WO 2006/028869 A2 | I |00 000 0 000 I A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
16 March 2006 (16.03.2006)

4

(10) International Publication Number

WO 2006/028869 A2

(51) International Patent Classification:
GOGF 15/16 (2006.01)

(21) International Application Number:
PCT/US2005/031046

(22) International Filing Date:
1 September 2005 (01.09.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

10/933,212 3 September 2004 (03.09.2004) US

(71) Applicant (for all designated States except US): METAL-
LECT CORPORATION [US/US]; 5825 Ellsworth Av-
enue, Dallas, TX 75206 (US).

(72) Inventors: HITE, Thomas, D.; 905 Sunset Hill Drive,
Rockwall, TX 75087 (US). AGARWAL, Shachindra; 497
Forest Ridge Drive, Coppell, TX 75019 (US).

(74) Agents: WOODEN, Sean, S. et al.; Andrews Kurth LLP,
1350 I Street, N.W., Suite 1100, Washington, D.C. 20005
(US).

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,

MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,

OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,

SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,

VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,

[Continued on next page]

(54) Title:

COMPUTING SYSTEM

1
! |
¢ 1
i 1
1 - -
1 : r
i SAP ORACLE \ H
\ OOMAIN DOMAIN \ |
1
' ! eos |
| | (
110b:)
| 1108 N t0e ! |
1 ' 1
i \ e
) SIEBEL !
| DOMAIN \
1
!)
' 1
! |
i I
e e emmemmm g mm e
102a/
106\
142 _ DISCOVeERY SOLVING
ENGINE ENGINE
100" 11

k 14
ARC DEPLOYMENT
BACK-END ENGINE
118

SEMANTIC INTEGRATION SERVER

108

COMPUTING
SYSTEM

Chazo 12600
Dz 1288
Cha24 130-0

SYSTEM AND MEHTOD FOR RELATING COMPUTING SYSTEMS

(57) Abstract: A system, method,
and computer program for relating
computing systems. A plurality
of applications form a plurality
of solution domains, where each
solution domain represents at least
i a portion of one or more computing
! systems. The system, method,
i and computer program generate a
:I plurality of ontologies associated
with the applications. The system,
method, and computer program also
generate a plurality of meta-ontolo-
gies associated with the solution
domains. The system, method, and
computer program further generate
a meta meta-ontology, which
combines the meta-ontologies.
Each ontology includes one or
more ontology elements, which
represent application components.
The application components
include; e.g., application services
and/or parameters, such as input
parameters and output parameters
for the associated application. Each
meta-ontology includes one or more
meta-ontology elements, which
represent one or more relationships
between at least some of the
ontology elements.

WO 2006/028869 A2 I} NIVYH) T KO Y00 RN OO0 AR

RO, SE, SI, SK, TR), OAPI (BF, BJ, CE, CG, CI, CM, GA, For two-letter codes and other abbreviations, refer to the "Guid-
GN, GQ, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations" appearing at the begin-
Published: ning of each regular issue of the PCT Gazette.
— without international search report and to be republished
upon receipt of that report

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

SYSTEM AND METHOD FOR RELATING COMPUTING SYSTEMS

CROSS REFERENCE TO RELATED APPLICATIONS

This patent application claims priority from U.S. Patent Application No.
10/933,212, filed on September 3, 2004 which is hereby incorporated by reference in its
entirety. '
This patent application is also related to:

U.S. Patent Application No. 10/133,611 entitled “SERVICE PROVISION
SYSTEM AND METHOD?” filed on April 25, 2002;

U.S. Patent Application No. 10/933,216 entitled “SYSTEM AND METHOD
FOR RELATING APPLICATIONS IN A COMPUTING SYSTEM?” filed on September 3,
2004; and

U.S. Patent Application No. 10/933,211 entitled “SYSTEM AND METHOD
FOR DESCRIBING AN RELATION ONTOLOGY™ filed on September 3, 2004;

which are all incorporated by reference.
BACKGROUND

[001] Corporations and other entities typically use computer systems that include a
variety of networks, computing platforms, and applications. Example computer systems
provide information éervices to customers or support other computer-related functions. Asa
particular example, a corporation may support different applications running on different
computing platforms to provide services to customers over the Internet. These networks,
computing platforms, and applications often operate using different protocols and in different
operational environments.

[002] Itistypically difficult to integrate the various applications within a computer
system. For example, it is often difficult to integrate the applications used by different
departments or other subdivisions of a corporation. Typical integration techniques often
focus on software developers generating programs to integrate the applications. These
integration programs are typically complex and need to be updated over time. Moreover, it is
typically difficult to modify the integration programs when circumstances change, such as
when an organization adds additional applications to its computer system.

SUMMARY

[003] This disclosure provides a system and method for relating computing systems.

[004] The system, method, and computer program described herein overcome

difficulties described above.

Agent Ref. No. 153814WO 1

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

[005] In one aspect, a system, method, and computer program relate computing
systems. A plurality of applications form a plurality of solution domains, where each
solution domain represents at least a portion of one or more computing systems.
“Application,” as used herein, may include such components as related services and
parameters (e.g., input and output parameters) or may refer to stand-alone services, such as
web-services. The system, method, and computer program generate a plurality of ontologies
associated with the applications. The system, method, and computer program also generate a
plurality of meta—ontblogies associated with the solution domains. The system, method, and
computer program further generate a meta meta-ontology, which combines the meta-
ontologies. Each ontology includes one or more ontology elements, which represent at least
one of one or more application components. The application components may include, e.g.,
application services (e.g., a service, a class method, function call, etc.) and parameters (e.g.,
input parameters and output parameters) for an associated application. Each meta-ontology
includes one or more meta-ontology elements, which represent one or more relationships
between at least some of the ontology elements.

[006] In particular aspects, generating the ontologies includes generating an
ontology and an immutable ontology for each application. The immutable ontology includes
a first portion and an optional second portion. The first portion contains immutable ontology
elements inserted at creation of the immutable ontology, and the second portion contains
immutable ontology elements inserted after creation of the immutable ontology. Connections
between related immutable ontology elements in the immutable ontologies are identified, and
the connections between immutable ontology elements associated with different solution
domains facilitate identification of the relationships between the ontology elements in the
different solution domains.

[007] Other technical features may be readily apparent to one skilled in the art from
the following figures, descriptions, and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[008] Foramore complete understanding of this disclosure, reference is now made
to the following description, taken in conjunction with the accompanying drawings, in which:

[009] FIGURE 1 illustrates an example system for integrating one or more
computing systems according to one embodiment of this disclosure;

[010] FIGURES 2A through 2C illustrate example solution domains according to
one embodiment of this disclosure;

[011] FIGURE 3 illustrates an example hierarchy for integrating computing systems

Agent Ref. No. 153814WO 2

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

according to one embodiment of this disclosure;

[012] FIGURE 4 illustrates an example metontology set according to one
embodiment of this disclosure;

[013] FIGURE 5 illustrates an example generation of a metontology set according to
one embodiment of this disclosure;

[014] FIGURE 6 illustrates another example metontology set according to one
embodiment of this disclosure;

[015] FIGURES 7A and 7B illustrate an example relationship between two solution
domains according to one embodiment of this disclosure;

[016] FIGURE 8 illustrates an example relationship between meta-ontologies to
produce a metalayer according to one embodiment of this disclosure;

[017] FIGURE 9illustrates an example hierarchy of solution domains according to
one embodiment of this disclosure;

[018] FIGURE 10 illustrates an example ARC backend for relating computing
systems according to one embodiment of this disclosure; and

[019] FIGURE 11 illustrates an example method for relating one or more computing
systems according to one embodiment of this disclosure.

DETAILED DESCRIPTION OF THE INVENTION

[020] FIGURE 1 illustrates an example system 100 for relating one or more
computing systems according to one embodiment of this disclosure. In the illustrated
example, the system 100 includes multiple computing systems 102a-102n, a network 104, a
semantic integration server 106, and arepository 108. Other embodiments of the system 100
may be used without departing from the scope of this disclosure.

[021] In one aspect of operation, the semantic integration server 106 identifies
various applications supported in the computing systems 102a-102n (referred to as
“computing systems 102”). The applications may be divided or partitioned into one or more
“solution domains.” The semantic integration server 106 generates ontologies that uniquely
identify and electronically describe the application components (e.g., parameters and
computing services (i.e., functions, methods, services, etc.)). The semantic integration server
106 also generates a meta-ontology for each solution domain, where the meta-ontology
elements anchor relationships between elements in one or more ontologies. This allows the
semantic integration server 106 to identify interaction points between applications in a single
solution domain, thereby identifying their ability to interact, and thus how to integrate those

applications. In addition, the semantic integration server 106 generates additional

Agent Ref. No. 153814WO 3

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

metalayers, or meta-meta-ontologies, which allow applications associated with different
solution domains to interact, thereby relating these applications. In this way, applications in
a single computing system 102 may be more easily integrated, and multiple computing
systems 102 may be more easily integrated with one another.

[022] In the illustrated embodiment, each computing system 102 is coupled to the
network 104. In this document, the term “couple” and its derivatives refer to any direct or
indirect communication between two or more elements, whether or not those elements are in
physical contact with one another. Also, in this document, the term “each” refers to each of
at least a subset of the identified items. Each computing system 102 represents any suitable
system, such as a computing system used and maintained by a corporation or other
organization. Each computing system 102 includes any hardware, software, firmware, or
combination thereof supporting one or more services. For example, a computing system 102
may include a collection of networks, computing platforms such as servers, and applications
executed by the servers. The applications in the computing system 102 may support various
services, such as services for providing information to users.

[023] Asshown in FIGURE 1, a computing system 102 may include applications
operating in different environments or domains 110a-110c¢ (referred to as “operating domains
110”). In this example, an application in a computing system 102a may operate in a SAP
domain 110a, a Siebel domain 110b, or an Oracle domain 110¢c. Other or additional types of
operating domains 110, such as a Windows New Technology (NT) environment or a
Lightweight Directory Access Protocol (LDAP) environment, could also be used in a
computing system 102. Also, a computing system 102 could include one or multiple
operating domains 110.

[024] The network 104 is coupled to the computing systems 102. The network 104
facilitates communication between components of system 100. For example, the network
104 may communicate Internet Protocol (IP) packets, frame relay frames, Asynchronous
Transfer Mode (ATM) cells, or other suitable information between network addresses. The
network 104 may include one or more local area networks (LANSs), metropolitan area
networks (MANs), wide area networks (WANS), all or a portion of a global network such as
the Internet, or any other communication system or systems at one or more locations. The
network 104 may also operate according to any appropriate type of protocol or protocols,
such as Ethernet, IP, X.25, frame relay, or any other protocol.

