a2 United States Patent

Takiel

US011227124B2

US 11,227,124 B2
Jan. 18, 2022

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

CONTEXT-AWARE HUMAN-TO-COMPUTER
DIALOG

Applicant: Google LL.C, Mountain View, CA (US)

Inventor: Piotr Takiel, Sunnyvale, CA (US)

Assignee: GOOGLE LLC, Mountain View, CA
us)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 16/295,302
Filed: Mar. 7, 2019

Prior Publication Data

US 2019/0205379 Al Jul. 4, 2019

Related U.S. Application Data

Continuation of application No. 15/446,908, filed on
Mar. 1, 2017, now Pat. No. 10,268,680.

(Continued)
Int. CL.
GO6F 40/35 (2020.01)
GIOL 15/22 (2006.01)
(Continued)
U.S. CL
CPC GO6F 40/35 (2020.01); GO6F 16/3329

(2019.01); GOGF 40/205 (2020.01);

(Continued)
Field of Classification Search
CPC ... G10L 15/22; G10L 15/26; G10L 15/1815;
G10L 15/1822; G10L 15/19; G10L
15/193; GOGF 16/24522; GOGF 16/3329
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,197,460 Bl 3/2007 Gupta et al.
7,555,431 B2 6/2009 Bennett
(Continued)
FOREIGN PATENT DOCUMENTS
CN 1306271 8/2001
EP 3096246 11/2016
(Continued)

OTHER PUBLICATIONS

Gregoromichelaki, Eleni, et al. “Incrementality and intention-
recognition in utterance processing.” D&D 2.1 (2011): 199-233.
2011.

(Continued)

Primary Examiner — Mark Villena
(74) Attorney, Agent, or Firm — Middleton Reutlinger

(57) ABSTRACT

Methods, apparatus, and computer readable media are
described related to utilizing a context of an ongoing human-
to-computer dialog to enhance the ability of an automated
assistant to interpret and respond when a user abruptly
transitions between different domains (subjects). In various
implementations, natural language input may be received
from a user during an ongoing human-to-computer dialog
with an automated assistant. Grammar(s) may be selected to
parse the natural language input. The selecting may be based
on topic(s) stored as part of a contextual data structure
associated with the ongoing human-to-computer dialog. The
natural language input may be parsed based on the selected
grammar(s) to generate parse(s). Based on the parse(s), a
natural language response may be generated and output to
the user using an output device. Any topic(s) raised by the
parse(s) or the natural language response may be identified
and added to the contextual data structure.

19 Claims, 9 Drawing Sheets

CLIENT DEVICE
106,
MESSAGE EXCHANGE)
CLIENT 107,

CLIENT DEVICE
106y
MESSAGE EXCHANGE
CLIENT 107

PARSER SUBSYSTEM

GRAMMAR
ENGINE

GRAMMAR
DATABASE
134

(AUTOMATED ASSISTANT h
120

— e
RESPONSE SUBSYSTEM

DIALOG ENGINE
142

e
——A
144

DIALOG TREE

DIALOG CONTEXT ENGINE
150

——
a—A

CONTEXTUAL
DATA STRUCTURE
152

APPLICATION ENGINE 160

——
N———rd

APPLICATION
LIBRARY
162

US 11,227,124 B2
Page 2

Related U.S. Application Data
(60) Provisional application No. 62/440,856, filed on Dec.

30, 2016.
(51) Imt. ClL
GO6F 16/332 (2019.01)
GO6F 40/30 (2020.01)
GO6F 40205 (2020.01)
GO6F 40/211 (2020.01)
GI0L 15/19 (2013.01)
(52) US. CL
CPC ... GOG6F 40/211 (2020.01); GOG6F 40/30
(2020.01); GI10L 15/19 (2013.01); GI10L 15/22
(2013.01)
(56) References Cited
U.S. PATENT DOCUMENTS
8,346,563 Bl 1/2013 Hjelm et al.
8,458,197 B1* 6/2013 Procopio GOG6F 16/30
707/749
8,645,122 Bl 2/2014 Di Fabbrizio et al.
8,731,942 B2 5/2014 Cheyer et al.
9,495,962 B2 11/2016 Govrin et al.
9,953,650 B1* 4/2018 Falevsky GI10L 15/22
10,418,032 B1* 9/2019 Mohajer GI10L 15/22
2001/0021909 Al 9/2001 Shimomura et al.
2003/0040901 Al 2/2003 Wang
2003/0061029 Al 3/2003 Shaket
2004/0044516 Al 3/2004 Kennewick et al.
2005/0216269 Al 9/2005 Scahill et al.
2005/0288935 Al 12/2005 Lee et al.
2006/0047362 Al 3/2006 Aoyama et al.
2006/0074670 Al 4/2006 Weng et al.
2006/0074671 Al 4/2006 Farmaner et al.
2007/0100618 Al 3/2007 Lee et al.
2008/0091406 Al 4/2008 Baldwin et al.
2008/0221892 Al 9/2008 Nathan et al.
2009/0018829 Al* 1/2009 Kuperstein GI10L 15/26
704/235
2009/0030697 Al 1/2009 Cerra et al.
2010/0217592 Al 8/2010 Grupta et al.
2010/0217604 Al 8/2010 Baldwin et al.
2012/0245925 Al* 9/2012 Guha GOG6F 40/237
704/9
2012/0253801 Al* 10/2012 Santos-Lang GI10L 15/22
704/235
2013/0144616 Al 6/2013 Bangalore
2014/0278427 Al 9/2014 Riviere et al.
2015/0142704 Al* 5/2015 London GOG6F 40/58
706/11
2015/0149177 Al 5/2015 Kalns et al.
2015/0279366 Al 10/2015 Krestnikov et al.
2016/0004299 Al* 1/2016 Meyerccoeenen. GO6F 3/011
715/706
2016/0132484 Al 5/2016 Nauze et al.
2016/0163311 Al 6/2016 Crook et al.
2016/0188672 Al™* 6/2016 Lev .ccovvvvcvecnnne G06Q 50/01
707/728
2018/0075335 Al* 3/2018 Braz GOGF 16/24522

FOREIGN PATENT DOCUMENTS

JP 2001188784 12/1999
JP 2006106748 4/2006
JP 2008009552 1/2008

OTHER PUBLICATIONS

Fisher, Robert WH. Context Awareness and Personalization in
Dialogue Planning. Diss. University of Washington, 2014. 62 pages.
2014.

Gargett, Andrew, et al. “Dialogue-grammar correspondence in dynamic
syntax.” Semantics and Pragmatics of Dialogue (LONDIAL) (2008):
37. 8 pages. 2008.

Kempson, Ruth, et al. “Grammar resources for modelling dialogue
dynamically.” Cognitive Neurodynamics 3.4 (2009): 23 pages.
2009.

Kempson, Ruth, et al. “Incrementality, Dialogue and Syntax.” The
Dynamics of Conversational Dialogue (DynDial). Jun. 7, 2010.
Presentation. 138 pages. 2010.

Porzel, Robert, et al. “Towards context-adaptive natural language
processing systems.” 2002; 12 pages. 2002.

United Kingdom Intellectual Property Office; Examination Report
issued in Application No. GB1715746.2 dated Feb. 28, 2018.
Intellectual Property Office of Singapore—International Searching
Authority; Notification of Transmittal of the International Search
Report and the Written Opinion of PCT Serial No. PCT/US2017/
052721; dated Dec. 27, 2017.

Prodanov, Plamen et al.; Error Handling in Multimodal Voice-
enabled Interfaces of Tour-guide Robots Using Graphical Models;
Infoscience EPFL scientific publications; 2 pages; dated 2006.
European Patent Office; Communication issue in Application No.
EP17886881.6; 6 pages; dated Apr. 22, 2020.

European Patent Office; Communication pursuant to Rules 70(2)
and 70a(2) EPC issue in Application No. EP17886881.6; 1 page;
dated May 12, 2020.

Japanese Patent Office; Notice of Office Action issue in Applicaion
No. JP2019535863; 7 pages; dated Nov. 9, 2020.

Intellectual Property India; Office Action issued in Application No.
201927024778, 7 pages; dated Mar. 5, 2021.

Korean Patent Office; Office Action issued in Application No.
20197022334, 15 pages; dated Mar. 31, 2021.

Deutsches Patent Office; Office Action issued in Application No. 10
2017 122 357.6; 16 pages; dated Apr. 6, 2021.

European Patent Office; Intention to Grant issued in Application No.
EP17886881.6; 54 pages; dated May 7, 2021.

Japanese Patent Office; Notice of Allowance issue in Applicaion No.
JP2019535863; 3 pages; dated Jun. 14, 2021.

China National Intellectual Property Administration; Notification of
First Office Action issued in Application No. 201710891157.1; 16
pages; dated May 31, 2021.

Korean Patent Office; Notice of Allowance issued in Application
No. 20197022334; 3 pages; dated Oct. 21, 2021.

China National Intellectual Property Administration; Notice of
Allowance issued in Application No. 201710891157.1; 6 pages;
dated Oct. 25, 2021.

* cited by examiner

U.S. Patent

Jan. 18, 2022

(CLIENTDEVICE)

106,
MESSAGE EXCHANGE
CLIENT 107,
. J

Sheet 1 of 9

[CLENTDEVICE
106y
MESSAGE EXCHANGE
CLIENT 107,
" y

AUTOMATED ASSISTANT

[PARSER SUBSYSTEM)

130
[GRAMMAR
ENGINE
132

GRAMMAR
DATABASE
134

DIALOG CONTEXT ENGINE
150

Q
N —

CONTEXTUAL
DATA STRUCTURE
152

\/

120

[RESPONSE SUBSYSTEM)
140

DIALOG ENGINE
142

DIALOG TREE
144

APPLICATION ENGINE 16

g
N ————

APPLICATION
LIBRARY
162

S— e’

US 11,227,124 B2

US 11,227,124 B2

Sheet 2 of 9

Jan. 18, 2022

U.S. Patent

'149gnyos

ZupJ4 10 Uanoy1aag ubna bimpni
12817 ZUDJH pUBWIWIOIA | ‘3INS
ésisiuae Jejiwis Aue mouy noA oQ
‘AOMD S3[IW GE S,1]

élonded ayl wouj Jey MoH
‘puDn|Od Ul 12141SIp

UDINOSDIN Ul A2 D SI DJOJ PMOZD|SZ
¢1eyy st alaym

"DJO PMOZD|SZ Ul UIOg SOM 3H
éuloQ 9y sem 3J9YA\ 8ullsaualu|
‘urdoy)

Aq Joul dipbys D ui 0z sndo s, 3
§aIsnui siyi s, 3eym

¢Le

[vlvv

ZEEN

[€lvv

:[€]y3sn

[clvv

r4EEN

[Tlvv

A EEN

:[o]lvv

A EEN

(((s1s134e Jejiwis pulj dweu JUdA3) =)
(3s1ue
Jejlwis Aue mouy noA oQ) sisiuie Jejiwiss a|nJ)
((3s114e moj) 41 moje)

(((so1112 usamiaq 9ouelsIp SWeu JU3AL) =)
(Jeuided ay) wouj Je) MOH) 9ouelsips a|nJ)
((An2 y81y) (Aud ysiy) § moje)

