A firing mechanism for a diversionary device is provided includes a firing pin movable along a first axis and a hammer in contact with a first end of the firing pin and operable to move the firing pin from a cocked position to a fired position. A rotary solenoid has a shaft rotatable about a second axis parallel; a cam is mounted on a first end of the shaft. A trip lever with a cam follower engaged with the cam is slidable in a direction substantially orthogonal to the first and second axes from first to second positions. The mechanism further includes a link arm connecting the trip lever to the firing pin. When the rotary solenoid is activated, the cam causes the trip lever to slide from the first to the second position and release the firing pin to move from the cocked position to the fired position.
FIG. 4B
SHOCK-STABILIZED FIRING MECHANISM FOR DIVERSIONARY DEVICE

RELATED APPLICATION DATA

The present application is related to commonly-assigned and co-pending U.S. application Ser. No. 12/268,574, entitled DIVERSIONARY DEVICE WITH VERTICALLY DEPLOYED PAYLOAD 12/268,589, entitled REPLACEABLE CARTRIDGE FOR DIVERSIONARY DEVICE 29/327,668, entitled DIVERSIONARY DEVICE 29/327,670, entitled DIVERSIONARY DEVICE, all filed on the filing date hereof, which applications are incorporated herein by reference in their entireties.

TECHNICAL FIELD

The present invention relates generally to diversionary devices, also known as stun grenades and flash-bang grenades and, in particular, to a diversionary device in which the payload is vertically deployed and ignited above the device [a replaceable cartridge for a diversionary device containing an explosive powder] [a shock-stabilized firing mechanism for a diversionary device].

BACKGROUND ART

Diversiory devices are used in a variety of military and law enforcement situations. Specifically, the device is intended to disorientate an adversary without inflicting permanent damage or harm. The device accomplishes this by producing a disorientating flash of light and a confusingly loud noise. Devices of this sort are often referred to as “stun grenades” or “flash-bang grenades.”

For example, a diversionary device might be used by a police SWAT team during a sniper situation. After forcing open the door to the room in which the sniper is located, one of the team members will toss or roll a diversionary device into the room close to the suspect. After a brief delay, the device goes off, producing a bright flash that temporarily blinds and a loud noise that temporarily deafens the suspect. The effects of the flash and noise last only a second or two which is enough for the SWAT team to rush into the room and subdue the suspect.

While the concept is sound in theory, in practice conventional diversionary devices have a number of disadvantages. Conventional diversionary devices may be inherently unstable and subject to accidental or premature detonation, especially when thrown. The devices typically contain a metal powder that violently combines with an oxidizer. The resulting explosion occurs within the body of the device and creates a zone of extreme pressure. This overpressure may blow out windows and shred furniture. In addition, the explosion creates significant heat which can cause furniture and other items to burn and can even cause a major fire. Because conventional diversionary devices are typically cylindrical with dispersion ports at one or both ends, the explosive force and heat is substantially non-directional. Moreover, the explosion may also result in a recoil reaction by the device, causing it to shoot rapidly in an unpredictable direction. It will be appreciated, therefore, that the use of a diversionary device may result in serious injury to the user or to the suspect. In fact, numerous injuries have been documented to police and military personnel as well as to suspects, with the latter also resulting in costly litigation against jurisdictions.

SUMMARY OF THE INVENTION

The present invention provides a firing mechanism for a diversionary device. The mechanism includes a firing pin movable along a first axis and a hammer in contact with a first end of the firing pin. The hammer is operable to move the firing pin from a cocked position to a fired position. A rotary solenoid has a shaft rotatable about a second axis parallel to the first axis and a cam is mounted on a first end of the shaft. A trip lever has a cam follower engaged with the cam; the trip lever is slidable in a direction substantially orthogonal to the first and second axes from a first position to a second position. A link arm connects the trip lever to the firing pin. When the rotary solenoid is activated, the cam causes the trip lever to slide from the first position to the second position and release the firing pin to move from the cocked position to the fired position.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is one perspective view of one embodiment of the diversionary device of the present invention;

FIG. 1B is another perspective view of the diversionary device;

FIG. 1C is an end view of the diversionary device;

FIG. 1D is a side view of the diversionary device;

FIG. 1E illustrates the diversionary device with the sections pulled apart while being cocked;

FIG. 2 is an exploded view of components within the housing of the diversionary device;

FIGS. 3A and 3B are perspective views of a trigger assembly of the present invention;

FIGS. 3C and 3D are exploded views of the trigger assembly;

FIG. 4A is a perspective view of a cartridge of the present invention;

FIG. 4B is an exploded view of components of the cartridge;

