12) PATENT ABRIDGMENT (11) Document No. AU-B-27649/88
§1 9; AUSTRALIAN PATENT OFFICE (10) Acceptance No. 607029

54) Title
(54 DATA STRUCTURE FOR A DOCUMENT PROCESSING SYSTEM

international Patent Classification(s)
(561)* GO6F 015/20 GO6F 012/06 GO6F 012/08 GO6F 015/21

(21) Application No. : 27649/88 (22) Application Date : 30.12.88
(30) Priority Data

1) Number (32) Date (33) Country
@ 5§8644 03.10.83 US UNITED STATES OF AMERICA

(43) Publication Date : 27.04.89
(44) Publication Date of Accepted Application : 21.02.91

O

(62) Related to Division(s) :'32458/84

(71) Applicant(s) ,
WANG LABORATORIES, INC.

{72) Inventor(s)
JAMES LEE COOPER; MARC DAVID SAN SOUCIE

74) Attorney or Agent
(F B RICE & CO, 28A Montague Street, BALMAIN NSW 2041

(57) Claim

1. A computerized document processing system including 1

storage means adapted to store data arranged in
data blocks, %

processing means progr mmed so as to carry out "
predetermined processing steps on any ones of the
data blocks; and

a document structure made up of the data blocks
for storing a document of information and controlling
the logical steps of storing and/or accessing the
document of information,

A

the doc¢ument structure for the document comprising at -
least: }
information item blocks being data blocks having types
indicating the kind of information they contain and
including
text block having the text type for storing text
belonging to the document and
a format block having the format type for
storing format information governing the format of

the text stored in the text block; /o

(11) AU-B-27649/88 -2-
(10) 607029

index blocks being data blocks storing a plurality of
indexes for locating information item blocks according to
their types, each index including pointers processible by
the processing means so as to identify to the processing
means the location within the storage means of the
respectiva information item block, the index blocks
including
a text page index block storing a text page
index defining the location of a text block
cont=ining text belonging to a given page of the
dccument; and
a format index block storing a format index
defining the location of a format block containing a
format used to display a given portion of the
document; and
management blocks being data blocks storing
information used by the processing means to manage
the document, the management b! <zks including
a document table storing further pointers
defining the locations of the index blocks,
an administrative/system block storing at least
keystroke interpretation infermation,
a style block storing user-defined defaults for
the document, and
a free block bit map block storing information
identifying information item blocks currently
available for use in the document,
and wherein the processing means includes
reading means which read index blocks and
identify the pointers stored in the index blocks; and
retrieval means retrieving information from the
item blocks identified by the pointers identified by
the reading means.

P e a e i, S sttt D e L 2 g i eesmat Al Mol b et ¥ st Ah N SRN0A s e n

S
Yo

41

COMMONWEALTH OF AUSTRAL@ 0 ﬂ 0 2 9

Patent Act 1952

COMPLETE SPECIFICATION
(ORIGINAL)

Class Int. Class

Application Number :
Lodged 2

—

Complete Specification Lodged
Accepted :
Published :

Priority: g "

Y This document contains the
amendments made under
Related Art . SepUQn493ndlscormxlfor
printing.

o

Name of Applicant WANG LABORATORIES, INC

Address of Applicant : One Industrial Avenue, Lowell, 5
Massachusetts 01851, United States
of America
Actual Inventors : James Lee Cooper, Marc David San
Soucie §
Address for Service : F.B. RICE & CO.,

Patent Attorneys,
28A Montague Street,
BALMAIN. 2041. |
Complete Specification for the invention entitled:
"DATA STRUCTURE FOR A DOCUMENT PROCESSING SYSTEM"

The following statement is a full description of this invention
including the best method of performing it known to Us:-

o

The present invention relates to a control and data structure for a data
processing system and, more particularly, for the type of system referred to as

a word processing or office automation system.

Word processing and office systems are primarily concerned with the generation,
editing and, for example, printing and filing, of documents Such systems

usually fall into two general classes, centralized and distributed.

A centralized system may include a central processor or computer and one or
more attached terminals. Data, that is, documents of various types, and
routines for operating upen the documents are stored in the central processor
memory. Essentially all operations upon the documents are executed in the
central processor, with the terminals operating as input and output devices for

the central processor.

-

s PSRN P

o

ia Sl -

=

S,

R

,
:
k
i
|
b
f
f

- -

-
Sl *
@

Distributed systems are based upon a network of smaller, interactive units,
each having memory and processing capabilities. A distributed system may
include a central, shared memory unit for storing routines and data and a
number of independently operating terminals. Each terminal may include a
memory for storing currently active segments of routines and data and a
processor for operating upon the currently active segments. Routine and data
segments are transferred between the memory unit and the terminals as required
by the operations of the terminals. An exemplary distributed system is shown
in U.S. Patent No. 4,145,739, .issued 20 March 1979 and assigned to Wang

Laboratories, inc., the assignee of the present invention.

In any system, whether previously existing or newly designed, the memory and
processing capabilities of the system are usually determined and [imited by

economic and practical considerations. As a result of such limitations, a

recurring problem in word processing and office systems is that of implementing

increasingly more sophisticated and powerful document processing systems
requiring increasingly greater memory and processing capabilities within
currently available system limitations. The distributed system described in
U.S. Patent No. 4,145,739 was developed in response to this problem and
provided a powerful word processing capability in a system having minimal

memory and processing capabilities.

The problem described above may be regarded as being comprised of two related

problem areas. The first is the system control structure, that is, a structure

which includes and interrelates routines for controlling the operation of the

o

i
!
i

.
esrsan

LR]
.
RN

e ®J

c2r

. ;:L);;,‘__,

system and routines for generating and manipulating documents. B-cause of the
above described constraints, system control structures of the prior art have
either required the use of a large and powerful computer or, in smaller
systems, have only allowed document processing systems of limited
capabilities. The problem is essentially one of implementing the power and
flexibility of a large processor and memory system within a system having

limited processing and memory capacity.

A related problem is, that due to the same constraints on memory and
processing capability, the control and document processing systems of the
prior art have been constructed in such a manner that the system cannot be
easily modified. Such modifications frequently result in severe operational
problems due to unexpected or unforseen interactions between the modified and

unmodified portions of the systems.

The second problem area is that of providing a document structure having the
flexibility and expansion capability to allow the generation and manipulation
of very complex documents within the above described constraints on memory and

processing capability.

The present invention relates to a document processing system and, in
particular, to a control and document structure for impiementing a powerful
and flexible document processing system within a system having limited memory

and processor cdpabilities.

i

. e

(‘ In providing the control and document structure the inventor has made use of a
novel method of arranging, accessing and storing computerized data in the form
of documents, each document being made of a number of blocks of data, each
block belonging to one of a plurality of functional types of blocks including

in each document an index item block which stores a plurality of indexes, each

index leading the system processor to the blocks of its respective particular

functional type.

More definitively, the invention can, in broad terms, be said to provide in a :
computerized document processing system including processing means and storage
means a method for generating a document in the processing means and storing
the document in the storage means comprising the steps of:
generating and storing a document table for storing pointers by means of
which the processing means locates a plurality of indexes including pointers;
generating adaptive indexing block means locatable by the pointers in
the document table for storing the indexes; 3
receiving information to be incorporated into the document in the
processing means; %
generating an information item block means for the received information;
copying the received information into the generated information item
block means;
placing a pointer by means of which the processing means locates the
generated information item block means in an index of the plurality of indexes

according to the function of the received information in the document; and 1

storing the information item block méans and the adaptive indexing biock

means.

ST e eeeaetd Cr 8 2y Mo e A e as e Ay - o

© e v Faren e e

in an alternative broad form the invention can also be described as a
computerized document processing system comprising storage means adapted to
store data arranged in data blocks, means programmed so as to carry out

predetermined processing steps on any ones of the data biocks and wherein

information constituting a document is defined for processing and storage in a

document structure comprising;

information item data blocks being data blocks storing informatien
relating to the respective document; and

index item data blocks being data blocks each storing a plurality of
indexes for locating information item blocks according to their function in
the document, each index including a plurality of pointers processible by the
processing means so as to direct logical operations to locations within the

storage means containing respective information item data blocks.

A preferred system architecture includes a control structure providing
supervisory routines for controlling supervisory functions of the system

and document manipulation routines for operating upon said documents. The
document manipuiation routines are selected from a library of such routines
and, together with an associated document buffer and document access control
means, comprise the sole means of accessing a document and a clear and
distinct interface between system supervisory functions and document
functions. The document structure of the present invention is flexible and
expandable to allow the generation of complex documents within the minimum
required memory space and includes information item blocks for containing the
text and data of a document and an adaptive indexing structure for accessing

all information item blocks. The document structure incorporates means for

e e aemel s Ll NV SR

P —

Y

4

referencing visual, descriptive and informational attributes of document text
and data and allows the use of means in reference to document text and

attributes.

By way of example only, the operation of the invention will now be explained

with reference to the attached drawings which show:

Fig. 1 is a block diagram representation of a system incorporating the present
invention;

Fig. 2 is a block diagram representation of the control and document
structures of the system of Fig. 1;

Fig. 3 is a block diagram representation of the work station control and
document structure of the system of Fig. 1;

Fig. 4 is a diagrammic representation of the document structure of the present
invention.

Fig. 5 is a block diagram of a document file 24;

Fig. 6 is a detai! of a text block 621;

Fig. 7 is a detail of the document structure of Fig. 4;

Fig. 8 is a detail of attribute words 625;

Fig. 9 is a detail of format attribute words and format reference blocks; and

Fig. 10 is a detail of columns in a chain of text blocks 621.

The following discussion presents the structure and operation of a document

processing system incorporating the present invention. The system and system
control and document structures will be described first at a block diagram
level, followed by more detailed descriptions of these structures and the

document structure implemented therein.

e

)

e

"o

L
[i
[X]

&

t
teta

L3
2 ¢
[

¢ -

s

o
€
«

T b b bememir S an e
- o e e e L s s © sl SR o [P

R 1t

LY

[H

<

1. System Block Diagram Structure and Operation (Figs. 1 and 2)

Referring to Fig. 1, a block diagram of a distributed System 10 incorporating
the present invention is shown. System 10 is similar in structure and overall
operation to the data processing system described in U.S. Patent No.

4,145,739, previously referenced and incorporated herein by reference.

Major elements of System 10 include a Master Unit 12 and one or more
Workstations 14 interconnected through System Bus 16. As will be described
further below, Master Unit 12 is a system memory and stores a master copy of
all routines for controlling operation of the system, including document
manipulation operations executed by Workstations 14. Master Unit 12 also
stores copies of all segments, active and inactive, of all documents being

operated upon by Workstations 14.

Currently active segments of the documents being operated upon by Workstations
14, the document manipulation routines necessary to operate upon the active
documents segments and the routines necessary to control operation of
Workstations 14 reside, as described below, in Workstations 14. The currently
active document segments and routines residing in Workstations 14 are, as
described further below, subsets of the master copies of the documents and
routines residing in Master Unit 12. Document segments and workstation
control and document manipulation routines are transferred between Master Unit
12 and Workstations 14 through System Bus 16 as required by the operations of

Workstations 14.

UL

LG - -
- P

P

T

-

(A. Master Unit 12 (Fig. 1)

Master Unit 12 is, in the present embodiment, a disc drive memory including a

Disc 18 and a Master Disc Controller 20. Master Disc Controller 20 is a

microprocessor controlled unit operating under control of routines stored on

Disc 18 for controlling transfer of information between Disc 18 and

Workstations 14.

10 Referring to Disc 18, the information residing thereon includes a Master Copy
22 of all routines required to control all operations of System 10, including

S document manipulation operations, and one or more Document Files 24, which

include copies of all segments, active and inactive, of all documents residing

,'', in System 10. The routines residing in Master Copy 22 include Master

» Operating System (MOS) 26, Supervisor Routines (SR) 28 and Overlay Routines

e (OR) 30. MOS 26 includes the routines controlling overal! operation of System

10, for example, the operation of Disc Control 20 and the transfer of

¥
T

information between Master Unit 12 and Workstations 14. &R 28 includes the

as
3
[ER]

routines, described further below, for controlling the internal operations of

“ 1
t ¢
]

20 workstations 14 and essentially comprise an internal operating system for
Workstations 14. OR 30, in turn, includes the document manipulation routines,
that is, routines executed by Workstations 14 in directly operating upon

documents.