[025] The semantic integration server 106 is coupled to the network 104 and the

repository 108. The semantic integration server 106 supports the integration of applications

Agent Ref. No. 153814WO 4

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

the semantic integration server 106 identifies the applications available in the computing
systems 102, generates ontologies that uniquely identify computing services that are
components of applications, and generates meta-ontologies for relating elements in the
ontologies. The semantic integration server 106 also generates metameta-ontologies for
inter-relating the meta-ontologies. Inthis way, the semantic integration server 106 describes
how the applications in one or more computing systems 102 may interact, thereby integrating
the computing systems 102. The semantic integration server 106 includes any hardware,
software, firmware, or combination thereof for identifying (i.e., discovering) integration
points within one or more computing systems. As a particular example, the semantic
integration server 106 could include software routines stored in one or more memories and
executed by one or more processors.

[026] The repository 108 is coupled to the semantic integration server 106. The
repository 108 stores information generated by the semantic integration server 106 that
describes the integration points between one or more computing systems 102. The repository
108 includes any hardware, software, firmware, or combination thereof for storing and
facilitating retrieval of information. The repository 108 may also use any of a variety of data
structures, arrangements, and compilations to store and facilitate retrieval of information.
While FIGURE 1 illustrates that one repository 108 is coupled directly to the semantic
integration server 106, any number of repositories 108 may reside at any location or locations
accessible by the semantic integration server 106.

[027] In the illustrated example, the semantic integration server 106 includes an
ARC backend 111, a discovery engine 112, a solving engine 114, and a deployment engine
116. This illustrates one example embodiment of the semantic integration server 106. Other
embodiments could be used without departing from the scope of this disclosure.

[028] Thediscovery engine 112 performs service discovery to identify the various
services (or functionalities) contained in the applications in the computing systems 102. The
discovery engine 112 also generates information used to describe the integration points
(application services) within the computing systems 102. For example, the discovery engine
112 may analyze a repository of each application server in one or more computing system
102 and identify the applications, and contained application services, provided by the
application servers, where each application supports one or more services. In some
embodiments, the discovery engine 112 then generates documents describing the identified

services. In particular embodiments, the discovery engine 112 generates service definition

Agent Ref. No. 153814WO 5

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

documents (SDDs) 120 for the identified services. A service definition document 120
uniquely identifies and describes a service. As a particular example, a service definition
document 120 could represent a XML Semantic Integration Standard (XSIS) document
describing a service.’

[029] The discovery engine 112 uses third-party meta-data, e.g., documentation,
source code, and other service description documents (e.g., web services description
language (WSDL) documents) to generate ontologies 122. The discovery engine 112 sends
this discovered information to the ARC backend 111. The ARC backend 111 generates one
or more meta-ontologies 124, each of which is used as an intermediate point (anchor) for
relationships between elements in one or more ontologies 122. In addition, the ARC backend
111 generates one or more metalayers or meta meta-ontologies 126 for use in relating one or
more meta-ontology entities 124.

[030] Insomeembodiments, the applications in one or more computing systems 102
are divided into solution domains. Each solution domain is associated with a meta-ontology
124, and the meta-ontology 124 is used to describe the integration points contained in the
applications within the solution domain. The metalayer or meta meta-ontology 126 is
associated with multiple solution domains and is used to integrate the applications within
those solution domains. Collectively, one or more ontologies 122 and a meta-ontology 124
associated with a solution domain is referred to as a “metontology set.” The service
definition documents 120, ontologies 122, meta-ontologies 124, and metalayers 126 are
stored in the repository 108. The discovery engine 112 includes any hardware, software,
firmware, or combination thereof for identifying and/or integrating services in one or more
computing systems 102.

[031] The solving engine 114 uses the information produced by the discovery
engine 112 and the ARC backend 111 to identify how discovered services may be linked
together to reach a particular objective. For example, multiple services could be used in
series to process particular information to reach a specified goal. As a particular example,
the solving engine 114 may identify a sequence of services that may be used to reach a
specified goal, where the output of one service is input to another service. In some
embodiments, the solving engine 114 receives a request from a user. The request may, for
example, identify the inputs to be provided and the objective to be reached. The solving
engine 114 then performs algorithms in which the solving engine 114 starts with the
objective in the request and attempts to identify how the objective may be solved using the

identified services. Using the results of the algorithms, the solving engine 114 generates a

Agent Ref. No. 153814WO 6

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

composite application definition 128. The composite application definition 128 defines an
application that invokes one, some, or all of the identified services to reach the goal specified
in the request. The solving engine 114 includes any hardware, software, firmware, or
combination thereof for identifying how services may be combined to reach particular
objectives.

[032] The deployment engine 116 uses a composite application definition 128 to
produce and deploy a composite application 130. The composite application 130 represents
an executable application, and when executed the application uses one or more services in the
system 100 to reach a particular objective. For example, the deployment engine 116 may
perform code generation to create the executable application and run scripts to deploy the
executable application. As a particular example, the scripts may be used to distribute the
executable application to servers in the computing systems 102 and to update registries in the
servers. The deployment engine 116 includes any hardware, software, firmware, or
combination thereof for generating and deploying executable applications.

[033] Although FIGURE 1 illustrates one example of a system 100 for integrating
computing systems 102, various changes may be made to FIGURE 1. For example,
applications in any ‘number of computing systems 102 may be integrated. Also, the
functional division shown in the semantic integration server 106 is for illustration only.
Various components in the semantic integration server 106 may be combined or omitted and
additional components may be added according to particular needs. As a particular example,
the semantic integration server 106 could include only the relation functionality of the
discovery engine 112 and the ARC backend 111, where the server 106 processes information
about discovered services produced by another component in the system 100. Further,
although the description above has described the use of a server 106, other computing
devices such as a desktop computer or a laptop computer could be used. In addition, while
FIGURE 1 illustrates the use of one server 106 and one repository 108, any number of
servers or repositories may be used.

[034] FIGURES 2A through 2C illustrate example solution domains according to
one embodiment of this disclosure. The solution domains shown in FIGURES 2A through
2C are for illustration only. Other solution domains may be used without departing from the
scope of this disclosure.

[035] In some embodiments, the same application may be installed on one or
multiple platforms in one or more computing systems 102, and each installation may be

referred to as an “application instance.” Application instances supported in one or more

Agent Ref. No. 153814WO 7

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

computing systems 102 may be divided or partitioned into one or more solution domains.
For example, a solution domain may include application instances, ontologies 122, and meta-
ontologies 124. In particular embodiments, the server 106 integrates one or more computing
systems 102 by inteérating the solution domains that are associated with the computing
system(s) 102.

[036] In FIGURE 2A, a solution domain 200 includes one or more application
instances 202 in a single computing system 102. In some embodiments, the application
instances 202 represent applications executed in one or more operating domains 110 of the
computing system 102. In particular embodiments, the application instances 202 are
executed in different operating domains 110 such as SAP and Oracle domains 110. Because
the solution domain 200 in FIGURE 2A is not divided or partitioned, the solution domain
200 may be referred toas an “un-partitioned solution domain.”

[037] In FIGURE 2B, another solution domain 220 represents a single computing
system 102, and the solution domain 220 has been divided into multiple partitions 222. Each
partition 222 includes one or more application instances 202. A solution domain 220 may be
divided into partitions 222 using any suitable criteria. For example, the partitions 222 may
represent different departments in a corporation or the different statuses (development,
testing, beta, production) of software used in the partitions 222. Each partition 222 may
represent its own solution domain. Because the solution domain 220 is partitioned, the
solution domain 220 may be referred to as a “partitioned solution domain.”

[038] In FIGURE 2C, portions of two partitioned solution domains 220 have been
combined into a super solution domain or a merged solution domain 250. The two
partitioned solution domains 220 could, for example, include application instances 202
associated with two different computing systems 102. The merged solution domain 250
represents the portions of the computing systems 102 being integrated.

[039] Inone aspect of operation, the server 106 generates an ontology 122 for each
application instance 202 in the computing systems 102. The server 106 then generates meta-
ontologies 124, which associate elements in the ontologies 122. In some embodiments, an
un-partitioned solution domain 200 includes one ontology 122 for each application instance
202 in the solution domain 200 and one meta-ontology 124. The ontologies 122 and the
meta-ontology 124 form a ‘metontology’ set, and the metontology set identifies integration
points between the applications in the solution domain 200.

[040] Similarly, each partition 222 in a partitioned solution domain 220 includes one

ontology 122 for each application instance 202 in the partition 222 and one meta-ontology

Agent Ref. No. 153814WO 8

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

124. For each partition 222, the ontologies 122 and meta-ontology 124 form a metontology
set. The solution domain 220 is therefore associated with multiple metontology sets (one for
each partition 222). The server 106 generates a meta meta-ontology 126, thus merging the
meta-ontologies 124. The metontology sets and the meta meta-ontology 126 identify
integration points between the applications in the solution domain 220.

[041] Inaddition, each un-partitioned solution domain 200 and each partition 222 of
a partitioned solution domain 220 in a merged solution domain 250 could be associated with
a metontology set. The server 106 generates a meta meta-ontology 126, thus merging the
meta-ontologies 124 in the various metontology sets, and the metontology sets and the meta
meta-ontology 126 identify integration points between the applications in the merged
solution domain 250.

[042] Inthis Way, the server 106 identifies integration points between applications
in one or more computing systems 102 by generating one or more ontologies 122, meta-
ontologies 124, and meta meta-ontologies 126. The integration of the applications may then
be done more quickly and with less effort than in conventional systems.

[043] In the example shown in FIGURE 2C, the merged solution domain 250
includes some, but not all, of the application instances 202 in the two partitioned solution
domains 220. In particular, the application instances 202 labeled “SAP1”, “SAP3”, and
“SAPS5” in the first solution domain 220 and the application instance 202 labeled “SAP7” in
the second solution domain 220 are not included in the merged solution domain 250. In this
way, the semantic integration server 106 is precluded from being used to integrate portions of
a computing system 102 with other computing systems 102 not in the merged solution
domain 250.

[044] Although FIGURES 2A through 2C illustrate example solution domains,
various changes may be made to FIGURES 2A through 2C. For example, a solution domain
may include any number of application instances 202. Also, while FIGURE 2C shows that
the merged solution domain 250 includes only portions of two solution domains 220, the
merged solution domain 250 could include all of either or both solution domains 220.
Further, any number of partitions 222 could form a partitioned solution domain 220. In
addition, a merged solution domain 250 could include any number of un-partitioned solution
domains 200 and/or partitioned solution domains 220.

[045] FIGURE 3 illustrates an example hierarchy 300 for integrating computing
systems 102 according to one embodiment of this disclosure. The hierarchy 300 of FIGURE

3 is for illustration only. Other hierarchies could be used to identify integration points

Agent Ref. No. 153814WO 9

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

between computing systems 102 without departing from the scope of this disclosure.

[046] As described above, a service definition document 120 describes a service,
which may be provided by an application instance 202 in a computing system 102. In some
embodiments, an application instance 202 executed in a computing system 102 represents an
enterprise application that supports one or multiple services. Also, each application instance
202 may have an associated application type, which identifies the domain 110 in which the
associated application instance 202 resides.