(((jondea Ajiauapl sweu JuaA3d) =)
(Joudea ayi s13eymn) [o1deds ajnu)
((3013s1p wnipaw) (A13unod wnipaw) jI- moj|e)

(((po1€20]| A3D DU9YyMm SWEU JUIAD) =)
(1Y s1 a1aym) Ao adayms anu)
((An2 y3iy) J mojle)

(((u1ogq uostad duaym sweu JU3AI) =)
(uioqg ay sem aisaym) uioq uosiad alayms ajnu)
T ((uossad yBiy) 5 mojje)
0Lc

US 11,227,124 B2

Sheet 3 of 9

Jan. 18, 2022

U.S. Patent

ﬁ ALID [€] u

ﬁ 1SILYVY [¥] u ﬁ 1o11sIa (2] u

N

ﬁ IDNVISIA [€] u
ﬁ AYINNOD [Z] u

15114V [¥]
ﬁ ALID [T]

\
)

1S114v [0]

1223

ﬁ JISNN 0] u

ﬁ AJVLAVId u

¢ b4

US 11,227,124 B2

Sheet 4 of 9

Jan. 18, 2022

U.S. Patent

ﬁ ALID [2C] u

ﬁ 1S114v [T'T] u ﬁ 1o1d1sia [z'el u

ﬁ IDNVLSIA [22] u

ﬁ AYINNOD [Z'€] u

15114V [T7]

ALD [TV] u

ﬁ 1SI1YVY [TT] 7

vorv

ﬁ JISNN [2°S] u

ﬁ AJVLAVId u

¥ "B

US 11,227,124 B2

Sheet 5 of 9

Jan. 18, 2022

U.S. Patent

ﬁ ALID [Z] u

ﬁ 1SI1YV [T] u ﬁ 1o11sIa (2] u

ﬁ IDNVISIA [Z] u

ﬁ AYINNOD [Z] u

1SILYY [T1]

ALID [T] u
ﬁ 15114V [T] u
ﬁ JISNN [Z] u

v9s

ﬁ AJVLAVId u

G ‘B4

US 11,227,124 B2

Sheet 6 of 9

Jan. 18, 2022

U.S. Patent

" :au0 J4aApjd 4of uoiasanb O
994y

¢ S49Ap|d Aubw moH

J1oAe|diyiniN

c4aApdiynw Jo 4aho)d 3buis YO
Vv JNVYD Aejd 03 Juem |

L9

ﬁn_OO._m_m_><._n__._.._D_>_u h SH3IAVd u h JAOW JNVD u

WV
R ENR
WV
R ENR
WV
R ENR

T

vvo

(€] /E
T~

1]

/

(o)

/

[0]

/

100y

)

9 ‘B4

US 11,227,124 B2

Sheet 7 of 9

Jan. 18, 2022

U.S. Patent

ﬁn_OO._ m_m_><._n__._.._3_>_u h SHIAVd u

yd

\
(o) () (Coowes)

=D

144

ﬁn_OO._ m_m_><._n__._.._3_>_w ﬁ SHIAVd u

(o) (o)

1474

100y

g/ ‘b4

D/ ‘b4

ﬁn_OO._ m_m_><._n__._.._3_>_u ﬁ SHIAVd u

h V AWVD u
\V

vl 1004

v. b4

U.S. Patent Jan. 18, 2022 Sheet 8 of 9 US 11,227,124 B2

800 '« Fig. 8

RECEIVE NATURAL LANGUAGE INPUT
802

v

SELECT GRAMMAR(S) TO PARSE NATURAL LANGUAGE INPUT BASED
ON TOPICS PERSISTED IN CONTEXTUAL DATA STRUCTURE
804

;

PARSE NATURAL LANGUAGE INPUT BASED ON SELECTED
GRAMMAR(S) TO GENERATE PARSE(S)
806

|

GENERATE NATURAL LANGUAGE RESPONSE BASED ON PARSE(S)
808

|

OUTPUT NATURAL LANGUAGE RESPONSE
810

v

IDENTIFY TOPIC(S) RAISED BY PARSE(S) OR NATURAL LANGUAGE
RESPONSE
812

'

UPDATE CONTEXTUAL DATA STRUCTURE BASED ON IDENTIFIED
TOPIC(S)
814

US 11,227,124 B2

Sheet 9 of 9

Jan. 18, 2022

U.S. Patent

6 "3814
S30IA3A LNd1LNO JDV4H3LINI
IDVAYILNI ¥3SN YYOMLIN (S)40SS3304d
0¢Z6 916 v16
A A a
43 Y il
¢16 y y
S3DIA3A 226
1ndNE | INILSASENS VY AOH
JDV4YILNI 3OVHOLS
¥3asn ERIE 0e6 (43|
INILSASENS AHOWIW
926
vee T4
INILSASENS IDOVHOLS
016

US 11,227,124 B2

1
CONTEXT-AWARE HUMAN-TO-COMPUTER
DIALOG

BACKGROUND

Users are increasingly able to interact with computers
using natural language, e.g., in what will be referred to
herein as “human-to-computer dialogs.” For example, many
mobile computing devices such as smart phones, tablets,
smart watches, standalone smart speakers, and so forth,
include software programs referred to as “automated assis-
tants” (a.k.a. “interactive assistant modules,” “mobile assis-
tants,” etc.). Automated assistants may be configured to
parse and interpret natural language input (e.g., spoken first
then converted to text, or received initially as text) and
provide responsive output, such as answers to questions,
task initiation, etc. Existing automated assistants often have
difficulty switching between domains of conversation. For
example, if a user and an automated assistant have been
exchanging dialog about a subject in one topic or domain
(e.g., playing a game), and then the user abruptly steers the
conversation towards another topic in an unrelated domain
(e.g., weather), the automated assistant may not be entirely
responsive and/or may require additional dialog to properly
respond. One possible reason is that automated assistants
tend to be created and/or maintained by a relatively small
number of entities (e.g., a single developer). It may be
difficult for such a small number of entities to anticipate how
users may transition between innumerable possible conver-
sational domains/topics and design robust dialogs, gram-
mars, etc., for each such domain/topic.

SUMMARY

Techniques are described herein for utilizing a context of
an ongoing human-to-computer dialog to enhance the ability
of an automated assistant (or more generally, an interactive
voice response “IVR” component) to interpret and respond
when a user abruptly transitions the human-to-computer
dialog between different domains. In various implementa-
tions, a so-called “contextual data structure” may be used to
persist various “topics” that are relevant to an ongoing
human-to-computer dialog. These topics may be used, for
instance, to select one or more grammars that are used to
parse the user’s natural language input.

Based on parses produced by the selected grammars, and
in some cases further based on a dynamic dialog tree that
represents the ongoing human-to-computer dialog, a
response (e.g., natural language response, initiation of a
task, etc.) may be generated and provided by the automated
assistant. Meanwhile, any new topics added to the ongoing
dialog by the user and/or by the automated assistant may be
added to the contextual data structure. Topics that have not
been mentioned or alluded to in some time may be dropped.
In this way, if a user provides natural language input that is
not immediately pertinent but was pertinent to some previ-
ous topic of the ongoing dialog, the automated assistant may
be able to seamlessly pivot back to the previous topic.

In some implementations, techniques described herein
may be implemented on a system that includes a parser
subsystem and a response subsystem. The parser subsystem
may be responsible for interpreting natural language input
and providing an interpretation (e.g., a “parse” and/or a
topic) to the response subsystem. The response subsystem
may be responsible for receiving the interpretations and
responding appropriately, be it by generating and outputting

20

35

40

45

50

2

a natural language response or by taking some other respon-
sive action (e.g., launching a particular app).

In some implementations, the parser subsystem may be
configured to select one or more grammars to parse received
natural language input based on one or more topics stored in
the aforementioned contextual data structure associated with
the ongoing human-to-computer dialog. For example, in
some implementations, each of a plurality of grammars (e.g.,
a library of grammars which may potentially be very large)
may be stored in association with one or more applicable
topics. A grammar may be selected/applied if one or more of
its associated topics is currently pertinent (and/or pertinent
enough) to the human-to-computer dialog, and may not be
applied otherwise. Thus, when a user provides natural lan-
guage input, only those grammars that are associated with
currently-pertinent topics are selected and applied. This
technique is occasionally referred to herein as “contextual
filtering.” Contextual filtering provides a technical advan-
tage of avoiding grammars that do not make sense in the
context of the conversation, and hence might result in
nonsensical output. In some cases this may reduce the
number of grammars that are applied to each natural lan-
guage input received from a human (as opposed to applying
all grammars of a potentially enormous library to each
natural language input). Reducing the number of grammars
applied reduces utilization of computing resources such as
processor cycles, memory, and/or network bandwidth. This
may be particularly beneficial for human-to-computer dia-
logs because minimizing latency of an automated assistant
(i.e. making sure the automated assistant responds to user
input as quickly as possible) may be of paramount impor-
tance to users. If a human-to-computer dialog has just been
initiated, and hence no topics are yet pertinent, the parser
subsystem may process received natural language input
using conventional techniques. The parser subsystem may
then begin to populate the contextual data structure based on
topics raised by a human or by an automated assistant during
the human-to-computer dialog.

Interacting with both the parser subsystem and the
response subsystem is the aforementioned contextual data
structure. The contextual data structure may take various
forms of data structures stored in memory, and may be used
to persist topics that are, or have recently been, relevant to
an ongoing human-to-computer dialog. When a topic is
raised, either by the user or by the automated assistant, the
topic may be added to the contextual data structure, e.g., by
the response subsystem. If a topic is raised that is already
persisted in the contextual data structure, the topic may be
“touched,” e.g., it may be brought to the forefront of the
conversation once again.

To this end, in various implementations, each topic per-
sisted in the contextual data structure may be associated with
a measure of relevance of the topic to the ongoing human-
to-computer dialog. For example, in some implementations,
a measure of relevance associated with each topic may be
determined based at least in part on a count of turns of the
ongoing human-to-computer dialog since the topic was last
raised. The more turns since the topic was raised (e.g., added
or touched), the lower the measure of relevance for that
topic. Suppose a user began a human-to-computer dialog
with a question about the weather (causing the topic
“weather” to be added), but the dialog then covered a wide
range of topics unrelated to weather. The more turns into the
dialog since the topic of weather was raised, the more the
relevance score associated with the topic weather is dimin-
ished. In some implementations, if a topic’s measure of
relevance diminishes below a threshold, that topic may be

US 11,227,124 B2

3

dropped from the contextual data structure altogether. Drop-
ping “stale” topics from the contextual data structure may
offer various technical advantages. The more grammars that
are selected (i.e. contextually filtered as described above)
and applied by the parser subsystem to each natural lan-
guage input received from the user, the more computing
resources are consumed. By dropping stale topics, the num-
ber of grammars applied by the parser subsystem to each
natural language input may be reduced, thereby reducing
computing resource consumption. Additionally, by focusing
the parser subsystem on grammars associated with topics
pertinent to a current human-to-computer dialog, it is less
likely that off-topic or otherwise nonsensical parses will be
produced (which may lead the automated assistant to pro-
vide similarly-nonsensical output). Thus, the number of
human-to-computer dialog turns (and hence, user-provided
natural language inputs) required to achieve a user’s par-
ticular goal may be reduced, which may benefit users with
limited physical or situational abilities to provide multiple
inputs.