Each Document File 24 residing on Disc 18 will include a master copy of a

corresponding Document Structure (DS) 32 of a document residing in System 10.

preo
PRENEIOPED" S i -3

I f the document is currently being operated upon in a Workstation 14, a copy
of the currently active segments of the document's DS 32 will reside in the
Workstation 14 and there will be transfers of document segments between the DS
32 and Workstation 14 as the document is operated upon. Each Document File 24
may also include one or more Saved States (SS) 34. As will be described
further below, an SS 34 results when an operation being performed upon a
document is interrupted to execute a different operation before the

interrupted operation is completed. In such cases, the state of operation of

the Workstation 14, that is, information compietely defining the interrupted
operation, including the interrupted routine, is saved by being copied as an

SS 34 to the corresponding Document File 24.

B. Workstation 14 (Fig. 1)

As shown in Fig. 1, Workstation 14 includes Workstation Memory (WSM) 38 for 4
storing currently active document segments (ADS) 40 of a DS 32, currently |
active segments (AOR) 42 of OR 30, and the workstation copy of SR 28. As k
described further below, ADS 40 and AOR 42 are subsets, or working copies, of
portions of DS 32 and OR 30. Workstation 14 furthes includes Workstation
Central Processor Unit (CPU) for operating upon ADS 40 under direction of AOR
42 and SR 28, a Keyboard (KB) 46 to allow a workstation user to enter data
(text) and document manipulation commands, and a Display 48 for displaying the

results of user and system operations. The elements of Workstation 14 are

interconnected through Workstation (WS) Bus 50 and information is conducted
between WS Bus 50 and the elements of Workstation 14 and System Bus 16 through
Input/Output (1/0) 52.

D gl WO NUU TR N,

— e e [- e— - ipiion.
- - e - . Al "

As will be described further below, a primary visible focus of the operation
of System 10 is the interactive operation between System 10 and a user,
through KB 46 and Display 48, in the generation and manipulation of

documents. System 10 may be regarded, therefore, and in certain aspects, as a
keystroke processing system. That is, a user enters data (text) and
text/document manipulation commands by means of keystrokes through KB 46.
Workstation 14 responds by executing in CPU 44 the appropriate routines
selected from AOR 42 and SR 28, modifies the contents of ADS 40 as determined
by the executed routines, and displays the results of the user actions through

Display 48.

C. System 10 Control and Document Structure (Fig. 2)

Referring to Fig. 2, as diagrammic overview of the System 10 control and
document structure is shown. As has been previously described, the major
elements of System 10's control and document structure include Master
Operating System (MOS) 26, Supervisor Routines (SR) 28, Overlay Routines (OR)
30 and Active Overlay Routines 42, and Document Structures (DS) 32 and Active

Document Structures (ADS) 40.

The hierarchical structure of these elements is illustrated in Fig. 2, as are
their locations and primary areas of operation in System 10. As will be
described further below, MOS 26 primarily resides in Master Unit 12 and
comprises an operating system for all of System 10 while SR 28 resides in
Workstation 14 and comprises a workstation operating system. OR 30, the

document manipulation routines comprises the actual document processing

- 10 -

e - e e ——rr——— e e i e

it

g

20

system, with a time varying subset of OR 30, AOR 42, residing in Workstation
14. DS 32 contains the actual document, with a time varying subset of DS 32,

ADS 40, residing in Workstation 14.

a. Master Operating System 26

As previously described, MOS 26 controls the overall operation of System 10
and is a resource shared by Master Unit 12 and all Workstations 14 in System
10. MOS 26 is effectively an operating system for System 10 and primarily
resides in Master Unit 12. MOS 26, for example, controls the transfer of

information between Master Unit 12 and Workstations 14.

b. Service Routines 28

As indicated in Fig. 2, a copy of SR 28 resides in each Workstation 14 and
essentially operates as a workstation operating system. In contrast to MOS
26, which resides in Master Unit 12, and to OR 30/AOR 42, described below, SR
28 is resident in Workstation 14 at all times while Workstation 14 is
operating. SR 28 interacts directly with MOS 26, the user and AOR 42 and
interacts indirectly with ADS 40, through AOR 42, and with DS 32 and OR 30
through MOS 26. SR 28 is thereby effectively the central, or nodal, element
through which all elements of System 10 interact and through which all

operations are accomplished.

- 11 -

e AT R o mites SIS

In interacting with MOS 26, for example, SR 28 in a Workstation 14 manages the
available memory space in the workstations WSM 38 and monitors the selection
of routines to be executed by the workstation. 1f, for example, it becomes
necessary to free space in WSM 38 for new active document s.gments in ADS 40
or if a routine is selected which does not presently reside in WSM 38, SR 28
will generate a reyuest for an appropriate transfer of information between
Workstation 14 and Master Unit 12. SR 28 will place that request in 1/0 62
and the request will subsequently be read by MOS 26 in a workstation polling
procedure. MOS 26 will respond to the request by performing the information

+t

S 10 transfer, that is, by transferring the necessary document segments, routines
| or saved state information between Disc 18 and WSM 38 of the Workstation 14.
This interaction between SR 28 and MOS 26 is an example of the indirect
interaction between SR 28 and OR 30 and DS 32. That is, SR 28 interacts with
MOS 26 tc operate upon ADS 40 and AQR 42 which, in turn, are subsets of DS 32

"7+ and OR 30.

As previously described, System may be regarded, in certain aspects, as a
keystroke processing system, that is, accepting text and document manipulation
commands from a user through keystrokes through KB 46, performing the

20 indicated operation upon a Document, and displaying the results of the

opérations to the user through Display 48.

To accomplish this function, SR 28 interacts with the user through KB 46 and

Display 48 and with the document through document manipulation routines OR

30/A0R 42. As described further below, SR 28 accepts keystroke inputs from KB

- 12 -

A 0K PEEE S S A e— - PN

4

vt e PG et

v oy

46, selects the appropriate OR 30/A0R 42 or SR 28 routine to be executed and
initiates the execution of the selection routine by CPU 44. At the conclusion
of execution of the selected routine, SR 28 indicates the results of the
selected operation to the user through Display 48 by displaying a message or
the portion of the document currently being operated upon as modified by the
operation. For example, if the user is entering text, SR 28 will accept the
alphanumeric keystrokes, select the AOR 40 routines to enter the alphanumeric
characters in ADS 40, and update Display 48 to display the text as the

characters are entered.

c. Overlay Routines 30

As described above, OR 30 includes all document manipulation routines and
thereby effectively comprises the document processing system. MOS 26 and SR
28 in turn comprise the operating systems suppdrting the document processing

system implemented in OR 30.

In the presently preferred embodiment of the document processing system, the
document structure, described further below, may be accessed and manipulated
only through OR 30. In this regard, it should be noted that while MOS 26 and
SR 28 may perform certain operations with regard to DS 32/ADS 40, these
operations do not include actual manipulation of or access to the document
structure. OR 30 thereby defines the interface between the document structure
and other elements of System 10 and effectively completely separates the

features of the document structure from the remainder of the system. Because

- 13 -

- T et (e O A S S] -~

R U U S SO

of this, the document structure or the system, for example, MOS 26 or SR 28 or
the actual physical structure of System 10, can be freely modified or changed
witt minimum effect upon other portions of the system. The document structure
may, for example, be transported to or implemented in a centralized system,
rather than the distributed system shown in System 10, without change.
Alternately, it the document structure is modified, only OR 30 need be
correspondingly modified and the remainder of System 10, for example, MOS 26

and SR 28, are undisturbed.

‘48 A further feature of OR 30 resides in the method by which the interface and
access between OR 30 and the document structures, that is, the manner in which
the document processing system is allowed to manipulate the document
structure, is controlled and defined. This control is particularly
significant when an existing system is being modified, for example, to add new
features or to improve existing features. In a document or word processing

C ‘ system of the prior art, a designer or modifier of a document processing
system directly determined and defined the means and manner by and in which
the system accessed and manipulated the document structure. As a result,
there were effectively no positive constraints upon how the system modifier

28 manipulated the document structure and there were frequent and severe problems

with a modified system.

In the presently preferred embodiment of the present document processing
system, OR 30 is comprised of routines selected from a fixed l|ibrary of

routines referred to as the Document Management Library (DMLIB). The DMLIB

- 14 -

e e e e e EETRN

LY

. et

L

t
[

e v a4 ke P =
PRV — - ~ B T RV S

routines are the only routines allowed to access or manipulate the document
structure and effectively comprise a set of building blocks from which a

document processing system can be constructed.

The DMLIB includes routines for all possible basic manipulations of the
document structure and may be expanded as new manners of manipulating the
document structure become desirable. To create a new document processing
system or to modify an existing system, therefore, the designer determines the
operations to be performed or how the existing operations are to be modified
and selects and assembles, or links, the appropriate routines from the DMLIB.
By doing so, the designer is assured that the operations of the new or

modified system will not conflict with the document structure.

Finally, and as previously described, AOR 42, which resides in WSM 38, is a

subset of the OR 30 routines and is comprised of the OR 30 routines currently
being used to operate upon a document. AOR 42 and OR 30 thereby differ from
SR 28 in that AOR 42 does not comprise a complete, resident copy of OR 30 but
varies with time, depending upon which operations are being performed. It is
for this reason that the document manipulation routines are referred to as

'overlay' routines, that is, routines are selected and overlayed into AOR 42
in WSM 38 as required. A related group of OR 30 routines which are overlayed

into AOR 42 as a group are referred to as an 'overlay'.

- 15 -

Tt R R e el ST T B —
- s bk s an oo ot N —

o

QI el WO SRR P N

vt

y aw »

d. Document Structure 32

As previously described, a Document File 24 contains a complete, or nearly
complete, copy of a document residing in System 10. This master copy of the
document is contained in Document Structure (DS) 32, which resides in Disc
18. Those portions of the document being operated upon are copied into and
reside in WSM 38 in Active Document Structure (ADS) 40 and remain therein
while being operated upon. As new portions of a document are operated upon,
the previously resident portions of the document are copied back into Disc

‘ifﬁ 18. Similarly, those portions of a document which are being newly created,
that is, by being entered by a user, first reside in ADS 40 and are
subsequently copied into Disc 18. DS 32 and ADS 40 are thereby analogous to
OR 30 and AOR 42 in that ADS 40 is a time varying subset of DS 32, the

contents of which vary as different portions of a document are operated upon.

Transfers of portions of documents between Workstation 14 and Master Unit 12
are executed on the basis of 512 byte blocks, corresponding to the capacities
of data entry and transfer buffers, described below, residing in Workstation
14 and to the capacity of a double sector of Disc 18. It should be noted that
20 all transfers between Master Unit 12 and a Workstation 14, including transfers

of document manipulation routines, are performed on this basis.

Having described the overall structure and operation of System 10, certain

portiens of the control! and document structure described above will be

described in further detail below.

- 16 -

e W A e e e el i a3 e e s o s Al

s,

(- 2. Control and Document Structure (Figs. 3 and 4)

Referring to Fig. 3, a block diagram of the control and document structures
residing in Workstation 14, and in particular in WSM 38, is shown. As
previously described, the Workstation 14 control and document structures
include SR 28 and AOR 42 and ADS 40. Also shown are other structures
associated with and operating with or as part of SR 28, AOR 42 and ADS 40.
The relationship and operation of the structures shown in Fig. 3 will be
described first, followed by a description of the document structure of the

-.'80; present invention.

se+« The physical structure and operation of Workstation 14 should be noted during
the following descriptions. That is, that SR 28 and AOR 42 are comprised of
routines, that is, sequences of instructions, which are read from WSM 38 to
CPU 44 to direct and control the operation of CPU 44 and other elements of
Workstation 14. CPU 44 in turn responds to instructions provided from SR 28
and AOR 42 to read data, for example, document text from ADS 40, operate upon
the data as directed by the instructions, and, for example, transfer the

* ' results of the operations into ADS 40.

A. Block Diagram Description (Fig. 3)

i As previously described, the major elements of the structures shown in Fig. 3

include ADS 40, the document segments currently being operated upon, AOR 42,

- 17 -

S e ke, B s e mefled coefevi Q2w 2 e @ s i i S xSy

Feow fuakememtmy

s i —em » sren

the document manipulation routines currently being utilized, and SR 28, the

workstation operating system.

a. ADS 40 and Associated Structures

Considering first the document structures and primary data transfer paths
shown in Fig. 3, as described above ADS 40 is a time varying subset of DS 32
and comprises those portions of the document currently being operated upon.