FIG. 4C is a cut-away view of the cartridge housing;

FIG. 4D is a primer mount used in the cartridge;

FIG. 5A is a perspective view of the dispersion end of diversionary device;

FIG. 5B is an exploded view of the rear section of the diversionary device;

FIG. 5C illustrates the diversionary device in an unatched position with a cartridge to be loaded; and

FIG. 6 illustrates the device on a floor with the cloud igniting above it.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The described features, structures or characteristics of the invention may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components and so forth. In other instances, well-known structures, materials or operations are not shown or described in detail to avoid obscuring aspects of.
the invention. Furthermore, for clarity a component may be described as being “secured” or “attached” or “connected” to another component. However, it will be understood that other, intermediate, components may be used and that the described connections may be functional connections rather than necessarily being direct physical connections.

Housing

[0024] FIGS. 1A and 1B are perspective views of one embodiment of the housing 100 of the diversionary device of the present invention while FIGS. 1C and 1D are end and side views, respectively, of the housing. For purposes of convenience in describing the device 100, one of the two largest or primary surfaces of the housing 102 will be considered the “top” surface or side and the opposite surface 104 will be considered to be the “bottom” surface or side, with the length L of the device being parallel to a first axis x-x. Similarly, one of the two smallest surfaces 106, in planes orthogonal to the first and second primary sides will be considered to be the “front” end and the opposite surface 108 will be considered to be the “rear” end, with the width and height of the device being parallel to second and third axes y-y and z-z, respectively. And, of the two intermediate-sized surfaces of the housing 100, orthogonal to the first and secondary primary sides 102, 104 and to the front and rear ends 106, 108, one such surface 110 will be considered to be the “right” side and the opposite surface 112 will be considered to be the “left” side. It will be appreciated, however, that functionally, the designations “top,” “bottom,” “front,” “rear,” “left” and “right” are arbitrary and used herein only for description purposes.

[0025] A rear section 500 of the housing 100 includes a circular dispersion port 502A in the top surface 102 and another circular dispersion port 502B in the bottom surface 104, aligned with each other and centered on an axis parallel to the z-z axis. The length L of the device 100 is greater than the height H and the width W. The dimensions L, H and W are selected such that, when the device is thrown or rolled into a room or other area, it will come to rest on either the top or bottom 104 side with one or the other of the dispersion ports 502 facing upwards. Additionally, a slim profile enables the device to be more easily stored and carried. By way of example only, in one embodiment L=8 inches, H=1.5 inches and W=2.75 inches. It will be appreciated that the scope of the claims is not limited to these dimensions but that other dimensions will provide the benefit of the device coming to rest on the top or bottom surfaces when thrown or rolled.

[0026] An opening in the left side 112 of the housing 100 permits a trigger bar 114 to slide parallel to the x-x axis from a locked position (towards the front 106), in which the diversionary device is prevented from activating, to a ready position (towards the rear 108), which releases a hammer block and permits a trigger mechanism to operate, as will be explained in detail below. An opening in the right side 110 of the housing 100 permits a slide switch 116 to activate a timer, as will also be explained below.

[0027] The housing 100 may be constructed of any appropriate material although it is preferred that the material be lightweight. The housings of conventional diversionary devices are typically constructed of steel. While relatively strong, repeated use weakens the metal to such an extent that the number of reloads that is allowed is limited to prevent dangerous cracking or breaking. In contrast, in one embodiment of the diversionary device of the present invention, the housing 100 is constructed from aluminum. As illustrated in FIG. 1E, the device is cocked by pulling two spring-loaded sections A and B away from each other, then releasing it, moving internal components from a safe position into a cocked position. The double-headed arrow and bracket 10 in FIG. 1E indicate the approximate amount by which the two sections A and B are separated. Consequently, it is preferable that the housing include a gripping area 118 at least partially around the housing 100 near the front end 106 to aid cocking the device. Channels (such as those shown in FIGS. 1A and 1B), ridges or the like may also be formed in, on or around the outside of the housing for easier handling.

[0028] One feature of the diversionary device of the present invention is the ability to accept a removable cartridge into the housing (such as illustrated in FIG. 4A). The cartridge contains ignitable powder, primer and, in some embodiments, an oxidizer to enhance the flash and batteries to power the device. The ignitable powder may comprise powdered aluminum and the oxidizer comprise potassium perchlorate. It will be appreciated that other powders and oxidizers that affect the brightness and loudness may be used. To accommodate the cartridges, the rear section 500 opens, such as with a hinge 516, as illustrated in FIG. 5C and may be closed and secured to the rest of the housing 100 with a pull knob 518 capable of being screwed down, or otherwise secured, to the housing 100.