Measures of relevance may be based on other factors as
well. For example, in some implementations, a measure of
relevance associated with each topic may be determined
based at least in part on a measure of relatedness (e.g.,
semantic) between the topic and one or more other topics in
the contextual data structure. If a first topic has not been
raised in a while, but a semantically-related second topic is
raised later, the first topic’s measure of relevance may be
raised.

In some implementations, the contextual data structure
may take the form of an undirected graph comprising a
plurality of nodes and a plurality of edges connecting the
plurality of nodes. Each node of the undirected graph may
represent a given topic of the one or more topics stored as
part of the contextual data structure. In some implementa-
tions, each node may also store a count of turns of the
ongoing human-to-computer dialog since the given topic
was last raised. In some implementations, each edge con-
necting two nodes may represent a measure of relatedness
(e.g., semantic, etc.) between two topics represented by the
two nodes, respectively. Of course, other data structures are
contemplated herein.

In some implementations, each grammar may be associ-
ated both with a topic and a threshold relevance score for
that topic. If the topic is persisted in the contextual data
structure but its relevance score does not satisfy the thresh-
old, the grammar may not be selected. This enables fine-
tuning of when grammars will be applied and when they
won’t.

In various implementations, the response subsystem may
receive interpretations (or “parses”) from the grammars that
are selected and applied by the parser subsystem. In some
implementations, the parser subsystem may also provide the
response subsystem with topics, e.g., as part of the parses/
interpretations and/or separately. In some implementations,
these topics may be already persisted in the contextual data
structure and that have been touched by virtue of their
associated grammars having been applied. In various imple-
mentations, the response subsystem may employ a dialog
tree to steer the ongoing human-to-computer dialog between
seemingly unrelated topics. In essence, the response sub-
system receives one or more parses (or interpretations) and
topics from the parser subsystem, and steers the conversa-
tion along the dialog tree based on the parses and topics.

For example, in some implementations, each node in the
dialog tree represents a natural language process. A root
node of the dialog tree may be configured to handle any

20

30

40

45

4

natural language input (either by initiating a process or by
requesting disambiguation from the user) and to initiate one
or more child nodes corresponding to processes that are
initiated in response to natural language input from the user.
The child processes may themselves add additional child
processes to handle various aspects of their own internal
dialog. This may simplify code maintenance and reuse, as
each process may be a modular process that is configured to
implement techniques described herein.

Whenever the response subsystem generates a response
(e.g., a natural language response, a responsive action or
task, etc.) for the user, the response subsystem may add any
related topics to the contextual data structure. In some
implementations, each node of the dialog tree may be
associated with one or more topics (which may, for instance,
be selected by a developer of the process underlying the
node). As noted above, each grammar also may be associ-
ated with one or more topics. Consequently, by adding these
topics to the contextual data structure, the response subsys-
tem in effect adds the number of grammars that may be
applicable by the parser subsystem at any point in time.
Thus, if a user converses about one topic, changes course,
then returns to the original topic (or to a semantically-related
topic), grammars associated with that original topic may still
be applicable because their associated topics are still per-
sisted in the contextual data structure. But as noted above, if
the human-to-computer dialog strays from a given topic for
long enough, in some implementations, the topic may be
dropped from the contextual data structure, e.g., to prevent
the parser subsystem from applying an excessive number of
grammars to each natural language input, which as noted
above can become computationally expensive.

As an example, suppose a user initiates a human-to-
computer dialog with the phrase, “Let’s play a game.” The
response subsystem may start the dialog tree at the root
node. The parser subsystem may parse/interpret the user’s
natural language input and provide the response subsystem
with the parse/interpretation and any raised topics (e.g.,
game). Based on the received parse and topic(s), the
response subsystem may provide dialog such as, “OK, what
game do you want to play?”, and to initiate a gaming child
process beneath the root node. The response subsystem may
also add topics such as “game” and “game selection” (which
may be determined by the parser subsystem based on the
received input and/or by the response subsystem based on
topics associated with the gaming child process) to the
contextual data structure. The gaming child process may be
associated (e.g., by its developer) with one or more topics,
each which may be associated with one or more topics
related to games, such as “game,” “game selection.” One
grammar that may be associated with such topics may be, for
instance, a list_available_games grammar. Another grammar
associated with such topics may be, for instance, “num-
ber_of players” grammar. Suppose the user now utters,
“What games do you have?” The parser subsystem may
select the list_available_games grammar because its topic(s)
(game, game selection) are currently in the contextual data
structure with relatively high measures of relevance (be-
cause they were just recently raised). The list_available_
games grammar may parse the user’s statement and provide
its interpretation (e.g., the command, “LIST GAMES”) to
the response subsystem. Consequently, the automated assis-
tant (e.g., by way of the response subsystem) may list
available games, such as “I have Sports Trivia and Historical
Trivia.” The response subsystem may also add topics such as
“trivia,” “sports” and “history” to the contextual data struc-

US 11,227,124 B2

5

ture, and may add, to the dialog tree, child process nodes
corresponding to the Sports Trivia and Historical Trivia
games.

Now, suppose the user abruptly changes the subject, such
as by uttering, “What’s the weather forecast today?” There
may not currently be any topics stored in the contextual data
structure that are related to the topic “weather.” In some
implementations, the parser subsystem may identify (e.g.,
contextually filter from a large repository of grammars) one
or more grammars that are associated with each topic raised
by this utterance, such as “weather.” The parser subsystem
may provide the response subsystem with one or more
parses produced by the one or more identified grammars, as
well as the corresponding topic(s). The response subsystem
may attempt to associate (e.g., match) existing dialog tree
nodes with the parses/topic(s) returned by the parser sub-
system. In some cases, a parse/topic provided by the parser
subsystem may be associable (e.g., match) a dialog tree node
if (i) a topic associated with the dialog tree node matches the
topic of the parse/topic, and (ii) the dialog tree node is
capable of handling the parse of the parse/topic. If one or
both conditions are not satisfied, control may pass back to
the root node of the dialog tree. That is likely the case in this
example because the topic “weather” is likely not going to
match any of the aforementioned topics that have already
been added to the dialog tree. Accordingly, the response
subsystem may load a child process node associated with the
topic “weather,” and may provide a response such as
“Cloudy with a 30% chance of rain.” The response subsys-
tem may also add the topic “weather” to the contextual data
structure, and in some cases may reduce the measures of
relevance associated with topics unrelated to weather that
are already contained in the contextual data structure, such
as “game,” “game selection,” “trivia,” “sports,” and “his-
tory.”

Suppose the user now utters, “Sports Trivia.” Even though
the user most recently changed the subject of the human-
to-computer dialog to “weather,” the topics of “game,”
“game selection,” “trivia,” “sports,” and “history” are all
still stored in the contextual data structure, albeit with
slightly reduced measures of relevance. Accordingly, the
parser subsystem may still select (e.g., contextually filter
from a larger repository of grammars) one or more gram-
mars associated with these topics to parse the user’s utter-
ance. The parser subsystem may then apply the selected
grammars to the input, and may provide the resulting parses
and associated topics to the response subsystem. The
response subsystem may then pass control to the Sports
Trivia child process node that was added to the dialog tree
previously.

Techniques described herein may give rise to a variety of
additional technical advantages beyond those already men-
tioned. For example, the techniques described herein enable
smooth changing of conversation subjects without requiring
individual developers (e.g., of individual IVR processes) to
expend considerable resources handling such subject chang-
ing. Additionally or alternatively, because grammars are
only applicable when particular topics are relevant (and in
some cases, must have measures of relevance that satisty
various thresholds), the use of techniques described herein
also limit the number of generated parses/interpretations to
only those which make sense in the current dialog context.
This may save computation resources such as memory,
processor cycles, network bandwidth, etc.

In some implementations, techniques described herein
facilitate modular design of IVR dialogs to be implemented
by automated assistants. Such modular design (including the

2 < 2 <

2

20

30

35

40

45

50

6

hierarchal structure of dialog trees described herein) may be
easier to maintain, and may allow also for easy code reuse.
An additional technical advantage of some implementations
is that the dialog trees described herein allow all business
logic to be easily developed in a single programming
language (such as C++). Consequently, the development
time decreases compared to solutions involving several
programming languages.

In some implementations, a method performed by one or
more processors is provided that includes: receiving natural
language input from a user as part of an ongoing human-
to-computer dialog between the user and an automated
assistant operated by one or more processors; selecting one
or more grammars to parse the natural language input,
wherein the selecting is based on one or more topics stored
in memory as part of a contextual data structure associated
with the ongoing human-to-computer dialog; parsing the
natural language input based on the selected one or more
grammars to generate one or more parses; generating, based
on one or more of the parses, a natural language response;
outputting the natural language response to the user using
one or more output devices; identifying one or more topics
raised by one or more of the parses or the natural language
response; and adding the identified one or more topics to the
contextual data structure.

These and other implementations of technology disclosed
herein may optionally include one or more of the following
features.

In various implementations, the one or more grammars
may be selected from a plurality of grammars, and wherein
each of the plurality of grammars is stored in association
with one or more applicable topics. In various implementa-
tions, each topic stored in the memory as part of the
contextual data structure may be associated with a measure
of relevance of the topic to the ongoing human-to-computer
dialog. In various implementations, a measure of relevance
associated with each topic may be determined based at least
in part on a count of turns of the ongoing human-to-
computer dialog since the topic was last raised.

In various implementations, a measure of relevance asso-
ciated with each topic may be determined based at least in
part on a measure of relatedness between the topic and one
or more other topics in the contextual data structure.

In various implementations, the contextual data structure
may include an undirected graph comprising a plurality of
nodes and a plurality of edges connecting the plurality of
nodes. In various implementations, each node of the undi-
rected graph may represent a given topic of the one or more
topics stored as part of the contextual data structure, and a
count of turns of the ongoing human-to-computer dialog
since the given topic was last raised. In various implemen-
tations, each edge connecting two nodes may represent a
measure of relatedness between two topics represented by
the two nodes, respectively.

In various implementations, the method may further
include generating a dialog tree with one or more nodes that
represent one or more interactive voice processes that have
been invoked during the ongoing human-to-computer dia-
log. In various implementations, one or more of the nodes
may be associated with one or more topics. In various
implementations, the selecting may include selecting the one
or more grammars from one or more grammars associated
with the one or more topics.

In addition, some implementations include one or more
processors of one or more computing devices, where the one
or more processors are operable to execute instructions
stored in associated memory, and where the instructions are

US 11,227,124 B2

7

configured to cause performance of any of the aforemen-
tioned methods. Some implementations also include one or
more non-transitory computer readable storage media stor-
ing computer instructions executable by one or more pro-
cessors to perform any of the aforementioned methods.

It should be appreciated that all combinations of the
foregoing concepts and additional concepts described in
greater detail herein are contemplated as being part of the
subject matter disclosed herein. For example, all combina-
tions of claimed subject matter appearing at the end of this
disclosure are contemplated as being part of the subject
matter disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example environment in
which implementations disclosed herein may be imple-
mented.

FIG. 2 depicts example grammars that may be applied
during a human-computer dialog, in accordance with vari-
ous implementations.

FIGS. 3, 4, and 5 depict example contextual data struc-
tures, in accordance with various implementations.