As differing portions of the document are operated upon, document segments are

R -

transferred between ADS 40 and DS 32. For example, if the already existing
text of a document is to be modified, such as by the addition of deletion of
text, the portions of the document to changed are read from Disc 18 and into
ADS 40. The changes are entered through KB 46 by the user and, after the
changes are accompiished, the changed portions of the document will be

subsequently read back into DS 32 to provide space in ADS 40 for further

S 7

-

segments of the document. In further example, when portions of a document are

being newly created, the text information is entered through KB 46 by the

USR-S

user, assembled into the document in ADS 40, and subsequently read into DS 32

as the available space in ADS 40 is filled.

L

. Buffers 54

Two further structures are directly associated with ADS 40. The first is

Buffers 54, which are a set of general purpose buffers created by Sr 28 and

primarily used for input/output operations to and from ADS 40. Buffers 54, for

- 18 -

Fioy

example, are used in the transfer of document segments between Disc 18 and ADS

40 and in the entry of text from KB 46 to ADS 40.

In the presently preferred embodiment, Buffers 54 contains between three and
ten buffers, each of which has a capacity of 512 bytes. The capacity of
Buffers 54 is, as described above, based on the capacity of a double sector of
Disc 18 and the size of the blocks transferred between Master Unit 12 and

Workstation 14.

et =

2. Screen Buffer 56 and Display Memory 58

Associated with Buffers 54 are Screen Buffer (SB) 56 and Display Memory (DM)
58. DM 58 contains, at any time, the information which is currently being

displayed on Display 48 while SB 56 is a buffer through which information to ;

—.

be displayed is written into DM 58. As will be described below, DM 58 is the
source for information being displayed by Display 48 and is thereby being

frequently ready by Display 48. The function of SB 56 is to hold information @
to be displayed until a time is available to write information into DM 58 and, ‘

by doing so, frees Buffer 54 for other operations.

The information displayed by Display 48 may include visual representations of
portions of a document being operated upon, that is, a portion or all of the
contents of ADS 40 and, for example, messages from System 10 to the user to }
aid or guide the user in operation of System 10. Examples of the latter may

include menus through which the user may select operations to be performed

- 19 -

RN G v e R A s v e e - PR B A . .
=z 2 [N NP PO S i TRy ek e h e aotbfteaed . A el A ceoMamammite . 1 vem'de ket G Chew

S

B

— e e bemEome - chbaederoe e m afl. cese e _soxa & mom e P P S GV S S S B S VTN

examples of which are well known through Wang Laboratories, Inc. Office

information Systems (01S).

As indicated in Fig. 3, information to be displayed is written into SB 56
through Buffers 54 and may be entered either a single character at a time or
in blocks of information up to the capacity of a Buffer 54 or SB 66. Single
character entries are used, for example,.when a user is entering alphanumeric
characters into a text, that is, a single character at a time through KB 46.
In this case, the individual characters are entered into one of the Buffers 54
and concurrently transferred, again a character at a time, into ADS 40 and SB
56. Block entries may be used, for example, when a user is moving from one
section or page of a document to another, necessitating the display of

entirely new screens of information by Display 48.

Information entered into SB 56 is subsequently transferred into DM 58, which
contains one or more display screens of the information actually being
displayed by Display 48. Display 48 in turn reads the information for the
currently displayed screen from DM 58 and presents this information to the

user in visual form.

It should be noted at this peint that the form in which information is stored
in DM 58 is dependent upon the capabilities of Display 48. There are two
primary forms of display, character generated and bit mapped. In a character
generated display, the information to be displayed is stored in the form of

codes representing the characters or symbols to be displayed. The display

- 20 -

= emeearra e pE s b e e " - —

Sl -

e

S

!
L A

reads these codes and, through a character generator, converts the codes into
patterns of illuminated dots forming the characters on the display CRT. In a
bit mapped display, the actual patterns of the dots forming the displayed
characters or symbols are stored, rather than codes, and the stored
information is displayed directly. A bit mapped display is advantageous in
that compiex graphics displays, such as pictorial images, are more easily
generated, but are more expensive in that they require substantially greater

memory capacity for storing the display information.

As will be described below, the document structure of the present invention {
will support bit mapped images as elements of a document; this capability is
not available, however, in a character generator display. An alternate form
of graphics display, referred to as character set graphics, may be provided by
the present document processing system. Character set graphics are based upon
the manner in which characters and symbols are generated upon a CRT screen,
that is, as rectangular matrices of dots, for example, 5 by 7 dots. The i
individual characters are then generated by illuminating certain dots of the

matrix while leaving the remaining dots dark. In a character set graphics #
display, provision is made to generate a wide range of symbols, or patterns of f
dots, and a code assigned to each symbol. These graphic symbols, or dot

patterns, are then assembled in arrays on the screen to generate the desired

v

graphics image.

- 21 -

% !
. b e R ToSre o o~ TV e T Canl il R » X .
. o N N " R L
A - v ae . . R

3. Document Access Structure 60

The second structure directly associated with ADS 40 is Document Access
Structure (DAS) 60, which contains information locating and interrelating
various areas in ADS 40 and Buffers 54 and the information residing therein.
DAS 60 is used by AOR 42 routines, and in part by SR 28 routines, to locate
and operate upon items of information in ADS 40 and Buffers 54. DAS 60 is
thereby the principle interface between the document structures, that is, ADS

40, and the document manipulation routines, that is, AOR 42. DAS 60, by

10 providing information relating ADS 40 and Buffers 54, the input/output path

for ADS 40, thereby also comprises the principle link, or access path, between

ADS 40 and the remainder of System 10, including DS 32.

DAS 60 is originally generated by SR 28 and contains four major elements, a
File Reference Block (FRB), a Buffer Table (BT), a Document Control Block

(DCB) and a set of one or more Position Blocks (PBs)

The FRB primarily contains information used for document communication between
Workstation 14 and Master Unit 12. Examples of this information include a
Reference Number identifying the particular document during the period in
which the document is being operated upon and a Reference Control Block. The
Reference Control Block in turn contains information indicating whether an 1/0
request has been generated by the workstation, as described above, and whether
errors have been detected. The Control Block also contains information

generated by the workstation indicating whether a document file is to be

- 22 -

B R ardas e = B S 1 P e S N S P Y —

e

-.“g
] []
‘e ’
tere
1
ece:
. i
. 1 <
1t
e
[|
€ t 51
[t
] [
1 t?
e
+ e
e 4
[
¥ ot ¢
4T
[N
i
*
14t
i
AT s ames

9.
A
k)

created for a new document and whether a document is to be transferred in its
entirety to its DS 32, that is, 'clean-up' at the end of operation on the

document .

The BT is generated by OR 30 and is used by SR 28 to maintain and operate
Buffers 54. The BT is primarily comprised of a set of pointers and
information indicating the locations and capacities of the buffers of Buffer

54 in WSM 38.

The DCB contains information identifying the document currently being operated
upon and the current status of that document. The DCB also contains

information through which OR 30 may locate the FRB and BT.

The PBs contain information denoting specific positions within the document
being operated upon. Almost all forms of access to the document are performed
through a PB and a PB may be initialized by most routines requiring access to
the document. For example, an AOR 42 routine to move a portion of text from
one location within the document to another location will initialize a PB
pointing to the initial and destination locations of the text to be moved.

The move routine will then use this information in moving the text.

b. AOR 42 and Associated Structures

As previously described, OR 30 includes all actual document manipulation
routines and thereby comprises the actual document processing system. AOR 42

is a time varying subset of OR 30 and is comprised of the OR 30 routines

- 23 -

- o - -)
b e ik W o s et P - e [T S v S S

s

@

o ar AR

—

currently being used to operate upon a document. Related groups of OR 30
routines, referred to as 'overlays' are read from OR 30 and overlayed into AOR
42 as required for the selected document operations. The routines in AOR 42
access and operate upon ADS 40 and Buffers 54, using information contained in

DAS 60, which is also accessed and operated upon by AOR 42.

As previously described, the document processing system has the capability of
'nesting', or 'stacking' document manipulation routines. For example, if the
user is executing an 'insert' routine to insert text into a document, the user
may, without terminating that operation, initiate a second operation, for
example, an 'insert' or 'delete' operation within the text being inserted.

The second, or interrupting, routine is initiated and executed without exiting
the initial, or interrupted, routine, and, at the conclusion of the
interrupting routine, the system returns to the initial routine. The user may
'nest' several such routines and the routines will be returned to in the

reverse of the sequence in which they were initiated.

The nesting of OR 30 routines, and any necessary saving of AOR 42 routines due
to overlay operations, is accomp!lished through the operation of Save Stack
(SAVE) 62 associated with AOR 42. As will be described further below, SAVES

62 is a part of the stack structure associated with and controlled by SR 28.

The saving of an AOR 42 routine is accomplished by transferring a copy of the
entire routine into the corresponding DF 24, that is, into a SS 34, together

with other associated information pertaining to the state of operation of the

- 24 -

— ——

s

P -

At ATTT TR

S A

SN

system. When this occurs, SR 28 places on SAVES 62 File Reference Serial
Number (FRSN) identifying the memory image of the saved routine, that is, the
location of the saved routine. When the saved routine is returned to, SR 28
reads the saved routine FRSN from SAVES 62, uses the FRSN to find and copy, or
overlay, the routine from the DF 24 to AOR 42 and reinitiates execution of the

routine.

b. Control Transfer and the SR 28/A0R 42 Interface

Before continuing to a description of SR 28, it is necessary to consider the
structure and operation of the control structures which form the interface
between SR 28 and AOR 42 and which are used to transfer control from one
routine to another, either within SR 28 or AOR 42 or between SR 28 and AOR

42. The transfer of system control from one routine to another requires,
first, an identification of the routine to which control is passed, and
second, a means for passing information from the original routine to the
routine assuming control. The elements through which these operations are
accomplished and which comprise the interface between SR 28 and AOR 42 include

Execution Pointer (EP) 64 and Variable Stack (VARS) 66.

1. Execution Pointer (EP) 64 and Vectors

Routines are identified, located and initiated through the use of 'vectors',
which are essentially logical, as opposed to physical, addresses of the

routines so identified. Each vector contains sufficient information, as

- 95

ELSN

Yom

o

I e T

LSO UV

bim

described below, to identify, overlay if necessary, and execute a routine.
Each vector includes three information fields, a Type field, a Size field and

a Filg Reference Serial Number (FRSN)/Address field.

The vector Type field contains information as to whether the corresponding

routine is a Resident or Local, OQverlayed, Saved, or Internal routine. A

Resident routine is any routine which is always resident in memory, that is,
always resides in WSM 38. An example of a Resident routine is any of the SR
28 routines. A routine which is part of a given overlay, that is, a related
group of OR 30 routines, is 'local' to that overlay and to any other routine
within that overlay. A Local routine thereby becomes a Resident routine for

execution purposes when the overlay to which it is Local is read into AOR 42.

An Overlay routine is any routine which must be loaded into WSM 38 from Disc

18 and includes all OR 30 routines in OR 30 overlays.

A Saved routine is any routine or overlay which must, due to its nature, be
saved as described above before another overlay is loaded into AOR 42. An
internal routine is any routine or overlay has been saved, as just described.
That is, a Saved routine is a routine which must be saved while an Internal

routine is a routine which has been saved.

The vector Size field is used with reference to overlays and indicates the

size, or number of 256 hyte sectors in the overlay.

-2 -

'

L e kA Yttt M s = ¢

. BTy = VN VAR AP0 S U VS T St T SO Y SO e maeeas. B0 e S ool

The contents of a vector FRSN/Address field depends upon the Type of the
routine. In the case of a Resident routine, the FRSN/Address field contains
the address of the starting point of the routine. In the case of an overlay,
the FRSN/Address field contains the FRSN of the routine, that is, a logical
addre=s used to identify and locate the routine and to load the routine into
AOR 42. The starting address of an overlay routine is assumed to be the first
location in the overlay area of WSM 38, that is, the first location in AOR 42,

this location contains the start of a routine leading to the selected routine.