[0029] FIG. 2 is an exploded view of the components of the diversionary device within the housing 100. Shown are the rear section 500, the firing mechanism 300, the trigger bar 114 and a timing circuit board 202 to which the slide switch 116 is attached.

Firing Mechanism

[0030] FIGS. 3A and 3B are perspective views of the firing mechanism 300 of the diversionary device of the present invention and FIGS. 3C and 3D exploded views. The firing mechanism includes a base or carrier 302 to which other components are directly or indirectly attached. A rotary solenoid 304 secured to a platform on the carrier 302 has a shaft (not shown) which rotates in an axis which is parallel to the x-x axis of the housing 100. Secured to the underside of the carrier 302 is a second printed circuit board 306 on which are mounted the trigger switch 308 and cutoff switch 310. The second printed circuit board 306 includes a first set of terminals which contact a power source in a removable cartridge and a second set of terminals which are electrically connected to corresponding terminals on the solenoid 304 to provide power thereto. The second printed circuit board 306 also includes a third set of terminals which are electrically connected to corresponding terminals on the first printed circuit board 202 to provide power thereto. When the device is not cocked, the cutoff switch 310 is in an open state (safe position), preventing the flow of current from the power source to the timing circuit board 222. When the device is cocked, the cutoff switch 310 is in a closed state. After the trigger switch 308 is released, current is allowed to flow to the timing circuit board 222, activating the rotary solenoid at the end of the predetermined timing delay.

[0031] Secured to the shaft of the rotary solenoid 304 is a cam 312. Instead of being secured directly to the shaft, the cam 312 may be secured to a turntable or other intermediate component(s) which is (are) secured to the shaft.

[0032] The firing mechanism 300 also includes a firing pin 314 positioned adjacent to the solenoid/cam assembly 304/312 and parallel to the x-x axis of the housing 100. The firing
pin 314 is hingably connected to a spring-loaded prop or link arm 316, which, in turn, is hingably connected to a trip lever 318. The side of a top portion of the cam 312 facing the firing pin 314 and trip lever 318 has a diagonal cutout 313 into which a cam follower 320, secured to the trip lever 318, fits. Thus, when the rotary solenoid 304 is activated, the end of the trip lever 318 to which the cam follower 320 is attached is forced downward relative to the cam 312 while the opposite end of the trip lever 318 maintains a pivot point. This motion causes the spring-loaded prop 316 to release downward, in turn forcing the firing pin 314 downward also in a direction which is substantially orthogonal to the x-y axis from a cocked position to a fired position. The weight of a hammer 322 adds to the force with which the firing pin 314 moves. In one embodiment, the firing pin 314 directly or indirectly strikes a firing pin which, in turn, strikes one or more primers which accelerate pistons within the removable cartridge to begin the process of forcing an ignitable powder out of the cartridge. In the embodiment illustrated in FIG. 3, a splitter 324 is connected to or struck by the firing pin 314 which strikes primers to accelerate two parallel pistons in the cartridge, one piston to force the ignitable powder out of the cartridge and the other to force an oxidizer out of the cartridge to enhance the effects of the diversionary device. In one embodiment, the firing pin pierces a gas cylinder which releases gas to accelerate the pistons.

Because the motion of the rotary solenoid 304 is orthogonal to the motion of the firing pin 314, the firing mechanism 30 is unlikely to be accidentally activated. To further enhance the safety of the device, the firing mechanism 300 also includes a hammer block 326 which prevents accidental motion of the firing pin 314. One end of the hammer block 326 fits into a vertical slot 328 in the firing pin 314 and is biased away from the firing pin 314. The end of the hammer block 326 is maintained within the slot 328 in a safe position as long as the trigger bar 114 is in its forward locked or safe position. Sliding the trigger bar 114 away from the locked position towards the rear 108 of the housing, releases the hammer block 326 which disengages from the firing pin 314, allowing the firing pin 314 to move downward when the rotary solenoid 304 is activated.

Removable Cartridge

FIG. 4A is a perspective view of a removable cartridge body 400 which is inserted into the housing 100 when the section 500 is opened. FIG. 4B is an exploded view of the components within the cartridge body 400. FIG. 4C is a cutaway view of the cartridge body 400 and FIG. 4D illustrates a primer mount 420 used in the cartridge body 400. The cartridge body 400 includes two sets of cylindrical chambers 402A, 402B and 404A, 404B formed therein. The chambers 402A, 402B in the first set are parallel to each other and formed partway through the front portion of the cartridge body 400 (the front and rear of the cartridge corresponding to the front 106 and rear 108 of the device housing 100) while the chambers 404A, 404B of the second set are parallel to each other and formed partway through the rear portion of the cartridge body 400. One or more batteries 406A, 406B may be installed in the first chambers 402A, 402B and used to power the diversionary device when the cartridge 400 is inserted into the housing 100. It will be appreciated that the scope of the present invention does not depend upon the number of batteries used or their electrical capacity.