FIG. 6 depicts an example dialog tree according to
implementations disclosed herein.

FIGS. 7A, 7B and 7C depict an example of how a dialog
tree may be grown dynamically during a human-to-com-
puter dialog, in accordance with various implementations.

FIG. 8 depicts an example process of practicing various
techniques described herein.

FIG. 9 illustrates an example architecture of a computing
device.

DETAILED DESCRIPTION

Now turning to FIG. 1, an example environment in which
techniques disclosed herein may be implemented is illus-
trated. The example environment includes a plurality of
client computing devices 106, _,, and an automated assistant
120. Although automated assistant 120 is illustrated in FIG.
1 as separate from the client computing devices 106, ,, in
some implementations all or aspects of the automated assis-
tant 120 may be implemented by one or more of the client
computing devices 106, . For example, client device 106,
may implement one instance of or more aspects of auto-
mated assistant 120 and client device 106, may also imple-
ment a separate instance of those one or more aspects of
automated assistant 120. In implementations where one or
more aspects of automated assistant 120 are implemented by
one or more computing devices remote from client comput-
ing devices 106, _,, the client computing devices 106, ,, and
those aspects of automated assistant 120 may communicate
via one or more networks such as a local area network
(LAN) and/or wide area network (WAN) (e.g., the Internet).

The client devices 106, _,, may include, for example, one
or more of: a desktop computing device, a laptop computing
device, a tablet computing device, a mobile phone comput-
ing device, a computing device of a vehicle of the user (e.g.,
an in-vehicle communications system, an in-vehicle enter-
tainment system, an in-vehicle navigation system), and/or a
wearable apparatus of the user that includes a computing
device (e.g., a watch of the user having a computing device,
glasses of the user having a computing device, a virtual or
augmented reality computing device). Additional and/or
alternative client computing devices may be provided. In
some implementations, a given user may communicate with
automated assistant 120 utilizing a plurality of client com-

15

20

25

30

35

40

45

55

8

puting devices that collectively from a coordinated “ecosys-
tem” of computing devices. However, for the sake of brevity,
some examples described in this specification will focus on
a user operating a single client computing device 106.

Each of the client computing devices 106, _,, may operate
a variety of different applications, such as a corresponding
one of the message exchange clients 107, ,. Message
exchange clients 107,_,, may come in various forms and the
forms may vary across the client computing devices 106,
and/or multiple forms may be operated on a single one of the
client computing devices 106, _,. In some implementations,
one or more of the message exchange clients 107, _,, may
come in the form of a short messaging service (“SMS”)
and/or multimedia messaging service (“MMS”) client, an
online chat client (e.g., instant messenger, Internet relay
chat, or “IRC,” etc.), a messaging application associated
with a social network, a personal assistant messaging service
dedicated to conversations with automated assistant 120,
and so forth. In some implementations, one or more of the
message exchange clients 107, _,, may be implemented via a
webpage or other resources rendered by a web browser (not
depicted) or other application of client computing device
106.

As described in more detail herein, the automated assis-
tant 120 engages in human-to-computer dialog sessions with
one or more users via user interface input and output devices
of one or more client devices 106, . In some implementa-
tions, the automated assistant 120 may engage in a dialog
session with a user in response to user interface input
provided by the user via one or more user interface input
devices of one of the client devices 106,_,. In some of those
implementations, the user interface input is explicitly
directed to the automated assistant 120. For example, one of
the message exchange clients 107, ,, may be a personal
assistant messaging service dedicated to conversations with
automated assistant 120 and user interface input provided
via that personal assistant messaging service may be auto-
matically provided to automated assistant 120. Also, for
example, the user interface input may be explicitly directed
to the automated assistant 120 in one or more of the message
exchange clients 107, _,, based on particular user interface
input that indicates the automated assistant 120 is to be
invoked. For instance, the particular user interface input may
be one or more typed characters (e.g., @AutomatedAssis-
tant), user interaction with a hardware button and/or virtual
button (e.g., a tap, a long tap), an oral command (e.g., “Hey
Automated Assistant”), and/or other particular user interface
input. In some implementations, the automated assistant 120
may engage in a dialog session in response to user interface
input, even when that user interface input is not explicitly
directed to the automated assistant 120. For example, the
automated assistant 120 may examine the contents of user
interface input and engage in a dialog session in response to
certain terms being present in the user interface input and/or
based on other cues. In many implementations, the auto-
mated assistant 120 may engage interactive voice response
(“IVR”), such that the user can utter commands, searches,
etc., and the automated assistant may utilize one or more
grammars to convert the utterances into text, and respond to
the text accordingly.

Each of the client computing devices 106, ,, and auto-
mated assistant 120 may include one or more memories for
storage of data and software applications, one or more
processors for accessing data and executing applications,
and other components that facilitate communication over a
network. The operations performed by one or more of the
client computing devices 106, ,, and/or by the automated

US 11,227,124 B2

9

assistant 120 may be distributed across multiple computer
systems. Automated assistant 120 may be implemented as,
for example, computer programs running on one or more
computers in one or more locations that are coupled to each
other through a network.

Automated assistant 120 may include a parser subsystem
130, a response subsystem 140, a dialog context engine 150,
and an application engine 160. In some implementations,
one or more of the engines and/or subsystems of automated
assistant 120 may be omitted, combined, and/or imple-
mented in a component that is separate from automated
assistant 120. Automated assistant 120 may engage in
human-to-computer dialog sessions with one or more
user(s), via associated client devices 106, _,, to obtain infor-
mation (e.g., answers to questions, obtain search results,
etc.), initiate tasks (telephone applications, calendar appli-
cations, miscellaneous applications, etc.), engage in conver-
sation, and so forth.

As used herein, a “dialog session” may include a logi-
cally-self-contained exchange of one or more messages
between a user and the automated assistant 120 as part of a
human-to-computer dialog. The automated assistant 120
may differentiate between multiple dialog sessions with a
user based on various signals, such as passage of time
between sessions, change of user context (e.g., location,
before/during/after a scheduled meeting, etc.) between ses-
sions, detection of one or more intervening interactions
between the user and a client device other than dialog
between the user and the automated assistant (e.g., the user
switches applications for a while, the user walks away from
then later returns to a standalone voice-activated product),
locking/sleeping of the client device between sessions,
change of client devices used to interface with one or more
instances of the automated assistant 120, and so forth.

In some implementations, when the automated assistant
120 provides a prompt that solicits user feedback, the
automated assistant 120 may preemptively activate one or
more components of the client device (via which the prompt
is provided) that are configured to process user interface
input to be received in response to the prompt. For example,
where the user interface input is to be provided via a
microphone of the client device 106,, the automated assis-
tant 120 may provide one or more commands to cause: the
microphone to be preemptively “opened” (thereby prevent-
ing the need to hit an interface element or speak a “hot word”
to open the microphone), a local speech to text processor of
the client device 106, to be preemptively activated, a com-
munications session between the client device 106, and a
remote speech to text processor to be preemptively estab-
lished, and/or a graphical user interface to be rendered on the
client device 106, (e.g., an interface that includes one or
more selectable elements that may be selected to provide
feedback). This may enable the user interface input to be
provided and/or processed more quickly than if the compo-
nents were not preemptively activated.

Parser subsystem 130 of automated assistant 120 may
process natural language input generated by users via client
devices 106, _,, and may generate, based on one or more
grammars selected using contextual filtering, annotated out-
put that may include “parses” or “interpretations” for use by
one or more other components of the automated assistant
120, such as response subsystem 140. For example, parser
subsystem 130 may process natural language free-form
input that is generated by a user via one or more user
interface input devices of client device 106,. The generated
annotated output includes one or more annotations of the

25

40

45

10

natural language input (e.g., one or more topics) and option-
ally one or more (e.g., all) of the terms of the natural
language input.

In some implementations, parser subsystem 130 may be
configured to identify and annotate various types of gram-
matical information in natural language input. For example,
parser subsystem 130 may include a part of speech tagger
configured to annotate terms with their grammatical roles.
For example, the part of speech tagger may tag each term
with its part of speech such as “noun,” “verb,” “adjective,”
“pronoun,” etc. Also, for example, in some implementations,
parser subsystem 130 may additionally and/or alternatively
include a dependency parser configured to determine syn-
tactic relationships between terms in natural language input.
For example, the dependency parser may determine which
terms modify other terms, subjects and verbs of sentences,
and so forth (e.g., a parse tree)—and may make annotations
of such dependencies.

In some implementations, parser subsystem 130 may
additionally and/or alternatively include an entity tagger
configured to annotate entity references in one or more
segments such as references to people (including, for
instance, literary characters), organizations, locations (real
and imaginary), topics, and so forth. The entity tagger may
annotate references to an entity at a high level of granularity
(e.g., to enable identification of all references to an entity
class such as people) and/or a lower level of granularity
(e.g., to enable identification of all references to a particular
entity such as a particular person). The entity tagger may
rely on content of the natural language input to resolve a
particular entity or topic and/or may optionally communi-
cate with a knowledge graph or other entity database to
resolve a particular entity and/or topic. In some implemen-
tations, parser subsystem 130 may additionally and/or alter-
natively include a coreference resolver configured to group,
or “cluster,” references to the same entity based on one or
more contextual cues.

In some implementations, one or more components of
parser subsystem 130 may rely on annotations from one or
more other components of parser subsystem 130. For
example, in some implementations the named entity tagger
may rely on annotations from the coreference resolver
and/or dependency parser in annotating all mentions to a
particular entity. Also, for example, in some implementa-
tions the coreference resolver may rely on annotations from
the dependency parser in clustering references to the same
entity. In some implementations, in processing a particular
natural language input, one or more components of parser
subsystem 130 may use related prior input and/or other
related data outside of the particular natural language input
(e.g., topics maintained by dialog context engine 150) to
determine one or more annotations.

In various implementations, dialog context engine 150
may be configured to persist one or more topics that have
been raised during a current human-to-computer dialog
session between a user of a client device 106 and automated
assistant 120. In some implementations, dialog context
engine 150 may maintain a so-called “contextual data struc-
ture” 152 in computer memory. Contextual data structure
152 may take various forms of data structures stored in
memory, and may be used to persist topics that are, or have
recently been, relevant to an ongoing human-to-computer
dialog session. When a topic is raised, either by the user or
by automated assistant 120, the topic may be added to
contextual data structure 152, e.g., by dialog context engine
150 or by another component of automated assistant 120. If
a topic is raised that is already persisted in contextual data

2 <

US 11,227,124 B2

11

structure 154, the topic may be “touched,” e.g., it may
effectively be brought to the forefront of the conversation
once again. Put another way, topics persisted in contextual
data structure 152 may represent the topics on which the user
is likely focused during a particular human-to-computer
dialog session (or in some implementations, across different
human-to-computer sessions that occur relatively close in
time). By at least temporarily maintaining these topics in
contextual data structure 152, automated assistant 120 is
better able to interpret natural language input from the user
that is unrelated to the most recent topic of discussion, and
thus is better able to adapt to the user changing the subject
of the human-to-computer dialog.

