Title: POLYURETHANE COMPOSITIONS HAVING IMPROVED IMPACT RESISTANCE AND OPTICAL PROPERTIES

Abstract: A thermoset polyurethane composition having excellent impact and optical properties is prepared from a formulation comprising at least a prepolymer and a chain extender. The prepolymer includes an isocyanate component, containing 1,3-bis(isocyanatomethyl)cyclohexane and at least (20) percent by weight of 1,4-bis(isocyanatomethyl)cyclohexane, and an isocyanate-reactive component, containing hydroxyl, amine or thiol functionality. The isocyanate-reactive component includes from (70) to (95) percent by weight of a compound having a molecular weight from 150 to less than 950 Daltons, and from (5) to (30) percent by weight of a compound having a molecular weight from 2,000 to 4,500 Daltons. The chain extender is an aromatic, aliphatic, or cycloaliphatic polyamine compound containing at least one hydroxyl and/or thiol group. Articles that may be prepared include ophthalmic lenses, vehicle glazings, aircraft canopies, and the like.
POLYURETHANE COMPOSITIONS
HAVING IMPROVED IMPACT RESISTANCE AND OPTICAL PROPERTIES

BACKGROUND

1. Field of the Invention

[0001] The invention relates to polyurethane and related compositions. More particularly, it relates to such compositions having improved impact resistance and optical properties.

2. Background of the Art

[0002] Polymer compositions having high impact resistance and good optical properties may be useful in a number of applications, such as architectural glazings, vehicle glazings, riot shields, aircraft canopies, face masks, visors, ophthalmic and sunglass lenses, optical lenses, protective eyewear, and transparent armor. Representative optically transparent plastic materials include diethylene glycol bis(allyl carbonate), polymethylmethacrylate resins, polystyrene resins, and polycarbonate resins. However, diethylene glycol bis(allyl carbonate), polymethylmethacrylate resins and polystyrene resins may have unacceptable impact strength and crack resistance, and polycarbonate resins, while sometimes exhibiting better impact strength and crack resistance, may suffer from insufficient optical performance and poor chemical, solvent, and scratch resistance. Thus, optically transparent materials having superior impact strength and optical properties, as well as desirable levels of chemical, solvent and scratch resistance, are highly desired. In addition, low temperature flexibility and high heat distortion temperatures may also be desirable for certain applications. Currently the material to which optically transparent plastic materials are generally compared as the standard for impact resistance and optical clarity is polycarbonate.

SUMMARY OF THE INVENTION

[0003] In one embodiment the invention provides a thermoset polyurethane composition comprising the reaction product of at least a prepolymer and a chain extender; wherein the prepolymer has an NCO content of from 8 to 15 percent by weight and comprises the reaction product of (i) an isocyanate component including 1,4-bis(isocyanatomethyl)cyclohexane and 1,3-bis(isocyanatomethyl)cyclohexane, wherein the 1,4-bis(isocyanatomethyl)cyclohexane is present in an amount of at least
20 percent by weight of the isocyanate component; and (ii) an isocyanate-reactive component comprising (a) at least one first isocyanate-reactive compound having a molecular weight from 150 Daltons (Da) to less than 950 Da and (b) at least one second isocyanate-reactive compound having a molecular weight of from 2,000 Da to 4,500 Da; wherein the first and second isocyanate-reactive compounds each contain at least one functional group selected from a hydroxyl group, a thiol group, or an amine group, or a combination thereof; and wherein the first isocyanate-reactive compound comprises from 70 to 95 weight percent of the isocyanate-reactive component; and wherein the second isocyanate-reactive compound comprises from 5 to 30 weight percent of the isocyanate-reactive component; and wherein the chain extender is selected from one or more aromatic, aliphatic, and cycloaliphatic compounds containing at least one functional group each, the functional group being selected from a hydroxyl group, an amine group, a thiol group, or a combination thereof.

[0004] In another embodiment the invention provides a process for preparing a thermoset polyurethane composition comprising forming a prepolymer having an NCO content of from 8 to 15 percent by weight by contacting under reaction conditions: (i) an isocyanate component including 1,4-bis(isocyanatomethyl)cyclohexane and 1,3-bis(isocyanatomethyl)cyclohexane, wherein the 1,4-bis(isocyanatomethyl)cyclohexane is present in an amount of at least 20 percent by weight of the isocyanate component; and (ii) an isocyanate-reactive component comprising (a) at least one first isocyanate-reactive compound having a molecular weight from 150 Da to less than 950 Da, and (b) at least one second isocyanate-reactive compound having a molecular weight of from 2,000 Da to 4,500 Da; wherein the first and second isocyanate-reactive compounds each contain at least one functional group selected from a hydroxyl group, a thiol group, or an amine group, or a combination thereof; and wherein the first isocyanate-reactive compound comprises from 70 to 95 weight percent of the isocyanate-reactive component; and wherein the second isocyanate-reactive compound comprises from 5 to 30 weight percent of the isocyanate-reactive component; such that a prepolymer is formed; and contacting with the prepolymer under reaction conditions a chain extender selected from one or more aromatic, aliphatic, and cycloaliphatic compounds containing at least one functional group, the functional group being selected from a
hydroxyl group, an amine group, a thiol group, or a combination thereof; such that a thermoset polyurethane composition is formed.

[0005] In yet another embodiment, the invention provides a thermoset polyurethane composition that is molded to form an article having at least one property selected from a total luminous transmittance, as measured according to ASTM D1003-07, of at least 90 percent; an impact resistance, as measured according to ASTM D256-06A, of at least 50 kilojoules per square meter (kJ/m²); a refractive index, as measured according to ASTM D542, of at least 1.50; or an Abbe number, as calculated based on refractive index measured according to ASTM D542, of at least 25.

DETAILED DESCRIPTION OF THE EMBODIMENTS

[0006] The invention provides a polyurethane composition having, in many embodiments, excellent optical clarity and impact performance, as well as other desirable properties, including but not limited to high refractive index, low density, increased maximum service temperature, desirable levels of chemical, solvent and scratch resistance, and combinations thereof.

[0007] It is well known in the art that polyurethane compositions may be prepared by reacting an isocyanate component, which is a material having terminal isocyanate (-N=C=O, also referred to as NCO) groups, with a component containing terminal hydroxyl (-OH) groups, forming the urethane linkage (-RNHCOOR'). As used herein, the word "terminal" refers to atomic groups that are located at places in a molecule at which they are able to form covalent bonds with other molecules under suitable reaction conditions, alternatively referred to as "functional" or "reactive" groups. It is also known that, where the terminal isocyanate-reactive groups are, instead, amine (-NH) groups, the result of their reaction with an isocyanate group is a urea linkage (—RNH-CO-HNR—) and the product is a polyurea. It is also well known that, where the terminal isocyanate-reactive groups are, instead, thiol (-SH) groups, the result of their reaction with an isocyanate group is a sulfur-containing urethane. If a combination of terminal isocyanate-reactive groups is employed, whether on a single compound or by employing more than one type of compound, including both hydroxyl and amine groups, the result is a polyurethane-urea. Thus, as the term is used herein, "polyurethane composition" is defined to include both true polyurethanes and also
polyurethane-urea, sulfur-containing urethane, and polyurea compositions, wherein such are thermoset materials.

[0008] The compositions of the invention include an isocyanate component that contains both 1,4-bis(isocyanatomethyl)cyclohexane and 1,3-bis(isocyanatomethyl)cyclohexane. In certain embodiments the isocyanate component includes from 20 to less than 100 weight percent, based on total isocyanate component, of 1,4-bis(isocyanatomethyl)cyclohexane and from greater than 0 to 80 weight percent of 1,3-bis(isocyanatomethyl)cyclohexane. In preferred embodiments the isocyanate component includes from 20 to less than 100 weight percent, based on total isocyanate component, of 1,4-bis(isocyanatomethyl)cyclohexane and from greater than 0 to 80 weight percent of 1,3-bis(isocyanatomethyl)cyclohexane. Proportionately, in certain embodiments the ratio of 1,4-bis(isocyanatomethyl)cyclohexane to 1,3-bis(isocyanatomethyl)cyclohexane may range from 99:1 to 20:80, and in certain particularly desirable embodiments may range from 99:1 to 40:60. In preferred embodiments the combined 1,4-bis(isocyanatomethyl)cyclohexane and 1,3-bis(isocyanatomethyl)cyclohexane isomers make up at least 70 percent by weight of the total isocyanate component. In other embodiments the combined 1,4-bis(isocyanatomethyl)cyclohexane and 1,3-bis(isocyanatomethyl)cyclohexane isomers comprise at least 75, 80, 85 or 90 weight percent of the total isocyanate component. In a further embodiment the combination comprises the entire isocyanate component. It is also desirable that the isocyanate component as a whole has a (weight average) molecular weight ranging from 100 Da to 2,000 Da, preferably from 150 Da to 1,000 Da.