The chambers 404A, 404B of the second set serve to hold the ignitable powder and the oxidizer, respectively. A piston 408A, 408B is positioned at the front of each chamber 404A, 404B. A cover plate 410 is secured to the rear end of the cartridge body 400. In one side of the cover plate 410, in line with one chamber 404A and the first piston 408A, is a circular opening 412. In the other side of the cover plate 410, in line with the other chamber 404B and the second piston 408B, is another, smaller circular opening 414 surrounded by further small circular openings 416. A breakable material 418, such as foil, provides a seal between the cover plate 410 and the cartridge body 400 to retain the powder and oxidizer within their respective chambers. Secured to the inside of the cover plate 410 is a primer mount 420 having a small, circular opening 422 formed therethrough and line with the central small opening 414 in the cover plate 410. This central opening 422 is surrounded by further small openings 424 (not all of which are labeled in FIG. 4D) in line with the surrounding openings 416 through the cover plate 410. Primers 426 are fitted inside each of the surrounding openings 422 against the breakable seal 418 and small firing pins 428 are then fitted into the openings 422, protruding out of the openings 422 (not all of the primers and firing pins are labeled in FIG. 4D).

The cartridge body 400 also includes a third set of parallel chambers 430A, 430B in which two primer tubes 432A, 432B are fitted. Shotgun primers 434A, 434B, or comparable devices, are fitted into the front ends of the primer tubes 422A, 432B and are ignited when the firing pin 314 (or splitter 324) strikes them. The resulting detonations force the pistons 408A, 408B rearward towards the cover plate 410. The first piston 408A forces the ignitable powder through the larger opening 412 of the cover plate 410 and through the breakable seal 418, into the rear section of the housing 100 and out one of the dispersion ports 502A, 502B, depending on the surface upon which the housing 100 is resting.

The second piston 408B forces the oxidizer through the small, central opening 422 in the cover plate 410 and through the breakable seal 418, into the rear section of the housing 100 and out one of the dispersion ports 502A, 502B. The second piston 408B also strikes the firing pins 428 which ignite the primers 426 whose ignition breaks the breakable seal 418 through the surrounding openings 416.

Preferably, the second piston 408B is heavier than the first piston 408A so that it moves more slowly. Thus, there is a slight delay, such as about 10 milliseconds for example, after the ignitable powder and oxidizer have been discharged out of the cartridge 400 and before the primers ignite. The delay allows the ignitable powder and oxidizer to mix and form a cloud outside and above the diversionary device before being ignited.

Dispersion Ports

FIG. 5A is a perspective view and FIG. 5B is an exploded view of the rear section 500 of the diversionary device. The rear section 500 includes an end cap or bumper 504, which preferably is a rubberized or other protective material, and a nozzle body 506. The nozzle body 506 has a circular opening 502 formed therethrough parallel with the z-z axis of the housing 100. The two ends of the opening 502 comprise the dispersion ports 502A, 502B. The inner end of the nozzle body 500 also has a cutout 508 which intersects the opening 502. To accommodate a removable cartridge with chambers for both an ignitable powder and an oxidizer, the cutout 508 may be oblong in the direction of the y-y axis. A
strike plate 510 is secured to the inner end of the nozzle body 506. The strike plate 510 has two circular openings formed therethrough which align with the ends of the powder and oxidizer chambers 404A, 404B, thus allowing the contents of the chambers 404A, 404B to be discharged into the nozzle body and out of one of the two dispersion ports 502A, 502B. Preferably, the opening which aligns with the oxidizer chamber 404B is offset from the dispersion ports. As the oxidizer is discharged from the oxidizer, it is forced 90 degrees to the dispersion port. The rapid turn slows the oxidizer and creates turbulence, promoting high-speed mixing with the powder.

As previously noted, the diversionary device of the present invention will come to rest on one of the two primary surfaces of the housing 100, either the top surface 102 or the bottom surface 104. The rear section 500 also includes a ball 512 within the opening 502. The ball 512 is kept within the opening 502 by retaining plates or grills 514A, 514B secured to the nozzle body 506 at the dispersion ports 502A, 502B, respectively. When the diversionary device is at rest on one of the two primary surfaces 102, 104, gravity causes the ball 512 to fall into what is then the lower part of the opening 502; that is, the part closest to the ground. The ball 512 then acts as a seal to prevent the ignitible powder and oxidizer from discharging out of what is then the upper dispersion port to form a cloud above the diversionary device and be ignited (FIG. 6). While other methods of sealing the lower dispersion port may be used, the ball 512 has the advantage of being relatively inexpensive to manufacture and is capable of withstanding the high temperatures and pressures which occur when the device is used.