To this end, each topic persisted in contextual data struc-
ture 152 may be associated with a measure of relevance of
the topic to the ongoing human-to-computer dialog session.
For example, in some implementations, a measure of rel-
evance associated with each topic may be determined based
at least in part on a count of turns of the ongoing human-
to-computer dialog since the topic was last raised. The more
turns since the topic was raised (e.g., added or touched), the
lower the measure of relevance for that topic. Suppose a user
began a human-to-computer dialog with a question about the
weather (causing the topic “weather” to be added), but the
dialog then covered a wide range of topics unrelated to
weather. The more turns into the dialog since the topic of
weather was raised, the more the relevance score associated
with the topic weather is diminished. In some implementa-
tions, if a topic’s measure of relevance diminishes below a
threshold, that topic may be dropped from contextual data
structure 152 altogether.

Measures of relevance may be based on other factors as
well. For example, in some implementations, a measure of
relevance associated with each topic in contextual data
structure 152 may be determined based at least in part on a
measure of relatedness (e.g., semantic) between the topic
and one or more other topics in contextual data structure
152. If a first topic has not been raised in some time, but a
semantically-related second topic is raised later, the first
topic’s measure of relevance may be elevated or increased.

In some implementations, contextual data structure 152
may take the form of an undirected graph comprising a
plurality of nodes and a plurality of edges connecting the
plurality of nodes. Each node of the undirected graph may
represent a given topic of the one or more topics stored as
part of contextual data structure 152. In some implementa-
tions, each node may also store a count of turns of the
ongoing human-to-computer dialog since the given topic
was last raised. In some implementations, each edge con-
necting two nodes may represent a measure of relatedness
(e.g., semantic, etc.) between two topics represented by the
two nodes, respectively. Of course, other data structures are
contemplated herein.

In various implementations, parser subsystem 130 may
include a grammar engine 132. Grammar engine 132 may
have access to a grammar database 134 that includes a
plurality of grammars. In various implementations, each
grammar stored in grammar database 134 may be associated
both with a topic and a threshold relevance score for that
topic. If the topic is persisted in contextual data structure 152
but its relevance score does not satisfy the threshold, the
grammar may not be selected by parser subsystem 130. This
enables fine-tuning of when grammars will be applied, and
when they won’t.

w

10

15

20

25

30

35

40

45

50

55

60

65

12

For example, suppose the following grammar rules are in
effect:

(allow_if (slight game))

(rule $restart_game (please restart the game)

(=(event_name restart_game)))
(allow_if (high game_restart_confirmation))
(rule $common_yes ($PT_Yes)
(=(event_name yes)))
These grammar rules may dictate the circumstances under
which a user may use various forms of natural language
input to restart a game. The top rule only requires that the
topic “game” be slightly relevant. For example, the top rule
may remain in force so long as the topic “game” has a
measure of relevance that satisfies some minimal threshold
(e.g., >0). This may be true at any point while the user is
playing the game, while the game is active in the back-
ground, etc. It makes sense that the top grammar is widely
applicable because the natural language input that satisfies
the top grammar—“please restart the game”—is a highly
focused and unambiguous statement.

By contrast, the bottom rule requires that the topic
“game_restart_confirmation” be highly relevant, e.g., by
having a measure of relevance that satisfies some relatively
stringent threshold. The topic “game_restart_confirmation”
may only be raised when, for instance, the user makes a state
such as “please restart the game,” “maybe we should reset
the game,” “I want to start over,” etc. Thus, the bottom rule
allows the user to restart the game by providing various
forms of simple affirmative response (e.g., $PT_Yes may
include “yes,” “OK,” “sure,” and so forth) only if the user
is highly focused on restarting the game. The user may
provide such affirmative input in response to a solicitation
from automated assistant 120, such as “are you sure you
want to restart the game?” If the user utters “yes” without
such a topic being raised first, automated assistant 120 may
provide output such as “I’m sorry, I didn’t get that,” or “what
are you agreeing to?” While not required, generally speak-
ing, the more focused natural language input is expected by
a particular grammar, the higher the topic relevance require-
ment associated with that grammar will be.

In some implementations, grammar rules stored in gram-
mar database 134 may be applicable in a variety of situa-
tions, e.g., when a variety of topics are relevant to a current
human-to-computer dialog. For example a simple grammar
rule for interpreting affirmative responses (e.g., “yes,” “ok,”
“sure,” “definitely,” etc.) may be applicable in a wide range
of situations. The following grammar rule demonstrates a
few example scenarios in which such a grammar rule may be
applicable:

(allow_if (high pizza_order_confirmation))

(allow_if (high quiz_quit_game_question))

(allow_if (high quiz_add_player_question))

(allow_if (high phone_call_retry_question))

(rule $common_yes (SPT_Yes)
(=(event_name yes)))
With such a grammar rule, whenever any of the topics
“pizza_order_confirmation,” “quiz_quit_game_question,”
“quiz_add_player_question,” or “phone_call_retry_ques-
tion” have high measures of relevance, the user may be able
to provide a simple affirmative response (e.g., “yes,” “OK,”
“yeah,” “sure,” etc.). This grammar requires that the topics
be highly focused (i.e. relatively high measures of rel-
evance) in order to be applicable. This is because each of the
topics is raised only when automated assistant 120 asks a
question seeking a simple yes or no response. It is unlikely
that more than one of these topics will have a sufficiently
high measure of relevance to be applicable in any given

US 11,227,124 B2

13

scenario. Even if more than one of these topics is currently
persisted in contextual data structure 152, only the most
recently-raised topic is likely to satisfy the stringent rel-
evance requirement.

In some implementations, a grammar rule stored in gram-
mar database 134 may be associated with multiple topics.
For example, take the following grammar rule:

(allow_if (medium person) (medium person))

(rule $were_married (were they ever married)
(=(event_name were_married)))
This rule may be applicable when multiple different people
have at least medium measures of relevance. Thus, for
instance, the following human-to-computer dialog may be
enabled:

USER: Who is the lead vocalist of Iron Maiden?

AA: It’s Bruce Dickinson.

USER: Who performed the Paparazzi song?

AA: Tt was Lady Gaga.

USER: Were they ever married?

AA: No, they were not.

Two distinct instances of the topic “person” were raised: one
for “Bruce Dickinson” and another for “Lady Gaga.” Thus,
when the user asks the question, “Were they ever married?”,
automated assistant 120 may apply the grammar rule above
to obtain information indicating that the two people were, in
fact, never married.

In some implementations, grammar rules may be appli-
cable to topics that may be raised by sources other than the
user or automated assistant 120. Suppose the following
grammar rule is in effect:

(allow_if (point_of_interest))

(rule $who_built (google who built it)

(=(event_name who_built)))

This grammar rule may be applicable when any point of
interest is currently persisted in contextual data structure
152, no matter how high or low the measure of relevance
may be. And while the “point_of_interest” topic may be
added by a user or by automated assistant 120, it also may
be added by a component such as a position coordinate
sensor (e.g., Global Positioning System, or “GPS”) in a
computing device carried by the user. Suppose the user
stands in front of the Eiffel Tower (causing the topic
“point_of_interest” to be added to contextual data structure
152) and asks, “Who built it?” Automated assistant 120 may
apply the above grammar rule to parse the user’s natural
language input, and may return the answer “The Eiffel
Tower was built by Gustave Eiffel.”

Response subsystem 140 may receive parses and topics
from grammars that are selected and applied by parser
subsystem 130. In various implementations, response sub-
system 140 may include a dialog engine 142 that employs a
dialog tree 144 to steer the ongoing human-to-computer
dialog between seemingly unrelated topics. In essence, the
response subsystem receives one or more parses (or inter-
pretations) and topics from the parser subsystem, and steers
the conversation along the dialog tree based on the parses
and topics.

For example, in some implementations, each node in
dialog tree 144 represents a natural language process. A root
node of the dialog tree 144 may be configured to handle any
natural language input (either by initiating a process or by
requesting disambiguation from the user) and to initiate one
or more child nodes corresponding to processes that are
initiated in response to natural language input from the user.
The child processes may themselves add additional child
processes to handle various aspects of their own internal
dialog. This may simplify code maintenance and reuse, as

10

15

20

25

30

35

40

45

50

55

60

65

14

each process may be a modular process that is configured to
implement techniques described herein.

Whenever response subsystem 140 generates a response
(e.g., a natural language response, a responsive action or
task, etc.) for the user, response subsystem 140 may add any
related topics to the contextual data structure 152. In some
implementations, each node of the dialog tree may be
associated with one or more topics (which may, for instance,
be selected by a developer of the process underlying the
node). As noted above, each grammar also may be associ-
ated with one or more topics. Consequently, by adding these
topics to the contextual data structure, the response subsys-
tem in effect adds the number of grammars that may be
applicable by parser subsystem 130 at any point in time.
Thus, if a user converses about one topic, changes course,
then returns to the original topic (or to a semantically-related
topic), grammars associated with that original topic may still
be applicable because their associated topics are still per-
sisted in the contextual data structure 152. But as noted
above, if the human-to-computer dialog strays from a given
topic for long enough, in some implementations, the topic
may be dropped from the contextual data structure 152, e.g.,
to prevent parser subsystem 130 from applying an excessive
number of grammars to each natural language input, which
as noted above can become computationally expensive.

In addition to or instead of simply conversing with the
user using techniques described herein, automated assistant
120 may also initiate one or more tasks based on natural
language input provided by the user. According, application
engine 160 may maintain or otherwise have access to an
application library 162. Applications in application library
162 may be installed on one or more client devices 106, may
be processes that are available to automated assistant 120,
e.g., web processes, cloud processes, etc., and/or may be
processes that are built in to automated assistant 120. More
generally, applications in application library 162 may be
processes that are available to automated assistant 120
during a human-to-computer dialog.

As will be described in more detail below, response
subsystem 140 may maintain, e.g., as dialog tree 144, a
graph of nodes corresponding to interactive natural language
processes that have been initiated and/or accessed by auto-
mated assistant 120 during a human-to-computer dialog
session. As automated assistant 120 accesses new processes,
nodes representing those processes may be added as child
nodes to the aforementioned root node. In some implemen-
tations, child node processes may likewise add additional
child node processes as needed.

In some implementations, each child node process may be
compatible with the techniques and framework described
herein. For example, each child node process may be
associated with one or more topics. These topics effectively
associate each child node with grammars that are also
associated with the same topics. If natural language input is
received that does not satisfy a most recently-added child
node process—i.e., the natural language input raises a topic
that is inapplicable to any topic of the most recently-added
child node process—it is possible that other, previously-
added child node processes may have associated topics that
are applicable to (e.g., match) the newly raised topic. In this
manner, a user is able to seamlessly revert back to a previous
topic of the human-to-computer dialog session without
necessarily requiring automated assistant 120 to retrace a
state machine associated with a previously-raised child node
process.

FIG. 2 depicts a simple example of how one or more
grammars 270 may be applied during a human-to-computer

US 11,227,124 B2

15

dialog session 272 between a user and automated assistant
120 (“AA” in the Figures). In this example, a top-most of
grammars 270 may be applicable if the topic of “person” has
a measure of relevance that is deemed to be “high” (e.g.,
satisfies a threshold). The dialog begins with the user
providing natural language input in the form of a question,
“What’s this music?” (assume there is music being played,
either by automated assistant 120 or detected as ambient
sound). As indicated by the bold lettering, in some imple-
mentations, the user’s natural language input may be ana-
lyzed, e.g., by parser subsystem 130 and/or dialog context
engine 150, to determine that the topic “music” should be
added to the topics currently persisted in contextual data
structure 152. At this point in time, a measure of relevance
associated with the topic “music” may be relatively high/
strong, because the topic was just added.