[047] Asshownin FIGURE 3, each service definition document 120 is associated
with an ontology 122. An ontology 122 uniquely identifies the services, and optionally the
inputs and outputs of those services that are provided by an application instance 202. For
example, a service typically accepts zero or more input parameters and produces one or more
output parameters. In some embodiments, each instance of an input or output parameter is
represented or described by an element in an ontology 122. In particular embodiments, an
ontology 122 is stored as Web Ontology Language (OWL) document, where the document
identifies the various input and output parameters of the service. Because an ontology 122 is
associated with an application instance 202, the ontology 122 may be referred to as an
“application instance ontology” (AIONT).

(048] One or more ontologies 122 are associated with a meta-ontology 124. A
meta-ontology 124 identifies the relationships between the elements in one or more
ontologies 122. A relationship could be between elements within a single ontology 122 or
between elements in different ontologies 122. Collectively, one or more ontologies 122 and
the meta-ontology 124 associated with those ontologies 122 form a metontology set 302. In
particular embodiments, one metontology set 302 represents a solution domain 200 or a
partition 222 of a solution domain 220. The collection of all ontologies 122 and meta-
ontologies 124 in all solution domains may be referred to as an “ontology universe.”

[049] Because ameta-ontology 124 identifies the relationships between the elements
in one or more ontologies 122, the services represented by those ontologies 122 may interact.

This may help to integrate an un-partitioned ‘solution domain 200 or a partition 222 of a
partitioned solution domain 220.

[050] Inaddition, the meta-ontologies 124 may be merged or combined via a meta
meta-ontology or metalayer 126. This allows relationships to be identified between elements
in ontologies 122 that are associated with different solution domains or different solution
domain partitions. Because a meta meta-ontology 126 is used to relate ontologies 122 in

different solution domains or partitions, the services in the different solution domains or

Agent Ref. No. 153814WO 10

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

partitions may be suggested to interact. This may help to integrate a partitioned solution
domain 220 or to integrate a merged solution domain 250 involving multiple solution
domains 200, 220.

[051] Although FIGURE 3 illustrates one example of a hierarchy 300 for inter-
relatihg computing systems 102, various changes may be made to FIGURE 3. For example,
each application instance 202 may be associated with any number of service definition
documents 120, and each meta-ontology 124 may be associated with any number of
ontologies 122. Also, each metalayer 126 may be associated with any number of
metontology sets 302.

[052] FIGURE 4 illustrates an example metontology set 400 according to one
embodiment of ﬂliS disclosure. The metontology set 400 shown in FIGURE 4 is for
illustration only. Other metontology sets may be used in the system 100 of FIGURE 1
without departing from the scope of this disclosure.

[053] Intheillustrated example, the metontology set 400 includes a meta-ontology
124 and multiple ontologies 122. Each ontology 122 includes one or more ontology elements
402, and the meta-oﬁtology 124 includes one or more meta-ontology elements 404. The
ontologies 122 and the meta-ontology 124 could, for example, represent or be associated with
a single solution domain, such as an un-partitioned solution domain 200 in FIGURE 2A ora
partition 222 of a partitioned solution domain 220 in FIGURE 2B.

[054] As described above, each ontology 122 is associated with one or more
services in a computing system 102. A service typically accepts zero or more input
parameters and produces one or more output parameters. Each instance of an input or output
parameter is represented by an element 402 in the associated ontology 122. In some
embodiments, an input or output parameter is associated with a class, so an ontology element
402 representing that parameter is also associated with a class. A class could represent a
primitive class (such as strings, integers, or floating-point numbers), a complex class (a
combination of primitive or complex classes), or an array (a list of primitive or complex
items). Each instance of an input or output parameter also typically has an instance or
parameter name. |

[055] The collection of ontology elements 402 associated with the service(s)
provided by an application instance 202 forms an ontology 122. The ontology 122 is
associated with an application type identifying the domain 110 in which the application is
contained (such as SAP, Siebel, or Oracle) and an application instance name. The ontology

122 also maintains the aggregate relationships between the ontology elements 402. In

Agent Ref. No. 153814WO 11

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

particular embodiments, an ontology 122 is defined in an OWL document, and the OWL
document describes the ontology elements 402 and the aggregate relationships between those
elements 402,

[056] Two or more ontology elements 402 in the ontologies 122 may be related to
one another in different ways. In some embodiments, ontology elements 402 may be related
through an identical relationship or a transformational relationship. For an identical
relationship, ontology elements 402 represent the same information concepts, and the
identical ontology elements 402 may be interchanged without side effects. As a particular
example, one ontology element 402 named CustomerNo and another ontology element 402
named CustNum could represent the same concept (a customer number), so these ontology
elements 402 are identical.

[057] For a transformational relationship, one ontology element 402 may be
converted or transformed into another ontology element 402 by a transform function. As a
particular example, one ontology element 402 named CustomerFullName could be
transformed into another ontology element 402 named CustomerFirstName by extracting a
customer’s first name from the customer’s full name. In some embodiments, ontology
elements 402 may be transformationally related even when multiple transformations
performed in series or in parallel are needed to convert one ontology element 402 into
another ontology element 402.

[058] Asshown in FIGURE 4, the meta-ontology 124 identifies the relationships
between the ontology elements 402 in the ontologies 122. In particular, the meta-ontology
elements 404 in the meta-ontology 124 identify the relationships between the ontology
elements 402. For example, an element 404 in the meta-ontology 124 could indicate that two
ontology elements 402 are related through identical or transformational relationships.
Related ontology elements 402 could reside in the same ontology 122 or in different
ontologies 122.

[059] In particular embodiments, OWL is used to describe the ontologies 122 and
the meta-ontology 124. However, conventional OWL lacks the ability to completely
describe a meta-ontology 124. This disclosure provides an extension to OWL that allows
OWL to be used to describe a meta-ontology 124. In particular embodiments, only the
extensions are contained in the OWL document describing a meta-ontology 124.

[060] The extension to OWL allows the elements 404 in the meta-ontology 124 to
identify the type of relationships between ontology elements 402. For ontology elements 402

that are identical, the meta-ontology 124 uses a sameClassAs relationship statement. In this

Agent Ref. No. 153814WO 12

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

case, the meta-ontology 124 includes an element 404 that represents the same class as the
identical ontology elements 402. For ontology elements 402 that are transformationally
related, the meta-ontology 124 uses a superClassOf relationship statement, which represents
an extension to standard OWL. In this case, the meta-ontology 124 includes an element 404
that is a super-class of the related ontology elements 402.

[061] By extending standard OWL to allow the use of super-classes, the meta-
ontology 124 may be created on demand. For example, the superClassOf extension allows
the dynamic creation of the elements 404 in the meta-ontology 124. As a particular example,
the meta-ontology 124 could be created or updated dynamically when a user specifies
integration points between two or more computing systems 102. In particular embodiments,
the superClassOf relationship statement is used exclusively by elements 404 in the meta-
ontology 124.

[062] In some embodiments, the elements 402, 404 shown in FIGURE 4 are
generated during a discovery process performed by the discovery engine 112. The discovery
process allows the sérver 106 to declare the ontology elements 402 within an ontology 122
and then assert relationships between the ontology elements 402. In particular embodiments,
the discovery process includes the discovery engine 112 identifying one or more services
associated with an application instance 202 and creating a new OWL document associated
with the application instance 202. The new OWL document specifies a portion of an
ontology 122. The discovery engine 112 also identifies instances of input and output
parameters for each service and creates ontology elements 402 within the OWL document.
The information contained in the OWL document is stored in the repository 108. The ARC
backend 111 further identifies relationships between the ontology elements 402 within the
new ontology 122 and between ontologies 122. These relationships are stored in another
OWL document, which represents a meta-ontology 124.

[063] As described above, an ontology element 402 can be associated with an
instance of an input or output parameter, and the input or output parameter has an associated
parameter name and class. Each ontology element 402 has an associated ontology element
name and an associated class. As part of the discovery process, the discovery engine 112
generates ontology element names for the ontology elements 402 and stores the names in the
OWL documents representing the ontology 122. In some embodiments, the ontology
element name of an ontology element 402 represents a combination of (1) the name of an
application instance 202 associated with the ontology element 402, (2) the name of the class

associated with the ontology element 402, and (3) the name of the input or output parameter

Agent Ref. No. 153814WO 13

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

associated with the oﬁtology element 402. In particular embodiments, an ontology element
name has a format of:

<Application Instance Name>:<Ontology Class Name>:<Parameter Instance Name>
where the application instance name is specified by a user and the parameter instance name is
specified by a service definition document 120.

[064] The ontology class name may be produced in any suitable manner. As
described above, an ontology element 402 is associated with a service provided by an
application instance 202. The ontology class name may be generated using information such
as the type of application instance 202 (e.g., SAP, Siebel, Oracle), a module name in the
application instance 202, a version number of the application instance 202, a data type
associated with the ontology element 402, and/or a name space uniform resource identifier
(URI) for the data type.

[065] Insomeembodiments, the module names, version numbers, and name space
URIs may not be avaﬂable in all cases and are therefore optional. Regarding the name space
URlIs, the service definition documents 120 often use name space identifiers (the URISs) to
qualify the data types of input or output parameters. To avoid conflicts between data types
specified in different service definition documents 120, the URIs may be used in the ontology
class name. Because name space URIs may be long, a name space (NS) prefix that uniquely
identifies the name space URI could be used in the ontology class name. In particular
embodiments, the ontology class name has the following format:
<Application Type>.<Module Name>.<Version>.<NS Prefix>~<Data Type>
where the name space prefix and the data type form a qualified data type.

[066] In some embodiments, the qualified data type is produced differently
depending on which type of class (primitive, complex, array) is associated with an ontology
element 402. For primitive data types, the qualified data type may be obtained by
concatenating the name space prefix and the data type. This may produce qﬁaliﬂed data
types such as “xsd~§tring” and “sO~int”.

[067] Forcomplex data types, the qualified data type may be obtained using the data
type specified in the service definition document 120. For each element in the complex data
type, the qualified data type for that element may be obtained by concatenating the qualified
data type for the complex data type and the qualified data type for the element. For example,
the qualified data type for a complex data type could include “sapns~BAPIKNA101”, and an
element in the complex data type could include “sapns~BAPIKAN101.xsd~string”.

[068] For array data types, the qualified data type is obtained by adding the “[]”

Agent Ref. No. 153814WO 14

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

suffix to the qualified data type of the primitive or complex class forming the array. As an
example, the qualified data type for a complex data type could be “sapns~BAPI_VIEW”, and
the qualified data type for an array of the complex data type is “sapns~BAPI_VIEW[]”.

[069] Although FIGURE 4 illustrates one example of a metontology set 400, various
changes may be made to FIGURE 4. For example, each ontology 122 could include any
number of ontology elements 402, and a meta-ontology 124 could include any number of
meta-ontology elements 404.