[0009] Where the combination of 1,4-bis(isocyanatomethyl)cyclohexane and 1,3-bis(iso-cyanatomethyl)cyclohexane is less than 100 percent by weight of the total isocyanate component, the remainder may be selected from a wide variety of auxiliary isocyanates group-containing compounds. Such may include, for example, organic polyisocyanate that are aliphatic, cycloaliphatic, araliphatic, aromatic, or a combination thereof, including methane diphenyl diisocyanates (MDIs), toluene diisocyanates (TDIs), naphthylene diisocyanates (NDI), 3,3-bitoluene diisocyanate (TODI), para-phenylene diisocyanate (PPDI), polymeric MDIs (PMDIs), hexamethylene diisocyanate (HDI), methylene bis(p-cyclohexyl isocyanate) (H_{12}MDI), cyclohexyl
diisocyanate (CHDI), isophorone diisocyanate (IPDI), meta-tetramethylxylylene diisocyanate (meta-TMXDI), and combinations thereof.

[0010] For example, auxiliary selections may include alkylene diisocyanates, particularly those having from 4 to 12 carbon atoms in the alkylene moiety, such as 1,12-dodecane diisocyanate, 2-ethyltetramethylene 1,4-diisocyanate, 2-methylpentamethylene 1,5-diisocyanate, 2-ethyl-2-butylpentamethylene 1,5-diisocyanate, tetramethylene 1,4-diisocyanate and preferably hexamethylene 1,6-diisocyanate; cycloaliphatic diisocyanates, such as cyclohexane 1,3- and 1,4-diisocyanate and any desired mixture of these isomers, l-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane (isophorone diisocyanate), 2,4- and 2,6-hexahydropolyethylene diisocyanate, and the corresponding isomer mixtures, 4,4-, 2,2'- and 2,4'-dicyclohexylmethane diisocyanate and the corresponding isomer mixtures, araliphatic diisocyanates, e.g., 1,4-xylylene diisocyanate and xylylene diisocyanate isomer mixtures, and preferably aromatic diisocyanates and polyisocyanates, e.g., 2,4- and 2,6-tolylene diisocyanate and the corresponding isomer mixtures, 4,4'-, 2,4'- and 2,2'-diphenylmethane diisocyanate and the corresponding isomer mixtures, mixtures of 4,4'- and 2,4'-diphenylmethane diisocyanates, polyphenyl-polymethylene polyisocyanates, mixtures of 4,4'-, 2,4'- and 2,2'-diphenylmethane diisocyanates and polyphenyl-polymethylene polyisocyanates (crude MDI), and mixtures of crude MDI and tolylene diisocyanates. The organic diisocyanates and polyisocyanates may be employed individually or in the form of combinations thereof.

[0011] The organic polyisocyanates may be prepared by known processes. They are preferably prepared by phosgenation of the corresponding polyamines with formation of polycarbamoyl chlorides. The polycarbamoyl chlorides may then be subjected to thermolysis to give the organic polyisocyanate and hydrogen chloride. The organic polyisocyanates may alternatively be prepared by phosgene-free processes, such as for example by reacting the corresponding polyamines with urea and alcohol to give polycarbamates. The polycarbamates may then be subjected to thermolysis to give the polyisocyanate and alcohol.

[0012] Modified polyisocyanates may also be used, that is, products which are obtained by chemical reaction of organic diisocyanates and/or polyisocyanates. Specific examples are ester-, urea-, biuret-, allophanate-, uretoneimine-, carbodiimide-,
isocyanurate-, uretidione- and/or urethane-containing diisocyanates and/or polyisocyanates. Individual examples are urethane-containing organic, preferably aliphatic or cycloaliphatic polyisocyanates containing from 15 to 50 percent by weight, preferably from 21 to 31 percent by weight, of NCO, based on the total weight. Examples include hexamethylene 1,6-diisocyanate, cyclohexane 1,3- and 1,4-diisocyanate, isophorone diisocyanate, 4,4-, 2,2'- and 2,4'-dicyclohexylmethane diisocyanate, and 1,4-xylylene diisocyanate, in each case modified by means of formation of allophanate, biuret, isocyanurate or uretidione.

[0013] The second major component of the inventive formulation is an isocyanate-reactive component. This component includes at least two compounds. The first isocyanate-reactive compound is a low molecular weight compound, having a molecular weight that ranges from 150 Da to less than 950 Da, and the second isocyanate-reactive compound is a higher molecular weight compound, having a molecular weight that ranges from 2,000 Da to 4,500 Da. In particular embodiments of the invention the isocyanate-reactive component as a whole includes from 70 to 95 percent by weight of the first, low molecular weight isocyanate-reactive compound, and from 5 to 30 percent by weight of the second, high molecular weight isocyanate-reactive compound. Percentage is based on the weight of the total isocyanate-reactive component. Each of these compounds contains, by definition, terminal groups that react with isocyanate groups, including hydroxyl groups, amine groups, thiol groups, or a combination thereof (depending upon whether it is desired to prepare a polyurethane, a sulfur-containing polyurethane, a polyurea, or a polyurethane-urea), and thus may include polyols, thiols and/or polyamines, as well as hybrid species containing both hydroxyl and amine functionalities, or both hydroxyl and thiol functionalities, or both thiol and amine functionalities. The combination of the at least two polyols, polyamines, thiols, or hybrids thereof, required in the isocyanate-reactive component, is frequently termed, for convenience as well as convention, as the "polyol," regardless of whether a formulation contains only the two isocyanate-reactive compounds specified in this component, or also includes additional compounds that are isocyanate-reactive and which may fall outside of the molecular weight range limitations.

[0014] In certain embodiments the isocyanate-reactive component as a whole has an average functionality of from 1.5 to 4, preferably at least 2, and more preferably
from 2 to 3. It is important to note that isocyanate-reactive compounds having a wide range of molecular weights and other characteristics may be included in the isocyanate-reactive component as a whole, provided that at least one compound has the specified molecular weight ranging from 150 Da to less than 950 Da, and that at least one compound has the specified molecular weight ranging from 2,000 Da to 4,500 Da. However, it is also preferred that at least 50 percent, more preferably from 70 percent to 95 percent, of the total isocyanate-reactive component has an average molecular weight within the 150 Da to less than 950 Da range, and that at least 3 percent, more preferably from 5 to 30 percent, of the total isocyanate-reactive component has an average molecular weight ranging from 2,000 Da to 4,500 Da.

[0015] The isocyanate-reactive component is employed in an amount such that the equivalents ratio, i.e., the ratio of terminal isocyanate groups to terminal hydroxyl, thiol, and/or amine groups, whether such are present in a single compound or in more than one compound, may in certain embodiments range from preferably 1.5:1 to 4.0:1, more preferably from 1.8:1 to 3.5:1, and most preferably from 2.0:1 to 3.0:1.

[0016] The isocyanate-reactive component may include a wide variety of types of compounds, including, for example, alcohols, such as diols including cyclobutanediol; polyester glycols; polycaprolactone glycols; polyether glycols; polycarbonate glycols; and copolymers thereof, including for example copolymer polyols of polycaprolactone and poly(oxytetramethylene)glycol, and copolymer polyols of polycarbonate and polycaprolactone. For example, a copolymer polyol of polycaprolactone and polytetramethylene ether glycol (PTMEG) is available under the tradename of CAPA™ 7201, and a copolymer polyol of polycarbonate and polycaprolactone is available under the tradename of CAPA™ 7203, both from Perstorp Group. Combinations of any of the above polyols may also be employed.

[0017] In certain embodiments, the alcohols may be particularly useful as isocyanate-reactive compounds. Cyclobutanediol, in particular, may offer an improvement in the optical properties, that is, in the refractive index, of the final composition. This may be noted particularly where it is employed in an amount of at least 3 percent by weight, and preferably at least 15 percent by weight, based on the total isocyanate-reactive component.
Polyester polyols that may be suitable for inclusion in the isocyanate-reactive component may be prepared from, for example, organic dicarboxylic acids having from 2 to 12 carbon atoms, preferably aliphatic dicarboxylic acids having from 4 to 10 carbon atoms and polyhydric alcohols, preferably diols having from 2 to 12 carbon atoms, preferably from 2 to 6 carbon atoms. Examples of suitable dicarboxylic acids are succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decane-dicarboxylic acid, maleic acid, fumaric acid, and preferably phthalic acid, isophthalic acid, terephthalic acid and the isomeric naphthalene-dicarboxylic acids. The dicarboxylic acids may be used either individually or mixed with one another. The free dicarboxylic acids may also be replaced by the corresponding dicarboxylic acid derivatives, for example, dicarboxylic esters of alcohols that have from 1 to 4 carbon atoms or dicarboxylic anhydrides. Examples of suitable dihydric and polyhydric alcohols for preparing the dicarboxylic esters are ethanediol, diethylene glycol, 1,2- and 1,3-propanediol, dipropylene glycol, 1,4-butadiol, 1,5-pentanediol, 1,6-hexanediol, 1,10-decanediol, glycerol, trimethylolpropane and combinations thereof. Preference is given to ethanediol, diethylene glycol, 1,4-butadiol, 1,5-pentanediol, 1,6-hexanediol, and combinations thereof, in particular mixtures of 1,4-butadiol, 1,5-pentanediol and 1,6-hexanediol. Furthermore, polyester-polyols made from lactones, e.g., ε-caprolactone or hydroxycarboxylic acids, e.g., ω-hydroxycaproic acid and hydrobenzoic acid, may also be employed. Preferred polycaprolactone glycols may include the reaction products of ε-caprolactone with one or more of the low molecular weight glycols listed hereinabove.

