A61M 5/142 (2006.01) A61M 39/10 (2006.01)
A61M 5/158 (2006.01) A61M5/14 (2006.01)

International Filing Date:
18 December 2013 (18.12.2013)

Filing Language:
English

Priority Data:

Applicant: ANIMAS CORPORATION [US/US]; 200 Lawrence Drive, West Chester, Pennsylvania 19380 (US).

Declared under Rule 4.17:
— as to the identity of the inventor (Rule 4.17(i))
— as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(iii))
— as to the applicant’s entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))

Title: MEDICAL INFUSION SYSTEM ALLOWING AUTOMATIC PRIMING

FIG. 3A

180
185
190, 190'
192, 192'

FIG. 3B

185'
180'
MEDICAL INFUSION SYSTEM ALLOWING AUTOMATIC PRIMING

Inventors: Ryan Walsh, Daniel L. Baker, Matthew Clemente, William King, Gerald Kuehl

FIELD OF THE INVENTION

[001] The present invention relates, in general, to drug delivery devices and, more particularly, to systems and methods for detecting whether the infusion device is connected to a patient when priming the reservoir and lineset of the device.

BACKGROUND OF THE INVENTION

[002] The use of drug delivery devices for various types of drug therapy is becoming more common as the automated infusion of a drug may provide more reliable and more precise treatment to a patient.

[003] Diabetes is a major health concern, as it can significantly impede on the freedom of action and lifestyle of persons afflicted with this disease. Typically, treatment of the more severe form of the condition, Type I (insulin-dependent) diabetes, requires one or more insulin injections per day, referred to as multiple daily injections. Insulin is required to control glucose or sugar in the blood, thereby preventing hyperglycemia that, if left uncorrected, can lead to ketosis. Additionally, improper administration of insulin therapy can result in hypoglycemic episodes, which can cause coma and death. Hyperglycemia in diabetics has been correlated with several long-term effects of diabetes, such as heart disease, atherosclerosis, blindness, stroke, hypertension, and kidney failure.

[004] The value of frequent monitoring of blood glucose as a means to avoid or at least minimize the complications of Type I diabetes is well established. Patients with Type II
(non-insulin-dependent) diabetes can also benefit from blood glucose monitoring in the control of their condition by way of diet and exercise. Thus, careful monitoring of blood glucose levels and the ability to accurately and conveniently infuse insulin into the body in a timely manner is a critical component in diabetes care and treatment.

[005] To more effectively control diabetes in a manner that reduces the limitations imposed by this disease on the lifestyle of the affected person, various devices for facilitating blood glucose (BG) monitoring have been introduced. Typically, such devices, or meters, permit the patient to quickly, and with a minimal amount of physical discomfort, obtain a sample of their blood or interstitial fluid that is then analyzed by the meter. In most cases, the meter has a display screen that shows the BG reading for the patient. The patient may then dose themselves with the appropriate amount, or bolus, of insulin. For many diabetics, this results in having to receive multiple daily injections of insulin. In many cases, these injections are self-administered.

[006] Due to the debilitating effects that abnormal BG levels can have on patients, i.e., hyperglycemia, persons experiencing certain symptoms of diabetes may not be in a situation where they can safely and accurately self-administer a bolus of insulin. Moreover, persons with active lifestyles find it extremely inconvenient and imposing to have to use multiple daily injections of insulin to control their blood sugar levels, as this may interfere or prohibit their ability to engage in certain activities. For others with diabetes, multiple daily injections may simply not be the most effective means for controlling their BG levels. Thus, to further improve both accuracy and convenience for the patient, insulin infusion pumps have been developed.
Insulin pumps are generally devices that are worn on the patient's body, either above or below their clothing. Because the pumps are worn on the patient's body, a small and unobtrusive device is desirable. Some devices are waterproof, to allow the patient to be less inhibited in their daily activities by having to remove their drug infusion device while showering, bathing, or engaging in various activities that might subject their infusion device to moisture, such as swimming, and when priming the fluid delivery system - such as when a cartridge is replaced or a reservoir is refilled - to remove air from the fluid path.

In such devices, it would be desirable to have a structure and method for verifying that the cannula through which the medicament is delivery to the subcutaneous or intradermal space is removed from the patient prior to beginning the priming process to avoid excess or unintended dosing of medication into the patient.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:

Figure 1 illustrates an exemplary embodiment of a drug infusion device according to the present invention, in top plan view.

Figure 2 illustrates another exemplary embodiment of a drug infusion device according to the present invention, in top plan view.
Figures 3A-3B illustrate cross-sectional views of an embodiment of the lineset of the present invention.