[0701 FIGURE 5 illustrates an example generation of a metontology set 500
according to one embodiment of this disclosure. In particular, FIGURE 5 illustrates a
technique used by the discovery engine 112 and the ARC backend 111 to generate ontologies
122 and a meta-ontology 124. The generation of the metontology set 500 shown in FIGURE
5 is for illustration only. Other techniques for generating a metontology set 500 may be used
without departing from the scope of this disclosure.

[071]1 Inthisexample, the discovery engine 112 reads service definition documents
120 associated with services provided by application instances 202 in the system 100. The
discovery engine 112 builds an ontology 122 for each application instance 202 identified.
Each ontology 122 includes one or more ontology elements 402, which represent the
instances of input or output parameters for services supported by the application instance
202.

[072] When generating an ontology 122, the discovery engine 112 may identify
aggregate relationships between any of the ontology elements 402. In this example, the
discovery engine 112 identifies aggregate relationships 502. The aggregate relationships 502
identify ontology elements 402 that form part of other ontology elements 402. In the
illustrated example, two ontology elements 402 labeled “Entity3” and “Entity4” in the first
ontology 122 form another ontology element 402 labeled “Entity1”.

[073] The discovery engine 112 also identifies related ontology elements 402
(identical or transformational relationships) within a single ontology 122. As described
above, each input or output parameter is associated with a class, so each ontology element
402 can also associated with a class. In some embodiments, the discovery engine 112
identifies related ontology elements 402 using the classes associated with the ontology
elements 402.

[074] When related classes are identified, the discovery engine 112 simply makes
ARC backend 111 aware of this information. The ARC backend 111 creates a meta-ontology

element 404 in the meta-ontology 124 for the related ontology elements 402. In particular

Agent Ref. No. 153814WO 15

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

embodiments, the new meta-ontology element 404 represents either a super-class for
ontology elements 402 related through a transformational relationship or the same class for
ontology elements 402 related through an identical relationship. In this example, the
discovery engine 112 identifies transformational relationships 504, which indicate that the
ontology elements 402 labeled “Entity4” and “Entity5” in the first ontology 122 have
transformationally-related classes. These related classes are associated with a single element
404 in the meta-ontology 124, which represents a super-class for the related ontology
elements 402.

[075] The discovery engine 112 further identifies related ontology elements 402
across multiple ontologies 122. For each set of related ontology elements 402, the ARC
backend 111 associates the related ontology elements 402 with a meta-ontology element 404
in the meta-ontology 124. In this example, transformational relationships 506 indicate that
the ontology elemenfs 402 labeled “Entity]” in both ontologies 122 are transforms of one
another. The ARC backend 111 generates a new meta-ontology element 404 labeled
“Class2”, which represents a super-class associated with the related ontology elements 402.
Similarly, identical relationships 508 indicate that the ontology elements 402 labeled
“Entity2” in both ontologies 122 are identical. The ARC backend 111 generates a new meta-
ontology element 404 labeled “Class3”, which is of the same class as the identical ontology
elements 402.

[076] Inaddition, the ARC backend 111 analyzes the meta-ontology elements 404
and identifies the elements 404 associated with transformationally-related ontology elements
402 (as opposed to elements 404 associated with identical ontology elements 402). In this
example, the elements 404 labeled “Classl” and *“Class2” are associated with
transformationally-related ontology elements 402, whereas “Class3” is associated with
identical ontology elements 402.

[077] As déscribed above, the transformationally-related ontology elements 402
represent transformations of each other. For the transformationally-related ontology

elements 402, the discovery engine 112 attempts to identify a transform function capable of

' transforming one of the ontology elements 402 into the other ontology elements 402. This

may include the discovery engine 112 automatically identifying the transform function or a
user manually identifying the function. If a transform function is identified, the discovery
engine 112 generates a service definition document 120 for a transform service. In this way,
the discovery engine 112 ensures that transformationally-related ontology elements 402 can

be transformed into oné€ another using services in the computing systems 102. This helps to

Agent Ref. No. 153814WO 16

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

facilitate the integration of one or more computing systems 102.

(0781 Therelated ontology elements 402 in the ontologies 122 may be identified in
any suitable manner. In some embodiments, the ARC backend 111 uses rules to identify the
related ontology elements 402. For example, a rule could specify that two ontology elements
402 within the same ontology 122 are identical if they are associated with the same complex
class. As another example, a rule could specify that ontology elements 402 associated with
the string primitive class and having an instance name of CustomerNumber or CustNum
within a SAP domain 110 are identical. In addition, the rules may dictate exceptions. As an
example, a rule could specify that an ontology element 402 named CustomerNumber in a
SAP domain 110 of a first computing system 102 is different from ontology elements 402
named CustomerNumber in other computing systems 102. These represent example rules
that could be used. Any other or additional rules or types of rules having any complexity
could be used.

[079] In some embodiments, the rules may not always be able to determine the
relationship or the lack of a relationship between ontology elements 402 accurately. In these
embodiments, the rules could identify potential relationships between ontology elements 402,
and a user then approves or disapproves of the potential relationships. In particular
embodiments, once a relationship is approved, ARC backend 111 may permanently store the
relationship in the meta-ontology 124. Because the discovery process may occur a limited
number of times (such as once), this may limit the need for a user to repeatedly approve the
potential relationships.’

[080] The discovery engine 112 could also perform a rediscovery process, which
detects changes in the existing services or the presence of new services in one or more
computing systems 102. The input or output parameters for new services are often associated
with existing classes. If an instance of a parameter has a different name than in previous
services, a new ontology element 402 may be generated. Also, the new service may
introduce one or more new classes associated with one or more parameters, which also leads
to the generation of one or more new ontology elements 402.

[081] As described above, the relationships between ontology elements 402 are
stored in the meta-ontology 124 during the discovery process. As a result, many if not all of
the relationships may be automatically restored during the rediscovery process.
Relationships for any new ontology elements 402 are identified during the rediscovery
process, which may be done using the same technique used during the discovery process

(rules to identify potential relationships, user confirmation of potential relationships).

Agent Ref. No. 153814WO 17

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

[082] Insome embodiments, during the rediscovery process, the rules could identify
the same or similar potential relationships identified during the discovery process. To
simplify the user’s interactions, the ARC backend 111 could use the user’s prior approvals or
disapprovals to automatically approve or disapprove of the potential relationships identified
during the rediscovery process.

[083] Although FIGURE 5 illustrates one example of the generation of a
metontology set 500; various changes may be made to FIGURE 5. For example, any number
of ontologies 122 with any number of ontology elements 402 could be used. Also, any
number of meta-ontology elements 404 in the meta-ontology 124 could be used. Further, the
relationships 502-508 between the ontology elements 402 are for illustration only. In
addition, each meta-ontology element 404 in the meta-ontology 124 may be associated with
any number of ontology elements 402 in one or more ontologies 122.

[084] FIGURE 6 illustrates another example metontology set 600 according to one
embodiment of this disclosure. The metontology set 600 shown in FIGURE 6 is for
illustration only. Other metontology sets may be used in the system 100 of FIGURE 1
without departing from the scope of this disclosure.

[085] Asdescribed above, the meta-ontology elements 404 in the meta-ontology 124
are used to identify relationships between the ontology elements 402 in the ontologies 122.
Ideally, the relationships between ontology elements 402 in one ontology 122 would be the
same as the relationships between identical ontology elements 402 in another ontology 122 of
the same type. For exafnple, if two ontology elements 402 called “elel” and “ele2” in one
ontology 122 are identical, two ontology elements 402 called “ele1” and “ele2” in another
ontology 122 would ideally be identical. This would allow relationships across the
ontologies 122 to be identified. As an example, if the ontology elements 402 called “elel”
and “ele2” were identical in each ontology 122, “ele1” in one ontology 122 ideally would be
identical to “ele2” in the other ontology 122.

[086] This ideal behavior does not always occur. For example, the relationships
between ontology elements 402 in one ontology 122 may be different from the relationships
in another ontology 122. This may occur when two ontology elements 402 in one ontology
122 are identical, while two ontology elements 402 in another ontology 122 are
transformationally related. Moreover, there may be ontology elements 402 in one ontology
122 that do not exist in another ontology 122. As a result, it may be difficult to identify
relationships between ontology elements 402 in different ontologies 122. This may become

even more difficult when relationships from two or more solution domains are merged.

Agent Ref. No. 153814WO 18

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

[087] Asshownin FIGURE 6, to facilitate the identification of relationships across
ontologies 122, an immutable ontology 602 is associated with each ontology 122. In some
embodiments, an immutable ontology 602 represents an ontology that cannot be modified
once created. Also, in some embodiments, an immutable ontology 602 includes one or more
immutable ontology elements 604, and any relationships involving the immutable ontology
elements 604 also cannot be modified once created.

[088] In some embodiments, rather than modifying an immutable ontology 602, the
immutable ontology 602 can be extended. For example, when an ontology 122 is added to a
solution domain, an immutable ontology 602 is created. The ontology elements 402 in the
new ontology 122 are then mapped or related to the ontology elements 604 in the new
immutable ontology 602. If a new ontology element 402 is later introduced in the ontology
122, a new element 604 is added to the immutable ontology 602. The new element 604 is
tagged as an extended element and placed in an extension 606 of the immutable ontology
602. In this way, although the immutable ontology 602 cannot be changed, the immutable
ontology 602 may be updated as needed.

[089] Inthe example shown in FIGURE 6, the ontology elements 402 labeled “A”
through “H” form part of the ontology 122 labeled “Ontology A” and can be mapped to the
elements 604 of the immutable ontology 602 labeled “Immutable Ontology A.” After this
immutable ontology 602 is generated, an ontology element 402 labeled “I” is added to the
ontology 122 labeled “Ontolo gy A”. Because the immutable ontology 602 cannot be altered,
an element 604 labeled “T” is added in the extension 606 of the immutable ontology 602.
This allows the ARC backend 111 to update the immutable ontology 602 as its associated
ontology 122 is modified.

[090] As explained below with respect to FIGURES 7A and 7B, immutable
ontologies 602 are useful in merging solution domains. In particular, the immutable
ontologies 602 may be used to identify relationships between ontology elements 402 in
different solution domains.

[091]1 Although FIGURE 6 illustrates another example of a metontology set 600,
various changes may be made to FIGURE 6. For example, each immutable ontology 602
could include any number of elements 604. Also, each immutable ontology 602 may or may
not include an extension 606 having any suitable number of elements 604.

[092] FIGURES 7A and 7B illustrate an example relation of two solution domains
702 according to one embodiment of this disclosure. In particular, FIGURES 7A and 7B

illustrate the inter-relationships between two solution domains 702 using immutable

Agent Ref. No. 153814WO 19

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

ontologies 602 having no extensions 606. The relationship shown in FIGURES 7A and 7B is
for illustration only. Other solution domains may be related without departing from the
scope of this disclosure.

