally, any storage
techniques used in connection with the embodiments may invariably be a combination of
hardware and software.

While some embodiments have been described, it is to be understood that other
similar embodiments may be used or modifications and additions may be made to the
described embodiments for performing the same functions. For example, one skilled in the
art will recognize that embodiments as described in the present application may apply to
any computing device or environment, whether wired or wireless, and may be applied to
any number of such computing devices connected via a communications network, and
interacting across the network. Furthermore, it should be emphasized that a variety of
computer platforms, including handheld device operating systems and other application
specific operating systems are contemplated, especially as the number of wireless
networked devices continues to proliferate. Sull further, embodiments may be
implemented in or across a plurality of processing chips or devices, and storage may

similarly be effected across a plurality of devices. Therefore,

-24-

the present invention should not be limited to any single embodiment, but rather should be

construed in breadth and scope in accordance with the appended claims.

Throughout this specification and the claims which follow,
unless the context requires otherwise, the word '"comprise',
and variations such as "comprises" and "comprising", will
be understood to imply the inclusion of a stated integer or
step or group of integers or steps but not the exclusion of
any other integer or step or group of ‘integers or steps.

The reference to any prior art in this specification is not,
and should not be taken as, an acknowledgement or any form
of suggestion that that prior art forms part of the common
general knowledge in Australia.

Page 18 of 22

-25-

27 Aug 2009

2004201343

2431470 15PA

-19-

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method implemented at least in part by a computing device to provide a
rendering independent persistence of information comprising the steps of:

providing a plurality of data sources, each said data source having a predefined data
structure and associated with a time, each said predefined data structure comprising a
corresponding schema definition;

translating each of the plurality of data sources according to the corresponding
schema definition that yields corresponding rendering independent persisted data in a
rendering independent persisted data format, wherein the translating step comprises the
step of performing a binary translation of said each of the plurality of data sources; and

aggregating the rendering independent persisted data from each of the plurality of
data sources according to a time-based parameter to generate a new schematized queryable
data source having the rendering independent persistent data format and the new
schematized queryable data source comprising the aggregated rendering independent
persisted data from each of the plurality of data sources according to the time-based
parameter to allow a time driven query to be performed on the new schematized queryable

data source.

2. The method as recited in claim 1, further comprising operating on the rendering

independent persistent data format to produce rendering specific data.

3. The method as recited in claim 1 or claim 2, further comprising parsing the data

according to some predefined parsing step.

4. A computer readable storage medium having a tangible component with computer
readable instructions stored thereon to instruct a computer to perform the following
method:

providing a plurality of data sources, each said data source having a predefined data
structure and associated with a time, each said predefined data structure comprising a

corresponding schema definition;

-26-

27 Aug 2009

2004201343

P AOPEHISSBUOIAI 2471470)SPA Julty doc 072009

220 -

translating each of the plurality of data sources according to the corresponding
schema definition that yields corresponding rendering independent persisted data in a
rendering independent persisted data format, wherein the translating step comprises the
step of performing a binary translation of said each of the plurality of data sources; and

aggregating the rendering independent persisted data from each of the plurality of
data sources according to a time-based parameter to generate a new schematized queryable
data source having the rendering independent persistent data format and the new
schematized queryable data source comprising the aggregated rendering independent
persisted data from each of the plurality of data sources according to the time-based
parameter to allow a time driven query to be performed on the new schematized queryable

data source.

5. A system providing a rendering independent persistence of information comprising:

at least one computing processor;

memory communicatively coupled with said at least one computing process, said
memory comprising instructions execulable by said at least one computing processor, said
instructions comprising:

instructions for providing a plurality of data sources, each said data source having
data, wherein the data has an associated data structure and is associated with a time, each
said data structure comprising a schema definition;

instructions for providing a processing module, the processing module operating on
each of the plurality of the data sources to generate corresponding rendering persisted data
in a rendering independent persisted data format, wherein the rendering independent
persisted data format operates in various rendering specific environments, wherein the
processing module executes according to the corresponding schema definition a binary
translation of the data into the rendering independent persisted data format; and

instructions for aggregating the rendering independent persistence of information
from each of the plurality of data sources according to a time-based parameter to generate
a new schematized queryable data source having the rendering independent persistent data
format and the new schematized queryable data source comprising the aggregated

rendering independent persisted data from each of the plurality of data sources according

27-

27 Aug 2009

2004201343

PiOS 1431370 1SPA 409 doc-RANINY

=21 -

to the time-based parameter to allow a time driven query to be performed on the new

schematized queryable data source.

6. The system as recited in claim 5, wherein the system comprises a computing

environment.

7. The system as recited in claim S or claim 6, wherein the data comprises report data.

8. The system as recited in claim 7, wherein the report data comprises a schematized

queryable data source.

9. The system as recited in claim 8, wherein the report data is aggregated according to

at least one report definition.

10. Ina computing environment, a method providing a rendering independent persisted
data format comprising:

receiving a plurality of data sources, each said data source associated with a time
and comprising a schema definition;

parsing each of the data sources according to at least one predefined parsing rule;

translating the parsed data according to the schema definition into rendering
independent persisted data having a rendering independent persisted data format, wherein
the translating step comprises binary translating the parsed data; and

aggregating the rendering independent persisted data from each of the plurality of
data sources according to a time-based parameter to generate a new schematized queryable
data source having the rendering independent persistent data format and the new
schematized queryable data source comprising the aggregated rendering independent
persisted data from each of the plurality of data sources according to the time-based
parameter to allow a time driven query to be performed on the new schematized queryable

data source.