Figures 4A-4C illustrate views of another embodiment of an exemplary device according to the present invention in various states of the priming sequence of the present invention.

Figures 5A-5B depict an illustrative embodiment of the attachment and removal of a lineset from an infusion set according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

In an exemplary embodiment, the invention is directed to structures and methods for avoiding the accidental or unintentional dosing of medication from a portable drug infusion device during a priming operation.

Most portable drug infusion pump reservoirs are similar in design or concept to that of a standard syringe. The reservoir is typically comprised of two major components; a cylindrical barrel, with a connector integrated into the distal end for attachment of an infusion line set, and a movable plunger with an elastomer seal. The plunger is inserted into the open proximal end of the barrel to form a closed volume. To deliver drug, a mechanically driven piston is advanced forward, which in turn advances the cartridge plunger forward, reducing the internal volume of the cartridge, thus displacing fluid. Typically, the piston (part of the durable device) is not mechanically interlocked with the cartridge plunger because there is no need to retract the plunger after the cartridge has been filled and subsequently installed in the pump or upon exhaustion of the contents of the cartridge.
In the typical application, the cartridge is filled to a predetermined volume that is somewhat smaller than the total internal volume of the reservoir, leaving a small amount of space containing air. Further, the lineset attached to the cartridge that allows for fluid communication between the cartridge and a cannula that is inserted through the patient's skin into the subcutaneous space also contains air that must be purged from the system, prior to being able to deliver the medicament from the cartridge into the cartridge.

Failing to purge the system of air, during a process known to those in the art as priming, may result in inaccurate medication delivery, since while the infusion device may be operating, a portion of the volume being delivered to the patient may simply be air. Therefore, the pump system must be primed prior to use. During the priming process, the motor of the insulin infusion device runs to advance the plunger into the cartridge and expel insulin through the lineset and cannula to remove air from the system. However, in some instances, the patient may neglect removing the cannula from insertion into their body prior to priming, risking serious consequences due to drug overdose by unintentionally infusing medication into their body during the priming process. With certain medication, such as insulin, the excess dosing of just a small amount of medication can cause serious side-effects, such as hypoglycemia, which can be extremely injurious or even fatal.

The present invention, therefore, is directed to a system and method for ensuring that the patient is disconnected (i.e., the cannula is removed from their body) prior to priming their infusion device.

Figure 1 illustrates a method which would enable a pump to detect whether the line set is connected or disconnected from an infusion set. Referring to the illustrated infusion
system 100, an infusion device 110 may include a screen display 120 and a keypad 130 with an "Enter" or "Execute" button 140 for displaying information and entering data, scrolling through menu screens, etc. A typically infusion pump according to this invention will have a microprocessor, memory, and software user interface. Illustrative infusion devices include those described in U.S. Patent No. 6,656,148; U.S. Patent No. 7,435,922; and U.S. Patent No. 8,310,415, all of which are hereby incorporated by reference in their entireties.

[021] The cartridge cap 150 secures a cartridge containing medication in a cartridge cavity within the infusion device (also referred to herein and synonymously as a "pump"). The cartridge cap according to this embodiment of the invention includes multiple housing contacts 160' that are in electrical communication with the pump's microprocessor. A luer connector 170 attaches to the proximal end of the lineset 180 that carries medication from the cartridge to the infusion set 200 that attaches to a patients skin, usually via an adhesive patch is configured to releasably attach to the cartridge. Exemplary methods for attaching luer connectors to cartridges include threaded and bayonet style connections.

[022] In this embodiment, the conductive, housing contacts 160', found in the housing of the pump 110 or (as shown) in the cartridge cap 150 connect with conductive lineset contacts 160 on the luer connector 170 of the line set. These conductive surfaces can be embedded through co-molding a conductive material, such as resins containing graphite, other co-molded plastics which could be plated, such as a platable ABS, or through other methods such as metallic inlays. These surfaces then connect to electrical wires 190, 190' that are co-extruded into the tubing of the lineset 180, creating an electrical connection to the distal end of the lineset 180 where they connect to conductive prongs 220, 220' found in the connector 210 of the infusion set 200. When the connector 210 is not connected to the infusion set 200, as
seen in Figure 1, the circuit is open. When the connector 210 is connected to the infusion set 200 the conductive prongs 220, 220' of the connector 210 are inserted into contact plugs (not shown) in the upper housing 205 of the infusion set 200. A secure, releasable attachment is made between the connector 210 and the upper housing 205 of the infusion set 200, as shown illustratively in this embodiment of the invention, by a pair of securing tabs 215' prime protruding from the connector 210. When the connector 210 is inserted into the upper housing 205, the securing tabs 215' bias inward and latch with mating tabs 215 (not shown) that are located inside the upper housing.