Control is passed from one routine to another by means of vectors loaded into
EP 64 from either AOR 42, SR 28 or Reload Stack (RLDS) 76, which is associated
with SR 28 and described further below. Each time a currently controiling
routine is to pass control to another routine, the controlling routine loads
into EP 64 the vector of the routine to which control is to be passed. SR 28
includes routines which monitor the contents of EP 64 and, when a vector is
detected therein, executes a routine, using the vector; to locate and initiate

execution of the new routine.

The operation performed by SR 28 in passing control to a new routine depends
upon the Type of the routine, as determined by the vector Type field. |f the
routine is Resident or Local to an overlay currently residing in AOR 42, the
vector FRSN field is used as a pointer, or address, to the start of the new

routine and control is transferred to the new routine at that point,

- 27 -

Tl P At SR marhe © g RS 3 R SNt St -

———

-

AT N e IR

(» | f the vector Type field indicates that the new routine is an Overlayed
routine, the vector FRSN/Address field contains the FRSN of the routine. In
this case, SR 28 initiates a routine, utilizing the new routines' FRSN, to
read the overly containing the new routine from Disc 18 and intb AOR 42. When
the overlay operation is completed, SR 28 transfers control to the first
location in AOR 42 which, as described above, is the start of a routine

teading to the entry point of the new routine.

If the vector Type field indicates that the new routine has been saved or
"13 stacked, as described below, SR 28 will, if it resides in SR 28 or currently
resides in AOR 42, execute a routine to reinitiate the routine. If the
routine resides in a SS 34, SR 28 will execute a routine to reload the routine

‘ from SS 34 before reinitiating.

R 2. Variables Stack 66 and Passing of Information

As described above, the passing of control from one routine to another
requires a means for passing information from the controlling routine to the
« 20 routine to which control is to pass and, in particular, from the passing
routine to SR 28, the workstation operation system. This function is
performed through Variable Stack (VARS) 66, which receives such information

from and provides such information to the SR 28 and AOR 42 routines.

As will be described further beiow with regard to SR 28, the workstation

operating system operates is a state machine, that is, the response to any

- 28 -

-

it
I

11 S

TSl cest. nvidaseoas et o i HE et e W NSRS o wE

(given input or condition will depend upon the 'state' in which the system is
operating. Accordingly, the information written into VARS 66 includes, as
described further below, an identification of the system state in which
routines are to be executed and space is reserved on VARS 66 and a variables

entry made each time a new system state is entered.
Having described the interface between SR 28 and AOR 42 and the mears by which

control is passed between routines, the operation of SR 28 and its associates

structures will be described next below.

c. SR 28 and Associated Structures

As described above, SR 28 comprises a state machine operating system for
Workstation 14, that is, the response of the system to any particular input or
condition is, as determined by SR 28, dependent upon the particular current
operating 'state' of the system. In addition to controlling the overall
, operation of Workstation 14 and supporting the operation of the document
processing system impiemented in OR 30/AOR 42, SR 28 accepts and processes
2G user keystroke inputs and provides a stack mechanism for the stacking, or

nesting, of operations.

1. Slave and Service Routines 68

As indicated in Fig. 3, SR 28 includes Slave and Service Routines (SSR) 68 for

directing, for example, operations between Workstation 14 and MOS 26, such as

- 29 -

RS 3 e DL ST L

generating and handling requests for information transfers between Workstation
14 and Disc 18. The genera! operation of SSR 68 is described in U.S. Patent

No. 4,145,739, previously incorporated herein by reference.

2. Keystroke Processing and System State

As described above, a primary visible focus of the operation of System 10 is
the interactive operation between System 10 and a user through KB 46 and
10 Display 48 in the generation and manipulation of documents. System 10 may be

regarded in certain aspects, therefore, as a keystroke processing system.
That is, a user enters data (text) and text/document manipulation commands by
means of keystrokes through KB 46 and the system responds by executing the
appropriate routines selected from AOR 42 and SR 28 to correspondingly modify

+ «+ the contents of ADS 40. SR 28's keystroke processing mechanism, which

S includes Keystroke Routines (KS) 70, is thereby the principle input interface

between the user and the system.

The response of the system to particular keystroke inputs is, as previously
20 described, dependent upon the particular state of operation of the system,
that is, upon what operations the system is currently executing. SR 28
thereby incorporates a state machine mechanism, including State Table (ST) 72,
which interacts with SR 28's keystroke processing mechanism to determine the

appropriate response to user keystroke inputs.

The response of the keystroke processing mechanism to particular keystrokes is

- 30 -

JRSEVE - A e rernd W tn gmd - p W @ v e e oy -

o e et L e e e P -y wdee. SO babdladde - e eE el el sl e v soen S s el debi cemse s _ud

ey

£

IE o A NS SRR U

e

o

further determine in ST 72 by the class of the particular keystroke, wherein a
class is a group of keystrokes having similar functions. The following
keystroke classes are implemented in the presently preferred embodiment of the

present invention:

GRAPHIC DELETE COLUMN

CURSOR REPLACE SAVE

SCREEN VISUAL RECALL

PAGE | NFORMAT [ONAL HELP

GOTO PAGE FORMAT SUPER SEARCH
INSERT MARK SUPER COPY
SEARCH COMMAND SUPER REPLACE
copy GLOSSARY SUPER COMMAND
MOVE PRINT DEFAULT
EXECUTE NAME VIEW

CANCEL

ST 72, as described above, contains information relating machine state and
keystroke class to corresponding routine vectors and is arranged as a set of
rows wherein each row contains, in order by keystroke class, the vectors for
each keystroke ciass for a particular state. ST 72 may thereby be indexed by
state, to select a corresponding state row of vectors; and by keystroke class,

to select a vector for that keystroke class in that state.

Considering now the operation of the keystroke processing and state machine,

-3 -

C e e OSSN SRR, YA | e e e T e -

L Marems PR, ENVPERPIY R R P e iesvat A L alaie ¥olE it =N OF T . - o

b

===

o e e ke e 2 eiiie. & € it .
e s - v ociodes dsmouhessl. S g gsse w e whedt e ome ua B

KS 70 receives information regarding keystroke inputs from KB 46 through CPU
44. This information identifies both keystroke class and the specific
keystroke within the class. As previously described, information regarding
current machine state resides in VARS 66. The keystroke class, keystroke and
state information is provided, as indicated in Fig. 3 to the keystroke
handling routines of KS 70. The keystroke handling routines in turn generate
a corresponding input to ST 72 to index the state tables by state and
keystroke class. ST 72 responds by providing as an output a vector
identifying the appropriate SR 28 or AOR 42 routine for the keystroke and
machine state. As previously described, the vector output of ST 72 is loaded [
into EP 64 and the appropriate action, depending upon routine Type, is
initiated by SR 28. As also indicated in Fig. 3, and as described further
below, ST 72 concurrently provides the resulting vector as inputs to SR 28's

stack mechanism.

3. Stack Mechanism

As previously described, SR 28 provides a stack mechanism performing three
primary functions, which are identifying which overlay should currently reside

in AOR 42, identifying which routine is currently being executed, and storing

.

the memory image of saved overlays. The saving of overlays, that is, AOR 42
routines, by SAVES 62, which is a part of the SR 28 stack mechanism, has been

previously described with reference to the operation of AOR 42. ,

The remaining stack mechanism functions are performed by Reload Stack (RLDS)

-3 -

L N bl et S - Rt . R T N

»

76, previously mentioned, and Module Stack (MODS) 78 which, as indicated in
Fig. 3 and previously described, receive inputs from the vector output of ST

72.

RLDS 76 receives and stores vectors from ST 72 and the top of RLDS 76 always
contains the vector of the overlay which should currently be in AOR 42. RLDS
76 allows the vectors of interrupted routines to be saved so that interrupted
routines may be returned to at the completion of execution of the interrupting

routines. In this respect, RLDS 76 is the primary means of saving routines

(PO,

when it is not necessary to save the actual routine, for example, by stacking
the vector of an interrupted overlay routine. As previously described, SAVES
62 is provided to save routines in their entirety, that is, the actual code,
when necessary. As indicated in Fig. 3, RLDS 76 provides an input to EP 64 to
allow the loading into'EP 64 and subsequent reinitiation of interrupted

routines.

MODS 78 receives and stores only the Type field of the vector of the currently

executing routine. The information residing in MODS 78 is used by SR 28 in i
determining the appropriate handling of interrupted and returned routines and

may be updated as the Type of a routine changes, for example, from overlay to

resident,

e

SM 74 includes certain routines which are of interest in understanding the

operation of SR 28's stack mechanisms; these routines include FREE, LOAD,

PUSH, POP, RELOAD and ENTRY and will be described below in that order.

k NI S, NP NORI SO

PR it e g e BBy M v e et e g <

gt
v“Q5~
B
£ e

ke

<7 The primary function of FREE is to free the overlay area, that is, AOR 42, for
the loading of another overlay, by setting a flag indicating that AOR 42 is to
be 'reloaded' with the proper overlay. Other routines in SR 28 detect the
state of this flag and initiate the appropriate operation to reload AOR 42.

For example, if the information residing in the top of RLDS 76 indicates that

the current overlay must be saved, SR 28 will initiate an operation to save
that overlay in SAVES 62 before initiating a request to load AOR 42 with the

new overlay.

‘iﬂ LOAD is used to initiate overlay routines and is called after EP 64 is loaded
with a vector to the new overlay routine. |f the routine must be overlayed,
that is, loaded into AOR 42, LOAD will in turn call FREE. In addition, LOAD
will save, on RLDS 76, the vector of the routine calling LOAD for subsequent

use by PUSH or ENTRY, described below.

The function of PUSH is to stack information concerning the last loaded %
overlay so that the overlay may be recovered if destroyed in some manner.

PUSH first pushes the Type field of the last loaded overiay onto MODS 78. If

PE-.

the routine is not resident, PUSH will also push the routine's entire vector

" 20 onto RLDS 76. |f the routine is of the type which must be saved, PUSH will
push the routine onto SAVES 62 and place the FRSN of the routine's location in
SAVES 62 into the FRSN/Address field of the routine's vector on RLDS 76. In
addition, PUSH will change the vector's Type field from 'saved' to 'internal'

to reflect the change in Type of the routine. .

- 34 -

-~ - —— Ve " LR srvrbae Moeenan gy Gt

The function of POP is to 'throw away' the top entry of MODS 78. If this
routine is not of the resident Type, POP will also throw away the top entry of
RLDS 76. If the routine is of the saved Type, POP will also delete the entry
in SAVES 62. Finally, POP will reset a 'reload' flag to indicate to SR 28

that the correct overlay is not resident in AOR 42.

The function of RELOAD is to ensure that the routine specified by the top
vector of RLDS 76 is currently resident in AOR 42. |If the reload flag is set
and the current routine, as indicated by the top entry in MODS 78, is a

nonresident Type, RELOAD will load the correct overlay into AOR 42.

ENTRY operates in conjunction with LOAD to provide the entry point of the last

LOADed routine.

Having described the structure and certain aspects of the operation of SR 28
and, in particular, the keystroke processing and stack mechanisms of SR 28,
the fundamental operating sequence of SR 28 as a whole wil! be described next

below.

4. Basic Operating Sequence of SR 28

The primary functions of SR 28 and the state machine implemented therein are,
as described in part above, to maintain and operate the state machine, to
overlay routines as required, to handle critical displays, for example,

messages and menus, and to accept and process keystrokes. To perform these

- 35 -

ST e ceam—E AR B . <. Amecssmendiree v

- i i - " . L
—— - S Bammn e SeSAmaimes Heh o am o ;oo
[SO IG E VRE S SN teseabin PO S

=

[R—--

ey

) functions, SR 28 and the state machine repeatedly execute, in order, a
sequence of four phases of operation. These phases are referred to, in the
order executed, as the Overlay, Reload, Display and Keystroke phases and will

be described next below in that order.

a. Overlay Phase

Overiay Phase is responsible for ensuring that the selected routine is in AOR
42, and for executing the selected routine.

10
This phase begins with the vector of the selected routine residing in EP 64.
If the routine is resident in memory, that is, in AOR 42 or SR 28, the machine
skips to execution of the routine. If the routine is not resident, that is,
is an overlay routine not resident in AOR 42, SR 28 calls LOAD by loading

« v« LOAD's vector into EP 64 and the overlay is loaded into AOR 42.

With the roufine resident in memory, SR 28 proceeds to execution of the
routine, by first calling ENTRY to determine the entry point of the routine

and then executing the routine.