[093] Asshownin FIGURE 7A, each solution domain 702 includes two ontologies
122, a meta-ontology 124, and two immutable ontologies (1.O.) 602. A merged solution
domain 704 may be created that includes at least part of the two solution domains 702. To
facilitate the identification of relationships between ontology elements 402 in different
solution domains 702, the immutable ontologies 602 are used.

[094] In the illustrated example, an element 604 in an immutable ontology 602 is
associated with an ontology element 402 in one of the solution domains 702. Elements 604
in immutable ontologies 602 in different solution domains 702 can also be associated through
a connection 706. In effect, this connection 706 combines or collapses the two immutable
ontology elements 604 into a single immutable ontology element 604. If all elements 604 in
two immutable ontologies 602 are connected, this collapses the two immutable ontologies
602 into a single immutable ontology 602.

[095] Relationships between ontology elements 402 in different solution domains
702 can be identified using the connections 706. In particular, the server 106 may navigate
from one ontology element 402 in one solution domain 702 to another ontology element 402
in another solution domain 702 through the elements 604 in the immutable ontologies 602.
This allows the relationships between ontology elements 402 in different solution domains
702 to be automatically generated. As an example, an element 404 in the meta-ontology 124
of the top solution domain 702 relates the ontology element 402 labeled “H” and the
immutable ontology element 604 labeled “H”. Similarly, an element 404 in the meta-
ontology 124 of the bottom solution domain 702 also relates an ontology element 402 labeled
“H” and an immutable ontology element 604 labeled “H”. A connection 706 links the two
immutable ontology elements 604 labeled “H”. As a result, the two ontology elements 402
labeled “H” are related through the immutable ontology elements 604 labeled “H”, and the
server 106 can identify this relationship to relate ontology elements 402 across solution
domains 702.

[096] Through the use of immutable ontologies 602, the ontologies 122 contained in
different solution domains 702 may be integrated. A model 750 of a solution domain and the
mechanism for integrating the solution domain are shown in FIGURE 7B. While the model
750 shown in FIGURE 7B represents a single solution domain, multiple solution domains

could be modeled in the same way.

Agent Ref. No. 153814WO 20

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

[097] As shown in FIGURE 7B, the model 750 includes different application
instance ontology spaces 752. Each application instance ontology space 752 represents an
ontology 122 within a solution domain.

[098] Eachontology 122 has an associated immutable ontology 602. Based on this,
each application instance ontology space 752 is associated with an immutable ontology space
754. An immutable ontology space 754 contains an immutable ontology 602 that is
associated with the 0nt610gy 122 contained in an application instance ontology space 752.

[099] The model 750 further includes core connections 756. The core connections
756 connect various elements 604 in the immutable ontologies 602 contained in the
immutable ontology spaces 754. The core connections 756 could, for example, represent the
connections 706 shown in FIGURE 7A. The core connections 756 connect the elements 604
in the various immutable ontologies 602, which allows the server 106 to navigate from one
immutable ontology space 754 to other immutable ontology spaces 754. This also allows the
server 106 to navigate from one application instance ontology space 752 to other application
instance ontology spaces 752 through the immutable ontology spaces 754 and the core
connections 756.

[0100] Collectively, the immutable ontology spaces 754 and the core connections 756
form an “immutable ontology core” in the model 750. This immutable ontology core may be
replicated in each solution domain being integrated. Ontology elements 402 within a single
solution domain may bé related using the immutable ontology core. Moreover, since the
immutable ontology core is the same in each solution domain, ontology elements 402 in
different solution domains also may be related. by relating elements in the immutable
ontology core. In this way, the immutable ontology core can be used to transparently relate
ontology elements 402 across solution domains.

[0101] Asstated above, FIGURES 7A and 7B show how two solution domains 702
may be integrated using immutable ontologies 602 without extensions 606. In other cases,
the solution domains 702 may have different immutable ontologies 602. For example, one or
more of the immutable ontologies 602 may have different extensions 606. When establishing
connections 706 between these different immutable ontologies 602, the elements 604 in the
immutable ontologies 602 (such as the elements 604 in the extensions 606) may not match
perfectly. In some embodiments, a user manually identifies relationships between the
elements 604 in the immutable ontologies 602 as needed. In particular embodiments, the
differences between the immutable ontologies 602 are easily determined, and in many cases

the number of these differences is small. As aresult, the burden on the user to manually map

Agent Ref. No. 153814WO 21

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

relationships between the elements 604 in the immutable ontologies 602 is small.

[0102] Although FIGURES 7A and 7B illustrate one example of an inter-relationship
between two solution domains 702, various changes may be made to FIGURES 7A and 7B.
For example, the number of solution domains 702 and the contents of those solution domains
702 are for illustration only. Any other or additional solution domains may be integrated.

[0103] FIGURE 8 illustrates an example relationship between meta-ontologies to
produce a metalayer according to one embodiment of this disclosure. In particular, FIGURE
8 illustrates the relationships between two applications in a computing system 102. The
integration shown in FIGURE 8 is for illustration only. Other metalayers may be produced
without departing from the scope of this disclosure.

[0104] As described above, in some embodiments, an immutable ontology 602
cannot be changed. In other embodiments, changes to an immutable ontology 602 may
occur. Because the altered immutable ontology 602 forms part of the immutable ontology
core in the model 750 and the immutable ontology core is replicated in different solution
domains, the altered immutable ontology 602 may be updated in all solution domains. Also,
a single ontology 122 or set of ontologies 122 may form part of multiple solution domains.
This may occur, for example, when solution domains are merged to create another solution
domain (a super domain) as shown in FIGURE 2C. As another example, a solution domain
may be partitioned as shown in FIGURE 2B. If the elements 402 or the relationships for the
single ontology 122 or set of ontologies 122 change, these changes may be reflected or
updated in multiple solution domains.

[0105] To support this updating process, different types of meta-ontologies 124 could
be supported in the system 100. In particular, the system 100 could support a master meta-
ontology 802, an application meta-ontology 804, and an aggregate solution domain meta-
ontology 806. The aggregate solution domain meta-ontology 806 represents the metalayer or
meta meta-ontology 126 described above in FIGURE 1.

[0106] A master meta-ontology 802 identifies relationships between elements 604 in
immutable ontologies 602. In some embodiments, a master meta-ontology 802 is associated
with a master solution domain, which is shown in FIGURE 9 and described below. In
particular embodiments, a master meta-ontology 802 identifies relationships between
immutable ontologies 602, where the immutable ontologies 602 include one immutable
ontology 602 for each type of domain 110 included in the solution domain.

[0107] An application meta-ontology 804 describes the relationships between

elements 402 in an ontology 122 and elements 604 in an immutable ontology 602. The

Agent Ref. No. 153814WO 22

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

ontology 122 associated with the application meta-ontology 804 may have one or more
relationships that are not part of the master meta-ontology 802. For example, there may be
additional relationships between elements 402 in the ontology 122, which are described in
the application ontology 804. There may also be broken relationships between elements 402
in the ontology 122, so those elements 402 are not linked to their corresponding elements 604
in the immutable ontology 602. As shown in FIGURE 8, the elements 402 labeled “E” and
“F” in the ontology 122 labeled “Ontology A” are not linked to the corresponding elements
604 labeled “E” and “F” in the immutable ontology 602.

[0108] The aggregate solution domain meta-ontology 806 merges or combines the
meta-ontologies 802-804 that describe the relationships for a solution domain. In particular,
the aggregate solution domain meta-ontology 806 could be viewed as a meta meta-ontology
that identifies the master meta-ontology 802 and all the application meta-ontologies 804 for
each application within the solution domain. In particular embodiments, there is one set of
immutable ontologies 602, and all meta-ontologies 802-804 point to the same elements 604
in the immutable ontologies 602. Also, in particular embodiments, there is one ontology 122
and one application meta-ontology 804 for an application, irrespective of the number of
solution domains in which the application appears.

[0109] Asshownin FIGURE 8, an ontology 122 may include elements 402 that are
not defined in the immutable ontology 602. To handle this situation, the master solution
domain contains an immutable ontology 602 with an extension 606 to identify the new
ontology elements 402. In this example, one immutable ontology 602 includes an extension
606 with an element 604 labeled “I”. If the element 604 labeled “I” is related to another
element, this relationship is defined within the master solution domain.

[0110] In particular embodiments, an aggregate solution domain meta-ontology 806
may span across multiple computing systems 102, which may be located at different
geographical locations. When this occurs, the meta-ontologies 802-804 could connect to the
ontologies 122 or the immutable ontologies 602 remotely. The master solution domain could
also be duplicated at each remote location, where the master solution domains are
synchronized periodically with each other.

[0111] Particular embodiments of the hierarchy of ontologies shown in FIGURE 8
may support various advantages. For example, if there is a change in the relationships
involving the elements 604 of the immutable ontologies 602, only the master solution domain
relationships may need to change, and the change may be reflected automatically across the

system. Also, if there is a change in an ontology 122, that ontology 122 and the

Agent Ref. No. 153814WO 23

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

corresponding meta-ontology 124 may be updated, and the update may be reflected
automatically across the system. Further, the aggregate solution domain meta-ontology 806
determines the scope of each application solution domain, so tight security can be maintained
with this approach. In addition, since most relationships are defined through the master
solution domain, the entity that owns the master solution domain may wield enormous
influence over the entire system.

[0112] Although FIGURE 8 illustrates one example of relationships between meta-
ontologies to produce a metalayer, various changes may be made to FIGURE 8. For
example, each of the ontologies 122, 802-806 could include any number of elements. Also, .
the aggregate solutioh domain meta-ontology 806 could integrate any number of application
meta-ontologies 804.

[0113] FIGURE 9 illustrates an example hierarchy 900 of solution domains according
to one embodiment of this disclosure. In particular, FIGURE 9 illustrates different types of
solution domains that may be integrated using the technique described above with respect to
FIGURE 8. The hierarchy 900 of solution domains shown in FIGURE 9 is for illustration
only. Other hierarchies of solution domains may be used without departing from the scope of
this disclosure. v

[0114] The hierarchy 900 shown in FIGURE 9 includes a master solution domain
902, one or more derived solution domains 904, and an aggregate solution domain 906. The
master solution domain 902 contains one or more master applications 908. A master
application 908 represents the standard implementation of an application in the computing
systems 102. Each type of application may be represented by a master application 908. In
particular embodime-nts, there may be one or more master solution domains 902, but a master
application 908 resides in only one master solution domain 902. The master solution domain
902 may be used for application solving, such as when it is used by the solving engine 114 to
define the boundaries for a solution to a user request. A master application 908 is associated
with an immutable ontology 602.

[0115] A derived solution domain 904 contains a derived application 910. In some
embodiments, the derived application 910 represents a clone of a master application 908 with
some differences. In particular embodiments, the derived solution domain 904 contains only
one derived application 910. A derived application 910 is associated with an application
instance ontology 122.