[023] In order to release the device, the patient or healthcare provider might place a thumb and forefinger on textured grips 250, 250' and squeeze the textured grips 250, 250' together to release the securing tabs 215' from the mating tabs 215, allowing the connector 210 to be pulled out of the upper housing 205 of the infusion set 200.

[024] In one embodiment, the contact plugs in the upper housing 205 of the infusion set 200 are in electrical communication with one another. Thus, when the connector 210 is inserted into the upper housing 205, the conductive prongs 220, 220' are short-circuited by being inserted into the contacts plugs, creating a closed circuit. A sensor (not shown) such as a simple conductivity sensor in the pump housing 110 may be connected to the housing contacts 160'. The sensor can detect whether the connector 210 is connected to the infusion set 200 based on whether it senses an open circuit (lineset disconnected) or closed circuit (lineset connected) and send a signal to the microprocessor that controls the infusion system. The microprocessor may be programmed to disable the priming sequence when the sensor senses a closed circuit, thereby inhibiting the possibility of the device being primed while connected to the patient.
Figure 2 illustrates the device with the connector 210 attached to the upper housing 205 of the infusion set 200. According to this embodiment of the invention, the circuit detected across the housing contacts 160' (as shown in Figure 1) would be closed. The sensing of this closed circuit could, therefore, be used to disable the priming sequence or allow the pump to confirm and display that the patient's infusion set is connected.

The flexible lineset tubing 180 is illustrated in cross-section in Figures 3A and 3B. Figure 3A shows the lineset 180 with a central fluid path 185 having two electrical wires 190, 190' formed within the wall of the lineset 180. Figure 3B shows an alternative configuration wherein the electrical wires 192, 192' are encased within insulation or other sheathing and attached to the sides of the lineset 180' with a central fluid path 185'.

To use the disclosed embodiments of the invention in an illustrative manner, the user may attempt to begin the priming sequence on the pump. The pump might first produce a low current signal through the electrical pathway described which, in turn, may detect whether the circuit is open or closed. If the circuit is closed the pump does not begin the priming sequence and warns the user to disconnect the line set before priming. Once the connector is removed from the infusion site and priming sequence is completed, the user will then be able to re-attach the line set and pump delivery can be initiated.

Figures 4A-4C illustrates an embodiment of the present invention where a harness 470 is attached to the housing of the infusion pump 410. As shown in Figure 4A, the infusion pump 410 may include a data entry keypad 430 and a confirmation button 440 to allow the user to interface with the device's menus and other messages that might appear on the display 420.
In this embodiment, the infusion system 400 includes an infusion set connector 460 that must be physically attached to a docking station (i.e., the harness 470) on the pump 410, in order to initiate the priming sequence. The determination whether to initiate priming is, therefore, based on whether the connector 460 is physically attached to a harness 470 attached to the infusion pump 410. Thus, line set 480 does not require electrical wires, obviating the need for contacts in the cartridge cap 450 or luer connector 455, and reducing the number of parts, complexity, and costs associated with this embodiment, but without providing certainty regarding whether the connector 460 is connected to an infusion set, as is possible with the previously described embodiments.

As shown in Figure 4B, the connector 460 having attachment tabs 465, 465' contains small magnets 475, 475' embedded into the arms of the connector 460. The small magnets 475, 754' provide the harness 470 a method for confirming that the connector 460 is attached to the harness 470. The sensor technology to detect these magnets on the connector could be a Hall Effect sensor 490 or multiple sensors that can detect the proximity of the small magnets 475, 475'. Similarly, other known methods of detecting the engagement of the connector could be used, such as a simple contact switch or optical sensor. In any case, confirmation that the connector 460 is attached to the harness 470, as shown in Fig. 4C, is transmitted to the microprocessor in the infusion pump 410 that may then enable the priming sequence or, if it cannot be determined that the lineset is disconnected from the patient, a warning, error, or alert message reminding the patient or user of the steps to be taken to initiate a priming sequence.