Automated assistant 120 responds by stating, “It’s Opus
in C Sharp Minor by Chopin.” Automated assistant 120 may
determine this answer, for instance, because automated
assistant 120 itself initiated playback of the music, or by
utilizing various sound-processing techniques to identify the
music based on one or more audible characteristics. As
indicated by the bold lettering, in various implementations,
topics such as “person,” “artist,” “composer,” and/or “Cho-
pin” may be added to the topics currently persisted in
contextual data structure 152. At this point in time, a
measure of relevance associated with the topics “person”
and/or “Chopin” may be relatively high/strong, because the
topic was just added. In some implementations, the measure
of relevance associated with the previously-added topic of
“music” may be decreased/weakened, e.g., because it has
now been one turn since the topic of music was raised.
However, in other implementations, because the topic “Cho-
pin” (a composer) is has a close semantic relationship with
the topic “music,” the measure of relevance associated with
the topic “music” may not be decreased/weakened because
the topic “music” is clearly still relevant to the human-to-
computer dialog.

Next, the user provides natural language input that
includes, among other things, the question, “Where was he
born?” Because the topic “person” was just raised during the
immediately preceding turn (and thereby added to contex-
tual data structure 152), the topic “person” may still have a
relatively strong or high measure of relevance. Accordingly,
grammar 270 may be applied, e.g., by parser subsystem 130,
to determine that the natural language input “where was he
born” should trigger an event, called “where_person_born,”
that causes parser subsystem 130 to provide a parse and/or
interpretation to response subsystem 140 that causes
response subsystem 140 to determine a birthplace of the
person most recently referenced during the dialog (Chopin),
and to return the response, “He was born in Zelazowa Wola.”
Meanwhile, response subsystem 140 may also add, or cause
dialog engine 150 to add, topics such as “city” and/or
“Zelazowa Wola” to contextual data structure 152. As
before, measures of relevance associated with topics raised
during prior turns (e.g., “music,” “person,” “Chopin”) may
or may not be decreased, e.g., depending on whether they are
semantically related to the newly added topics.

Next, the user provides natural language input that asks
the question, “Where is that?” It should be noted that had the
user initiated a new human-to-computer dialog session with
automated assistant 120 by asking such an ambiguous
question, without the benefit of any prior conversational
context, automated assistant 120 may not have been able to
provide a response to this question without soliciting further
disambiguating information from the user. However,

10

15

20

25

30

35

40

45

50

55

60

65

16

because the topic “city” was just added to contextual data
structure 152 in the preceding turn, and hence has a rela-
tively high measure of relevance, parser subsystem 130 may
be able to apply the second grammar of grammars 270 to the
user’s natural language input. Parser subsystem 130 may
provide the resulting parse or interpretation (e.g.,
event_name="where_city_located”) to response subsystem
140, as well as any new applicable topics. Based on this
parse (and topic), response subsystem 140 may obtain (e.g.,
from various sources such as knowledge graphs, searchable
documents, etc.) responsive information and provide natural
language output, “Zelazowa Wola is a city in Masovian
district in Poland.” Similar as before, topics such as “dis-
trict,” “country,” and/or “Poland” may be added, e.g., by
response subsystem 140 and/or dialog context engine 150, to
contextual data structure 152.

The user then provides natural language input asking the
question, “How far from the capitol?”” Again, without prior
context, it is unlikely that automated assistant 120 could
answer such a question without soliciting disambiguating
information from the user. However, with the topics
“Zelazowa Wola” and “Poland” still being relatively “fresh”
(i.e. still have relatively high measures of relevance) in this
particular human-to-computer dialog session, automated
assistant 120 is able to more directly answer the question.
For example, parser subsystem 130 may apply the third
grammar down to the user’s natural language input to trigger
an event, “identify_capitol,” that returns a capitol of a
currently relevant country or district (in this example, “War-
saw”). Also, in some implementations, topics such as “capi-
tol” may be added to contextual data structure 152. Then,
parser subsystem 130 may apply the fourth grammar down
to a combination of the user’s natural language input and the
identified capitol. The resulting parse or interpretation (e.g.,
event_name="distance_between_cities”) may be provided
to response subsystem 140. Based on this parse, response
subsystem 140 may obtain responsive information and pro-
vide natural language output, “It’s 39 miles away.”

The next two turns of human-to-computer dialog 272
particularly underscore one technical advantage provided by
techniques described herein, namely, abruptly changing
domains of conversation. The user provides natural lan-
guage input that asks, “Do you know any similar artists?”” As
noted above, the topic of “artist” was added to contextual
data structure 152 relatively early during human-to-com-
puter dialog 272, and has not been raised in multiple dialog
turns. Consequently, a measure of relevance associated with
the topic “artist” may have decreased/weakened consider-
ably. Nonetheless, the bottom grammar of grammars 270
specifies that even if the topic “artist” is associated with a
relatively low measure of relevance, that grammar may
nonetheless be applicable. Accordingly, parser subsystem
130 may apply that grammar to generate a parse for response
subsystem 140. In response to the parse, response subsystem
140 may then trigger an event, “find_similar_artists,” that
initiates a search for other similar artists (e.g., they create
aesthetically similar art, are similar demographically, oper-
ated in similar time periods, etc.). Response subsystem 140
may then provide the natural language output, “Sure, I
recommend Franz Liszt, Ludwig van Beethoven or Franz
Schubert.”

FIG. 3 depicts one example of how contextual data
structure 152 may be implemented logically. In this
example, contextual data structure 152 is formed as an
undirected graph 364 with a plurality of nodes and a
plurality of edges connecting the plurality of nodes. Each
node of undirected graph 364 may represent a given topic of

US 11,227,124 B2

17

the one or more topics persisted as part of contextual data
structure 152. In some implementations, each node may also
store a count of turns of the ongoing human-to-computer
dialog since the given topic was last raised.

Undirected graph 364 includes nodes corresponding to
topics that may have been added to contextual data structure
152 during human-to-computer dialog 272 of FIG. 2. The
brackets preceding each topic represent the turn number in
which that topic was last raised, which were also indicated
in FIG. 2. Thus, for example, the topics of “music” and
“artist” were raised during the first ([0]) turn (which includes
both the user’s natural language input and a response from
automated assistant 120, although this is not required). The
topic “city” was raised during the second ([1]) turn when
automated assistant 120 mentioned “Zelazowa Wola.” The
topics “country” and “district” were raised during the third
([2]) turn when automated assistant 120 mentioned “Poland”
and “Masovian district,” respectively. The topics “distance”
and “city” were raised during the fourth ([3]) turn when the
user requested the distance to the capitol. The topic “artist”
was raised three times during the fifth ([4]) turn when
automated assistant 120 provided three examples of artists
similar to Chopin.

In some implementations, a measure of relevance of a
particular topic may be determined simply by subtracting its
associated dialog turn number (the latest dialog turn number
if there are multiple nodes representing the topic) from the
current turn number. The smaller the result, the more rel-
evant the topic is to the dialog at present. However, and as
was mentioned above, in other implementations, other fac-
tors are taken into account, such as relatedness of topics. For
example, in some implementations, nodes representing top-
ics being raised in the current dialog turn (whether they are
newly added or updated) may be identified, e.g., as nodes A.
A measure of relevance of a given topic may be determined
during a current dialog turn by calculating, for each node in
directed graph 364, the shortest distance d, to any node
belonging to A. Additionally, a difference a, between the
current dialog turn number and the node’s turn number may
also be calculated. The node’s (and hence, topic’s) measure
of relevance may be set to the minimum of d, and a,.

FIG. 4 depicts a similar undirected graph 464 as was
depicted in FIG. 3. Assume for this example that the
human-to-computer dialog 272 depicted in FIG. 2 is now
entering the sixth ([5]) dialog turn, and that the shaded node
(“artist”) is raised during the current dialog turn ([5]). Each
node of undirected graph 464 includes, on the left side of the
brackets, a difference d, between the current dialog turn
number ([5]) and the last dialog turn in which that topic was
raised. Each node of undirected graph 464 also includes, on
the right side of the brackets, the shortest path a, between
that node and the newly added node of A. FIG. 5 depicts the
measures of relevance determined for each node/topic based
on the minimum of d, and a,. Determining measures of
relevance in such a fashion may account for the scenario in
which a particular topic has not been mentioned recently, but
yet closely related topics have been mentioned recently. In
such a scenario, the particular topic may still be at least
indirectly relevant to the human-to-computer dialog, and
thus it may make sense to temper how much the measure of
relevance associated with that particular topic is diminished.

As noted above, response subsystem 140, e.g., by way of
dialog engine 142, may control how automated assistant 120
participates in a human-to-computer dialog with a user. In
some implementations, parses (or interpretations) of a user’s
natural language inputs may be provided to a hierarchal
decision making process implemented by dialog engine 142,

10

15

20

25

30

35

40

45

50

55

60

65

18

e.g., by way of using dialog tree 144. The hierarchal decision
making process may, in some cases, include a hierarchy of
processes (e.g., root and child process nodes of dialog tree
144) in which bigger processes govern some smaller pro-
cesses.

FIG. 6 schematically depicts a simple example of a dialog
tree 644 that may be used during a human-to-computer
dialog 670. This example shows how the more context is
available (i.e., the more topics persisted in contextual data
structure 152), the less the user needs to say in order to
achieve some goal (e.g., obtain responsive answer from
automated assistant 120, cause automated assistant to initi-
ate a task, etc.). Assume for this example that the following
grammar rules are defined for GAME A, which may be a
trivia game:

(allow_always)

(rule $play_game (I want to play Game A for three
players)
(=(event_name play_game_A) (players 3))

(allow_if (medium game_A))

(rule $player_choice (I want three players)
(=(event_name player_choice) (number 3))
(allow_if (high player_question))
(rule $number ($PT_Number)
(=(event_name number) (value 3))
From these grammar rules is it apparent that the user can
always specifically state, at the outset, that he or she wants
to play GAME A with three players. Such a statement
includes all parameters required by GAME A to begin game
play. If the topic “game_A” has at least a medium measure
of relevance (e.g., the player said, “I want to play Game A”
but did not provide additional information), then the player
can say, “I want <non-zero integer> players” to begin game
play. And if automated assistant 120 has just asked, “How
many players?”, then the topic “player_question” may have
a sufficiently high measure of relevance that the user can
simply provide a numeric response.

In human-to-computer dialog 672, the user begins by
stating, “I want to play GAME A.” Topic “game_A” (and
potentially other topics such as “games”) may be added to
contextual data structure 152, and a GAME A child node is
added to the root node. The GAME A child node may
represent a child node process associated with GAME A.
When developing such a child node process (or a plurality
of child node processes that dictate dialog for a particular
application), the developer may define (and store in gram-
mar database 134 in some implementations) grammar rules
such as those described above. In this example, GAME A
includes three child node processes: GAME MODE (which
controls whether single or multiplayer mode is imple-
mented), PLAYERS (which controls how many players if
multiplayer mode is implemented), and MULTIPLAYER
LOOP (which controls multiplayer gameplay).