-28-

27 Aug 2009

2004201343

PAOPERISSIUORAIZAN 430 1SPA Jultt) docKD TN

-22-

11. A method comprising:

receiving a plurality of data sources, each said data source associated with a time
and comprising a schema definition;

parsing each of the data sources according to at least one predefined parsing rule;

translating the parsed data according to the schema definition into rendering
independent persisted data having a rendering independent persisted data format, wherein
the translating step comprises binary translating the parsed data to an extension specific
format of the requesting environment; and

aggregating the rendering independent persisted data from each of the plurality of
data sources according to a time-based parameter lo generate a new schematized queryable
data source having the rendering independent persistent data format and the queryable
schematized data source comprising the aggregated rendering independent persisted data
from each of the plurality of data sources according to the time-based parameter to allow a

time driven query to be performed on the new schematized queryable data source.
12. Computer readable storage storing instructions which, when executed by at least
one processor, cause the at least one processor to perform the method of any one of claims

1to3, 10and 11.

13. A system comprising means for performing the method of any one of claims 1 to 3,

10and 11.

14. A method substantially as hereinbefore described with reference to the drawings.

15. A system substantially as hereinbefore described with reference to the drawings.

16. A computer readable medium subsiantially as hereinbefore described with

reference to the drawings.

-29-

1/10

0

| Monitor 181
(RAM) 132 1 Processing Output
A : Unit Video inheral | Print
Operating . Interface Periphera rinter g6
System 134 120 190 Interface ;55
Application < ﬁm<m_m3 Bus 121 ﬁ ﬁ * Speakers ;o7

|
i

!

i

1

|

|

l

“ Programs 4 5
l

|

|

l

1

l

|

|

1

|

1

l Lo

Non-Removable Removable
Other Program Non-Volatile Non-Volatile User Input Network Local Area
Modules 136 Memory Memory Interface Interface Network
Interface 140 Interface 180 170
Pragram 1
Data 137 171

_ Wide Area Network

y ._qwi\ P
. (i aaaaTasaa] 72
OPERATING | APPLICATION v%%MMMZ_ PROGRAM OMM“WHME
SYSTEM PROGRAMS DATA Mouse Keyboard 162
144 145 MODS 146 147 161 180
REMOTE
APPLICATION
PROGRAMS 185 [o] fococo] Joo]

Figure 1

-30-

2/10

Client Computer

Client Computer Client Computer

Communications
Network 14

102 ™\

(‘10b

Server Computer Server Computer

Computing
Application
180c

Computing ;-
Application
180b

Figure 2

-31-

3/10

/ 300

Report Viewer/
Browser 305

OLEDB/
ADO 310

4

320

Report Server

Report Processing

Engine 325

Anaylsis Services
Engine 330

Mapping

Report Intermediate Format

335

Schema 340

Data 345

-32-

Figure 3

405

External
Data

External
Data

4/10

410

Report
Definition

Data
Retrieval —»

Report

415

430

435

€

HTML
Rendering

Processing

)

420

Y

Event
Processing

XML
Rendering

N

440

Intermediate
Format

Other
Renderings

Figure 4

-33-

5/10

Data
Source

505

510

Report
Definition

Report Processing

Data Rendering

Extension Extension

535 530

525

Intermediate
Format

516

S

igure

F

-34-

6/10

&
&
&
S
&
&
&

Report
Server

AS Data
Provider

605
Report Server
610
. \ Query
& Mapping »| Processing
/ Optimization
3 /Execution -
Report L Engine
ul 630 615 <
Report m 625
_ | Processing |
Jy
8-
g
£
(]
Report 650
Definition d

Pivot
Control

635

640

645

Figure 6

-35-

Start

A

Obtain
Report
Definition

!

Create
Schema for
Report

Y

Obtain
Report Data

Y

Apply
Schema to
Report Data

A

700

| 705

710

715

720

Store Schematized

Report In

Intermediate Data

Format

\

\ 725

7/10

Render
Report for
Requester

| 745

A

Apply Data
Extensions

|- 740

!

Apply Report
Extensions

1735

A
Y

Report
Requested ?

750
N—s(Ena)

Figure 7

-36-

8/10

Start 800

Y

Obtain

Schema

v

Identify Binary

Report | 805

Representation of [810

Schema

Y

Apply Binary Schema
to Report To Translate
Schematized Report
into Binary
Representation

Y

Provide Binary
Representation as
Intermediate Format

End 825

Figure 8A

-37-

815

820

9/10

Start 830

y
Obtain

Format

A

Translate Binary

Translationof | -840

Schema To Extension
Specific Format

I

Extract Schematized

Report and | _— 845

Accompanying Report
Data for Processing

Provide Report | 850

End 855

Figure 8B

-38-

Intermediate |— 550

. 10/10

Start 900

A

Supply Parameters

View

Y

Process Queryable

Schematized Reports - 910

as Data Sources

\

Aggregate Desired

Data To Satsify | _—915

Provided Parameters
(e.g. time dimension)

\

Provide Data as New

Schematized | _— 920

Queryable Report (e.g.
Data Source)

End 925

Figure 9

-39-

905
of Desired SnapShot—

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