To replace a cartridge, the rear section 500 may be completely removable from the main housing body 100 or may be opened on a hinge 516, as illustrated in FIG. 5C, and then secured with a pull-knob and screw 518 after the cartridge has been inserted.

The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. The embodiment was chosen and described in order to best explain the principles of the invention, the practical application and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.

What is claimed is:

1. A firing mechanism for a diversionary device, comprising:
 a firing pin movable along a first axis;
 a hammer in contact with a first end of the firing pin and operable to move the firing pin from a cocked position to a fired position;
 a rotary solenoid having a shaft rotatable about a second axis parallel to the first axis;
 a cam mounted on a first end of the shaft;
 a trip lever having a cam follower engaged with the cam, the trip lever slidable in a direction substantially orthogonal to the first and second axes from a first position to a second position; and
 a link arm connecting the trip lever to the firing pin;
 whereby, when the rotary solenoid is activated, the cam causes the trip lever to slide from the first position to the second position and release the firing pin to move from the cocked position to the fired position.

2. The firing mechanism of claim 1, further comprising means for conducting power from a power source to the rotary solenoid.

3. The firing mechanism of claim 2, the means for conducting power comprising:
 a timer operable to conduct power to the rotary solenoid at the end of a predetermined period of time; and
 a trigger switch which, when released, initiates the timer.

4. The firing mechanism of claim 3, wherein the trigger switch is a normally closed switch.

5. The firing mechanism of claim 2, the means for conducting power comprising a cutoff switch which prevents the flow of current when the cutoff switch is in a safe position and permits the flow of current when the diversionary device is cocked.

6. The firing mechanism of claim 1, further comprising a hammer block operable to prevent the firing pin from moving from the cocked position into the fired position.

7. The firing mechanism of claim 6, wherein:
 the hammer block is biased away from the firing pin;
 the hammer block is retained in a safe position by a user-operated trigger bar; and
 the hammer block is released from the safe position when the trigger bar is slid by the user, thereby allowing the firing pin to move from the cocked position.

8. The firing mechanism of claim 1, further comprising a splitter secured to a second end of the firing pin and operable to activate a first piston for discharging an ignitable composition from a first cylinder and activate a second piston for discharging an oxidizer from a second cylinder, parallel to the first cylinder.

9. A diversionary device, comprising:
 a housing comprising first and second dispersion ports formed in alignment with each other on opposite first and second primary surfaces of the housing, the dimensions of the housing being selected such that when the device is thrown or dropped, the device will come to rest only on the first primary surface with the second dispersion port facing upwards or the second primary surface with the first dispersion port facing upwards, the housing further including a cavity into which a removable cartridge may be inserted;
 means for blocking the first dispersion port if the device comes to rest on the first primary surface and for blocking the second dispersion port if the device comes to rest on the second primary surface;
 a firing mechanism operable to discharge an ignitable composition out of the removable cartridge and through the first or second dispersion port, wherein the ignitable composition forms a cloud above the device and may be ignited, the firing mechanism comprising:
 a firing pin movable along a first axis;
 a hammer in contact with a first end of the firing pin and operable to move the firing pin from a cocked position to a fired position;
 a rotary solenoid having a shaft rotatable about a second axis parallel to the first axis;
 a cam mounted on a first end of the shaft;
 a trip lever having a cam follower engaged with the cam, the trip lever slidable in a direction substantially orthogonal to the first and second axes from a first position to a second position; and
 a link arm connecting the trip lever to the firing pin;
 whereby, when the rotary solenoid is activated, the cam causes the trip lever to slide from the first position to the second position and release the firing pin to move from the cocked position to the fired position.

Nov. 11, 2010
10. The diversionary device of claim 9, further comprising: a timer operable to conduct power to the rotary solenoid at the end of a predetermined period of time; and a trigger switch which, when released, initiates the timer.

11. The firing mechanism of claim 9, further comprising a hammer block operable to prevent the firing pin from moving from the cocked position into the fired position.

12. The firing mechanism of claim 11, wherein: the hammer block is biased away from the firing pin; the hammer block is retained in a safe position by a user-operated trigger bar; and the hammer block is released from the safe position when the trigger bar is slid by the user, thereby allowing the firing pin to move from the cocked position.

* * * * *