The preferred polyester and polycaprolactone polyols may be derived by well known esterification or transesterification procedures, as described, for example, in Ulrich, H. "Urethane Polymers," Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley & Sons, Inc., 2006), and Gagnon, "Polyethers, Propylene Oxide Polymers," Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley & Sons, Inc., 1996), both of which are incorporated herein in their entireties.

One group of readily available polyhydroxyl compounds, also suitable for inclusion in the isocyanate-reactive component, is the polyether polyols. In certain embodiments these may have a functionality of from 1.5 to 6, in particular from 2 to 3. They may be prepared by known processes, for example, as described in Pruckmayr.
G., et al., "Polyethers, Tetrahydrofuran and Oxetane Polymers," Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley & Sons, Inc., 1996), which is incorporated herein by reference in its entirety. The most preferred polyether polyols are polytetramethylene glycol, polypropylene glycol, and ethylene oxide end-capped propylene glycol. In general preparation methods may include, for example, anionic polymerization using alkali metal hydroxides, such as sodium hydroxide or potassium hydroxide, or alkali metal alkoxides, such as sodium methoxide, sodium ethoxide, potassium ethoxide or potassium isopropoxide, as catalysts and with the addition of at least one initiator molecule containing from 2 to 6, preferably 2 to 3, reactive hydrogen atoms in bound form. Another preparation method is cationic polymerization using Lewis acids, such as antimony pentachloride, boron fluoride etherate, or bleaching earth, as catalysts, beginning with one or more alkylene oxides having from 2 to 4 carbon atoms in the alkylene moiety.

Examples of suitable alkylene oxides are 1,3-propylene oxide, 1,2- and 2,3-butylene oxide, styrene oxide and, preferably, tetrahydrofuran, ethylene oxide and 1,2-propylene oxide. The alkylene oxides may be used individually, alternatively one after the other, or as mixtures. Examples of suitable initiator molecules may include water, organic dicarboxylic acids such as succinic acid, adipic acid, phthalic acid and terephthalic acid, and a variety of amines, including but not limited to aliphatic and aromatic, unsubstituted or N-mono-, N,N- and N,N’-dialkyl-substituted diamines having from 1 to 4 carbon atoms in the alkyl moiety, such as unsubstituted or mono- or dialkyl-substituted ethylenediamine, diethylenetriamine, triethylenetetramine, 1,3-propylenediamine, 1,3- and 1,4-butylenediamine, 1,2-, 1,3-, 1,4-, 1,5- and 1,6-hexamethylenediamine, aniline, phenylenediamines, 2,3-, 2,4-, 3,4- and 2,6-tolylenediamine, 4,4′-, 2,4′- and 2,2′-diaminodiphenylmethane, and combinations thereof.

Other suitable initiator molecules may include alkanolamines, for example, ethanolamine, N-methyl- and N-ethylethanolamine; dialkanolamines, for example, diethanol-amine, N-methyl- and N-ethyldiethanolamine; trialkanolamines, for example, triethanolamine; ammonia; and polyhydric alcohols, in particular dihydric and/or trihydric alcohols, such as ethanediol, 1,2- and 1,3-propanediol, diethylene glycol, dipropylene glycol, 1,4-butanediol, cyclobutanediol, 1,6-hexanediol, glycerol,
trimethylolpropane, pentaerythritol, sorbitol, sucrose, polyhydric phenols, for example, 4,4’-dihydroxydiphenylmethane and 4,4’-dihydroxy-2,2-diphenylpropane, resols, for example, oligomeric products of the condensation of phenol and formaldehyde, Mannich condensates of phenols, formaldehyde and dialkanolamines, and melamine.

[0023] It is advantageous in some embodiments that the polyols included in the isocyanate-reactive component are polyether polyols having a functionality of from 2 to 6, preferably 2 to 3, prepared by anionic polyaddition of at least one alkylene oxide, preferably ethylene oxide, 1,2-propylene oxide, 1,2-propylene oxide and ethylene oxide, or tetrahydrofuran, onto, as an initiator molecule, at least one aromatic compound containing at least two reactive hydrogen atoms of which at least one is included as part of a hydroxyl, amino or carboxyl group. Examples of such initiator molecules may include aromatic polycarboxylic acids, for example, hemimellitic acid, trimellitic acid, trimesic acid and, preferably, phthalic acid, isophthalic acid and terephthalic acid, or mixtures of at least two of the aforesaid polycarboxylic acids; hydroxycarboxylic acids, for example, salicylic acid, p- and m-hydroxybenzoic acid and gallic acid; aminocarboxylic acids, for example, anthranilic acid, and m- and p-aminobenzoic acid; polyphenols, for example, resorcinol; and, preferably, dihydroxydiphenylmethane, and dihydroxy-2,2-diphenylpropanes, Mannich condensates of phenols, formaldehyde and dialkanolamines, preferably diethanolamine; and aromatic polyamines, for example, 1,2-, 1,3- and 1,4-phenylenediamine, 2,3-, 2,4-, 3,4- and 2,6-tolylenediamine, 4,4’-, 2,4’- and 2,2’-diaminodiphenylmethane, polyphenylpolymethylene-polyamines, mixtures of diaminodiphenylmethanes and polyphenylpolymethylene-polyamines, as formed, for example, by condensation of aniline with formaldehyde, and combinations of at least two of the aforesaid polyamines.

[0024] The preparation of polyether polyols using an at least difunctional aromatic initiator molecules of this type is known and described in, for example, DD-A-290 201; DD-A-290 202; DE-A-34 12 082; DE-A-4 232 970; and GB-A-2,187,449, which are incorporated herein by reference in their entireties.

[0025] Both polyether polyols and polyester polyols may be employed, and also the hybrid compounds referred to as polyether-ester polyols. Such may be used individually or in the form of mixtures. Furthermore, they may be used in combination
with the graft polyether polyols and/or polyester polyols and the hydroxyl-containing polyester-amides, polyacetals, polycarbonates and/or phenolic polyols. Also useful are polythioether polyols, polycaprolactones, polycarbonates, polyether amines, polyester amines, polycarbonate amines, polycaprolactone amines, copolymers thereof, and combinations thereof.

[0026] Examples of suitable hydroxyl-containing polyacetals are the compounds that may be prepared from glycols, such as diethylene glycol, triethylene glycol, 4,4’-dihydroxyethoxydiphenyldimethylmethane, hexanediol and formaldehyde. Suitable polyacetals may also be prepared by polymerizing cyclic acetals.

[0027] Suitable hydroxyl-containing polycarbonates are those aliphatic polycarbonate glycols that may be prepared, for example, by reacting diols, such as 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol or tetaethylene glycol, with diethyl carbonate or dimethyl carbonate.

[0028] The polyester-amides include, for example, the predominantly linear condensates obtained from polybasic, saturated and/or unsaturated carboxylic acids or anhydrides thereof with polyhydric, saturated and/or unsaturated amino alcohols, or with mixtures of polyhydric alcohols and amino alcohols and/or amines.

[0029] Suitable compounds containing at least two reactive hydrogen atoms may further include phenolic and halogenated phenolic polyols, for example, resol-polyols containing benzyl ether groups. Resol-polyols of this type may be prepared, for example, from phenol, formaldehyde, expediently paraformaldehyde, and polyhydric aliphatic alcohols. Such are described in, for example, EP-A-0 116 308 and EP-A-0 116 310, which are incorporated herein by reference in their entireties.

[0030] In certain preferred embodiments, the isocyanate-reactive component may include a mixture of polyether polyols containing at least one polyether polyl based on an aromatic, polyfunctional initiator molecule and at least one polyether polyl based on a non-aromatic initiator molecule, preferably a dihydric to octahydric alcohol.

[0031] Suitable aliphatic thiol compounds may also be included in the isocyanate-reactive component. Such may contain 0 or more hydroxyl groups and 1 or more thiol groups (alternatively termed mercapto groups), and may be exemplified by monothioglycerol, dithioglycerol, trithioglycerol, dimercaptopropanol, 1-mercaptomethyl-1,1-dihydroxymethyl-propane, 1,4-dimercapto-2,3-hydroxybutane,
tetrakis(mercaptomethyl)methane, 1,1,1-tris(mercaptomethyl)ethane, 1,1,1-tris(mercaptomethyl)propane, 2,5-dimercaptomethyl-1,4-dithiane, 2,5-dimercaptomethyl-2,5-dimethyl-1,4-dithiane, 2,5-dimercaptothiophen, 2,5-dimercaptomethylthiophen, di(2-hydroxy-ethyl)disulfide, polyether polysulfide and polyester polysulfide. These compounds may be used singly or in combination. Of these, use of any of the thiol-group containing compounds in the isocyanate-reactive component may be particularly useful in improving the optical properties, particularly the refractive index, of the composition, and is desirable in certain embodiments in an amount of at least 3 percent, and preferably at least 15 percent. However, there may be a tendency of some of these thiol compounds to form crystals or be otherwise unstable with non-sulfur-containing isocyanate-reactive compounds, and thus such should be selected with care.