Figures 5A and 5B illustrate yet another embodiment of the invention. In this embodiment, a sensor may be placed in the housing of the infusion pump 510 of the infusion
system 500. The infusion pump 510 includes a screen display 520, data entry keypad 530, a confirmation button 540, and a microprocessor. The microprocessor has a quantity of one or both of random access memory (RAM) and read-only memory (ROM) and may have a priming sequence pre-programmed in RAM or ROM. The microprocessor is in electrical communication with the housing contacts 560' located in or proximate to the cartridge cap 550, or the microprocessor is in electrical communication with a sensor in the housing that is in electrical communication with the housing contacts. The housing contacts 560' create an electrical contact with lineset contacts 560 when the luer connector 570 is attached to the cartridge in the infusion pump 510, as shown in Figure 5A.

[032] The lineset 580 would include electrical wires 590, 590' that terminate with separate connector contacts 620, 620' in the infusion set connector 610. The connector contacts 620, 620' are configured to be in contact when the connector 610 is not attached to the upper housing 605 of the infusion set 600. The infusion set connector 610 is inserted into the upper housing 605 of the infusion set 600 and releasably connected thereto by attachment tabs 615, 615' and texture grips 650, 650'. When the upper housing 605 and connector 610 are engaged, as shown in Figure 5B, a separator 630 biases the connector contacts 620, 620' apart, breaking the electrical contact between them.

[033] A sensor in the housing of the infusion pump 510 that is in contact with the housing contacts 560, 560' should detect an open signal when the connector 610 is attached to the upper housing 605 of the infusion set 600. When the open signal is detected, it may send a signal to the pump's microprocessor that will, in turn, disable the priming sequence, or take other such action that requires a determination as to whether the infusion set 600 is connected to the pump 510 via the connector 610 and lineset 580.
The same electrical pathway could be used to transmit a signal from a sensor, such as a continuous glucose monitoring sensor, which is co-located on the infusion site. Similar circuit methods could also detect if the device is fully actuated, where the activation of the infusion set would open or close the electric circuit. Signals could also be sent from the pump to the infusion set triggering the activation of the device through known methods.

It will be recognized that equivalent structures may be substituted for the structures illustrated and described herein and that the described embodiment of the invention is not the only structure, which may be employed to implement the claimed invention. In addition, it should be understood that every structure described above has a function and such structure can be referred to as a means for performing that function. While embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention.

It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
CLAIMS

WHAT IS CLAIMED IS:

1. A medical infusion system, comprising:
 an infusion set comprising an adhesive patch, an upper housing attached to the
 adhesive patch, and at least two contact plugs, the at least two contact plugs in
 electrical communication with one another;
 an infusion set connector releasably attachable to the upper housing;
 at least two connector contacts in the connector configured for electrical
 communication with the at least two contact plugs when the connector is attached to the
 upper housing;
 a lineset comprising flexible tubing attached to the connector;
 at least two electrical wires contained within or attached to the lineset, each of
 the at least two electrical wires in electrical communication with one of the at least two
 connector contacts;
 a luer connector attached to the lineset; and
 at least two lineset contacts disposed proximate to the luer connector,
 wherein a closed electrical circuit is detected across the at least two lineset contacts
 when the infusion set connector is releasably attached to the upper housing, and
 wherein an open electrical circuit is detected across the at least two lineset contacts
 when the infusion set connector is not attached to the upper housing.

2. The medical infusion system of claim 1, comprising an infusion pump having a
 housing, a display, a data entry keypad, a cartridge for holding medication, a cartridge
 cap for securing the cartridge in the housing, and at least two housing contacts disposed
 proximate to the cartridge cap.

3. The medical infusion system of claim 2, comprising a conductivity sensor
 disposed in the housing and in electrical communication with the at least two housing
 contacts.
4. The medical infusion system of claim 3 wherein the conductivity sensor is in electrical communication with a microprocessor in the housing.

5. The medical infusion system of claim 4 wherein the infusion pump includes a pre-programmed priming sequence.

6. The medical infusion system of claim 5 wherein the pre-programmed priming sequence is disabled when the conductivity sensor detects a closed circuit across the housing contacts.

7. The medical infusion system of claim 5 wherein the pre-programmed priming sequence is enabled when the conductivity sensor detects an open circuit across the housing contacts.

8. A medical infusion system, comprising:
 an infusion set comprising an adhesive patch, an upper housing attached to the adhesive patch, and a separator extending from the upper housing;
 an infusion set connector releasably attachable to the upper housing;
 at least two connector contacts in the connector pre-biased to be in electrical communication with each other when the connector is not attached to the upper housing;
 a lineset comprising flexible tubing attached to the connector;
 at least two electrical wires contained within or attached to the lineset, each of the at least two electrical wires in electrical communication with one of the at least two connector contacts;
 a luer connector attached to the lineset; and
 at least two lineset contacts disposed proximate to the luer connector,
wherein when the connector is releasably attached to the upper housing, the separator is inserted between the at least two connector contacts breaking the electrical connection between them, and wherein an open electrical circuit is detected across the at least two lineset contacts when the infusion set connector is attached to the upper housing.
9. The medical infusion system of claim 8, comprising an infusion pump having a housing, a display, a data entry keypad, a cartridge for holding medication, a cartridge cap for securing the cartridge in the housing, and at least two housing contacts disposed proximate to the cartridge cap.