[0116] An aggregate solution domain 906 represents a master solution domain 902

and one or more derived solution domains 904. In some embodiments, the aggregate

Agent Ref. No. 153814WO 24

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

solution domain 906 is used for application solving, where the boundary of the aggregate
solution domain 906 includes all derived solution domains 904. In particular embodiments,
the aggregate solution domain 906 is the only visible solution domain to users.

[0117] Although FIGURE 9 illustrates one example of a hierarchy 900 of solution
domains, various changes may be made to FIGURE 9. For example, the hierarchy 900 could
include any number of applications 908-910. The hierarchy 900 could also include any
number of derived solution domains 904.

[0118] FIGURE 10 illustrates an example ARC backend 111 for relating computing
systems 102 according to one embodiment of this disclosure. The ARC backend 111 shown
in FIGURE 10 is for illustration only. Other embodiments of the ARC backend 111 may be
used without departing from the scope of this disclosure.

[0118] Asdescribed above, the discovery engine 112 generates the ontologies and the
ARC backend 111 generates the meta-ontologies used to inter-relate the computing systems
102. Also, to generate a meta-ontology, the ARC backend 111 may use rules to identify
potential relationships between ontology elements 402 in the ontologies.

[0120] In some embodiments, at least some of the rules for identifying potential
relationships between ontology elements 402 may be unable to identify the potential
relationships with absolute certainty, and the user approves or disapproves the potential
relationships. To facilitate the user’s approval or disapproval of potential relationships, the
ARC backend 111 shown in FIGURE 10 implements an ontology relationship determination
process. In this process, the ARC backend 111 identifies both a type of potential relationship
and a confidence level for the identified potential relationship. The relationship type could
identify any type of relationship, such as no relationship, an identical relationship, a
transformational relationship, or undefined. The confidence level identifies the extent to
which the identified potential relationship may be correct. The confidence level could
represent any suitable value, such as a value between zero and ten where ten represents high
confidence.

[0121] The confidence level of a potential relationship may be used in any number of
ways. For example, the ARC backend 111 could automatically accept any potential
relationship with a confidence level over a threshold. Also, users with higher privileges may
be able to accept a potential relationship with a lower confidence level or reject a proposed
relationship with a higher confidence level. The ARC backend 111 could further sort the
potential relationships by confidence level. In addition, the user could ignore potential

relationships with low confidence levels.

Agent Ref, No. 153814W0 25

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

[0122] The ARC backend 111 shown in FIGURE 10 supports this ontology
relationship determination process. As shown in FIGURE 10, the ARC backend 111
includes a front-end or explorer portion 1002 and a back-end portion 1004. In general, the
explorer portion 1002 facilitates interaction with a user, while the back-end portion 1004
processes the information supplied by the user.

[0123] In this example embodiment, the ARC backend 111 allows a user to write
rules for identifying potential relationships between ontology elements 402 using scripts.
The use of scripts may allow the user to write complex rules that may be easily changed
when needed. Other embodiments of the ARC backend 111 could also be used.

[0124] Asshownin FIGURE 10, the ARC backend 111 includes one or more script
editors 1006. The script editors 1006 allow a user to create new scripts, edit existing scripts,
or delete scripts. The script editors 1006 may represent any suitable mechanism for
composing scripts. For example, a script editor 1006 could represent a simple text box.
More advanced script editors 1006 could also be used. In particular embodiments, the script
editors 1006 represent plug-ins capable of interfacing with other components in the ARC
backend 111.

[0125] The script editors 1006 may support the use of any suitable scripting language
or languages. For example, a script language may allow a script to be callable as a function
from Java or other object-oriented language. The script language may also allow parameters,
such as strings, to be passed to and received from a script. The script language may further
allow a script to invoke other Java or object-oriented functions to handle complex processes.

In addition, the script language may support strong string manipulation operations and be
supported on different computing platforms. Example script languages include Perl, Python,
and Ruby, although any other script language may be used.

[0126] The scripts could represent any suitable rules. In particular embodiments,
each script acts as a function call. For example, a rule could act as the following function
call:

String getRelationship(Typel, InstanceNamel, Class],
EleNamel, Type2, InstanceName2, Class2, EleName?2)

where Typel and Type2 represent the ontology type of two ontology elements 402,
InstanceNamel and InstanceName?2 represent the names of the two ontology elements 402,
Class] and Class2 represent the class names associated with the two instances of the

ontology elements 402, and Elenamel and Elename?2 represent the instance names of the two

Agent Ref. No. 153814WO 26

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

ontology elements 402.

[0127] Other or additional types of rules could also be used and supported in the
ARC backend 111. For example, pattern-based rules could be used. As a particular example,
the pattern-based rules could represent rules that heuristically determine a distance metric
between the ontology elements 402. These metrics could be based on the ontology class
names, the instance names, or other criteria. Smaller distance metrics may mean closer
potential relationships, although closeness might only suggest a potential relationship and
may not necessarily result in an actual relationship.

[0128] A script explorer 1008 allows the user to select scripts to be opened for
addition, editing, or deletion. In some embodiments, the script explorer 1008 allows users
with appropriate privileges to have read and write access to the scripts. The script explorer
1008 then interacts with the back-end portion 1004 to audit the scripts and to maintain the
integrity of the scripts in a multi-user environment.

[0129] An ontology editor 1010 allows a user to maintain and edit the ontologies.
For example, the ontology editor 1010 may allow the user to view and approve or disapprove
of the potential relationships. The ontology editor 1010 may also allow a user to view
ontology elements 402 with their associated relationships and to define or break
relationships.

[0130] The ARC backend 111 processes the information supplied by a user to, among
other things, generate meta-ontologies and meta meta-ontologies. In the illustrated example,
the back-end portion 1004 includes a repository interface layer (RIL) tool 1012. The RIL
tool 1012 supports the storage and retrieval of script-based rules and pattern-based rules to
and from an internal interface repository (1lIR) 1014. For example, the RIL tool 1012 may
help to ensure that the storage of a script-based rule is performed with proper associations.
The RIL tool 1012 may also help to ensure that only users with appropriate privileges have
read or write access to the stored rules. In addition, the RIL tool 1012 may allow users to
audit any updates to the stored rules. The IIR 1014 represents any suitable storage for storing
and facilitating retrieval of script-based and pattern-based rules. The IIR 1014 could, for
example, represent the repository 108 shown in FIGURE 1.

[0131] Additional rules may be stored in a database 1016. As a user approves or
disapproves of potential relationships, information about these approvals or disapprovals is
stored as rules in the database 1016. For example, assume that a single script-based rule is
configured to represent the following natural language statement: “If two ontology element

instance names have three or more common consonants, these two ontology elements are

Agent Ref. No. 153814WO 27

10

15

20

WO 2006/028869 PCT/US2005/031046

related. The confidence level is computed as f(<number of common letters>/<total

letters>).” During the discovery process, the following potential relationships are identified:

CustomerName <> | CustName
LCustomerNumber <> | CustNum
LZip <> | ZipCode

SalesCode <> | SalesZone

The user examines these potential relationships and accepts the first three and rejects the last
one. Four entries defining new rules may then be added in a table in the database 1016 as

follows:

CustpmerName CustName | Related

CustomerNumber | CustNum Related
Zip ZipCode Related
SalesCode SalesZone | Not Related

Each of these entrieé now represents a rule that can be used to ‘accept or reject additional
potential relationships. Each rule contained in the database 1016 may be referred to as a
“databased rule.” The databased rules thus represent a knowledge base collected over time.
During the rediscovery processes, the databased rules may be applied first. If none of the
databased rules applies, script-based or pattern-based rules stored in the IIR 1014 may be
applied. ’

[0132] In some embodiments, the databased rules are stored in relational database
tables. In particular embodiments, many different types of databased rules may be defined,
and each of these types may use different tables. As a particular example, the most generic
databased rule may use a table with following schema:

s Application Type 1

¢ Application Instance Name 1

* Ontology Element Class Name 1

¢ Ontology Element Instance Name 1
e Application Type 2

¢ Application Instance Name 2

¢ Ontology Element Class Name 2

» Ontology Element Instance Name 2

Agent Ref. No. 153814WO 28

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

¢ Relationship

o Conﬁdence Level.

[0133] Database tables may be created before or during the automated discovery
process and be maintained for use during the rediscovery process pefformed by the discovery
engine 112. Entries in the tables may be added because of the user approving or
disapproving of potential relationships between ontology elements 402 during the discovery
or rediscovery process. As the user approves or disapproves the potential relationships, the
relationship data is captured into the database tables. This data is used during the rediscovery
process to compute relationships with more confidence. Over time, the information in the
database tables may even be used to automatically determine relationships accurately. The
database 1016 may represent any suitable storage medium or a portion of a storage medium,
such as a portion of the repository 108.

[0134] The various rules in the IIR 1014 and the database 1016 may vary in scope.
For example, a rule could apply to a specific ontology, ontologies associated with a particular
type of application, or all ontologies. In particular embodiments, a rule that applies to a
specific ontology or to a particular type of application may result in higher confidence levels.

Rules that apply to all ontologies often represent pattern-based rules that result in lower
confidence levels, although as databased rules are defined the confidence levels typically
become higher.

[0135] A discovery bean 1018 facilitates communication with applications in
computing systems 102. The discovery bean 1018 also facilitates the discovery of the
ontology elements 402 associated with the application. When the ontology elements 402 are
identified, the discovery bean 1018 invokes the addition of a new or updated application
instance ontology and a new or updated meta-ontology.

[0136] An ontology interface bean 1020 facilitates the creation and maintenance of
ontologies in the system 100. For example, the ontology interface bean 1020 may add a new
or updated ontology'to‘the IIR 1014 or other location. The ontology interface bean 1020
could also identify relationships between ontology elements 402 within the new or updated
ontology and between multiple ontologies by applying script-based, databased, and pattern-
based rules. The ontology interface bean 1020 may further approve or disapprove of the
potential relationships, such as by allowing a user to select valid relationships. Beyond that,

the ontology interface bean 1020 could retrieve all ontology elements 402 within an

Agent Ref. No. 153814WO 29

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

ontology, add relationships between ontology elements 402, and break relationships between
ontology elements 402. In addition, the ontology interface bean 1020 may retrieve script-
based rules, set script-based rules, get databased rules, and set databased rules. The ontology
editor 1010 may communicate with the ontology interface bean 1020 to support the
operations of the ontology editor 1010.

[0137] Insome embodiments, the ontology interface bean 1020 identifies potential
relationships between ontology elements 402 using one or more script plug-ins 1022 and one
or more script engines 1024. The script plug-ins 1022 provide a universal interface to the
various script engines 1024. The script engines 1024 support the scripting languages used by
users to create scripts. For example, the script engines 1024 may be used by the ontology
interface bean 1020 to execute the script-based rules in the IIR 1014. To identify potential
relationships between ontology elements 402, the rules may be executed in any suitable
order. For example, in particular embodiments, databased rules associated with a particular
ontology 122 and then script-based rules associated with a particular ontology 122 are
executed first. Next, databased rules associated with a particular application type and then
the script-based rules associated with a particular application type are executed. After that,
databased rules, then script-based rules, and then pattern-based rules associated with all
ontologies 122 are executed.