2
<3

The Overlay Phase is usually completed at this point, that is, when the
execution of the selected routine is completed. In certain cases, however,
the selected routine may invoke routines residing in other overlays. In such

cases, EP 64 is loaded with the vector to the invoked routine and the Overlay

Phase is restarted. ¢

- 36 -~

i

13

b. Reload Phase

Reload phase is provided and initiated to ensure that the currently active
routine is resident in AOR 42 in certain cases when the Overlay Phase does not

perform this function.

The first such case is that of certain overlay routines which invoke other
routines that, when completed, return control to the general SR 28 routines
rather than to the invoking routine. The second case occurs when a routine,

when completed, calls POP rather than returning to the invoking routine. i

in both cases, the function of Reload Phase is to reload the correct overlay

into AOR 42 and does so by calling RELOAD, described above.

c. Disnlay Phase g

SR 28 performs all critical display functions to Display 48 during this
phase. Such displays include providing prompts and messages to the user,
displaying menu choices available to the user, and updating the display of

attributes, described further below.

d. Keystroke Phase)

During this phase, SR 28 performs the keystroke processing operations

previously described. That is, SR 28 receives a keystroke from KB 46 and state A

- 37 -

information from VARS 66, indexes ST 72 for the class of keystroke and current
state to obtain the correct vector for the selected routine, and loads the

vector into EP 64.

At this point, the machine has returned to the initial condition of the
Overlay Phase and the four phases are repeated in the order and as described
above.

Having described the control structure of the present system, the document

structure of the present invention will be described next below.

B. Document Structure (Fig. 4)

The document structure of the present invention, that is, DS 32, is, as

previously described, designed for efficient use of memory capacity while

_ providing the flexibility required to generate very complex documents and to

support advanced editing features. The primary function of the document
structure is the storage and ready access of sequential text, organized into
logical user specified pages of arbitrary length. The structures ailows fast
and efficient character and page editing and allaws for the application of a
large number of visual attributes, or enhancements, to the characters of a
text. Certain of these editing features include visual attributes, such as

underlining, bold type and various fonts, and information attributes, such as

notes, footnotes and voice. The document structure also allows the application

s (SRR S D PN -

s ——

ntten AT B i oSG e

s

1
£
i

P

of character related information which is not primary visual in nature, such
as optically printed text, table of content and index generation, and
temporary markers used for editing aids. Additional features allow the user
to assign names to various portions of a document and to access and operate
upon named portions through those names.

As shown in Figure 5, the basic element of a document is a fixed size block
(BLOCK 503) of information, the size of which is determined by a convenient
and efficiently sized unit of memory space in which the document is created
and operated upon. In the present embodiment in System 10, the block size is
determined to be two Disc 18 sectors, that is, 512 bytes. In another system,
for example, a centralized system based upon a general purpose computer, the
block size may be determined by the size of the data blocks transferred
between the computer main memory and a cache memory, or a multiple thereof.
Each BLOCK 503 has associated with it a File Reference Serial Number (FRSN) by
which it may be located. In Figure 5, the FRSNs are represented by numbers in

parenthesis following "503". As will be described below, a document structure

PR

is constructed of several different types of blocks, each having a unique
internal structure and serving different, specific purposes and assembled as "
required to create a document. Of these blocks, certain blocks are required
in any document while others are used as required. Certain blocks are always
located at fixed points in the document and others are located through the
pointers which form an integral part of the document structure. In addition,
certain blocks, for example, blocks containing text, may be chained together
as required. The document structure is thereby flexible and expandable,
occupying no more memory capacity than is required for a particular document

but capable of accommodating very large and complex documents, and

-39 -

T " " N N

provides fast and easy access to any part of a document,

1. Basic Block Structure

All blocks in the present document structure have a fixed internal structure
comprised of a Header area and a Data area. The Header area in turn has a
standard, fixed structure while structure of the Data area depends upon the
block type.

The Header area (shown in Figure 6) includes a Block Type field (BT 1001)
identifying the block type, Forward (NL 1005) and Backward (PL 1007) Pointer
fields used to chain together blocks of the same type and Top (TO 1009) and
Bottom (A0 1011) Offset fields identifying the location of the block data
within the Data area. Other Header fields include a Number of Items field (UD
1013) used in data compression and recovery operations, a Document ID field
used to identify the document to which the block beiongs (UID i015), and
certain Checksum information for error detection (UD 1013). Not all blocks
require the use of all of the fields defined within the standard block Header
area; in such cases the unused fields ase undefined and are not used but are

not deleted from the Header area.

2. Basic Block Types

As described above, each document is comprised of a combination or assembly of
various types of blocks, which can be divided into three major functional

categories, Management Blocks, Indexing Blocks and text/Data Storage blocks.

- 40 -

- i

B

referred to as information Item Blocks. Certain blocks are required in any
document while other blocks may appear only in compiex documents and the

document structure allows the addition of further block types as required.

Management blocks are required in any document and contain printing and
statistical information and user defined editing parameters for the document.
Presently defined Management Blocks include an Administrative/System Block, a

Style Block and Free Block Bit Map Block.

indexing Blocks are used to locate the various Information |tem Blocks which

contain the actual text and information of the document. Presently defined

Indexing Blocks include a Document Table, a Named l'tem Index, and Primary and

Secondary Indexes. The Document Table is focated at a fixed point in the

document and is used to locate the Named Item index and the Primary indexes.

The Primary Irdexes are used in turn to locate the Secondary Indexes and the :

Secondary Indexes are used to locate Information {tem Blocks. Certain &

Information item Biocks, and the Named Item Indexes, may be chained together

through ke Forward and Backward Pointers contained in their Header areas,

PR

thus providing yat another level of linking of blocks.

It should be noted that when a document does not contain more Information |tem

e

Blocks of a given type than can be identified within the capacity of a single
Secondary Index; the Primary Indexes for that block type are not created and
the Document Table entry for that type points directly to the single Secondary i

Index for that block type.

L NP SR .

ST

-~ 41 -

.

A i s ol Mot i S s e ot oA Lk o vl . e s ol O mind e a e e e G e nter b e st > PGP =

20

Finally, the information |tem Blocks contain, as described above and described
in detail below, every type of information appearing in a document, Most
Information [tem Blocks having text can have that text enhanced by visual
attributes, such as color and font, and can contain references to information

attributes, such as format lines and footnotes.

The presently defined types of Information |tem Blocks, each of which will be

described in further detail below, inciude:

Text Formats
Headers/Footers Pictures

Free Form Regions Text ‘Shelves Footnotes
Notes Equation Regions
Voice Messages Merge Data

Data Shelves

Certain embodiments of the present invention may also provide Matrices Blocks

and External Data Blocks, as described below.
As described above, additional Information Item Block types may be defined as
required and incorporated within the document structure in the same manner as

the types listed above.

Other types of references which may be inserted into a dotument include, in

- 42 -

- ~
e R S R S N VO S U e i e, st -

. e

20

addition to attributes, described below. Text Insertion References and Named
Marks. The document structure described below also includes, as described

below, means for handling text appearing in column form.

3. Minimum Document Blocks

As described above and shown in Figure 7, certain of the blocks described
above are required in any document. In the present embodiment of the document
structure, these blocks include, for a minimum document, the:

Document Table (DT 80) Administrative/System Block (Ad 603)
Style Block (SB 605) Free Block Bit Map (BM 601)
Secondary Text Index (SPIX 619) Text Block (TB 621)

Secondary Format Index (SFIX 615) Format Information 1tem Block (FIIB 617)

It should be noted, with regard to the two Secondary Indexes entries listed
above, that, as previously described, a minimum document may contain a single
Secondary index for a particular Iinformation |tem Block and the Secondary

Index may be located directly through the corresponding Document Table entry.
Having described the major categories of block type, and briefly the types of

block within each category, each of the block types will be described in

further detail below.

- 43 -

4 e e G MesVIvERAN ¢ . B e

PR b m em e e EUTSE PO e

e trer———

i

P =

chog R T

(% 4. Management Blocks
The Administrative/System Block contains keystroke interpretation and
administrative information and may be chained to other Administrative/System
Blocks for very complex documents.
The Style Block contains user definable defaults concerning, for example,
' document character style to be used if the user defaults, that is, does not
"' define a different style. |
. 1o |
::¥{ The Free Block Bit Map Block contains information identifying, for each block
'c in a document, whether a particular block is cufrently in use. Bit Map Blocks
are used by the system to efficiently allocate and deallocate blocks, that is,
.«,'*, memory space. Bit Map Blocks may be chained, thereby allowing a complete
.;,::, physical mapping of every block or, in the present embodiment, disc sector. i
4
i

5. Indexing Blocks

s
s~ =S

The following descriptions of the Indexing and Information Item Blocks will
refer to Fig. 4, which iliustrates the document structure of the present

invention and the relationships between Indexing and Information |tem Blocks.
As previously described, the Indexing Blocks include the Document Table,]

Primary Indexes and Secondary Indexes. Referring to Fig. 4, each document

contains a single Document Table (DT) 80, which contains a pointer to a

- 44 - !

-

b

|
FIN

& i
é‘a‘“ R
ety

i
k

Primary Index (P1) 82 for each type of Information Item Block type appearing

in a particular document. Each Pl 82 in turn contains pointers to one or more

Secondary Indexes (Sls) 84 for that Information Item Block type and each SI 84

contains, in turn, pointers to the Information |tem Blocks (I!Bs) 86 of that

type appearing in the document. As previously described, in those cases

wherein the number of IIBs 86 of a certain type is less than the number of

pointers which may be accommodated in a corresponding single S! 84, the

corresponding Pl 82 is not used and the DT 80 entry points directly to the Si

84 for that |IB 86 type. i

It should be noted that, in the present embodiment, the pointers used in the
Indexing Blocks, that is, in DT 80, Pls 82 and Sls 84 are comprised of File
Reference Serial Numbers, that is, the logical as opposed to physical

addresses of the elements pointed to.

S

As will be described further below, 11Bs 86 of certain types may be chained
together with other 1I1Bs 86 of the same type through the Forward and Backward
Pointers in the 1IB 86 Header areas. In such cases, an SI 84 pointer to a %
chain of 11Bs 86 may point to the first |IB 86 of the chain and the remaining

11Bs 86 of the chain may be located through the Forward and Backward pointers.

a. The Document Table

The DT 80 is always located at a fixed point in the document structure, that

is, at the start of the document, and there is only one DT 80. The Header area

- 45 -

P o e T TN T S S, W - BL Lt L v ww s oo

i

of DT 80 is the standard, fixed structure previously described. The Data area
contains a space or location for a pointer to the PI 82 or S| 84 for each
possible type of 11B 86. |f a particular type of 1IB 86 does not appear in a

document, the DT 80 entry for that type is null entry, for example, zero.

In the present embodiment, the DT 80 Data area contains the following pointers:

Named |tem Index

Primary (or Secondary) Text Index
Primary (or Secondary) Format Index
Primary (or Secondary) Note fndex
Primary (or Secondary) Free Form Region Index
Primary (or Secondary) Footnote Index
Primary (or Secondary) Header Index
Primary (or Secondary) Footer Index
Primary (or Secondary) Matrix Index
Primary (or Secondary) Picture Index
Primary (or Secondary) Voice Index

Primary (or Secondary) External Data Index

Primary (or Secondary) Merge Data Index

Primary (or Secondary) Equation Region Index
Text Insertion Index

Named Marks Index

- 46 -

[OOSRV,

.

W0 P (1] e [L1]

(h. Primary indexes

As previously described, there is a Pl 82 for each |IB 86 type appearing in a
document and the Data area of each Pl 82 contains pointers to the Sis 84 for
the corresponding block type. In the Header area of a Pl 82, the Number of
Items field will contain the number of Sls 84 referenced from the PI 82.
There will be, in the present embodiment, only one Pl 82 for each block type;

in other embodiments, for example, Pls 82 may be chainable within each block

‘e type.

When a document is first created there will be, as previously described, only
Sls 84 and probably only two such Sls 84, one for a Text Page |IB 86 and one
for a Format Line 1IB 86. As the document grows in complexity, the capacity
of single Sls 84 will be exceeded and further Sls 84 will be created. As a
second such St 84 is created for a particular block type, a Pl 82 for that
type will also be created, with pointers to the Sls 84 of that type, and the

DT 80 entry for that type will be changed to point to the Pl 82 for that type.