10. The medical infusion system of claim 9, comprising a conductivity sensor disposed in the housing and in electrical communication with the at least two housing contacts.

11. The medical infusion system of claim 10 wherein the conductivity sensor is in electrical communication with a microprocessor in the housing.

12. The medical infusion system of claim 11 wherein the infusion pump includes a pre-programmed priming sequence.

13. The medical infusion system of claim 12 wherein the pre-programmed priming sequence is disabled when the conductivity sensor detects an open circuit across the housing contacts.

14. The medical infusion system of claim 13 wherein the pre-programmed priming sequence is enabled when the conductivity sensor detects a closed circuit across the housing contacts.

15. A medical infusion system, comprising:
 an infusion set comprising an adhesive patch, an upper housing attached to the adhesive patch;
 an infusion set connector releasably attachable to the upper housing;
 a lineset comprising flexible tubing attached to the connector;
 a luer connector attached to the lineset;
 an infusion pumping comprising a housing, a data entry keypad, a display, and a microprocessor comprising a pre-programmed priming sequence; and
a harness configured for releasable attachment to the connector, the harness
comprising a sensing element for determining when the connector is releasably
attached to the harness,
wherein the pre-programmed priming sequence is enabled by the microprocessor when
the sensing element provides a signal to the microprocessor indicating that the harness
is releasably attached to the connector.

16. The medical infusion system of claim 15, wherein the sensing element
comprises one or more of a hall effect sensor, a pressure sensor, and an optical sensor.

17. The medical infusion system of claim 15 wherein the connector comprises one
or more magnets.

18. The medical infusion system of claim 17 wherein the sensing element
comprises a hall effect sensor that if configured to provide a signal to the
microprocessor when sensing the one or more magnets in connector.
INTERNATIONAL SEARCH REPORT

PCT/US2013/076025

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>A61M5/142</td>
<td></td>
</tr>
<tr>
<td>A61M5/158</td>
<td></td>
</tr>
<tr>
<td>A61M39/10</td>
<td></td>
</tr>
<tr>
<td>A61M5/14</td>
<td></td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Paragraphs [0037], [0080] - [0087], [0093]; figures 1-11</td>
<td>8-18</td>
</tr>
<tr>
<td>A</td>
<td>Paragraph [0057]</td>
<td>8-18</td>
</tr>
<tr>
<td>A</td>
<td>Figure 1</td>
<td>1,3-18</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 * A: document defining the general state of the art which is not considered to be of particular relevance
 * E: earlier application or patent but published on or after the international filing date
 * L: document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * O: document referring to an oral disclosure, use, exhibition or other means
 * P: document published prior to the international filing date but later than the priority date claimed
 * T: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * X: document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 * Y: document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 * Z: document member of the same patent family

Date of the actual completion of the international search: 17 March 2014

Date of mailing of the international search report: 24/03/2014

Name and mailing address of the ISA/European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Schi opu, D

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>wo 2008114220 A2</td>
<td>25-09-2008</td>
<td>EP 2136863 A2</td>
<td>30-12-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010286467 A1</td>
<td>11-11-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2008114220 A2</td>
<td>25-09-2008</td>
</tr>
<tr>
<td>wo 2005049117 A2</td>
<td>02-06-2005</td>
<td>AU 2004291104 A1</td>
<td>02-06-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2544579 A1</td>
<td>02-06-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1694385 A2</td>
<td>30-08-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4978776 B2</td>
<td>18-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007511325 A</td>
<td>10-05-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005107743 A1</td>
<td>19-05-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006211990 A1</td>
<td>21-09-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006211991 A1</td>
<td>21-09-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006224119 A1</td>
<td>05-10-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006270990 A1</td>
<td>30-11-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006270992 A1</td>
<td>30-11-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006276760 A1</td>
<td>07-12-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009112166 A1</td>
<td>30-04-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011130722 A1</td>
<td>02-06-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2005049117 A2</td>
<td>02-06-2005</td>
</tr>
</tbody>
</table>

| | | US 2012238849 A1 | 20-09-2012 |
| | | none | |