[0138] A meta-ontology bean 1026 facilitates the generation of meta-ontologies. One
technique for generating meta-ontologies is described above. A data table bean 1028
facilitates the generation, storage, and retrieval of databased rules in tables in the database
1016.

[0139] Although FIGURE 10 illustrates one example of a ARC backend 111 for
relating computing systems 102, various changes may be made to FIGURE 10. For example,
the functional division shown in FIGURE 10 is for illustration only. Various components of
the ARC backend 111 may be combined or omitted and additional components may be added
according to particular needs. Also, other embodiments of the ARC backend 111 may be
used in the system 100 of FIGURE 1.

[0140] FIGURE 11 illustrates an example method 1100 for relating one or more
computing systems 102 according to one embodiment of this disclosure. For ease of
explanation, the method 1100 1s described with respect to the server 106 operating in the
system 100 of FIGURE 1. The method 1100 may be used by any other device and in any
other system.

[0141] The semantic integration server 106 identifies services provided by one or

Agent Ref. No. 153814WO 30

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

more applications in one or more solution domains, block 1102. This may include, for
example, the discovery engine 112 identifying one or more application servers in the
computing system(s) 102 and identifying the applications provided by the application
servers.

[0142] The semantic integration server 106 generates one or more ontologies for each
identified application, block 1104. This may include, for example, the discovery engine 112
generating an ontology 122 for each identified application. This may also include the
discovery engine 112 generating an immutable ontology 602 for each ontology 122.

[0143] The semantic integration server 106 generates one or more meta-ontologies
for use in identifying relationships between ontology elements, block 1106. This may
include, for example, the ARC backend 111 generating a meta-ontology 124 for the
ontologies 122 and immutable ontologies 602 in a solution domain. This may also include
the ARC backend 111 generating a master meta-ontology 802 and one or more application
meta-ontologies 804 for the ontologies 122 and immutable ontologies 602 in a solution
domain. »

[0144] Ifonly one solution domain is being inter-related, the method 1100 ends. At
this point, the meta-ontologies produced by the ARC backend 111 facilifates the
identification of relationships between the applications and services within the solution
domain. _

[0145] Otherwise, multiple solution domains are being inter-related, and the semantic
integration server 106 generates a meta meta-ontology using the meta-ontologies, block
1108. This may include, for example, the ARC backend 111 generating a meta meta-
ontology 126 or an application solution domain meta-ontology 806. The meta meta-ontology
may be produced in any suitable manner, such as by merging the meta-ontologies. Meta-
ontologies may be merged by combining the contents of the meta-ontologies or by generating
pointers that point to the various meta-ontologies. At this point, the meta-ontologies
produced by the ARC backend 111 facilitates identifying the relationships between the
applications and services within each solution domain, and the meta meta-ontology facilitates
the identification of relationships between the applications and services in different solution
domains.

[0146] Although FIGURE 11 illustrates one example of a method 1100 for
integrating one or more computing systems 102, various changes may be made to FIGURE
11. Forexample, FIGURE 11 shows the generation of ontologies, meta-ontologies, and meta

meta-ontologies. This may occur, for example, during the discovery process executed by the

Agent Ref. No. 153814WO 31

10

15

20

WO 2006/028869 PCT/US2005/031046

discovery engine 112. During the rediscovery process, existing ontologies, meta-ontologies,
and meta meta-ontologies could be updated, and new ontologies, meta-ontologies, and meta
meta-ontologies may be produced.

[0147] It may be advantageous to set forth definitions of certain words and phrases
used throughout this patent document. The terms “include” and “comprise,” as well as
derivatives thereof, mean inclusion without limitation. The term “or” is inclusive, meaning
and/or. The phrases “associated with” and “associated therewith,” as well as derivatives
thereof, may mean to include, be included within, interconnect with, contain, be contained
within, connect to or with, couple to or with, be communicable with, cooperate with,
interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the
like. The term “controller” means any device, system or part thereof that controls at least one
operation. A controller may be implemented in hardware, firmware, software, or some
combination of at least two of the same. The functionality associated with any particular
controller may be centralized or distributed, whether locally or remotely.

[0148] While this disclosure has described certain embodiments and generally
associated methods, alterations and permutations of these embodiments and methods will be
apparent to those skilled in the art. Accordingly, the above description of example
embodiments does not define or constrain this disclosure. Other changes, substitutions, and
alterations are also possible without departing from the spirit and scope of this disclosure, as

defined by the following claims.

Agent Ref. No. [53814WO 32

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

[0149] WHAT IS CLAIMED IS:

1. A method for relating computing systems, comprising:

generating a plurality of ontologies associated with a plurality of applications, the
applications contained in a plurality of solution domains, each solution domain representing
at least a portion of one or more computing systems, each ontology comprising one or more
ontology elements representing one or more application components chosen from a list
consisting of: application services and parameters for associated application services;

generating a plurality of meta-ontologies associated with the solution domains, each
meta-ontology comprising one or more meta-ontology elements representing one or more
relationships between at least some of the ontology elements; and

generating a meta meta-ontology that combines the meta-ontologies.

2. The method of Claim 1, wherein generating the ontologies comprises
generating an ontology and an immutable ontology for each of the applications.

3. The method of Claim 2, wherein the immutable ontology comprises a first
portion and an optional second portion, the first portion containing immutable ontology
elements inserted at creation of the immutable ontology, the second portion containing
immutable ontology elements inserted after creation of the immutable ontology.

4. The method of Claim 2, wherein the one or more meta-ontology elements
represent one or more relationships between at least some of the ontology elements and
immutable ontology elements in the immutable ontologies.

5. The method of Claim 2, further comprising identifying connections between
related immutable ontology elements in the immutable ontologies;

wherein the connections between immutable ontology elements associated with
different solution domains facilitate identification of relationships between ontology elements
in the different solution domains.

6. The method of Claim 2, wherein:

generating the meta-ontologies comprises generating a master meta-ontology and one
or more application meta-ontologies;

the master meta-ontology identifies one or more relationships between immutable
ontology elements in at least two of the immutable ontologies; and

the application meta-ontologies identify at least one of:

one or more relationships between the ontology elements in at least one of the
ontologies; and

one or more relationships between the ontology elements in at least one the

Agent Ref. No. 153814WO 33

10

i5

20

25

30

WO 2006/028869 PCT/US2005/031046

ontologies and the immutable ontology elements in at least one of the immutable ontologies.

7. The method of Claim 1, wherein each solution domain is associated with one
meta-ontology and one or more ontologies.

8. The method of Claim 1, wherein generating the meta meta-ontology
comprises one of merging contents of the meta-ontologies and generating pointers pointing to
the meta-ontologies.

9. The method of Claim 1, wherein generating the meta-ontologies comprises
identifying potential relationships between at least some of the ontology elements, the one or
more relationships comprising one or more of the potential relationships.

10. The method of Claim 9, wherein identifying the potential relationships
comprises identifying the potential relationships using a plurality of rules.

11. The method of Claim 9, wherein generating the meta-ontologies further
comprises allowing a user to approve of the potential relationships.

12. The method of Claim 9, further comprising identifying confidence levels for
the potential relationships, the confidence levels identifying an extent to which the potential
relationships may be correct.

13. The method of Claim 1, wherein:

one of the relationships between ontology elements comprises one of an identical
relationship and a transformational relationship;

the identical relationship indicates that the ontology elements are associated with
identical information; and

the transformational relationship indicates that information associated with one of the
ontology elements is transformable into information associated with another of the ontology
elements.

14. The n‘lethod of Claim 13, wherein:

each ontology element is associated with a class; and.

each meta-ontology element represents one of:

the same class as the classes associated with ontology elements related
through an identical relationship; and
a super class of the classes associated with ontology elements related through
a transformational relationship.
15. The method of Claim 1, wherein:
generating the ontologies comprises generating Web Ontology Language (OWL)

documents describing the ontologies; and

Agent Ref. No. 153814WO 34

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

generating the meta-ontologies comprises generating OWL documents describing the
meta-ontologies.

16. A system for relating computing systems, comprising:

a discovery engine operable to generate a plurality of ontologies;

an ARC backend operable to generate a plurality of meta-ontologies, and a meta
meta-ontology; and

arepository operable to store the ontologies, the meta-ontologies, and the meta meta-
ontology;

wherein the ontologies are associated with a plurality of applications, the applications
contained in a plurality of solution domains, each solution domain representing at least a
portion of one or more computing systems, each ontology comprising one or more ontology
elements representing one or more application components chosen from a list consisting of:
application services ana parameters for associated application services;

wherein each meta-ontology comprises one or more meta-ontology elements
representing one or more relationships between at least some of the ontology elements; and

wherein the meta meta-ontology combines the meta-ontologies.

17. The system of Claim 16, wherein:

the discovery engine is operable to generate the ontologies by generating an ontology
and an immutable ontology for each application;

the immutable ontology comprises a first portion and an optional second portion, the
first portion containing immutable ontology elements inserted at creation of the immutable
ontology, the second portion containing immutable ontology elements inserted after creation
of the immutable ontology; and

the one or more meta-ontology elements represent one or more relationships between
at least some of the ontology elements and the immutable ontology elements.

18. The sysfem of Claim 17, wherein:

the discovery engine is further operable to identify connections between related
immutable ontology elements in the immutable ontologies; and

the discovery engine is operable to use the connections between immutable ontology
elements associated with different solution domains to identify the relationships between
ontology elements in the different solution domains.