20 c. Secondary Indexes

The general structure of Sls 84 is similar to that of Pls 82 described above.
As previously described, an S| 84 is pointed to by an entry in a corresponding
Pl 82 and contains pointers to the |IBs 86 of that block type. There my be
multiple Sis 84 for a particular block type and, if so, the Header area will
contain a flag indicating this fact. Sis 84 may not, however, be chained in

the present embodiment, but may be chained in other embodiments.

- 47 -

e e e At S - ARl e a i rieadans bitan | Yedd ath e [

———— =

I i St g St

g~

The S| 84 Data area contains a pointer to each |IB 86 referenced through the
S| 84, and for each such pointer, informaticn as to whether the particular
information item, that is, |IB 86, i3 named, the number of times it is

referenced, and whether it is referenced from another [IB 86.

1. Secondary Text Pages Indexes: Fig. 7

Although the structure of a S| 84 for a text page 1IB 86 is the same as any
other Sl 84 (SPIX 619), such S! 84s are unique in that the index contained
therein in continuous, that is, no vacant entries (PP 620) are allowed. This
restriction provides for a special property of Text Page |IBs 86: that is,
that the number of a document page (627(n), which as illustrated in Figure 7
is comprised of one or more |1Bs 86, is always the same as that of the |IB
86. For example, the entry (PP 620) of the 45th page in a document is always
the 45th entry within the first S| 84 Text Page Index. A page's page number

is also its Item Number, described in more detail below.

The Secondary Text Page Index may therefore always be used to find the first
Text Page Block of a document's page. A document page can be comprised of any
number of Text Page Blocks chained together by the Forward and Backward

Pointers in the Block Header areas.

2. Secondary Header and Footer indexes

Secondary Header and Footer Indexes have the same structures as all other Si

84s except that all items must be assigned on even boundaries when new Header

- 48 -

-~ e e o I e P o —

B v - ~ A o -
PV — A maenn o e ks At Seser e oo, aMie D0 o et son b s Astbe b s 4L

PO

%;tﬁm

N

18

and Footer |IB 86s are created. This restriction provides space in the
indexes to allow for the generation of either primary or first and second

alternate Headers and Footers.

d. Named |tem [ndex

The Named [tem Index, which appears as a Pl 82 in Figure 4 and in more detail
as NIX 607 in Figure 7 provides a parallel access path to [IBs 86 which have
been assigned names by the user. That is, an |IB 86 can be located by its

name as well as by its Item Number (IN), described below, or FRSN.

The Name Item Index Data area contains an entry (NP 610) for each [IB 86 which
has been assigned a name (NA). Each entry includes the |1B 86's type, name
and |tem Number (IN). in the case of a Named Text Page, IN is the same as the
page number (PN). Text Shelves, a type of |IB 86 described below, are

identified by their FRSNs rather than by their |tem Numbers. Entries are

" maintained in ascending order by type and name, no blank entries are permitted

in the index, and Named |tem Indexes may be chained through their Forward and

Backward Pointers.

6. Information |tem Rlocks

As previously described, the actual text or other information of a document is
contained in information Item Blocks (11Bs) 86 and there is a type of 11B 86

for each type of information that appears or may appear in a document.

-~ 49 -

RS) e

S

e AN Mo N e

1f' An 1IB 86 may, for example, contain text and/or attributes, text and/or
attributes to be interpreted as columns or rows of columns, file names for
information stored externally to the document, and any other form of
infornation. Each |IB 86 has an associated |tem Number that it is used to
locate the 1IB 86 within the Index Blocks described above. For Information

attributes described below, the Item Number is arbitrary.

In atl cases, however the Item Number leads to the first IIB 86 of an
b information item of arbitrary length and the blocks may be chained together

10 through the Forward and Backward pointers residing in their header areas. 2

The general structure of an 11B 86 as shown in Figure 6 is similar to that of
the Index Blocks described above, that is, with a standard Header area (602)
« +« and a Data area. The Data area differs, however, and may contain text (629)

+.*v, or attributes (631) or both. Text is entered from the top to the bottom of

)

the Data area and attributes are entered from the bottom to the top. A
, typical Data area may therefore have text in its upper portions, attributes in
its lower portion and free area between, which becomes filled as text and/or %
*aces’ attributes are entered. Either text or attributes may occupy the entire Data
O area, or as much of the Data area as is not occupied by, respectively,

attributes or text.

In addition to the Forward (NL 1005) and Backward (PL 1007) pointers and other
Header elements, the Top (T0Q 1009) and Bottom (AQ 1011) QOffset fields of the d
Header are used to point, respectively, to the last valid character in the

Data area and the l=zgt valid attribute in the Data area.

- 50 -

U USSR AP S L crdhe beeemn ok e ks as o N T T e et Al S AT v s

Having described the general structure of |IBs 86, the individual types of
11Bs 86 of the present embodiment will be described next below. It should be
noted that further types may be added as required and that a type described

below need not appear in a particular document or implementation.

a. Text Blocks: Fig. 7

The most common form of [IB 86 is the Text Block (TB 621) which contains the
text of the document and the attribute information, described further below,
pertaining to the text contained therein. Text Blocks contain the actual body
of a document text, including all visual and descriptive attributes and all
information comprising references. Text Blocks can be chained together or can
exist as independent biocks with the main body of a document's text existing
as a single chain of blocks, beginning with the first block of the first page
of the document and ending with the last block of the last page. Document
pages (627) wherein the text occupies more than one Text Block are created, to

any arbitrary length, be chaining together Text Blocks.

As described above, text occupies the Data area from top to bottom and
attribute information from bottom to top. The last text character appearing
in a block is always an cnd of Text Character to identify the end of a page.
Any number of Text Blocks may be chained and a Text Block is referenced either
through a Text S| 84 by |tem Number or through a Secondary Named Text Index by

page number or name.

- 51 -

M e et 1A T B s Lo T

s i s B drini A i B I S PRSP S S R DS SIPR W DvoO G P VO R N S S e r S

T N N P

—asmciveditn.

E"

(' b. Format Blocks: Fig. 9

A Format Block (FIIB 617) contain data pertaining to format lines, that is,
lines defining the physical layout characteristics of a text line, for

example, the locations of Tabs. All documents must contain at least one

format line and a format line may be referenced any number of times from any

location within the document and may be named.

-

e As described above, a format reference embodied in a format attribute word

LN}

10(Faw 1201) is used to specify data to control text display, formatting, and

H

, printing characteristics, as well as the width of a single or multiple

1
1

columns. A format reference will be found at the beginning of every text
§ page, at the start of every distinct column region, and at other arbitrary
user specified locations within text pages. In addition, a format reference

+,*v, is required at the beginning of item chains for all notes, footnotes, headers

RS
3
-
.
-
-
-

and footers and may be found at other locations within such items.

A format reference is a "forced-break" reference, that is, the attribute
“ character, described below, with which the reference is associated is always
20 the first character in the text bock in which it is found. I|f a new format
line is inserted into a Text Block, the block is split into two blocks at the
point o/ insertion and an End of Text chatracter inserted at the énd of the
text in the block before the inserted format line. This feature allows text

to be easily inserted before format lines and page breaks.

- 52 -

-

10

20

Format references are also used to control the placement and configuration of

column regions and to specify special conditions, such as the presence of soft

or hard page breaks.

¢c. Text Shelf Blocks: Fig. 7

Text sheives 633 are named storage areas used during editing to save and
retrieve portions of text and are not normally printed. A text shelf contains
both the text and the attributes pertaining thereto and is a permanent part of
the document but cannot be referenced as are other [IBs 86. A Text Sheif
Block may be referenced only through the Named |tem Index 607 and no Si 84
exists for Text Shelf Blocks. As previously mentioned, FRSN (appearing in

Fig. 7 610 as (f) is associated with each text shelf 633 in NIX 607.

d. Note Blocks
A Note Block contains the text and any applicable attributes of notes
appearing in the document and a single note may be comprised of several

chained Note Blocks.

e. Free Form Region and Equation Blocks

A Free Form Region of a document may contain any non-wordwrapped text or any
graphic that can be entered through KB 46 and any attributes applicabie

thereto. Every space in a Free Form Region is defined, that is, it does not
contain any 'white space', and graphics and text may be entered at any point

in the region. Examples of Free Form Regions include scientific equations and

- 53 -

x ., .

=

T

e
=

o

e e e - W

charts. Free Form Region Blocks may be chained to create as large a Free Form
Region as required. An Equation Block is similar to a Free Form Region Block,
or a Graphics Block, but is particularly designated to contain information in

form of equations.

f. Footnote Blocks

A Footnote Block contains the text and applicable attributes of a footnote and

a single footnote may be comprised of chained Footnote Biocks.

g. Header/Footer Blocks

Headers and Footers are restricted attributes, that is, they can be placed

only at the top of a page, immediately after the format line.

There are three types of Headers and Footers. A Primary Header/Footer is
printed on every page of the document, a First Alternate Header/Footer is
printed on every other page, and a Second Alternate is printed on the pages

interleaved with the pages having First Alternate Header/Footers.

Headers and Footers contain options which may pertain to specific Headers and
Footers, such as print styles, lines printed on, and page numbering. The
Header area of a Header/Footer Block contains unique informe. ion pertaining to

these options.

- 54 -

Ao .

£

h. Matrix Element Text Blocks

A matrix is a two dimensional table, or array, of areas of wordwrapped text

with each such area being referred to as a cell. The text and attributes of a

single such cell are contained in a corresponding Matrix Element Block, a type

of 11B 86.

Format lines defining the columns of the matrix are contained in Format |IB
86s are treated as elements of the matrix. The first element of a matrix

10 column is always a format line, there is always a format line for each column
of a matrix and a format line may be referenced by any number of Matrix
Element Blocks. This restriction on the assignment of format lines, that is,
one for each column, allows the columns and rows of the matrix to be easily

rotated or interchanged. The text within a cell is unique in that it cannot

column containing the cell.

The Matrix Element Blocks and Format Blocks of a particular matrix are located

through a Matrix Description Table, which also contains the definition of the
20matrix. Matrix Description Tables are in turn located through Primary and

Secondary Matrix Indexes.
A Matrix Description Table has the same structure as the blocks previously

described and contains, as described, the information necessary to completely

define matrix. The Data area contains FRSNs pointing te the text blocks and

~ 55 -

be modified by any other format line than that appearing with reference to the

.

Yy

™

A R A A e

L O
—ascwo

[S SR R

o e cvppakhe e mv e W Y o . A

format lines of the matrix with each FRSN pointing to the beginning of a
Matrix Element Block, the smallest unit of a matrix. In addition to the
standard information, the Header area identifies the number of rows and

columns of the matrix.
Each Matrix Element Block contains normal wordwrapped text and any applicable

attributes of a cell of the matrix and are referenced in the matrix

Description Table in row order from left to right.

1. Picture Blocks

A Picture Block contains the name of a file containing, in turn, a graphiec,
that is, picture and may contain additional information identifying the area
of the document to be occupied by the picture. As previously described,
Picture Blocks will normally be used with system having bit mapped display and

printing capabilities.

j. Voice Blocks

Voice Blocks may contain the names of files containing voice messages, for

example in Digital Voice Store and Forward (DVX) systems.

- 56 -

B et

-

AT

]

k. External Data

External Data Blocks may contain the names of files external to the system
which contain programs or data operating upon data within the system or used
by the system. The provision of External Data Blocks ailows, for example,
programs residing in external files to be overlayed to operate upon data
within a file in the document. External data may also be incorporated into a

document through an attribute reference, as described below.

1. Merge Data Blocks

A Merge Data Block is a chain of text which contain encoded instructions for
performing merge operations between an external text source and the document.
The position of a merge attribute character in a text chain specifies the
position at which the merging is to occur. The instructions indicate how to
perform the merge operation and there is no restriction on the contents of the
merge data chain. Merge data text may contain additional references to other

formats, so that columns may be placed in merge chains,

m. Text Insert

A text insert reference is a temporary locai reference attribute which does
net bear an item number and which consists only of a reference attribute
character and a reference word, as described below. The purpose of a Text
fnsert is to create a force block break at a point where text is to be
inserted.