[0032] Suitable polyamines for this invention include any amine-terminated compound available to those practicing in the industry. The amine-terminated compound may include amine-terminated hydrocarbons, amine-terminated polyethers, amine-terminated polyesters, amine-terminated polycarbonates (also termed polycarbonate amines), amine-terminated polycaprolactones (also termed polycaprolactone amines), and copolymers and combinations thereof. The amine-terminated segments may be in the form of a primary amine (NH₂) or a secondary amine (NHR). The molecular weight of the amine-terminated compounds that may be used in the invention may range from 100 to 5,000, with functionality of 1.5 to 4, preferably 2 to 3. In one embodiment, the amine-terminated compound has a molecular weight greater than or equal to 400. In other embodiments the amine-terminated compound's molecular weight may be greater than or equal to 1,000, and preferably greater than or equal to 2,000.

[0033] The amine-terminated compound may include, for example, amine-terminated polyethers (also termed polyether amines) having any of the following generic structures:
wherein \(x \) is the chain length, i.e., an integer of 1 or greater, preferably 1 to 25; \(n \) is preferably 1 to 12; and \(R \) is any alkyl group having from 1 to 20 carbon atoms, preferably from 1 to 12 carbon atoms, a phenyl group, a cyclic group, or a combination thereof. One example of an amine-terminated polyether is a polyether amine. As used herein, "polyether amine" refers to a polyoxyalkyleneamine containing primary amino groups attached to the terminus of a polyether backbone. Due to the rapid reaction of isocyanate and amine, and the insolubility of many urea products, however, the selection of diamines and polyether amines is desirably limited to those allowing the successful formation of a polyurea prepolymer.

[0034] In one embodiment, the polyether backbone may be based on tetramethylene, propylene, ethylene, trimethylolpropane, glycerin, and mixtures thereof. In that embodiment, the polyether amine may have either of the following generic structures:

\[
\begin{align*}
H_2N & \xrightarrow{x} C_{n}H_{2n+1}O \xrightarrow{I} C_{m}H_{2m}NH_2; \\
H_2N & \xrightarrow{x} C_{n}H_{2n+1}O \xrightarrow{I} C_{m}H_{2m}NH_2; \text{ or} \\
RHN & \xrightarrow{x} C_{n}H_{2n+1}O \xrightarrow{I} C_{m}H_{2m}NH_2.
\end{align*}
\]

wherein each of the repeating units \(m \), \(n \), and \(I \) has a value ranging from 1 to 70, preferably from 5 to 50, and more preferably from 12 to 35; \(R_i \) and \(R_2 \) are each independently an alkyl group having from 1 to 20 carbon atoms, preferably from 1 to 12 carbon atoms, a phenyl group, a cyclic group, or a combination thereof; and \(R_3 \) is a hydrogen, methyl group, or a combination thereof.

[0035] In another embodiment, the polyether amine has one of the following generic structures:
wherein the repeating unit \(n \), \(R_1 \), \(R_2 \) and \(R_3 \) are all as defined previously hereinabove.

[0036] Suitable polyether amines include, but are not limited to, methyldiethanolamine; polyoxyalkylenediamines such as, polytetramethylene ether diamines, polyoxypropylenetetramine, polyoxyethyleneamines, and polyoxypropylenediamines; poly(ethylene oxide-capped oxypropylene)ether diamines; propylene oxide-based triamines; triethyleneglycoldiamines; trimethylol-propane-based triamines; glycerin-based triamines; and combinations thereof. In one embodiment, the polyether amine may be JEFFAMINE™ SD2001, JEFFAMINE™ XTJ 605, JEFFAMINE™ XTJ 604, JEFFAMINE™ XTJ 605 (JEFFAMINE™ is a tradename of Huntsman Corporation).

[0037] In addition, the amine-terminated compound may include amine-terminated polyesters (also termed polyester amines) having any of the following generic structures:

\[
\begin{align*}
 & \text{H}_2\text{N} + \text{R}_1\text{CO}_2\text{R}_2\text{CO}_2 \xrightarrow{\text{x}} \text{R}_1\text{NH}_2; \\
 & \text{H}_2\text{N} + \text{R}_1\text{CO}_2\text{R}_2\text{CO}_2 \xrightarrow{\text{x}} \text{R}_1\text{NHR}; \quad \text{or} \\
 & \text{RHN} + \text{R}_1\text{CO}_2\text{R}_2\text{CO}_2 \xrightarrow{\text{x}} \text{R}_1\text{NHR}
\end{align*}
\]

wherein \(x \) is the chain length, i.e., 1 or greater, preferably from 1 to 20; \(R \) is any alkyl group having from 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, a phenyl group, a cyclic group, or a combination thereof; and \(R_1 \) and \(R_2 \) are straight or branched hydrocarbon chains, for example, alkyl or aryl chains.
Copolymers of polycaprolactone and polyamines may also be used in the present invention. These copolymers include, but are not limited to, bis(2-aminoethyl)ether initiated polycaprolactone, 2-(2-aminoethylamino)ethanol, 2-(2-aminoethylamino)ethanol, polyoxyethylene diamine initiated polycaprolactone, propylene diamine initiated polycaprolactone, polyoxy-propylene diamine initiated polycaprolactone, 1,4-butanediamine initiated polycaprolactone, trimethylolpropane-based triamine initiated polycaprolactone, neopentyl diamine initiated polycaprolactone, hexanediamine initiated polycaprolactone, polytetramethylene ether diamine initiated polycaprolactone, and mixtures thereof. In addition, polycaprolactone polyamines having the following structures may be useful:

\[
\begin{align*}
&H_2\overset{\text{N}}{\text{N}}-\overset{(CH_2)_5}{\text{C}}-\overset{\text{O}}{\text{O}}-\overset{\text{R}_i\text{R}_j}{\text{O}}\overset{(CH_2)_5}{\text{C}}-\overset{\text{NH}_2}{\text{O}}; \\
&H_2\overset{\text{N}}{\text{N}}-\overset{(CH_2)_5}{\text{C}}-\overset{\text{O}}{\text{O}}-\overset{\text{R}_i}{\text{O}}\overset{(CH_2)_5}{\text{C}}-\overset{\text{NH}_{R_j}}{\text{O}}; \text{ or} \\
&H\overset{\text{N}}{\text{N}}-\overset{(CH_2)_5}{\text{C}}-\overset{\text{O}}{\text{O}}-\overset{\text{R}_i\text{R}_j}{\text{O}}\overset{(CH_2)_5}{\text{C}}-\overset{\text{NH}_{R_j}}{\text{O}}
\end{align*}
\]

wherein \(x\) is the chain length, i.e., an integer of 1 or greater, preferably 1 to 25; \(R\) is an alkyl group having from 1 to 20 carbons, preferably from 1 to 12 carbons, a phenyl group, or a cyclic group; and \(R_1\) is a straight or branched hydrocarbon chain including from 1 to 20 carbons.

In another embodiment, the amine-terminated compound may be an amine-terminated polycarbonate (also termed polycarbonate amine) having any of the following generic structures:
wherein \(x \) is the chain length, i.e., an integer of 1 or greater, preferably 1 to 25; \(R \) is an alkyl group having from 1 to 20 carbons, preferably 1 to 12 carbons, a phenyl group, or a cyclic group; and \(R_1 \) is a straight chain hydrocarbon or predominantly bisphenol A group or a derivative thereof.

In another embodiment, the amine compound includes a poly(1,4-butanediol)bis(4-aminobenzoate) having one of the following structures:

\[
\text{H}_2\text{NR} \rightarrow \text{O} \rightarrow \text{R}_1 \rightarrow \text{O} \rightarrow \text{C} \rightarrow \text{NHR}; \quad \text{or}
\]

\[
\text{RHN} \rightarrow \text{O} \rightarrow \text{R}_1 \rightarrow \text{O} \rightarrow \text{C} \rightarrow \text{NHR}
\]

wherein \(x \) and \(n \) are chain lengths, i.e., independently integers of 1 or greater, and \(n \) is preferably from 1 to 12; \(R \) and \(R_1 \) are linear or branched hydrocarbon chains, an alkyl group having from 1 to 20 carbons, preferably from 1 to 12 carbons, a phenyl group, a cyclic group, or a combination thereof; and \(R_2 \) is a hydrogen, a methyl group, or a combination thereof. In one embodiment, \(R_1 \) is phenyl, \(R_2 \) is hydrogen, and \(n \) is 2.

Again, it is important to note that the two molecular weight requirements (150 to less than 950 Da, and 2,000 to 4,500 Da) must be met by at least one compound for each, and further, that it is preferable that at least 50 percent, and more preferably from 70 percent to 95 percent by weight, based on the total isocyanate-component, has
an average molecular weight within the range of 150 Da to less than 950 Da, and at least 3 percent, and more preferably from 5 percent to 30 percent by weight, based on the total isocyanate-reactive component, has an average molecular weight within the range of 2,000 Da to 4,500 Da.

[0042] In addition to the isocyanate component and isocyanate-reactive component as discussed previously, the formulation includes a chain extender. It may also include a crosslink agent, but such is optional. However, because many of the selections for chain extender are the same as selections for crosslink agents, and because some compounds may serve both purposes, such will be addressed herein concurrently.