19. The system of Claim 17, wherein:

the ARC backend is operable to generate the meta-ontologies by generating a master

meta-ontology and one or more application meta-ontologies;

Agent Ref. No. 153814WO 35

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

the master meta-ontology identifies one or more relationships between the immutable
ontology elements in at least two of the immutable ontologies; and
the application meta-ontologies identify at least one of:
one or more relationships between the ontology elements in at least one of the
ontologies; and
one or more relationships between the ontology elements in at least one the
ontologies and the immutable ontology elements in at least one of the immutable ontologies.
20. The system of Claim 16, wherein the ARC backend is operable to generate the
meta-ontologies by:
identifying potential relationships between at least some of the ontology elements and
confidence levels associated with the potential relationships, the one or more relationships
comprising one or more of the potential relationships, the confidence levels identifying an
extent to which the potential relationships may be correct; and
allowing a user to approve of the potential relationships.
21. The system of Claim 20, wherein the ARC backend is operable to identify the
potential relationships using a plurality of rules.
22. The system of Claim 16, wherein:
one of the relationships between ontology elements comprises one of an identical
relationship and a transformational relationship;
the identical relationship indicates that the ontology elements are associated with
identical information;
the transformational relationship indicates that information associated with one of the
ontology elements is transformable into information associated with another of the ontology
elements;
each ontology element is associated with a class; and
each meta-ontology element represents one of:
the same class as the classes associated with ontology elements related
through an identical relationship; and
a super class of the classes associated with ontology elements related through
a transformational relationship.
23. A computer program embodied on a computer readable medium and operable
to be executed by a processor, the computer program comprising computer readable program
code for:

generating a plurality of ontologies associated with a plurality of applications, the

Agent Ref. No. 153814WO 36

10

15

20

25

30

WO 2006/028869 PCT/US2005/031046

applications contained in a plurality of solution domains, each solution domain representing
at least a portion of one or more computing systems, each ontology comprising one or more
ontology elements representing one or more application components chosen from a list
consisting of: application services and parameters for associated application services;

generating a plurality of meta-ontologies associated with the solution domains, each
meta-ontology comprising one or more meta-ontology elements representing one or more
relationships between at least some of the ontology elements; and

generating a meta meta-ontology that combines the meta-ontologies.

24. The computer program of Claim 23, wherein:

the computer readable program code for generating the ontologies comprises
computer readable program code for generating an ontology and an immutable ontology for
each application;

the immutable ontology comprises a first portion and an optional second portion, the
first portion containing immutable ontology elements inserted at creation of the immutable
ontology, the second portion containing immutable ontology elements inserted after creation
of the immutable ontology; and

the one or more meta-ontology elements represent one or more relationships between
at least some of the ontology elements and the immutable ontology elements.

25. The computer program of Claim 24, further comprising computer readable
program code for identifying connections between related immutable ontology elements in
the immutable ontologies; and

wherein the connections between immutable ontology elements associated with
different solution domains facilitate identification of relationships between ontology elements
in the different solution domains.

26. The computer program of Claim 24, wherein:

the computer readable program code for generating the meta-ontologies comprises
computer readable program code for generating a master meta-ontology and one or more
application meta-ontologies;

the master meta—ontology identifies one or more relationships between immutable -
ontology elements in at least two of the immutable ontologies; and

the application meta-ontologies identify at least one of:

one or more relationships between the ontology elements in at least one of the
ontologies; and

one or more relationships between the ontology elements in at least one the

Agent Ref. No. 153814WO 37

10

15

20

25

WO 2006/028869 PCT/US2005/031046

ontologies and the immutable ontology elements in at least one of the immutable ontologies.

27. The computer program of Claim 23, wherein the computer readable program
code for generating the meta-ontologies comprises computer readable program code for:

identifying potential relationships between at least some of the ontology elements, the
one or more relationships comprising one or more of the potential relationships; and

identifying confidence levels for the potential relationships, the confidence levels
identifying an extent to which the potential relationships may be correct.

28. The computer program of Claim 27, wherein the computer readable program
code for identifying the potential relationships comprises computer readable program code
for identifying the potential relationships using a plurality of rules.

29. The computer program of Claim 23, wherein:

one of the relationships between ontology elements comprises one of an identical
relationship and a transformational relationship;

the identical relationship indicates that the ontology elements are associated with
identical information;

the transfonﬁational relationship indicates that information associated with one of the
ontology elements is transformable into information associated with another of the ontology
elements;

each ontology element is associated with a class; and

each meta-ontology element represents one of:

the same class as the classes associated with ontology elements related
through an identical relationship; and
a super class of the classes associated with ontology elements related through

a transformational relationship.

Agent Ref. No. 153814W0O 38

WO 2006/028869

COMPUTING SYSTEM

SAP
DOMAIN

|
|
|
|
|
|
|
|
!
|
L
| 1108
]
|
|
!
|
|
|
|
|
|

100/v

111

— e e W - e - e e w e e e e e e e -

ORACLE
DOMAIN

110b\ \‘ll_Oc

SIEBEL
DOMAIN

106\

112 DISCOVERY
ENGINE

SOLVING
ENGINE

111"\

N

ARC
BACK-END

DEPLOYMENT
ENGINE

—~

116

SEMANTIC INTEGRATION SERVER

FIGURE 1

102n

——

PCT/US2005/031046

i

|

|

! COMPUTING
: SYSTEM
|

|

|

J7TTTTT

R

Chaz0 1263
D\122]ZBD
D\IZ‘I 130D

h__/

WO 2006/028869

2111

200
/

PCT/US2005/031046

SOLUTION DOMAIN

FIGURE 2A

/220

= T T T SOLUTION

T ,

v | DOMAIN 3

P ! SOLUTION
|

|

|
\ 1)
\ 202 . b I :
I ! ! SAP\ |
| Lo !
| —— e 8 |
| t |
! |
! [
}
|
)

'é“;
S
€}

a

e e = e - e - — -

FIGURE 2B

WO 2006/028869 PCT/US2005/031046

3/11

/ 220 / 220

ﬂ
|
|
|
|
I
t
i
|
|
!
|
I
N
{
!
{
]
|
I
|
I
|
|
|
[
[
|

[222

R ittt S TntutoieiSNNR T R I NP L
SOLUTION DOMAIN
SOLUTION DOMAIN SYSTEM 1 SYSTEM 2
MERGED SOLUTION DOMAIN SYSTEMS
FIGURE 2C N
124
: META-ONTOLOGY
400 . -
Qe () @, Q S
sarpe sarpe(lassAs supefClyssOf

B0 [0 B d 00O

ONTOLOGY A ONTOLOGY B ONTOLOGY C ONTOLOGY D

FIGURE 4

WO 2006/028869 4/ 1 . PCT/US2005/031046
300 \
META
META-
ONTOLOGY
g
! i
| 200,
1 220

META-
ONTOLOGY

META-
ONTOLOGY

W
(=]
[V

ONTOLOGY ONTOLOGY
1

ONTOLOGY

|
|
i
|
|
|
f
|
|
|
|
t
|
t
|
BRE
|
|
|
1

\120

PPLICATION
INSTANCE
1

>

\202

SERVICE SERVICE SERVICE
. DEFINITION DEFINITION DEFINITION
DOCUMENT 1 DOCUMENT 2 DOCUMENT 3

\/

APPLICATION
INSTANCE
2

FIGURE 3

WO 2006/028869 PCT/US2005/031046
o 500
META-ONTOLOGY
___ .
!
| CLASS?2 CLASST CLASS3 -
! !
! i
1 404 1
) b . Y r L— A 508 |
' _A]RZZZR . P I
I 506 - 1 N |
(s P AN DR DD S RO)
po=—————— === rF— == —— - = - — — | [T e s ———)
] 11 f
I i I
: ENTITY1 ENTITY2 1 : ENTITY1 !
| |
| (] |
| 1 |
! ([]
: ’__9 SOZET <::\:~_> (I I
11 |
|
! - :::_‘é gt 07 504 : : ENTITY2 :
: (I |
1 |
: ENTITY3 ENTITY4 ENTITYS - \
[i
] 1 |
: I |
1 1
| \402 (] |
| [|
L o e e e o o e o e e e e e e e e I T]
N ONTOLOGY 1 \ ONTOLOGY 2
122 (SAP DOMAIN) 122 (SIEBEL DOMAIN)

600

META-ONTOLOGY

124

RQRY Q G

122

8¢ &6

568 & &b &8 |d

IMMUTABLE 604"
ONTOLOGY
B

IMMUTABLE EXTENSION

602 ONTOLOGY
A

A

Hod b b ot

ONTOLOGY ~402 ONTOLOGY

A

FIGURE 6

PCT/US2005/031046

WO 2006/028869

6/11

VL 341014

' coL
8 NIVWOQ NOILLAOS /

18 ASOT01INO

@W@/@@, 2% 2R % R8S§ voc

Vv NIVINOQ NOILNTOS

WO 2006/028869 PCT/US2005/031046

7M1

752
N 756

APPLICATION
INSTANCE
ONTOLOGY

SPACE :
IMMUTABLE

ONTOLOGY
/' SPACE 750

754 FIGURE 7B

CORE
CONNECTIONS

PCT/US2005/031046

8/11

v AS010LNO

| 9 @ 0O ©E

8 HdNDIA

[4%)7

\

8 A9010LNO

29 99

(44
\

(44}

& b6 5o«

WO 2006/028869

ADOTOLNO-VLIW
¥ dd¥

¥08

v NOISNILX3

Vv AD0T0LNO v09 8 ADOT0LNO
II8VLANWI FgVINWNI

ob |

)

loffed

v0o8

ASOI0LINO
“Vi3W
8 ddv

e

o 4

ADOT0LNO -VALIN

NOILATOS 3LvO3HODV

NIvWwOQ

» 299 |99 o0

O0d OON

Aoo0LNO ¢08
-v13W
¥ILSVIN

209

WO 2006/028869 PCT/US2005/031046

9/11

\ \\ AGGREGATE
SOLUTION
DOMAIN
REFERS EFERS
REFERS
902 904 4
N MASTER \ DERIVED DERIVED
SOLUTION SOLUTION SOLUTION
DOMAIN . DOMAIN DOMAIN

INCLUDES INCLUDES INCLUDES

APP1D

FIGURE 9

WO 2006/028869 PCT/US2005/031046

10/11

| 1010 1008 10086

: 2 — =—
|

|

|

|

]
|
|
|

ONTOLOGY SCRIPT | SCRIPT !
EDITOR EXPLORER {| eoor |
|
wexeeorer __ | __ :
-- \
A
AL 1012
™ TooL
1020
) y
ONTOLOGY
D'SSSX,ERY —»| INTERFACE : IR
BEAN

) 4 \ 4 v

META- DATA 1022
ONTOLOGY | . TABLE Pfﬁg"]’gs
BEAN BEAN)
1026 ~ \ 1028
v
v
1024
1016 SCRIPT
DATABASE SeRPT

{
|
{
1
{
i
|
1
I
|
i
[
i
|
{
I \\ 1018 \1014
| .
|
1
]
1
|
]
!
1
|
I
!
|
|
|
|

ARC BACK-END

L e e e -t e A e - = - = - —— = e = — -

FIGURE 10

WO 2006/028869 PCT/US2005/031046

1111

/ 1A100

(START ’

1102 v
\J IDENTIFY SERVICES PROVIDED BY ONE OR MORE APPLICATIONS
IN SOLUTION DOMAIN(S)
1104 \ 4
GENERATE ONE OR MORE ONTOLOGIES FOR EACH APPLICATION IDENTIFIED
1106 \
GENERATE ONE OR MORE META-ONTOLOGIES FOR USE IN
IDENTIFYING RELATIONSHIPS BETWEEN ELEMENTS IN ONTOLOGIES
MULTIPLE
SOLUTION
DOMAINS
?
1108

GENERATE META META-ONTOLOGY USING THE META-ONTOLOGIES

END

FIGURE 11

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