- 57 -

4 . e e TRPRARAME AT L, Byt e T Y

o et mienin

sl T

i

A

10

n. Named Marks

Named Marks are user specified permanent position markers. When applied, the
character to be marked is moved to the beginning of a new block and the
occurrence of a Named Mark is indicated in the header of the new block,
resulting in a forced block break. The block or item number of the new block

is then placed in the Named [tem Index.

o. Columns - Fig. 10

Parallel columns of text appearing in a document are treated as a special case
of normal word-wrapped text. The text in a column consists of a portion of a
text page chain containing text, visual attributes, and reference attributes.
Each column begins with a format line controlling the display of text therein,
and has essentially unlimited length. A column may be interrupted by a format
break or page break. A column is terminated by another format, which may in
turn contain one or more columns and may be at a page break. It is therefore
possible to have, in a single page, a region of three columns followed by a
region of two columns, and so on. 1In addition to format data, columns require

block linking pointers (1207, 1209) to connect columns together, if necessary.

Format line and data specifications of columns appearing in a single page are
all included into a single format line with multiple codes to delimit the

extent of each column.

- 58 -

- i A | oo e N e s -

GO

el

Column text is stored in a text page chain in sequential form, with the text
of the first column (1301) in a multi-column region following immediately
after the text of the preceeding region. The last biock of text of the
preceeding region is chained to the first block of text in the column region,
which contains a reference (1201) to the formats for the column regions. The
last block of the first column is chained to the first block of the next
column (1303) and so on to the end of the column region, wherein the last

block of th last column is chained to the next succeeding block.

- e o

In order to easily perform whole-column operation, the top blocks of each
column in a column region are linked together by side pointers (NC1207,
PC1209) located in the format attribute words (1201) found at the start of

each column and FAW 1201 is shown in Figure 9.

Having described the various types of I|IB 86, the relationship between text

and attributes, referred to in the above descriptions, will now be described

o=y d

next below.

7. Text and Attributes

As previously described, any 1IB 86 may contain, in the Data area, both text
and attributes. Attributes, which appear as words written in the lower part

of the block Data area may, as previously described, affect the visual

appearance of the text, may be descriptive in indicating that a character is

to be optionally printed or is to be used in generating a table of contents or

SR

an index, or may contain information pertaining to the text, for example,
footnotes.

- 59 -

v

Visual and descriptive attributes are always applied to a range of characters,
which may be as short as one character. There may be a number of distinct
visual/descriptive attributes appearing in a single block. |f the same visual
or descriptive attribute is applied to characters separated by at least one
characters, two attributes will be present; if, however, the same attribute is

applied to consecutive characters, a single attribute will result.

informational attributes usually appear as units of text or data existing
between two text characters and are referenced or incorporated into the text

through a reference to a block containing the information text or data.

Attribute words occupy space in an |IB 86 Data area only when defined. In an
11B 86 containing only text with no assigned attributes, therefore, the text
may occupy the entire Data area. Conversely, it is possible to have an |IB 86
wherein the entire Data area is occupied by attribute words. Attribute words
are defined only within a Text Block and have meaning and are applicable only

within the Text Block; attributes cannot span over two or more Text Blocks.

1. Visual/Descriptive Attributes: Fig. 8

Visual/Descriptive attributes are applied by the user over a range of
characters appearing in the text, frem one character to all characters
appearing in the Text Block. Whether or not certain visual attributes are

displayable, depends upon the capabilities of Display 48.

A visual/descriptive attribute word will contain information (TY 1103)

identifying whether the attribute is visual or informational, the position

- 60 -

" R e " -
Ll il s Vs e e e S i ey My avah ke Bk 0T e e et B bt aadiimanh. BaE, o A >

won

\ (SO 1107) of the first character in the Text Block affected by the attribute,
and the position (EQ 1109) of the last character in the Text Block affected by
the attribute. Also included is information (DATA 1105) identifying the
attribute to be applied. Only one attribute is specified by each attribute
word and, if text characters have more than one visual attribute, multiple
attribute words are required.
Attributes implemented in the present embodiment of the document structure
‘ include, but are not limited to, the following: i
5 %
Underline Color Change
Double Underline Revision Mark
: Superscript Subscript
Bold Table of Contents Mark
'}E' Font Change Index/Occurrence Mark
e Merge Hyphen %
) Character Set Change Table of Contents
‘ No Break Strike-Through L
sevc QOptional Text Index Generation
- 61 -

s e P o
et oAb it e AT S el E e i 2T Soomi AW A BE aes > Bhan kD PRV LA, LENOY BUSSIVORTIYN VI VR & Ctmmitaes B el e mae L by AmbaaiE e € = .

B e T T T VUVUE B R I —— ——-‘

2. Informational Attributes: Fig. 8

As described above, informational attributes are units of text of data that
exist between two text characters. Informational attributes are represented
by a unique, unprintable (AC 623, shown in Fig. 6) and by informational
attribute words (1AW 1115) appearing in the attribute area of the Text Block
Data area. Only one informational attribute may be associated with the
informational character in a single occurrence of the informational character

and each informational word may define only one informational attribute.

The data associated with the information character is, for each occurrence,
kept in |IB 86s and are located through the Indexing Blocks through their |tem

Numbers.

An informational attribute word contains information (TY 1103) identifying the
word as referring to an informational attribute, the type of attribute (AUX
1117), and the |tem Number (1121) of the attribute. The word also contains
information (AC OFF 1119) identifying the location within the text where the

informational attribute takes effect and, in the case of, for example, Picture

20or Free Form Regions, may identify the horizontal and vertical space required

in the document for the attribute (DATA 1123)

- 62 -

RT3

RS9

ety
o

3

The forms of informational attribute implemented in the present embodiment

include, but are not limited to:

Format References Matrix References
Note References Picture References
Free Form Region References Voice References

Footnote References External Data References

3. Attribute Sorting Order

The attribute words stored in the attribute area of a Text Block are
maintained in a specific order to provide ready and logical access to the
words while fedching characters and associated attributes. |[f two or more
attributes begin or are located at the same point in the text, their order is
determined first by attribute type, that is, reference attributes, such as

informational attributes, will occur prior to visual or descriptive attributes.

The invention described above may be embodied in yet other specific forms
without departing from the spirit or essential characteristics thereof. For
example,; the system described herein may be implemented in a centralized
document processing system or in a system wherein independent processors or
computers are loaded separate from and receive document and routine
information from a central memory or other computer system. Such downloading
of data and routines may occur as a single operation rather than as an

interactive downloading of currently active routines and document segments.

- 63 -~

~— s Vo o e g - -

PRV

E

>

In further example, the document structure described above may be implemented
in any form of document processing system, whether distributed or centralized
or the system may be implemented with additional of less editing

capabilities. Thus, the present embodiments are to be considered in all
respects as illustrative and not restrictive, the scope of the invention being
indicated by the appended claims rather than by the foregoing description, and
all changes which come within the meaning and range of equivalency of the

claims are intended to be embraced therein.

- 64 -

s st e e i v e ® e PR SOOI T SV A A s aa)

i

FR

prEY

- 69 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS: -
1. A computerized document processing system including
storage means adapted to store data arranged in
data blocks,
processing means programmed so as to carry out
predetermined processing steps on any ones of the
data blocks, and
a document structure made up of the data blocks
for storing a document of information and controlling
the logical steps of storing and/or accessing the
document of information,
the document structure for the document comprising at
least:
information item blocks being data blocks having types
indicating the kind of informwation they contain and
including
text block havin, the text type for storing text
belonging to the document and
a format block having the format type for
storing format information governing the format of
the text stored in the text bleck;
index blocks being data blocks storing a plurality of
indexes for locating informatien item blocks according to
their types, each index including pointers processible by
the processing means so as to identify to the processing
means thé location within the storage means of the
respective information item block, the index blocks
including
a text page index block stering a text page
index defining the locaticon of a text block
cont=ining text belonging to a given page of the
decument; and -
a format index block storing a format index
defining the location of a format block containing a

format used to display a given portiom of the

v Ao wimn 2 stk % TR s S s RhREERE

-

=f.fé§7- T2
e AR e ne e

‘%ﬁ%’z‘mw e Y -

document; and
management blocks being data blocks storing
information used by the processing means to manage
the document, the management blocks including
a document table storing further pointers
defining the locations of the index blocks,
an administrative/system block storing at least
keystroke interpretation information,
a style block storing user-defined defaults for
the document, and
a free block bit map block storing information
identifying information item blocks currently
available for use in the document,
and wherein the processing means includes
reading means which read index blocks and
identify the pointers stored in the index blocks; and
retrieval means retrieving information from the
item blocks identified by the pointers identified by
the reading means.
2. A computerized document processing system comprising:
storage means adapted to store data arranged in data
blocks and in which information constituting a document is
defined for processing storage in a document structure
comprising:
information item data blocks being data blocks
storing information relating to the respective
document;
index item data blocks being data blocks storing
a plurality of indexes identifying the location of
information item blocks according to their function
in the document, by a plurality of pointers;
processing means programméd seo as to carry out
predetermined processing steps on any ones of the
data blocks and including:

reading means which read index item data blocks

QPRI iy PO

P

e

7 AL
<Y

s &

st AR

AP I

(/.
!

L3N
- 66a -
including reading the pointers in the data blocks;
retrieval means retrieving the information item
blocks identified by the points read by the reading
means; and
logical operation means performing logical
operations on information stored in information item
data blocks retrieved by the retrisval means.
3. A document processing system of claim 2, and wherein:
RILTH each of the information item blocks belongs to one of
see” a plurality of types indicating the function in the
fE" document of the information stored in the information item !
block, and '
Teses® a given one of the indexes is used by the processing
e e
v |
.:...i f
.:...E
i
%
{
/fgmﬂkgz
/‘%’ f/j,
s M5 &)

means to locate information item blocks having a given one

of the types.

4. A document processing system of claim 2, and wherein:
certain ones of the information item blocks contain

item numbers specifying references;

certain others of the information item blocks
contain references; and

the plurality of indexes includes an index for
locating information item block containing any of the
references by means of the item specifying the reference.
5. A document processing system of claim 4, and wherein:

the plurality of indexes includes an index wherein a
name is associated with an item number, by which index the
processing means locates by means of the name an
information item block containing a reference locatable by
means of the item number.

6. A document processing system of claim 4, and wherein:
the information item blocks contain means for forming

chains of information item blocks; .
each of the references is contained in a chain

including at least one information item block; and

the index for locating the reference associates the
item number with the chain containing the reference
specified by the item number.

7. A document. processing system of claim 2, and wherein:
the information item blocks contain means for forming
chains of information item blocks;

a chain of information item blocks made up of at
least one information item block contains a page of the
document; and

the plurality of indexes includes an index by which
the processing means locates the page by means of a page
number.

8. A document processing system of claim 7, and wherein:

the plurality of indexes includes an index wherein a

JBu sl b med - e | o . — et K

e

e

3

Sg g
-

e

—

ot Tttt
|
!
1
|
|
SO ey

A

 I—

. name is associated with a page number, by which index the
processing means locates the page by means of the name.

9. A document processing system of claim 2, and wherein:
each of the data blocks employed in the document
structure contains means for linking the data blocks into

chains permitting location of data blocks adjacent to a
given data block in the chain from the given data block.
10. A document processing system of claim 2, and wherein:
the document structure further includes components
made up of information item blocks and the plurality of
indexes includes & name index wherein a name is associated

et o with a component, by which index the processor means

egee locates the component by means of the name. '
sevs

LN 11. A document processing system of claim 10, and wherein:

.

first certain of the components are locatable by

b using the associated name in the name index and by means
(X] .
. %ot of another of the indexes and second certain of the

components are locatable only by using the associated name

LN in the name index.

::: 12. A document processing system of claim 10, and wherein: .
"’ the second certain componenhts include a text shelf i
RO made up of information item blocks used for temporary

L2 .y

storage of information in a document structure.

13. A document processiig system of claim 2, and wherein:
RN each one of the information item blocks has an

.::: associated block number for identifying the information
LI item block and the plurality of indexes includes a name

index wherein a name is associated with a data block, by ;
which index the processing means locatés the information

item block by means of the name.