Chain extenders are used to connect lower molecular weight polyurethane chains in order to form higher molecular weight polyurethane chains, and are generally grouped as having a functionality equal to 2. Crosslink agents serve to promote or regulate intermolecular covalent or ionic bonding between polymer chains, linking them together to create a more rigid structure. The crosslink agents are generally grouped as having a functionality equal to 3 or more. Neither chain extenders nor crosslink agents are generally considered to be polymers in their own right. Both of these groups are usually represented by relatively short chain, low molecular weight (less than 150 Da) molecules with reactive hydroxyl, thiol and/or amine functionalities. Of these, it is necessary to include in the formulation at least one chain extender which is an aliphatic, cycloaliphatic, or aromatic compound, which by definition will have a molecular weight less than 150 Da. Where a crosslink agent is also selected, or where a compound is to serve both purposes, the same selection of low molecular weight (less than 150 Da) aliphatic, cycloaliphatic and aromatic compounds is preferred therefor also. In amount the chain extender is desirably employed such that the ratio of the -NCO groups in the prepolymer to the isocyanate-reactive groups in the chain extender falls within the range of 0.9:1 to 1.1:1, and more desirably from 0.95:1 to 1.05:1.

[0043] Preferred chain extenders and crosslink agents may include, but are not limited to, amines such as diethyltoluenediamine (DETDA), dimethylthioluenediamine (ETHACURE™ 300), 4,4'-methylene-bis(2-chloroaniline) (MBCA), 4,4'-methylene-bis(3-chloro-2,6-diethylaniline) (MCDEA), tertiary butyl toluene diamine (TBTDA), trimethylene glycol di-p-amino-benzoate (VERALINK™ 740M), 4,4'-bis(sec-butylamino) diphenylmethane (UNILINK™ 4200), 4,4'-bis-(sec-
butylamino)-dicyclohexylmethane (CLEARLINK™ 1000), N,N’-diisopropylisophorone diamine, available from Huntsman Corporation under the tradename JEFFLINK™, and combinations thereof.

[0044] In one embodiment an alkylated aromatic diamine, preferably an alkylated toluene diamine (alkylated TDA) or alkylated methylene dianiline (alkylated MDA) may be used as the chain extender. Preferably the alkyl groups of these aromatic diamines have from 1 to 20 carbon atoms, more preferably from 1 to 6 carbon atoms.

[0045] For example, the alkylated TDA may be a mixture of 3,5-diethyl-2,4-toluenediamine and 3,5-diethyl-2,6-toluenediamine (DETDA). Particularly useful is ETHACURE™ 100LC, a low color version available from Albemarle, Inc. Other suitable alkylated aromatic diamines may include those listed in U.S. Patent No. 4,631,298, which is incorporated herein by reference in its entirety. These include 2,4,6-triethyl-m-phenylenediamine (TEMPDA); 3,5-diisopropyl-2,4-diaminotoluene; 3,5-di-sec-butyl-2,6-diaminotoluene; 3-ethyl-5-isopropyl-2,4-diaminotoluene; 4,6-diisopropyl-m-phenylenediamine; 4,6-di-tert-butyl-m-phenylenediamine; 4,6-diethyl-m-phenylene-diamine; 3-isopropyl-2,6-diaminotoluene; 4,6-diisopropyl-2,4-diaminotoluene; 4-isopropyl-6-ethyl-m-phenylenediamine; 4-isopropyl-6-ethyl-m-phenylenediamine; 4-ethyl-6-isopropyl-m-phenylenediamine; 4-methyl-6-tert-butyl-m-phenylenediamine; 4,6-di-sec-butyl-m-phenylenediamine; 4-ethyl-6-tert-butyl-m-phenylenediamine; 4-ethyl-6-sec-butyl-m-phenylenediamine; 4-ethyl-6-isobutyl-m-phenylenediamine; 4-isopropyl-6-isobutyl-m-phenylenediamine; 4-isopropyl-6-isobutyl-m-phenylenediamine; 4-ethyl-6-tert-butyl-m-phenylenediamine; 4-ethyl-6-sec-butyl-m-phenylenediamine; 4-ethyl-6-isobutyl-m-phenylenediamine; 4-ethyl-6-isobutyl-m-phenylenediamine; 4-ethyl-6-tert-butyl-m-phenylenediamine; 4-cyclo-pentyl-6-ethyl-m-phenylenediamine; 4-cyclohexyl-6-isopropyl-m-phenylenediamine; 4,6-dicyclopentyl-m-phenyl-enediamine; 2,2’,6,6’-tetrathyl-4,4’.methylenebisaniline; 2,2’,6,6’-tetraisopropyl-4,4’-methylene-bisaniline; methylenebis(diisopropylaniline); 2,2’,6,6’-tetra-sec-butyl-4,4’-methylenebisaniline; 2,2’-dimethyl-6,6’-di-tert-butyl-4,4’-methylenebisaniline; and 2-isopropyl-2,6’-diethyl-4,4’-methylenebisaniline.

[0046] Common chain extenders and crosslink agents with hydroxyl groups include, for example, hydroquinone di(β-hydroxyethyl)ether, resorcinol di(betal-hydroxyethyl) ether, resorcinol di(beta-hydroxypropyl) ether, glycerine, ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol, tetraethylene glycol, propylene
glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-
butanediol (BDO), 1,4-dithiane-2,5-diol, 3,6-dithia-1,8-octanediol, neopentyl glycol,
1,6-hexanediol, 1,4-cyclohexanediol, ethanalamine, diethanalamine,
methyldeethanalamine, phenyldiethanolamine, trimethylolpropane (TMP), 1,2,6-
hexanetriol, triethanolamine, pentaerythritol, N,N,N’,N’-tetrakis(2-hydroxy-
propyl)ethylenediamine, and combinations thereof. Particularly frequently used are 1,4-
butanediol (BDO), diethylene glycol (DEG), glycerine, trimethylolpropane (TMP),hydroquinone di(β-hydroxyethyl)ether, and combinations thereof. Particularly frequently used are 1,4-butanediol (BDO), diethylene glycol (DEG), glycerine,trimethylolpropane (TMP), and combinations thereof.

[0047] In certain particular embodiments, it has been found that use of an aromatic
diamine, in an amount of at least 20 percent by weight, based on the weight of the
isocyanate-reactive component, as a chain extender, may be particularly effective, in
combination with a hydroxyl-terminated isocyanate-reactive component, at improving
optical properties such that a refractive index of at least 1.50, desirably at least 1.53, is
attained. Such a refractive index may enable use of the inventive compositions to
prepare ophthalmic lenses, including those used in eyeglasses. Particularly preferred
aromatic diamines include 4,4-methylene-bis(3-chloro-2,6-diethylaniline) (e.g.,
LONZACURE™ M-CDEA, available from Air Products and Chemicals, Inc.), 2,4-
diamino-3,5-diethyltoluene, 2,6-diamino-3,5-diethyltoluene, and combinations thereof
(collectively termed "diethylthiolouenediamine" (DMTD), commercially available
from Albemarle Corporation under the tradename ETHACURE™ 300); and 4,4'-
methylene-bis-(2-chloroaniline), commercially available from Kingyorker Chemicals
under the tradename MOCA™.

[0048] In addition to hydroxyl and amine functionalities, thiols can be used singly
or in combination with hydroxyl and amine functionalities as chain extenders or
crosslink agents. Thiols particularly useful for this invention may include, but are not
limited to, monothioglycerol, dithioglycerol, trithioglycerol, dimercaptopropanol, 1-
mercaptomethyl- 1,1-dihydroxymethyl-propane, 1,4-dithioerythritol, 3,7-dithia-1,9-
nonanedithiol, 1,4-dimercapto-2,3-hydroxybutane, tetrakis(mercaptomethyl)methane,
1,1,1-tris(mercaptomethyl)ethane, 1,1,1-tris(mercaptomethyl)propane, 2,5-
dimercaptoethyl-1,4-dithiane, 2,5-dimercaptoethyl-2,5-dimethyl-1,4-dithiane, 2,5-
dimercaptothiophen, 2,5-dimercapтомethylthiophen, di(2-hydroxyethyl)disulfide, and combinations thereof. As is the case for the aromatic diamines, the thiols may, as a group, be particularly useful as chain extenders where refractive indices of at least 1.50 are sought, particularly for uses such as production of ophthalmic lenses. Therefore it is desirable in certain embodiments that the chain extender comprises a high proportion of the thiols and/or the aromatic diamines, ranging up to 100 percent for either one singly or for any combination thereof. Inclusion of either or both types of compounds at lower levels in the chain extender may also be selected. Use of the thiols as or in the chain extender, rather than in the isocyanate-reactive component, may help to avoid the problem of precipitation or instability that may be encountered when the thiols are combined directly with some other typical isocyanate-reactive compounds.

[0049] Additional formulation components may optionally be included, according to the desire of the practitioner. Such may include, in non-limiting embodiments, pigments and colorants; flame retardants; antioxidants; surface modifiers; bioretardant agents; ultraviolet light stabilizers; mold release agents; and combinations thereof.

[0050] To prepare the thermoset polyurethane elastomer compositions of the invention, and a portion of the isocyanate-reactive component and an excess (or all) of the isocyanate component are first reacted to form a prepolymer. Such prepolymer may be either a quasi-prepolymer or a true prepolymer. A quasi-prepolymer is formed when the stoichiometric ratio of isocyanate to hydroxyl or amine groups is much greater than 2:1. A true prepolymer is formed when the stoichiometric ratio is close to 2:1.