In accordance with the GAME MODE child process,
automated assistant 120 replies, “OK, single player or
multiplayer?” The player responds, “multiplayer.” In some
implementations, the child process associated with the node
GAME MODE may interpret the user’s input (e.g., using a
grammar rule provided in association with the GAME
MODE node) and provide the parse/interpretation to the
process represented by GAME A node. Next, in accordance
with the child process associated with the PLAYERS node,
automated assistant 120 may ask, “how many players?” The
player responds, “three.” In some implementations, the child
process associated with the node PLAYERS may interpret
the user’s input (e.g., using a grammar rule provided in
association with the PLAYERS node) and provide the parse/

US 11,227,124 B2

19

interpretation to the process represented by GAME A node.
Once the process associated with GAME A node knows the
game mode (multiplayer) and the number of players (three),
it may then pass control to the MULTIPLAYER LOOP node,
which controls the dialog during gameplay.

In some implementations, each child node process of a
dialog tree may be designed to perform three functions:
handling specific user interpretations (i.e., parses), commu-
nicating with its closest parent node, and communicating
with its closest child node. A child node process may
perform the function of handling specific user interpretations
by, for instance, being associated with one or more topics
that are applicable in a current context (e.g., stored in the
contextual data structure). In FIG. 6, the node associated
with GAME A may be able to receive parameters needed to
play the game from multiple sources, such as the user
directly (e.g., by the user providing natural language input
that is interpreted by a grammar associated with GAME A
node), and/or from one or more child nodes (e.g., receive the
mode of gameplay from GAME MODE node, receive the
number of players from PLAYERS node).

FIGS. 7A-C demonstrates how a dialog tree 744 may be
dynamically generated during the following human-to-com-
puter dialog:

USER: 1 want to play GAME A

AA: OK, how many players?

USER: First, tell me the time

AA: Tt’s 7:15 PM

USER: When does Game of Roses air today?

AA: In 45 minutes, at 8 pm.

USER: OK. I want three players

AA: Sure, let’s play. First question . . .

As described above, the user’s first statement (“I want to
play GAME A”) is interpreted by the root node because
there are not yet any topics in the contextual data structure.
As depicted in FIG. 7A, the user’s request may cause the
child node process GAME A to be initiated, as well as the
MULTIPLAYER LOOP node in some instances. In some
implementations, automated assistant’s response (“OK, how
many players”) may cause one or more additional child node
processes to be added below the node GAME A, such as
PLAYERS.

FIG. 7B depicts dialog treec 744 after the user abruptly
changes subjects by saying, “First, tell me the time.” When
the user provides this statement, the topic “time” has not
been added to contextual data structure 152. Accordingly,
control is passed back to the root node, which handles
natural language inputs when no topics associated with any
active child process nodes are applicable to (e.g., match) a
newly raised topic. The root node is able to interpret the
user’s request and initiate another child process node called
TIME, which may be configured to return the current time.

FIG. 7C depicts dialog treec 744 after the user abruptly
changes subjects again. This time, the user asks, “What time
does Game of Roses air today?” Potentially applicable
topics such as “television,” “series,” and so forth are not
persisted in contextual data structure 152. Accordingly,
control once again passes back to root, which interprets the
user’s natural language input and responds, “In 45 minutes,
at 8 pm.” Then, the user steers the subject back to GAME A,
saying, “OK. I want three players. Because the topic
“GAME A” is still persisted in contextual data structure 152,
a grammar associated with the topic “GAME A” may be
applicable by the GAME A child node process.

From the above description and examples it should be
clear that in some implementations, child node processes in
dialog trees are associated with topics. The presence of

20

25

30

35

40

45

20

topics in contextual data structure 152 depends on the
context of the ongoing human-to-computer dialog, which
changes over time. Accordingly, the presence of child node
processes in dialog trees may be dependent on the context of
the ongoing human-to-computer dialog. The dialog tree thus
dynamically changes over time as the context of the ongoing
human-to-computer dialog changes.

In some implementations, child node processes may be
implemented as classes in various programming languages
(e.g., C++, Java, etc.). Each child node process may be
configured to exchange information with its parent and
children (if any), react to parses/interpretations of user-
provided natural language input, persist some state, and in
some cases, communicate with remote processes, such as
remote procedure calls that may return pieces of information
like weather, sports scores, news, television schedules, gen-
eral information (e.g., information associated with entities in
a knowledge graph), and so forth.

In some implementations, child node processes may
include methods of statically defined interfaces. In a simplex
communication, the response is not anticipated. Only the
callee exposes an interface, as shown by the following
sample code:

void SomeChildClass::set_difficulty(int level);

In a duplex communication, on the other hand, the receiving
side must be able to return the result back to the caller.
Accordingly, both sides may expose interfaces:

void SomeChildClass::ask_for_game_settings();

void ParentClass::game_settings_callback(const Game-

Settings& settings);
If template programming (e.g., in C++) is used, it may be
possible to ensure that parent processes implement inter-
faces that are required by their children, e.g., to enable
duplex communication. Consequently, bugs caused by
inconsistencies in a communication protocol between a
caller and a callee may be detected at compile time.

Such clearly defined communication interfaces may
facilitate reuse of code. For example, suppose a process A is
intended to use logic provided by process B. If process B
does not return any data back to its parent process, then
process A may simply add process B as a child. On the other
hand, if process B is configured to return data to its parent
process, e.g., through an interface IB, then process A may be
configured to implement an interface 1B, and then may add
process B as a child.

In some implementations, each class implementing a
process may implement a method responsible for handling a
parse/interpretation of natural language input received from
a user. A state of a class instance may be kept within a topic
object associated with that class instance. Each class may
have access to an inherited member providing an interface
for doing various calls (e.g., remote procedure calls) to the
outside world.

FIG. 8 is a flowchart illustrating an example method 800
according to implementations disclosed herein. For conve-
nience, the operations of the flow chart are described with
reference to a system that performs the operations. This
system may include various components of various com-
puter systems, such as one or more components of auto-
mated assistant 120. Moreover, while operations of method
800 are shown in a particular order, this is not meant to be
limiting. One or more operations may be reordered, omitted
or added.

At block 802, the system may receive natural language
input from a user. The natural language input may be
received in various forms via various types of input devices.
For example, in some implementations, the input device

US 11,227,124 B2

21

may be a microphone, and the natural language input may be
an audible utterance provided by the user. In some such
implementations, tokens and other information may be
extracted from the audio signal and used to generate text
corresponding to the spoken input. In other implementa-
tions, the natural language input may be received, for
instance, as typed or spoken input provided by the user in a
message exchange thread using message exchange client
107.

At block 804, the system may select one or more gram-
mars to parse the natural language input. This selection may
be based on one or more topics that are persisted as part
contextual data structure 152, and/or on measures of rel-
evance associated with those topics. In implementations in
which dialog trees are employed by response subsystem
140, if no topics are yet persisted in contextual data structure
152, or if no topics currently associated with any child
process nodes are applicable to (e.g., match) the most
recently raised topic, control may pass to the root node. The
root node may then parse the natural language input and
react accordingly (e.g., obtain information and provide a
natural language response, initiate one or more applications/
processes, etc.). If at the root node, the user’s natural
language input is not understood, then automated assistant
120 may ask the user for clarification.

At block 806, the system may parse the natural language
input received at block 802 based on the grammars selected
at block 804. In some implementations, it is possible that
multiple grammars may be applicable, and thus may gen-
erate parses/interpretations of the natural language input.
The system may select from these multiple (potentially
conflicting) interpretations in various ways. In some imple-
mentations, the system may select the parse generated by the
grammar that requires that its associated topic be the most
focused (e.g., associated with a highest measure of rel-
evance). Suppose, for instance, that a first grammar is
associated with the topic “game” but only requires that the
topic “game” have a medium or even slight measure of
relevance. Suppose further that a second grammar, also
associated with the topic “game,” requires a relatively high
measure of relevance. If the topic “game” currently is
associated with a high measure of relevance—e.g., because
it has just been recently raised or is semantically related to
other recently-raised topics—both grammars may be appli-
cable. However, the system may select the parse generated
by the second grammar because of its higher focus thresh-
old. In other implementations, the system may select from
multiple parses/interpretations based on other signals, such
as probabilities of each parse being the true intention of the
user. For example, in some implementations, logs, measures
of relevance, or other similar data points may be used to
calculate probabilities that each of multiple parses matches
the user’s true intention. In instances in which multiple
parses appear to have similar probabilities of being correct,
the system may seek additional clarification and/or disam-
biguation from the user.

In some implementations, at block 808, the system may
generate a natural language response based on the one or
more parse(s) generated at block 806. In some such imple-
mentations, the natural language response may accompany
the system also initiating some process, such as the trivia
games described above. And while the trivia games provided
above as examples were alluded to be integral with the
automated assistant (i.e., they were described as IVR apps
that integrated seamlessly into the ongoing human-to-com-
puter dialog), this is not meant to be limiting. In various
implementations, the system may initiate a task that does not

10

15

20

25

30

35

40

45

50

55

60

65

22

involve IVR, such as opening an application (e.g., a tele-
phone app, a calendar app, a social networking app, a
graphical video game, a fitness app, etc.) that is not neces-
sarily controlled using spoken or typed natural language
input. At block 810, the system may output the natural
language response generated at block 808. For example, the
automated assistant may answer a user’s question, seck
another parameter for a process, engage in conversation with
the user, provide output indicating that the automated assis-
tant is initiating another application, and so forth.

At block 812, the system may identify topics that were
raised by the parse(s) generated at block 806 and/or the
natural language response generated at block 808. At block
814, the system may update the contextual structure based
on the identified topics. If the topics have not yet been added
to the contextual data structure, they may be added. If the
topics are already persisted as part of the contextual data
structure, they may be “touched,” e.g., by increasing a
measure of relevance associated with those topics. Addi-
tionally, in some implementations, other topics in the con-
textual data structure 152 that are semantically related to
newly-raised topics may also be “touched,” e.g., to the same
degree as the added topics or, in some cases, to a lesser
degree.

FIG. 9 is a block diagram of an example computing
device 910 that may optionally be utilized to perform one or
more aspects of techniques described herein. In some imple-
mentations, one or more of a client computing device,
automated assistant 120, and/or other component(s) may
comprise one or more components of the example comput-
ing device 910.

Computing device 910 typically includes at least one
processor 914 which communicates with a number of
peripheral devices via bus subsystem 912. These peripheral
devices may include a storage subsystem 924, including, for
example, a memory subsystem 925 and a file storage sub-
system 926, user interface output devices 920, user interface
input devices 922, and a network interface subsystem 916.
The input and output devices allow user interaction with
computing device 910. Network interface subsystem 916
provides an interface to outside networks and is coupled to
corresponding interface devices in other computing devices.

User interface input devices 922 may include a keyboard,
pointing devices such as a mouse, trackball, touchpad, or
graphics tablet, a scanner, a touchscreen incorporated into
the display, audio input devices such as voice recognition
systems, microphones, and/or other types of input devices.
In general, use of the term “input device” is intended to
include all possible types of devices and ways to input
information into computing device 910 or onto a commu-
nication network.