14. A document processing systenm of claim 2, and wherein:

a given index blo¢k contains a maximum of N pointers; N

P

and
the given index contains a single index block means
as long as the number of pointers is not greater than N

e =

Gaae > SJVRRNEY L SN L P

B T
& e oSN

RSP TS —_— et e e Paeato s its vt WA o Fars Mhox » ditie dode, e i B R e I T

and otherwise contains a plurality of index blocks.
15. A document processing system of claim 14, and wherein:
the plurality of index blocks in certain of the
indexes includes:
at least one secondary index block containing first
pointers by means of which information item blocks are
located and
a primary index block containing second pointers by
means of which secondary index blocks belonging to the
index are locatable.
16. A document processing system of claim 15, and wherein:
each of the index blocks contains means for linking
the index blocks into a chain and
all secondary index blocks locatable by means of a
given primary index block are linked into a chain by the
linking means.
17. A document processing system of claim 2, and wherein:
certain of the information item blocks contain
external references to information not contained in the
document structure.
18. A document processing system of claim 2, and wherein:
certain of the information item blocks contain a text
part for storing characters making up the body of the text
of a document and
an attribute part for storing attribute words
pertaining to the characters stored in the text part.
19. A document processing system of claim 18, and wherein:
each attribute word contains a type specifier J
specifying‘the type of attribute represented by the
attribute word and a location specifer specifying the
location in the text part to which the attribute
represented by the attribute word applies.
20. A document processing system of claim 19, and wherein:
the attribute words include visual/descriptive
attribute words wherein all information required for the

: l"”’"""“"‘“‘“"’"mm A3 B eyl SR e & e, s
.

.

attribute is contained in the attribute word and
informational attribute words containing means for
locating an information item block containing the
information required for the attribute.
21, A document processing system of claim 20, and wherein:
certain of the visual/descriptive words contain
a first value specifying the location of the first
character in a range of characters to which the attribute
specified by the attribute word applies and
a serond value specifying the location of the last
character in the range to which that attribute applies.
22. A document processing system of claim 20, and wherein:
the: characters include a non-printable attribute
charactzr; and
caertain of the informational attribute words are
associated with the attribute character, the attribute
charagter associated with a given informational attribute
word serving to mark the location in the text at which the
assoc¢iated attribute word applies.
23. A document processing system of claim 20, and wherein:
the information blocks locatable by means of certain
of the information attribute words contain external
refierences to information not contained in the document
structure,
24.. A document processing system of claim 19, and wherein:
the attribute words are ordered in the attribute part
by location specifier and; if more than one attribute
specifies a given location, by type specifier.
Z5. A document processing system of claim 2, and wherein:
each of the information item blocks belongs to one of
a plurality of types indicating the function in the
#document of the information stored in the information item
block,
the plurality of information item block types includes
a text block type and

S S e hss w0 et o
S emdw B e -

a format block type;

the indexes include an index for locating an
information item block of the format block type by means
of an item number;

the text of a document embodied in the document
structure is contained in a chain of information item
blocks of the text block type;

the text in a portion of the chain of information
item blocks may be formatted as a plurality of columns,
the text of each column occupying a sequence of at least
one information item block in the chain and beginning in
the first information item block of the sequence;

the format of the portion of the chain is determined
by a single information item block of the format type; and

the first information item block in each of the
sequences containing the text of a column includes a
format attribute word containing the item number of the
single information item block.
26. A document processing system of claim 25, and wherein:

each format dattribute word further contains means for
locating the first information items block in the
sequence containing any immediately preceding column and
means for locating the first information item block in the
sequence containing any immediately following column.
27. A document processing system of claim 3, and wherein:

the plurality of types of the information item blocks
include:

text,

format,

header,

footer,

matrix,

footnote,

note,

shelf,

PR = e o g nd o i e i

D

. e
i AR R Rt MM

U S M

i

el

4%

*» wve
L] L[]
[]

[X

>
o 0

picture,

free-form region,

external reference, and

voice message.

28, A document processing system of claim 2, and wherein:
the information item blocks include
means for linking the information item blocks into a

chain thereof;

the information item blocks are linked into chains
according to their function in the document; and

the pointers in the indexes locate the chains.

29. A document processing system of claim 28, and wherein:
certain ones of the information item blocks contain
item numbers specifying references;
certain of the chains contain the references; and

the plurality of indexes includes an index for

locating the chain containing any of the references by

means of the item number specifying the reference.

30. A document processing system of claim 29, and wherein:
the item numbers are contained in informational
attribute words representing the references; and

the certain information item blocks include an

attribute part for storing the informational attribute

words.

31. A document processing system of claim 30, and wherein:

certain of the certain information item blocks

further contain a text part for storing the characters
making up the document text;
the characters include a non-printable attribute

character; and

certain of the informational attribute words are
associated with the attribute character, the attribute
character associated with a given informational attribute

;

s R S R

"

© mmn s b ke s Lo W e rmt S i e & e e B R G s < 8 O 3 P AT S - 2 A s b

‘ word serving to mark the location in the text at which the
reference represented by the associated interformational
attribute word applies.

DATED this 30 day of December 198 8.
WANG LABORATORIES, INC.
Patent Attorneys for the

Applicant:

F.B. RICE & CO.

§ %gﬁﬂ;{qugwww

MASTER UNIT 12
I MasTerRcopy/ 22 1
} 728 |
‘ MOS
] 1
! I8
28
] SR ':
i f14
. g ;
- e - = = e - r':!s
—-ZZZZ-ZZ-ZH aa 28 z P
F--=-=---=-= ml ra /28 MEMORY,~ a2 40 48
——————— — - — cPu
DOCUMENT F|L=3f2‘4 4 S SR AOR ADS DISPLAY
l . r32 l Y A
] DS l A
\ {V wssus /50 JV
IL - _ _ 881734 | 1
CCIIsCCIC I ¢
[SSN ! | 52
' - l KB 70
|) | 4
WOFK STATION
~20
DISC CONTROL
16
Y SYsTemBUS /~ { TO FURTHER WORKSTATIONS
SYSTEM BLOCK DIAGRAM
o ° L] e ooe [} . e S0 L] [
[[] L N) L[] L] e & o o L[] [] ® ¢ o o
[X] eee o o L] L] e e o o L 3 L] e o ®
& o o e L] L] L] L] L] . s o L)
e o . s o e @ * & o o * & 2® * o @
L] *® e oo e L] L] L] L] L] L] eoe

[trgl

et Sttinasi.

>t

e

WORKSTATION
LEVEL

DOCUMENT
PROCESSING
LEVEL

DOCUMENT
LEVEL

MASTERUNIT 12

WORKSTATION. 14

] [
MOS - |
r?’@ USER
I SH 7Dli:léAY
I KEYBOARD
A
| — Ny T T =
30 | 2
OR - > AOR
|
' L A
734 I
ss -
_.___.__.._l_.._ -t - - - - =
f32v 40
0s - : > ADSr
FIG. 2
SYSTEM CONTROL
STRUCTURE

P

Py

e P o - I I
= i w o e it HRPRRSERRSENER
1
é
!
|
%
1
3
0 i
ARS |
8
f75 r7 fZB ‘r42
DS MODS |
§5 V (64 AGR
SM/74, o EP — _
‘ =P
Y
}2 DAS ¥
ST —— FRB (60 5
70 66 BT '
ks ” ocs Yy 54
l P8
T - ~588
VARS | ¢ o > BUFFERS [
l 3
88 756
sSw 4
)) 48
i P sB = DM 10
: i 52 DISPLAY
1
'} SAVES
A
784 732 246
[] TO CPU/IO/XB _
FI1G. 3. contrRotANDDATA
STRUCTURE
» . [LR] *] s » L) » L]
° 3 o . . e & w o s & ®
. ees & o . 3 s o o @ . o o
. c s ‘s ¢ e ‘.. ..‘o : [- : -'
* : og' :.(.o‘ .n,é P . . X

R B

e ooy TR
780
DT .
HEADER .
" oata |
| poinTERS] ;
\] Y 3
PRIMARY NAMEITEM TEXT PAGE S
INDEXES - HEADER _ | . HEARER_ |
(P13 DATA 1 DATA _———
p POINTERS POINTERS
| 1 ¥ 4
“TEXT BLOCK TEXT BLOCK .
HEADER —— WEADER ;
DATA

SECONDARY NAMED (TEM NAMED ITEM
HEADER HEADER HREADER
T BATA. T 1T T T BDATA DATA

INDEXES—] | _ HEADER _
(sialy BATA” ~ ‘
o [POINTERS | [POINTERS |}
. Y
TEXT BLOCK | TExTBLOCK . [TexTBLoCK

HEADER | = HEADER HEADER |

INFROMATION X , X

ITEM] TEXT TEXT TEXT
8LOCKS - - — - — = - - _-—— =

(UBS)\ .
se ATTRIBUTES, ATTRIBUTES ATTRIBUTES
e =

DOCUMENT STRUCTURE

Yo oamt

i

e SELNE ¢

S03(n}

503(n-1)

2‘\DOCUMENT FILE 24
STRUCTURE OQOF A DQCUMENT FILE 24
.

FIG. &

503N

BLOCK
503{d)

.z e PO SN

et

BT | AUX NL oL TO
1001 [1003} 1005 | 1007 | 1009 | iOll

uo 1013 uiD 1015

TEXT 629

r_.__ — e - —— ———

___________ ~J"2_END OF LAST
TEXT CHARACTER
START OF FIRST

AW 625 ~ — o e e e e o]
______ it} TIAW HiS

ATTR 631

T8 621

FIG. 6 11B¢ peTAIL

. e e

HEADER 602

W%.a I JE g e
it B W e S AT B

T
a0
o
B
A

/503
H 602 602 602 602
BM 60! AD AD 2 |~ DT 8C
603 $B8605
o| & w
NIP r~’
6097 RIPEI3 (PlP 617
[" 602 602 602
gl] z G ™= 503
eos| 5 | B |E|E AYHRH N
- s |z]z 3 -
Csostm NIX €07 SPIX 619 503 (1)
NIX 607)
602 602 e e02 s e 602
e[|zl [—3503(TEXT |, [629] 629
3 ~ e -l -~ - - -
o L_eg_s___ o oy face23j e |
ELl® ATTR A—631—f [TIn 63i
SFIX 615 T8 62! N “—aw 625
Y
~503(f) o PAGE 627 (n)
602 602 — ¢ —| LO2
629 _ 24 Ve 629
““““ 503 - - = ==
63! 631 T
FIIG 617 %6 g
TEXT SHEW L33
FIG. 7 ©DETALL OF THE DOCUMENT STRUCTURE \\501
ow &) : .‘bz ‘.o. .‘. 'Q: .:O .0. .b‘
:- :ao : : . - ¢« o 8 o . [4 * o b
® @ & o o0 * .i. .O‘ : . :. : : .c
.o. : oo‘. :oo .o. . T e . - [e

U i 1 | i

— e

st e s sensictomneaclii

v

[

Bt o e

TY DATA SO EO }
1103 1105 o7 1109

SDAW 1101 |
1

i

i

|

]

TY AUX AC OFF IN DATA i
nos | w7 119 12! 123 :
1AW il1S “
FIG. 2 0DETAIL OF ATTRIBUTE WORDS 625 |

4

i

[- s} e * L
. -.. : . ® . . * v e - 2 o o a
’ L] ade & o L4 L] . & & & L} * * ¢ & !
* o ® 9 >0 [d L] [] L] L I 4 L 3
TR [4 I) . @ o ® » o . v e o o o
- o e oo . . - - L3 . a®s

A i 1 |

23
A,
—
| 121 NC PC
o3 maz 19 e 589
Faw 1201
HEADER 602
TEXT 629 WITH FORMAT LINE
TEXT
=]
_________ .
R .
__________ .|
: ATTR 631
FORMAT DATA BLOCK 1215
LS J N LP}
i217 1219 1221 | 1223

F11 8 1213

FIG. 9 FrORMAT ATTRIBUTE WORD AND FI10

et e . R

62!

602

o

e

Y AR R R ST e

LAt Tt HE O SR

629

631

621 621 621 621 621
A o~ ~ - —— .
602 > 602 < 602 > 602 ~ . .. 802
629 629 6239 - 629 629
1201] T 1201 - —711201 |
&3 6 31 [T 831 631 531
N—— J/ N /
N ~
coL.t 1301 COL.2 1303
1207 1207
1209 1203

FIG. 1O COLUMNS IN A CHAIN OF TBS 621

[2 20f]
*e

(XX 1)
°e s e
e

te &

) eqe os @ L]]
L) e o * o
s » - ¢ . 0 e

L - c o =
r e z @€ o 2 D >

« L L] L] LA D J

R

et e

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