[0051] In order to expedite the elastomer-forming reaction, catalysts favoring both the urethane-forming and urea-forming reactions are desirably included in the formulation. While it is known that some catalysts may promote both reactions (so-called "balanced" catalysts), such are conventionally differentiated by their tendency to favor either the urea reaction or the urethane reaction.

[0052] Examples of suitable catalysts that may tend to favor the urea reaction may include bis-(2-dimethylaminoethyl)ether; tris(dialkylaminoalkyl)-s-hexahydrotriazines, such as 1,3,5-tris(N,N-dimethylaminopropyl)-s-hexahydrotriazine; pentamethyldiethylenetriamine; tetraalkyl-ammonium hydroxides such as tetramethylammonium hydroxide; alkali metal hydroxides such as sodium hydroxide;
alkali metal alkoxides such as sodium methoxide and potassium isopropoxide; and alkali metal salts of long-chain fatty acids having from 10 to 20 carbon atoms and, in some embodiments, pendant hydroxyl groups. In one embodiment, a combination of bis(dimethylaminoethyl)ether and dipropylene glycol may be an effective blowing catalyst, for example, in a 70/30 weight percent ratio. Combinations of any of the above may also be selected.

[0053] Examples of suitable catalysts that may tend to favor the urethane reaction include, generally, amidines, tertiary amines, organometallic compounds, and combinations thereof. These may include, but are not limited to, amidines such as 1,8-diazabicyclo[5.4.0]undec-7-ene and 2,3-dimethyl-3,4,5,6-tetrahydropyrimidine, and tertiary amines such as triethylamine, tributylamine, dimethylbenzylamine, N-methyl-, N-ethyl-, and N-cyclohexylmorpholine, N,N,N’,N’-tetramethylethlenediamine, N,N,N’,N’-tetramethylbutanediamine and -hexanediame, pentamethyldiethlenetriamine, tetramethyldiaminoethyl ether, bis(dimethylaminopropyl)urea, dimethylpiperazine, dimethylcyclohexylamine, 1,2-dimethyl-imidazole, 1-aza-bicyclo[3.3.0]octane, and, in some preferred embodiments, 1,4-diazabicyclo[2.2.2]octane. Alkanolamine compounds, such as triethanolamine, trisopropanolamine, N-methyl- and N-ethyl-diethanolamine, and dimethylethanolamine, may also be selected. Combinations of any of the above may also be effectively employed.

[0054] Organometallic compounds may include organotin compounds, such as tin(II) salts of organic carboxylic acids, e.g., tin(II) diacetate, tin(II) dioctanoate, tin(II) diethylexanoate, and tin(II) dilaurate, and dialkyltin(IV) salts of organic carboxylic acids, e.g., dibutyltin diacetate, dibutyltin dilaurate, dibutyltin maleate and diocytlin diacetate. Bismuth salts of organic carboxylic acids may also be selected, such as, for example, bismuth octanoate.

[0055] The organometallic compounds may be selected for use alone or in combinations, or, in some embodiments, in combination with one or more of the highly basic amines listed hereinabove. In one particular embodiment, the combined amount of the urethane-favoring and urea-favoring catalysts is greater than 1.7 percent, based on the weight of the polyol system.
The formulation components may be combined and introduced into a mold or cavity in any way known in the art to produce a polyurethane, polyurethane-urea, polyurea, or sulfur-containing urethane elastomer. In particularly preferred embodiments, a portion of the isocyanate-reactive component is first combined, in part, with an excess of isocyanate component to form the isocyanate-terminated prepolymer, while the remainder of the isocyanate-reactive component is combined with the chain extender, any optional catalysts, crosslink agents, surfactants, and/or any additional additives to form a "B" side (in Europe, the "A" side), and this "B" side is then quickly contacted with the "A" side (in Europe, the "B" side), which is in this embodiment now a prepolymer, in order to begin the polymerization reactions. In another embodiment, all materials except for the chain extender may be combined in the isocyanate-reactive component, and then the chain extender added at the same time as the prepolymer. In still another embodiment, a portion of the isocyanate component may be incorporated into an isocyanate-reactive prepolymer while the remainder of the isocyanate component is reacted thereafter with the remainder of the formulation. For example, just the 1,4-bis(isocyanato-methyl)cyclohexane may be incorporated into the prepolymer, while the 1,3-bis(iso-cyanatomethyl)cyclohexane is included with the remainder of the formulation thereafter.

Those skilled in the art will be aware of various types of equipment to accomplish the contact between reactive compounds while ensuring that an adequate level of mixing occurs to ensure uniformity of the final polyurethane composition as defined. One way to do this is to use a mixing injection head, wherein prepolymer and the chain extender are combined and mixed and then, more or less simultaneously, injected into the mold or cavity to be filled. The mold or cavity is filled from a single injection point while simultaneously drawing a vacuum from another point, is particularly desirable. The vacuum may maximize mold- or cavity-filling prior to gelling of the formulations, which in particular embodiments may be less than 3 minutes, and in other embodiments may be less than 1 minute. Desirably a reduced atmospheric pressure of from 350 to 850 millibar (mbar) (35 to 85 kilopascals (kPa)) may be employed, and more desirably from 400 to 800 mbar (50 to 80 kPa). Atmospheric pressure is approximately 1013.25 mbar, or 101.325 kPa.) Further descriptions of a suitable reduced atmospheric pressure environment may be found in
WO 2007/058793 Al; U.S. Patent 5,972,260; WO 2006/013004 Al; WO 2006/013002 Al; and WO 2000/047384 A2; all of which are incorporated herein in their entireties by reference. Compression molding may also be employed.

[0058] Where a mold is used, demolding may be carried out using standard methodologies, and where desirable, suitable external and/or internal mold release agents may be employed. Total demold time may be less than 60 minutes, and in preferred embodiments less than 25 minutes, and in more preferred embodiments less than 15 minutes. This particularly short demold time reduces total cycle time and, therefore, cost of preparing these compositions, particularly when compared to the time required to make, for example, H12MDI-based polyurethane optical lenses.

[0059] The formulation and process of the invention may be used to produce polyurethane composition elastomer articles having a density of from 0.90 to 1.50 kilograms per cubic meter (kg/m³); in certain embodiments the density is from 0.90 to 1.35 kg/m³; and in other embodiments it is from 0.90 to 1.20 kg/m³. Density is measured according to ASTM 1622-88. In some embodiments these articles may have an impact resistance, as measured according to ASTM D256-06A, that is at least 50 kilojoules per square meter (kJ/m²)(15 foot-pounds per inch (ft-lb/in)). Shore D Hardness is measured according to ASTM D2240. In other embodiments these articles may have a total luminous transmittance, as measured according to ASTM D1003-07, of at least 90 percent. In particular embodiments these articles may have a refractive index that is at least 1.50, and preferably at least 1.53, measured according to ASTM D542. In particular embodiments these articles may have an Abbe number that is preferably at least 25, more preferably at least 35, and most preferably at least 45, as calculated based on refractive index measured according to ASTM D542. In some embodiments combinations or some or all of these properties may be obtained. As such, the polymers may be useful in a number of applications, such as, but not limited to, architectural glazings, vehicle glazings, riot shields, aircraft canopies, face masks, visors, ophthalmic and sunglass lenses, optical lenses, protective eyewear, and transparent armor.
EXAMPLES

[0060] Materials used in Examples 1 and 2 and Comparative Examples A-D may include:

Isocyanate 1: 4,4’-methylene-bis(cyclohexyl) isocyanate, known as H₁₂MDI or DESMODUR™ W. DESMODUR™ is a tradename of Bayer A.G.

Isocyanate 2: A 50/50 mixture of 1,3-bis(isocyanatomethyl)cyclohexane and 1,4-bis(iso-cyanato-methyl)cyclohexane.

TONETM 32B8: Polycaprolactone diol, 400 mw. TONETM is a tradename of The Dow Chemical Company.

TONETM 32C8: Polycaprolactone diol, 750 mw.

TONETM 1278: Polycaprolactone diol, 3940 mw.

Di(2-hydroxyethyl) disulfide: Chevron Phillips Chemical Company LP, mw 154.

ETHACURE™ 100 LC: Diethyltoluenediamine. ETHACURE™ is a trademark of Albemarle Corporation.

LONZACURE™ MCDEA: 4,4’-methylenebis(3-chloro-2,6-dithylaniline). LONZACURE™ is a tradename of Air Products and Chemicals, Inc.

Example 1

[0061] The following are combined, melted and mixed well: 36.05 grams (g) of TONETM 32B8, 6.83 g of TONETM 32C8, 10.63 g of TONETM 1278, and 0.58 g of trimethylolpropane. The mixture is then added slowly to 3-neck glass flask containing 45.90 g of Isocyanate 2 with agitation. The temperature of the reactor is then slowly raised to 90 degrees Celsius (°C) and the reaction is kept at 90°C in a dry nitrogen atmosphere for 6 hours. At the end of that time, the reaction product is a prepolymer having an NCO content of 10.75 percent.