User interface output devices 920 may include a display
subsystem, a printer, a fax machine, or non-visual displays
such as audio output devices. The display subsystem may
include a cathode ray tube (CRT), a flat-panel device such as
a liquid crystal display (LCD), a projection device, or some
other mechanism for creating a visible image. The display
subsystem may also provide non-visual display such as via
audio output devices. In general, use of the term “output
device” is intended to include all possible types of devices
and ways to output information from computing device 910
to the user or to another machine or computing device.

Storage subsystem 924 stores programming and data
constructs that provide the functionality of some or all of the
modules described herein. For example, the storage subsys-
tem 924 may include the logic to perform selected aspects of

US 11,227,124 B2

23

the method of FIG. 8, as well as to implement various
components depicted in FIG. 1.

These software modules are generally executed by pro-
cessor 914 alone or in combination with other processors.
Memory 925 used in the storage subsystem 924 can include
a number of memories including a main random access
memory (RAM) 930 for storage of instructions and data
during program execution and a read only memory (ROM)
932 in which fixed instructions are stored. A file storage
subsystem 926 can provide persistent storage for program
and data files, and may include a hard disk drive, a floppy
disk drive along with associated removable media, a CD-
ROM drive, an optical drive, or removable media cartridges.
The modules implementing the functionality of certain
implementations may be stored by file storage subsystem
926 in the storage subsystem 924, or in other machines
accessible by the processor(s) 914.

Bus subsystem 912 provides a mechanism for letting the
various components and subsystems of computing device
910 communicate with each other as intended. Although bus
subsystem 912 is shown schematically as a single bus,
alternative implementations of the bus subsystem may use
multiple busses.

Computing device 910 can be of varying types including
a workstation, server, computing cluster, blade server, server
farm, or any other data processing system or computing
device. Due to the ever-changing nature of computers and
networks, the description of computing device 910 depicted
in FIG. 9 is intended only as a specific example for purposes
of illustrating some implementations. Many other configu-
rations of computing device 910 are possible having more or
fewer components than the computing device depicted in
FIG. 9.

In situations in which certain implementations discussed
herein may collect or use personal information about users
(e.g., user data extracted from other electronic communica-
tions, information about a user’s social network, a user’s
location, a user’s time, a user’s biometric information, and
a user’s activities and demographic information), users are
provided with one or more opportunities to control whether
information is collected, whether the personal information is
stored, whether the personal information is used, and how
the information is collected about the user, stored and used.
That is, the systems and methods discussed herein collect,
store and/or use user personal information only upon receiv-
ing explicit authorization from the relevant users to do so.
For example, a user is provided with control over whether
programs or features collect user information about that
particular user or other users relevant to the program or
feature. Each user for which personal information is to be
collected is presented with one or more options to allow
control over the information collection relevant to that user,
to provide permission or authorization as to whether the
information is collected and as to which portions of the
information are to be collected. For example, users can be
provided with one or more such control options over a
communication network. In addition, certain data may be
treated in one or more ways before it is stored or used so that
personally identifiable information is removed. As one
example, a user’s identity may be treated so that no person-
ally identifiable information can be determined. As another
example, a user’s geographic location may be generalized to
a larger region so that the user’s particular location cannot
be determined.

While several implementations have been described and
illustrated herein, a variety of other means and/or structures
for performing the function and/or obtaining the results

10

15

20

25

30

35

40

45

50

55

65

24

and/or one or more of the advantages described herein may
be utilized, and each of such variations and/or modifications
is deemed to be within the scope of the implementations
described herein. More generally, all parameters, dimen-
sions, materials, and configurations described herein are
meant to be exemplary and that the actual parameters,
dimensions, materials, and/or configurations will depend
upon the specific application or applications for which the
teachings is/are used. Those skilled in the art will recognize,
or be able to ascertain using no more than routine experi-
mentation, many equivalents to the specific implementations
described herein. It is, therefore, to be understood that the
foregoing implementations are presented by way of example
only and that, within the scope of the appended claims and
equivalents thereto, implementations may be practiced oth-
erwise than as specifically described and claimed. Imple-
mentations of the present disclosure are directed to each
individual feature, system, article, material, kit, and/or
method described herein. In addition, any combination of
two or more such features, systems, articles, materials, kits,
and/or methods, if such features, systems, articles, materials,
kits, and/or methods are not mutually inconsistent, is
included within the scope of the present disclosure.

What is claimed is:
1. A method implemented using one or more processors,
comprising:
receiving natural language input from a user as part of an
ongoing human-to-computer dialog between the user
and an automated assistant operated by one or more of
the processors, wherein one or more topics raised
previously during the ongoing human-to-computer dia-
log are stored in memory as part of a contextual data
structure associated with the ongoing human-to-com-
puter dialog;
contextually filtering a subset of one or more grammars
associated with the previously-raised one or more top-
ics from a superset of grammars associated with a
plurality of respective topics, wherein the contextually
filtering is based on one or more respective measures of
relevance of the previously-raised one or more topics to
the ongoing human-to-computer dialog;
subsequent to the contextually filtering, parsing the natu-
ral language input based on the contextually-filtered
one or more grammars to generate one or more parses;

generating, based on one or more of the parses, a natural
language response;

outputting the natural language response to the user using

one or more output devices;

identifying one or more new topics raised by one or more

of the parses or the natural language response;

adding the identified one or more new topics to the

contextual data structure; and

elevating the measure of relevance associated with a

given topic of the previously-raised topics to the ongo-
ing human-to-computer dialog based on a measure of
semantic relatedness between the given topic and the
one or more new topics.

2. The method of claim 1, wherein the measure of
relevance associated with each given topic of the one or
more topics is further determined based at least in part on a
count of turns of the ongoing human-to-computer dialog
since the given topic was last raised, wherein the count of
turns since the given topic was last raised is inversely related
to relevance of the given topic to the ongoing human-to-
computer dialog.

US 11,227,124 B2

25

3. The method of claim 1, wherein the contextual data
structure comprises an undirected graph comprising a plu-
rality of nodes and a plurality of edges connecting the
plurality of nodes.
4. The method of claim 3, wherein each node of the
undirected graph represents a given topic of the previously-
raised one or more topics stored as part of the contextual
data structure, and a count of turns of the ongoing human-
to-computer dialog since the given topic was last raised.
5. The method of claim 4, wherein each edge connecting
two nodes represents a measure of relatedness semantic
between two topics represented by the two nodes, respec-
tively.
6. The method of claim 1, further comprising generating
a dialog tree with one or more nodes that represent one or
more interactive voice processes that have been invoked
during the ongoing human-to-computer dialog.
7. The method of claim 6, wherein one or more of the
nodes is associated with one or more topics.
8. A system comprising one or more processors and
memory operably coupled with the one or more processors,
wherein the memory stores instructions that, in response to
execution of the instructions by the one or more processors,
cause the one or more processors to:
receive natural language input from a user as part of an
ongoing human-to-computer dialog between the user
and an automated assistant operated by one or more of
the processors, wherein one or more topics raised
previously during the ongoing human-to-computer dia-
log are stored in memory as part of a contextual data
structure associated with the ongoing human-to-com-
puter dialog;
contextually filter a subset of one or more grammars
associated with the previously-raised one or more top-
ics from a superset of grammars associated with a
plurality of respective topics, wherein the contextual
filtering is based on one or more respective measures of
relevance of the previously-raised one or more topics to
the ongoing human-to-computer dialog;
subsequent to the contextually filtering, parse the natural
language input based on the contextually filtered one or
more grammars to generate one or more parses;

generate, based on one or more of the parses, a natural
language response;

output the natural language response to the user using one

or more output devices;

identify one or more new topics raised by one or more of

the parses or the natural language response;

add the identified one or more new topics to the contextual

data structure; and

elevate the measure of relevance associated with a given

topic of the previously-raised topics to the ongoing
human-to-computer dialog based on a measure of
semantic relatedness between the given topic and the
one or more new topics.

9. The system of claim 8, wherein the measure of rel-
evance associated with each given topic of the one or more
topics is further determined based at least in part on a count
of turns of the ongoing human-to-computer dialog since the
given topic was last raised, wherein the count of turns since
the given topic was last raised is inversely related to rel-
evance of the given topic to the ongoing human-to-computer
dialog.

10. The system of claim 8, wherein the contextual data
structure comprises an undirected graph comprising a plu-
rality of nodes and a plurality of edges connecting the
plurality of nodes.

20

25

30

35

40

45

50

55

26

11. The system of claim 10, wherein each node of the
undirected graph represents a given topic of the previously-
raised one or more topics stored as part of the contextual
data structure, and a count of turns of the ongoing human-
to-computer dialog since the given topic was last raised.
12. The system of claim 11, wherein each edge connecting
two nodes represents a measure of semantic relatedness
between two topics represented by the two nodes, respec-
tively.
13. The system of claim 8, further comprising generating
a dialog tree with one or more nodes that represent one or
more interactive voice processes that have been invoked
during the ongoing human-to-computer dialog.
14. The system of claim 13, wherein one or more of the
nodes is associated with one or more topics.
15. At least one non-transitory computer-readable
medium comprising instructions that, in response to execu-
tion of the instructions by one or more processors, cause the
one or more processors to perform the following operations:
receiving natural language input from a user as part of an
ongoing human-to-computer dialog between the user
and an automated assistant operated by one or more of
the processors, wherein one or more topics raised
previously during the ongoing human-to-computer dia-
log are stored in memory as part of a contextual data
structure associated with the ongoing human-to-com-
puter dialog;
contextually filtering a subset of one or more grammars
associated with the previously-raised one or more top-
ics from a superset of grammars associated with a
plurality of respective topics, wherein the contextual
filtering is based on one or more respective measures of
relevance of the previously-raised one or more topics to
the ongoing human-to-computer dialog;
subsequent to the contextually filtering, parsing the natu-
ral language input based on the contextually filtered
one or more grammars to generate one or more parses;

generating, based on one or more of the parses, a natural
language response;

outputting the natural language response to the user using

one or more output devices;

identifying one or more new topics raised by one or more

of the parses or the natural language response;
adding the identified one or more new topics to the
contextual data structure; and

elevating the measure of relevance associated with a

given topic of the previously-raised topics to the ongo-
ing human-to-computer dialog based on a measure of
semantic relatedness between the given topic and the
one or more new topics.

16. The at least one non-transitory computer-readable
medium of claim 15, wherein the measure of relevance
associated with each given topic of the one or more topics
is further determined based at least in part on a count of turns
of the ongoing human-to-computer dialog since the given
topic was last raised, wherein the count of turns since the
given topic was last raised is inversely related to relevance
of'the given topic to the ongoing human-to-computer dialog.

17. The at least one non-transitory computer-readable
medium of claim 15, wherein the contextual data structure
comprises an undirected graph comprising a plurality of
nodes and a plurality of edges connecting the plurality of
nodes.

18. The at least one non-transitory computer-readable
medium of claim 17, wherein each node of the undirected
graph represents a given topic of the previously-raised one
or more topics stored as part of the contextual data structure,

US 11,227,124 B2
27

and a count of turns of the ongoing human-to-computer
dialog since the given topic was last raised.

19. The at least one non-transitory computer-readable
medium of claim 18, wherein each edge connecting two
nodes represents a measure of semantic relatedness between 5
two topics represented by the two nodes, respectively.

#* #* #* #* #*

28