[0062] The prepolymer reaction product is then degassed and cooled to 65°C to 70°C, and 100 g are mixed with 21.62 g of ETHACURE™ 100 LC on a speed mixer for 30 seconds and poured into a mold that has been preheated at 115°C. This forms sample sheets that are 3 mm in thickness. The mold is then placed in an oven set at 115°C. Following cure at 115°C for 10 minutes, the sample sheet is removed from the mold and postcured at 115°C for an additional 16 hours.
The sample sheet is then kept at room temperature for 7 to 10 days before it is subjected to tests for haze and luminous transmittance (ASTM D1003-07) and impact resistance (ASTM D256-06A). Results of the testing are summarized in Table 1.

Example 2

An additional 100 g of the prepolymer prepared in Example 1 is mixed with 45.45 g of LONZACURE™ MCDEA, melted at 100°C on a speed mixer for 30 seconds, and poured into a mold that has been preheated at 130°C. This forms sheets having a thickness of 3 mm. The mold is then placed in an oven set at 130°C. Following cure at 130°C for 30 minutes, the sample sheet is removed from the mold and postcured at 130°C for an additional 16 hours.

The sample sheet is then kept at room temperature for 7 to 10 days before it is subjected to tests for haze, luminous transmittance and impact resistance. The results are shown in Table 1.

Comparative Example A

A combination of 12.37 g of TONE™ 32B8, 41.52 g of TONE™ 1278 and 0.24 g of trimethylolpropane is melted at 65°C and mixed well before being added slowly to a 3-neck glass flask containing 45.87 g of Isocyanate 1 while agitating. The temperature of the reactor is then slowly raised to 90°C and the reaction is kept at 90°C in a dry nitrogen atmosphere for 6 hours. At the end of the reaction, the prepolymer reaction product has an NCO content of 11.0 percent.

After the reaction the prepolymer product is degassed and cooled to 65°C to 70°C, and 100 g of it is then mixed with 22.13 g of ETHACURE™ 100 LC on a speed mixer for 60 seconds and poured into a mold that has been preheated at 115°C. This forms sample sheets having a thickness of 3 mm. The mold is then placed in an oven set at 115°C for an additional 16 hours.

The sample sheet is then kept at room temperature for 7 to 10 days before it is subjected to tests for haze and luminous transmittance as well as impact resistance. Results are shown in Table 1.

Comparative Example B
An additional 100 g of the prepolymer prepared in Comparative Example A is mixed with 45.67 g of LONZACURE™ MCDEA on a speed mixer for 60 seconds and then poured into a mold that has been preheated at 130°C to form a 3 mm thickness sample sheet. Following curing at 130°C for 120 minutes, the sample sheet is removed from the mold and placed in an oven set at 130°C for an additional 48 hours.

The sample is then kept at room temperature for 7 to 10 days before it is subjected to tests for haze and luminous transmittance as well as impact resistance. Results are shown in Table 1.

Comparative Example C

An additional 100 g of the prepolymer prepared in Comparative Example A is mixed with 22.13 g of ETHACURE™ 100 LC on a speed mixer for 60 seconds, and then poured into a mold preheated at 115°C to form a 3 mm thickness sample sheet. Following curing at 115°C for 10 minutes, the sample sheet is removed from the mold. However, the sheet breaks into several pieces during demold due to lack of strength. As a result, tests on the samples cannot be performed.

Comparative Example D

An additional 100 g of the prepolymer prepared in Comparative Example A is mixed with 45.67 g of LONZACURE™ MCDEA on a speed mixer for 60 seconds, and then poured into a mold preheated at 130°C to form a 3 mm thickness sample sheet. Following curing at 130°C for 30 minutes, the sample sheet is removed from the mold. However, the sheet breaks into several pieces during demold due to lack of strength. As a result, tests on the sample cannot be performed.

Table 1

<table>
<thead>
<tr>
<th>Example</th>
<th>Haze (%)</th>
<th>Total Luminous Transmittance (%)</th>
<th>Diffuse Transmittance (%)</th>
<th>Hardness Shore D</th>
<th>Impact Resistance (ft-lb/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>16.14</td>
<td>92.71</td>
<td>14.96</td>
<td>70</td>
<td>17.70</td>
</tr>
<tr>
<td>Example 2</td>
<td>14.68</td>
<td>91.44</td>
<td>13.42</td>
<td>74</td>
<td>20.00</td>
</tr>
<tr>
<td>Comparative Example A</td>
<td>13.34</td>
<td>90.44</td>
<td>12.08</td>
<td>65</td>
<td>12.80</td>
</tr>
</tbody>
</table>
Examples 3 and 4, and Comparative Examples E and F

Specimen Preparation

[0073] Specimens of approximately 9 millimeters (mm) by 30 mm are cut from the resulting 3 mm thick plaques. All specimens are prepared according to guidelines of the testing methods.

[0074] Specimens for refractive index are subjected to polishing via several grades of sandpaper and then fine paper, to a grit level of 1200. The polished samples are tested on an Atago DR M2/1550 Abbe refractometer for the refractive index at 20°C and at a variety of wavelengths. The data are fitted to the Cauchy formula using a "least squares method,” and the fitted equation is then used to determine the refractive index of each material at 656.3 nanometers (nm). The Abbe number for each material is then calculated according to the equation:

\[
AbbeNumber = \frac{n_D - 1}{n_F - n_C}
\]

where \(n_D\) is the refractive index at 589 nm, \(n_F\) is the refractive index at 656.3 nm, and \(n_C\) is the refractive index at 486nm.

[0075] The original plaques are rested for scratch resistance using a Texas A&M University Scratch Tester with increasing force from 1 newton (N) to 50 N over a 100 millimeter (mm) distance at a rate of 100 millimeters per second (mm/s) (ASTM 2707-05).

Example 3

[0076] For this example, 26.44 g of TONE™ 32B8, 8.87 g of TONE™ 32C8, 8.09 g of TONE™ 1278 and 0.22 g of trimethylolpropane are melted at 65°C and mixed well before slowly adding to a 3-neck glass flask containing 37.60 g of Isocyanate 2 under nitrogen protection while stirring. The temperature of the reactor is then raised
slowly to approximately 90°C. The reaction is kept at 90°C in a dry nitrogen atmosphere for 6 hours. At the end of the reaction, the reaction product has an NCO content of 11.5 percent.

[0077] After the reaction, the product is degassed and cooled to approximately 65 to 70 °C. The prepolymer is then mixed with 18.79 g of ETHACURE™ 100 LC on a speed mixer for 30 seconds, and poured into a mold preheated at 115°C. After 10 minutes, the sample sheet is removed from the mold and postcured at 115°C for an additional 16 hours.

[0078] The sample sheet is then kept at room temperature for 7 to 10 days before being subjected to tests for scratch resistance (ASTM 2707-05, with a scratch length of 100 mm, a scratch speed of 100 mm/s and a linear increasing load of 1 N to 50 N), refractive index (ASTM D542) and impact resistance (ASTM D256-06A). Results of the tests are summarized in Table 2.

Example 4

[0079] For this example, 17.14 g of TONE™ 32B8, 13.35 g of TONE™ 32C8, 6.91 g of di(2-hydroxyethyl)disulfide, 13.26 g of TONE™ 1278 and 0.30 g of trimethylolpropane are melted at 65°C and mixed well before slowly adding to a 3-neck glass flask containing 49.03 g of Isocyanate 2 under nitrogen protection while stirring. The temperature of the reactor is then raised slowly to approximately 90°C. The reaction is kept at 90°C in a dry nitrogen atmosphere for 6 hours. At the end of the reaction, the reaction product has an NCO content of 11.5 percent.

[0080] After the reaction, the product is degassed and cooled to approximately 65 to 70°C. The prepolymer is then mixed with 18.79 g of ETHACURE™ 100 LC on a speed mixer for 30 seconds, and poured into a mold preheated at 115°C. After 10 minutes, the sample sheet is removed from the mold and postcured at 115°C for an additional 16 hours.

[0081] The sample sheet is then kept at room temperature for 7-10 days before being subjected to refractive index testing (ASTM D542), and the refractive index is found to be 1.546.

Comparative Example E
In this case, 21.10 g of TONE™ 32B8, 6.46 g of TONE™ 1278, 7.07 g of TONE™ 32C8, and 0.18 g of trimethylolpropane are melted at 65°C and mixed well before slowly adding to a 3-neck flask containing 46.40 g of Isocyanate 1 under nitrogen protection, while stirring. The temperature of the reactor is then raised slowly to approximately 90°C. The reaction is kept at 90°C in a dry nitrogen atmosphere for 6 hours. At the end of the reaction, the reaction product has an NCO content of 11.5 percent.

After the reaction, the product is degassed and cooled to approximately 65°C to 70°C. The prepolymer is then mixed with 18.79 g of ETHACURE™ 100 LC on a speed mixer for 60 seconds and poured into a mold preheated at 115°C to form sample sheets of approximately 3 mm thickness. The mold is then placed in an oven set at 115°C. After curing at 115°C for approximately 60 minutes, the sample sheet is removed from the mold and postcured at 115°C for an additional 16 hours. Efforts to de-mold the sample in less than 60 minutes caused cracking of the specimen.

The sample sheet is then kept at room temperature for 7 to 10 days before being subjected to tests for scratch resistance (ASTM 2707-05, with a scratch length of 100 mm, a scratch speed of 100 mm/s and a linear increasing load of 1 N to 50 N), refractive index (ASTM D542) and impact resistance (ASTM D256-06A). Results are summarized in Table 2.

Comparative Example F

A polycarbonate material, CALIBRE™ 300-10 (CALIBRE™ is a tradename of The Dow Chemical Company), is compression molded at 250°C into a plaque of 3 mm thickness and tested alongside the polyurethane thermoset of Example 3 for optical properties. Density and impact resistance are taken from the technical datasheets and are determined according to the same methods as above on injection-molded plaques.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Comparative Example E</th>
<th>Example 3</th>
<th>Comparative Example F</th>
</tr>
</thead>
<tbody>
<tr>
<td>nD</td>
<td>1.53</td>
<td>1.53</td>
<td>1.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>^2Abbé Number</td>
<td>48</td>
<td>47</td>
<td>31</td>
</tr>
<tr>
<td>Impact resistance, kJ/m²</td>
<td>11.75</td>
<td>91.9</td>
<td>90.0</td>
</tr>
<tr>
<td>^3Density, g/cm³</td>
<td>1.13</td>
<td>1.11</td>
<td>1.20</td>
</tr>
<tr>
<td>Gel time, minutes</td>
<td>1-2</td>
<td><1</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Demold time, minutes</td>
<td>60</td>
<td>10</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

^1 nD is the refractive index.
^2Abbé number, also known as the V-number or constringence of a transparent material, is a measure of the material's dispersion (variation of refractive index with wavelength) in relation to its refractive index.
^3grams per cubic centimeter.
What is claimed is:

i. A thermoset polyurethane composition comprising the reaction product of at least a prepolymer and a chain extender;

wherein the prepolymer has an NCO content of from 8 to 15 percent by weight and comprises the reaction product of

(i) an isocyanate component including 1,4-bis(isocyanatomethyl)cyclohexane and 1,3-bis(isocyanatomethyl)cyclohexane, wherein the 1,4-bis(isocyanatomethyl)cyclohexane is present in an amount of at least 20 percent by weight of the isocyanate component; and

(ii) an isocyanate-reactive component comprising

(a) at least one first isocyanate-reactive compound having a molecular weight from 150 Daltons to less than 950 Daltons, and

(b) at least one second isocyanate-reactive compound having a molecular weight of from 2,000 Daltons to 4,500 Daltons;

wherein the first and second isocyanate-reactive compounds each contain at least one functional group selected from a hydroxyl group, a thiol group, or an amine group, or a combination thereof; and

wherein the first isocyanate-reactive compound comprises from 70 to 95 weight percent of the isocyanate-reactive component; and

wherein the second isocyanate-reactive compound comprises from 5 to 30 weight percent of the isocyanate-reactive component;

and wherein the chain extender is selected from one or more aromatic, aliphatic, and cycloaliphatic compounds containing at least one
functional group selected from a hydroxyl group, an amine group, a thiol group, or a combination thereof.

2. The composition of Claim 1, wherein the isocyanate component contains terminal isocyanate groups and the isocyanate-reactive component contains terminal isocyanate-reactive groups, and wherein the ratio of the terminal isocyanate groups to the terminal isocyanate-reactive groups ranges from 1.8:1 to 3.5:1.

3. The composition of Claim 1, wherein the isocyanate-reactive component comprises at least two compounds selected from polyether polyols, polyester polyols, polyether-ester polyols, polythio-ether polyols, polycaprolactones, polycarbonates, polyether amines, polyester amines, polycarbonate amines, polycaprolactone amines, copolymers thereof, and combinations thereof.

4. The composition of Claim 1, wherein the isocyanate-reactive component comprises at least 3 percent by weight, based on total isocyanate-reactive component, of cyclobutanediol, a thiol group-containing compound, or a combination thereof.

5. The composition of Claim 4 wherein the thiol group-containing compound is selected from monothioglycerol, dithioglycerol, trithioglycerol, dimercaptopropanol, 1-mercaptomethyl-1,1-dihydroxymethylpropane, 1,4-dimercapto-2,3-hydroxybutane, tetrakis(mercaptomethyl)methane, 1,1,1-tris(mercaptomethyl)ethane, 1,1,1-tris(mercaptomethyl)propane, 2,5-dimercaptomethyl-1,4-dithiane, 2,5-dimercaptomethyl-2,5-dimethyl-1,4-dithiane, 2,5-dimercaptotiothiophen, di(2-hydroxy-ethyl)disulfide, polyether polysulfide, polyester polysulfide, or a combination thereof.

6. The composition of Claim 1, wherein the chain extender comprises an aromatic diamine, a thiol-group containing compound, or a combination thereof.

7. The composition of Claim 1 or 6, wherein the polyurethane composition is molded to form an article having at least one property selected from a total luminous...
transmittance, as measured according to ASTM D1003-07, of at least 90 percent; an impact resistance, as measured according to ASTM D256-06A, of at least 50 kJ/m²; a refractive index, as measured according to ASTM D542, of at least 1.50; or an Abbe number, as calculated based on refractive index measured according to ASTM D542, of at least 25.

8. The composition of Claim 7, wherein the article is an architectural glazing, a vehicle glazing, a riot shield, an aircraft canopy, a face mask, a visor, an ophthalmic lens, a sunglass lens, an optical lens, protective eyewear, or transparent armor.

9. The composition of Claim 8 wherein the article is an ophthalmic lens.

10. A process for preparing a thermoset polyurethane composition comprising forming a prepolymer having an NCO content of from 8 to 15 percent by weight by contacting, under reaction conditions:
 (i) an isocyanate component including 1,4-bis(isocyanatomethyl)cyclohexane and 1,3-bis(isocyanatomethyl)cyclohexane, wherein the 1,4-bis(isocyanatomethyl)-cyclohexane is present in an amount of at least 20 percent by weight of the isocyanate component; and
 (ii) an isocyanate-reactive component comprising
 (c) at least one first isocyanate-reactive compound having a molecular weight from 150 Daltons to less than 950 Daltons, and
 (d) at least one second isocyanate-reactive compound having a molecular weight of from 2,000 Daltons to 4,500 Daltons;

wherein the first and second isocyanate-reactive compounds each contain at least one functional group selected from a hydroxyl group, a thiol group, or an amine group, or a combination thereof, and

wherein the first isocyanate-reactive compound comprises from 70 to 95 weight percent of the isocyanate-reactive component; and
wherein the second isocyanate-reactive compound comprises from 5 to 30 weight percent of the isocyanate-reactive component;
such that a prepolymer is formed;
and contacting with the prepolymer, under reaction conditions,
a chain extender selected from one or more aromatic, aliphatic, and cycloaliphatic compounds containing at least one functional group each, the functional group being selected from a hydroxyl group, an amine group, a thiol group, or a combination thereof;
such that a thermoset polyurethane composition is formed.

11. The process of Claim 10, wherein the isocyanate component contains terminal isocyanate groups and the isocyanate-reactive component contains terminal isocyanate-reactive groups, and wherein the ratio of the terminal isocyanate groups to the terminal isocyanate-reactive groups ranges from 1.8:1 to 3.5:1.

12. The process of Claim 10, wherein the thermoset polyurethane composition is molded to form an article having at least one property selected from a total luminous transmittance, as measured according to ASTM D1003-07, of at least 90 percent; an impact resistance, as measured according to ASTM D256-06A, of at least 50 kJ/m²; a refractive index, as measured according to ASTM D542, of at least 1.50; or an Abbe number, as calculated based on refractive index measured according to ASTM D542, of at least 25.

13. The process of Claim 10 or 12, wherein the article is able to be removed from the mold in less than 25 minutes.

14. The process of Claim 12 wherein the article is an architectural glazing, a vehicle glazing, a riot shield, an aircraft canopy, a face mask, a visor, an ophthalmic lens, a sunglass lens, an optical lens, protective eyewear, or transparent armor.

15. The composition of Claim 14 wherein the article is an ophthalmic lens.
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C08G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal , WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Wo 2004/041899 AI (DOW GLOBAL TECHNOLOGIES INC [US]; FOLEY PAUL [US]; ARGYROPOULOS JOHN N) 21 May 2004 (2004-05-21) page 1, paragraph 4 - page 13, paragraph 1; c1 aims 1-8, 11; example 2</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>EP 1 044 998 AI (MITSUBISHI GAS CHEMICAL CO [JP]) 18 October 2000 (2000-10-18) paragraph [0012] - paragraph [0033] ; c1 aims 1-5; example 1; table 1</td>
<td>1-15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance.
- "E" earlier document but published on or after the international filing date.
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).
- "O" document referring to an oral disclosure, use, exhibition or other means.
- "P" document published prior to the international filing date but later than the priority date claimed.
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "Z" document member of the same patent family.

Date of the actual completion of the international search

9 June 2011

Date of mailing of the international search report

17/06/2011

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Bourgonje, Andreas
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2006058453</td>
<td>16-03-2006</td>
<td>NONE</td>
</tr>
<tr>
<td>WO 2004041899</td>
<td>21-05-2004</td>
<td>AU 2003279938 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0315066 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2504166 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1708527 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1560865 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006504843 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20050065658 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA05004673 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004087754 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60015222 DI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60015222 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000297130 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6262296 BI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008059796 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008144154 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010056746 Al</td>
</tr>
</tbody>
</table>